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On Schrédinger’s variation principle !

Shoