琉球大学学術リポジトリ

The irreducibilities of Appell＇s F＿4

メタデータ	言語：
	出版者：Department of Mathematical Sciences，College
of Science，University of the Ryukyus	
	公開日：2010－01－25
	キーワード（Ja）：
	キーワード（En）：
	作成者：Kato，Mitsuo，加藤，満生
メールアドレス：	
	所属：
URL	http：／／hdl．handle．net／20．500．12000／15067

Ryukyu Math. J., 7(1994), 25-34

THE IRREDUCIBILITIES OF APPELL's F_{4}

Mitsuo KATO

1. Introduction.

In this paper we give a necessary and sufficient condition for the irreducibility of the system of Appell's differential equations of type F_{4}.

Appell's system of hypergeometric differential equations of type F_{4} is defined by
 which has four dimensional solution space \mathcal{F}_{4}.

We say that $\left(F_{4}\right)\left(o r \mathcal{F}_{4}\right)$ is irreducible if there is no proper subspace of \mathcal{F}_{4} which is invariant under operations of the monodromy group. Then irreducibility conditions are given by the following theorem.

THEOREM 1. (F_{4}) is irreducible if and only if none of $a, b, a-c, a-c^{\prime}, a-c-c^{\prime}, b-c, b-c^{\prime}, b-c-c^{\prime}$ is an integer.

In [4], we have proved THEOREM 1 under the assumption
that $c, c^{〔} \neq$. This restriction arises from the fact that the fundamental solutions $\omega_{i} 1 \leq i \leq 4$ adopted there are invalid when c or c^{\prime} is an integer. But the "only if" part holds even if c or c^{\prime} is an integer by continuity. We prove the "if" part of THEOREM 1 by chosing suitable fundamental solutions $g_{\mathrm{i}} \quad 1 \leq \mathrm{i} \leq 4$.

2. Proof of THEOREM 1

In this section we prove the "if part" of THEOREM I. So we assume that none of $a, b, a-c, b-c, a-c^{-}, b-c^{-}, a-c-c^{-}, b-c-c^{-}$is an integer.

In [4], we have proved that (F_{4}) is irreducible when $c, c^{〔} \notin Z$. It is also true that if $c, a-b \notin Z$ or if $c^{\prime}, a-b \notin Z$ then $\left(F_{4}\right)$ is irreducible by exchanging L_{Y} and L_{∞} or L_{X} and L_{∞} respectively.

So it suffices to prove for the case when two of $c, c^{-}, a-b$ are integers. We may assume for example that c and $c^{\text {c }}$ are integer.

Since (F_{4}) has the symmetries $\left(a, b, c, c^{-}\right) \longrightarrow\left(1+a-c, 1+b-c, 2-c, c^{`}\right)$, $\left(a, b, c, c^{-}\right) \longrightarrow\left(1+a-c^{-}, 1+b-c^{\prime}, c, 2-c^{\prime}\right)$, $\left(a, b, c, c^{-}\right) \longrightarrow\left(2+a-c-c^{-}, 2+b-c-c^{-}, 2-c, 2-c^{-}\right)$, we may assume that $c, c^{\prime} 21$. So we will prove the "if" part of THEOREM 1 under the condition that $c, c^{\prime} \in \mathbb{N}$.

2.1 A system of Fundamental solutions for $c, c^{\prime} \in N$

We will find a basis of \mathcal{F}_{4} in a neighborhood of $c=1+m$,
$c^{-}=1+m^{-}, m, m^{-} \geq 0$.
For c, c ${ }^{`} \notin \mathbf{Z}$, put
$f_{1}^{-}=\Gamma(a) \Gamma(b) F_{4}\left(a, b, c, c^{-} ; X, Y\right)$,
$f_{2}^{\prime}=\Gamma(1+a-c) \Gamma(1+b-c) X^{1-c^{\prime}} F_{4}\left(1+a-c, 1+b-c, 2-c, c^{-} ; X, Y\right)$,
$f_{3}^{\prime}=\Gamma\left(1+a-c^{-}\right) \Gamma\left(1+b-c^{-}\right) Y^{1-c^{-}} F_{4}\left(1+a-c^{-}, 1+b-c^{-}, c, 2-c^{-} ; X, Y\right)$,
$f_{4}^{\prime}=\Gamma\left(2+a-c-c^{-}\right) \Gamma\left(2+b-c-c^{-}\right)$

$$
X^{1-c} Y^{1-c^{\prime}} F_{4}\left(2+a-c-c^{-}, 2+b-c-c^{-}, 2-c, 2-c^{-} ; X, Y\right) .
$$

Then
$f^{\prime} / \Gamma(c) \Gamma\left(c^{\prime}\right)=\sum \frac{\Gamma\left(a+k+k^{\prime}\right) \Gamma\left(b+k+k^{\prime}\right)}{\Gamma(c+k) \Gamma(c+k) \Gamma(1+k) \Gamma(1+k)} x^{k} Y^{k^{\prime}}$,
$f_{2}^{\prime} / \Gamma(2-c) \Gamma\left(c^{\prime}\right)=\sum \frac{\Gamma\left(1+a-c+k+k^{-}\right) \Gamma\left(1+b-c+k+k^{-}\right)}{\Gamma(2-c+k) \Gamma(c+k) \Gamma(1+k) \Gamma(1+k)} x^{1-c+k} y^{k^{\prime}}$,
If $c \longrightarrow 1+m(m=0,1,2, \ldots)$ then
$\mathrm{f}_{2}^{\prime} / \Gamma(2-\mathrm{c}) \Gamma\left(\mathrm{c}^{\text {}}\right) \longrightarrow \mathrm{f}_{1}^{\prime} / \Gamma(\mathrm{c}) \Gamma\left(\mathrm{c}^{\text {}}\right)$. Similarly
$\mathrm{f}_{4}^{-} / \Gamma(2-\mathrm{c}) \Gamma\left(2-\mathrm{c}^{\prime}\right) \longrightarrow \mathrm{f}_{3}^{\prime} / \Gamma(\mathrm{c}) \Gamma\left(2-\mathrm{c}^{-}\right)$.
If $c^{\prime} \longrightarrow 1+m^{\prime} \quad\left(m^{\prime}=0,1,2, \ldots\right)$ then
$f_{3}^{\prime} / \Gamma(c) \Gamma\left(2-c^{\prime}\right) \longrightarrow f_{1}^{\prime} / \Gamma(c) \Gamma\left(c^{\prime}\right)$,
$\mathrm{f}_{4}^{\prime} / \Gamma(2-\mathrm{c}) \Gamma\left(2-\mathrm{c}^{\prime}\right) \longrightarrow \mathrm{f}_{2}^{\prime} / \Gamma(2-\mathrm{c}) \Gamma\left(\mathrm{c}^{\prime}\right)$.

Hence
$\Gamma(1-c)\left(f_{2}^{-} / \Gamma(2-c) \Gamma\left(c^{-}\right)-f_{1}^{-} / \Gamma(c) \Gamma\left(c^{-}\right)\right)$and
$\Gamma(1-c)\left(f_{4}^{\prime} / \Gamma(2-c) \Gamma\left(2-c^{\prime}\right)-f_{3}^{\prime} / \Gamma(c) \Gamma\left(2-c^{\prime}\right)\right)$ are holomorphic at $c=1+m$. Equivalently
$\Gamma(c-1) f_{2}^{\prime}+\Gamma(1-c) f_{1}^{\prime}$ and $\Gamma(c-1) f_{4}^{\prime}+\Gamma(1-c) f_{3}^{\prime}$ are
holomorphic at $c=1+m$.
By the same reason,
$\Gamma\left(c^{\prime}-1\right) f_{3}^{\prime}+\Gamma\left(1-c^{\prime}\right) f_{1}^{\prime}$ and $\Gamma\left(o^{\prime}-1\right) f_{4}^{\prime}+\Gamma\left(1-c^{\prime}\right) f_{2}^{\prime}$ are holomorphic at $c^{-}=1+m^{-}$.

Thus we have the following four solutions of $\left(F_{4}\right)$ in a neighborhood of $c=1+m, c^{\prime}=1+m^{\prime}$:
$g_{1}=f_{1}^{\prime}$,
$g_{2}=\Gamma(c-1) f_{2}^{\prime}+\Gamma(1-c) f_{1}^{\prime}$,
$g_{3}=\Gamma\left(c^{\prime}-1\right) f_{3}^{\prime}+\Gamma\left(1-c^{\prime}\right) f_{1}^{\prime}$,
$g_{4}=\Gamma(c-1) \Gamma\left(c^{\prime}-1\right) f_{4}^{\prime}+\Gamma(1-c) \Gamma\left(c^{\prime}-1\right) f_{3}^{\prime}$
$+\Gamma(c-1) \Gamma\left(1-c^{\prime}\right) f_{2}^{\prime}+\Gamma(1-c) \Gamma\left(1-c^{\prime}\right) f_{1}^{\prime}$.
Here g_{4} is holomorphic at $c=1+m, c^{-}=1+m^{-}$by Hartogs' theorem.
We will show that at $c=1+m, c^{-}=1+m^{\prime}, g_{i}$ are of the
following forms:
$g_{1}=\Gamma(a) \Gamma(b) F_{4}\left(a, b, 1+m, 1+m^{-} ; X, Y\right)$,
$g_{2}=(-1)^{1+m} \log X g_{1} / \Gamma(1+m)+X^{-m} g_{21}$,
$g_{3}=(-1)^{1+m^{\prime}} \log Y g_{1} / \Gamma\left(1+m^{\prime}\right)+Y^{-m^{\prime}} g_{31}$,
$g_{4}=(-1)^{m+m^{\prime}} \log X \log Y g_{1} / \Gamma(1+m) \Gamma\left(1+m^{\prime}\right)$
$+Y^{-m^{-}} \log X{ }_{9} 1+X^{-m} \log Y g_{42}+X^{-m} Y^{-m^{-}}{ }_{9}{ }_{43}$,
where ${ }_{i j}$ are holomorphic at $X=0, Y=0$. This proves that $g_{1} g_{2}{ }^{\prime g} g^{\prime g} g_{4}$ form a system of fundamental solutions of (F_{4}).

Put $c=1+m-\delta, c^{\prime}=1+m^{\prime}-\delta^{\prime}$.
$g_{2} / \Gamma\left(c^{\prime}\right)=-\pi / \sin \pi c \quad\{$
$\sum \frac{\Gamma\left(a+1-c+k+k^{-}\right) \Gamma\left(b+1-c+k+k^{-}\right)}{\Gamma(2-c+k) \Gamma(1+k) \Gamma\left(c+k^{-}\right) \Gamma(1+k)} x^{1-c+k_{y^{\prime}}{ }^{-} .}$
$-\sum \frac{\Gamma\left(a+k+k^{\prime}\right) \Gamma\left(b+k+k^{\prime}\right)}{\Gamma(c+k) \Gamma(1+k) \Gamma(c+k) \Gamma(1+k)} x^{k} y^{k^{\prime}}$,
$=(-1)^{1+m} \pi / \sin \pi \delta\{$
$x^{-m} \sum_{k<m} \frac{\Gamma\left(a-m+\delta+k+k^{-}\right) \Gamma\left(b-m+\delta+k+k^{-}\right)}{\Gamma(1-m+k+\delta) \Gamma(1+k) \Gamma\left(c+k^{-}\right) \Gamma(1+k)} x^{k+\delta}{Y^{k}}^{-}$
$+\sum\left(\frac{\Gamma\left(a+k+k^{\prime}+\delta\right) \Gamma\left(b+k+k^{\prime}+\delta\right)}{\Gamma(1+k+\delta) \Gamma(1+m+k) \Gamma(c+k) \Gamma(1+k)} x^{\delta}\right.$

$$
\left.\left.-\frac{\Gamma\left(a+k+k^{-}\right) \Gamma\left(b+k+k^{-}\right)}{\Gamma(1+k) \Gamma(1+m+k-\delta) \Gamma(c+k) \Gamma(1+k)}\right) X^{k} Y^{k^{-}}\right\}
$$

If $\delta \longrightarrow 0$ then
${ }^{g} 2 / \Gamma\left(c^{\prime}\right) \longrightarrow(-1)^{1+m} \quad \log \times f_{i}^{\prime} / \Gamma(c) \Gamma\left(c^{\prime}\right)$
$-x^{-m} \sum_{k<m}(-1)^{m-k} \frac{\Gamma(m-k) \Gamma\left(a-m+k+k^{-}\right) \Gamma\left(b-m+k+k^{\prime}\right)}{\Gamma(1+k) \Gamma(c+k) \Gamma(1+k-)} x^{k} y^{k^{-}}$
$+\left.\frac{\partial}{\partial \delta} \sum \frac{\Gamma\left(a+k+k^{-}+\delta\right) \Gamma\left(b+k+k^{-}+\delta\right)}{\Gamma(1+k+\delta) \Gamma(1+m+k+\delta) \Gamma\left(c+k^{\prime}\right) \Gamma\left(1+k^{\prime}\right)} x^{k} Y^{k}\right|_{\delta=0^{\prime}}$
Similarly if $\delta \longrightarrow 0$ then
$\left(\Gamma(c-1) f_{4}^{-}+\Gamma(1-c) f_{3}^{\prime}\right) / \Gamma\left(2-c^{-}\right) \longrightarrow(-1)^{1+m}\left\{\log X f_{3}^{-} / \Gamma(c) \Gamma\left(2-c^{-}\right)\right.$
$-x^{-m} \sum_{k<m}(-1)^{m-k} \frac{\Gamma(m-k) \Gamma\left(1+a-c^{\prime}-m+k+k^{\prime}\right) \Gamma\left(1+b-c^{-}-m+k+k^{\prime}\right)}{\Gamma(1+k) \Gamma\left(2-c+k^{-}\right) \Gamma(1+k)}$

$$
x^{k} y^{1-c^{\prime}+k^{\prime}}
$$

$+\left.\frac{\partial}{\partial \delta} \sum \frac{\Gamma\left(1+a-c^{-}+k+k^{-}+\delta\right) \Gamma\left(1+b-c^{-}+k+k^{-}+\delta\right)}{\Gamma(1+k+\delta) \Gamma(1+m+k+\delta) \Gamma\left(2-c+k^{\prime}\right) \Gamma(1+k)} x^{k} y^{1-c^{-}+k^{\prime}}\right|_{\delta=0}$
If $\delta^{-} \longrightarrow 0$ then
$g_{3} / \Gamma(c) \longrightarrow(-1)^{1+m^{\prime}}\left\{\log Y f_{1}^{\prime} / \Gamma(c) \Gamma\left(c^{-}\right)\right.$
$-Y^{-m} \sum_{k}{ }^{\prime}<m^{-}(-1)^{m^{-}-k^{-}} \frac{\Gamma\left(m^{\prime}-k^{\prime}\right) \Gamma\left(a-m^{\prime}+k+k^{\prime}\right) \Gamma\left(b-m^{-}+k+k-1\right)}{\Gamma(1+k) \Gamma(c+k) \Gamma(1+k)} x^{k} \gamma^{k^{-}}$
$\left.+\left.\frac{\partial}{\partial \delta} \sum \frac{\Gamma\left(a+k+k^{\prime}+\delta^{\prime}\right) \Gamma\left(b+k+k^{\prime}+\delta^{\prime}\right)}{\Gamma(1+k) \Gamma(c+k) \Gamma\left(1+m+k+\delta^{\prime}\right) \Gamma(1+k+\delta)} x^{k} \gamma^{k^{\prime}}\right|_{\delta^{-}=0}\right\}$
$\left(\Gamma\left(c^{-}-1\right) f_{4}^{\prime}+\Gamma\left(1-c^{-}\right) f_{2}^{\prime}\right) / \Gamma(2-c) \longrightarrow(-1)^{1+m^{\prime}} \operatorname{llog} Y f_{2}^{\prime} / \Gamma(2-c) \Gamma\left(c^{\prime}\right)$
$-V^{-m} \sum_{k^{-}<m^{-}}(-1)^{m^{\prime}-k^{\prime}}$
$\frac{\Gamma\left(m^{-}-k^{-}\right) \Gamma\left(1+a-c-m^{-}+k+k^{-}\right) \Gamma\left(1+b-c-m^{-}+k+k^{-}\right)}{\Gamma(1+k) \Gamma(2-c+k) \Gamma(1+k)} x^{k} \gamma^{1-c^{-}+k^{-}}$
$\left.+\frac{\partial}{\partial \delta}-\left.\sum \frac{\Gamma\left(1+a-c^{-}+k+k^{\prime}+\delta\right) \Gamma\left(1+b-c^{-}+k+k^{\prime}+\delta\right)}{\Gamma(1+k) \Gamma(2-c+k) \Gamma(1+m+k+\delta) \Gamma(1+k+\delta)} x^{k} y^{k^{-}}\right|_{\delta=0}\right\}$.
Hence if $\delta \longrightarrow 0$ and $\delta \longrightarrow 0$, then
$g_{4} \longrightarrow(-1)^{m+m^{\prime}} \operatorname{llog} X \log Y g_{1} / \Gamma(1+m) \Gamma\left(1+m^{\prime}\right)$
$+\log X($
$-Y^{-m^{-}} \sum_{k^{-}<m}(-1)^{m^{-}-k^{-}} \frac{\Gamma\left(m^{-}-k^{-}\right) \Gamma\left(a-m^{-}+k+k^{-}\right) \Gamma\left(b-m^{-}+k+k^{-}\right)}{\Gamma(1+k) \Gamma(1+m+k) \Gamma\left(1+k^{\prime}\right)} X^{k} Y^{k^{-}}$
$\left.+\left.\frac{\partial}{\partial \delta} \sum \frac{\Gamma\left(a+k+k^{-}+\delta^{-}\right) \Gamma\left(b+k+k^{-}+\delta^{\prime}\right)}{\Gamma(1+k) \Gamma(1+m+k) \Gamma\left(1+m+k+\delta^{\prime}\right) \Gamma(1+k+\delta)} x^{k} Y^{k^{\prime}}\right|_{\delta^{\prime}}=0\right)$
$+\log Y($
$-x^{-m} \sum_{k<m}(-1)^{m-k} \frac{\Gamma(m-k) \Gamma\left(a-m+k+k^{-}\right) \Gamma\left(b-m+k+k^{-}\right)}{\Gamma(1+k) \Gamma(1+m+k) \Gamma(1+k)} x^{k} y^{k}$
$\left.+\left.\frac{\partial}{\partial \delta} \sum \frac{\Gamma\left(a+k+k^{\prime}+\delta\right) \Gamma\left(b+k+k^{\prime}+\delta\right)}{\Gamma(1+k+\delta) \Gamma(1+m+k+\delta) \Gamma(1+m+k) \Gamma(1+k)} x^{k} Y^{k}\right|_{\delta^{-}=0}\right)$
$+X^{-m} Y^{-m} \sum_{k<m, k^{-}<m^{-}}$
$(-1)^{m+m^{-}} \frac{\Gamma(m-k) \Gamma\left(m^{-}-k^{\prime}\right) \Gamma\left(a-m-m^{-}+k+k^{-}\right) \Gamma\left(b-m-m^{\prime}+k+k^{-}\right)}{\Gamma(1+k) \Gamma(1+k)} x^{k} \gamma^{k^{-}}$ $-x^{-m} \frac{\partial}{\partial \delta^{-}} \sum_{k^{-}<m} \quad(-1)^{m^{-}-k^{-}}$
$\left.\frac{\Gamma\left(m^{-}-k^{-}\right) \Gamma\left(a-m^{-}+k+k^{-}+\delta^{\prime}\right) \Gamma\left(b-m^{-}+k+k^{\prime}+\delta^{\prime}\right)}{\Gamma(1+k) \Gamma\left(1+k+\delta^{\prime}\right) \Gamma\left(1+m+k^{\prime}+\delta^{\prime}\right)} x^{k} \gamma^{k^{-}}\right|_{\delta^{-}=0}$
$-Y^{-m} \frac{\partial}{\partial \delta} \Sigma_{k<m}(-1)^{m-k}$

$$
\left.\frac{\Gamma(m-k) \Gamma\left(a-m+k+k^{-}+\delta\right) \Gamma\left(b-m+k+k^{-}+\delta\right)}{\Gamma(1+k+\delta) \Gamma(1+m+k+\delta) \Gamma(1+k)} x^{k} Y^{k^{\prime}}\right|_{\delta=0}
$$

$+\left.\frac{\partial^{2}}{\partial \delta \partial \delta^{-}} \sum \frac{\Gamma\left(a+k+k^{-}+\delta+\delta^{-}\right) \Gamma\left(b+k+k^{-}+\delta+\delta^{-}\right)}{\Gamma(1+k+\delta) \Gamma\left(1+m+k+\delta^{\prime}\right) \Gamma\left(1+m+k^{-}+\delta^{\prime}\right) \Gamma\left(1+k+\delta^{-}\right)} x^{k} Y^{k^{-}}\right|_{\delta^{-}=0} ^{\delta=0}$ Hence g_{i} are of the desired forms.

2.2 Proof of THEOREM 1

From now on we assume that c and c^{-}are in a small neiborhoods of $1+m$ and $1+m^{\prime}$ respectively.

In [4], we have considered a fundamental solutions $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$. Here $g_{1}=\omega_{1} / \Gamma(1-c) \Gamma\left(1-c^{-}\right), g_{2}=\omega_{2} / \Gamma\left(1-c^{-}\right), g_{3}=\omega_{3} / \Gamma(1-c)$, $g_{4}=\omega_{2}+\omega_{3}-\omega_{4}$ for $c \neq 1+m, c^{\prime} \neq 1+m^{\prime}$.

We recall here the fundamental group
$\pi_{1}=\pi_{1}\left(C^{2}-L_{X} U L_{Y} \cup C, P_{0}\right)$ where $L_{X}=\{X=0\}, L_{Y}=\{Y=0\}$, $C=\left\{(X-Y)^{2}-2(X+Y)+1=0\right\}, P_{0}=(1 / 100,1 / 100)$. Let γ_{1} be the horizontal ($Y \equiv 1 / 100$) loop surrounding $L_{X}=0$ positively and γ_{2} be the vertical loop surrounding $L_{Y}=0$. Let γ_{3} be the diagonal
($X \equiv Y$) loop surrounding C positively.

$$
\text { The analytic continuation } \gamma_{i} g \text { of } g={ }^{t}\left(g_{1}, g_{2}, g_{3}, g_{4}\right)
$$

along γ_{i} are then derived from $\boldsymbol{\gamma}_{\mathrm{i}}$ (osee [4]) as follows:
$\gamma_{1} g=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ (1-e(-c)) \Gamma(1-c) & e(-c) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & (1-e(-c)) \Gamma(1-c) & e(-c)\end{array}\right) g$,

$\gamma_{3} g=\left(\begin{array}{ccll}-e(\varepsilon) & e_{2} & e^{-e} & e^{e} 4 \\ 0 & 1^{2} & 0^{3} & 0^{4} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) g$,
where $e(a)=\exp (2 \pi \sqrt{ }-1 \quad a), \quad 8=c+c^{-}-a-b-1$,
$e_{2}=e(\varepsilon / 2) \pi \Gamma(c-1) \sin \pi\left(a+b-2 c-c^{\prime}\right)$,
$e_{3}=e(\varepsilon / 2) \pi \Gamma\left(c^{-}-1\right) \sin \pi\left(a+b-c-2 c^{\prime}\right)$,
${ }_{4}=\theta(\varepsilon / 2) \pi^{2} \Gamma(c-1) \Gamma\left(c^{-}-1\right) \sin \pi\left(a-c-c^{-}\right) \sin \pi\left(b-c-c^{-}\right)$.

Assume there exists a non trivial proper subspace W invariant under $\boldsymbol{\gamma}_{1}, \gamma_{2}, \gamma_{3}$. W contains an eigen vector $\alpha g_{1}+\beta g_{3}$ of γ_{1}.

If $\beta=0$, then $g_{1} \in W$. If $\beta \neq 0$ then $\gamma_{2}\left(\alpha g_{1}+\beta g_{3}\right)-\left(\alpha g_{1}+\beta g_{3}\right) \in W$, which implies $g_{1} \in W$. Hence we have

$$
g_{1} \in W
$$

$\gamma_{3}\left(g_{1}\right)=-e(\varepsilon) g_{1}+e_{2} g_{2}+e_{3} g_{3}+e_{4} g_{4} \in W, e_{4} \neq 0$.
$\gamma_{1} \gamma_{3}\left(g_{1}\right)-\gamma_{3}\left(g_{3}\right)=\beta_{1} g_{1}+\beta_{3} g_{3} \in W, \beta_{3} \neq 0$. Since $g_{1} \in W$, we have

$$
g_{3} \in W .
$$

Similarly we have

$$
g_{2} \in W
$$

This contradicts to the fact that W is a proper subspace. And this proves theorem 1.4.

3. Reducible Cases.

As stated in [4], we know that if one of $a, b, 1+a-c, 1+b-c, 1+a-c^{\prime}, 1+b-c^{-}, 2+a-c-c^{\prime}, 2+b-c-c^{-}$is a non positive (resp. positive) integer then \mathcal{F}_{4} has a one dimensional (resp. three dimensional) invariant subspace of \mathcal{F}_{4} under the operations of the monodromy group.

The three dimensional invariant spaces can be expressed by Appell's F_{1} (see [4]).

REFERENCES

[1] P.Appell, J.Kampé de Fériet, Fonctions
Hypergéométriques et Hypersphériques, Gauthier Villars,
Paris, 1926.
[2] W. N. Bailey, Generalized Hypergeometric Series,
Cambridge Tracts in Mathematics and Mathematical Physics No. 32, 1972 (originally 1935).
[3] Mitsuo Kato, Connection Formulas for Appell's System F_{2} and some Applications, Preprint.
[4] Mitsuo Kato, Connection Formulas for Appell's System F_{4} and some Applications, to appear in Funkcialaj Ekvacioj.
[5] T. Kimura, Hypergeometric Functions of Two Variables, Tokyo Univ. (1973).
[6] Takeshi Sasaki, On the finiteness of the monodromy group of the system of hypergeometric differential equations (F_{D}), J. Fac. Sci. Univ. of Tokyo 24(1977) 565-573.
[7] Toshiaki Terada, Problèmes de Riemann et fonctions automorphes provenant des fonctions hypergéométriques de plusieures variables, J. Math. Kyoto Univ. 13 (1973), 557-578.

Department of Mathematics
College of Education
University of the Ryukyus
Nishihara-cho, Okinawa 903-01
JAPAN

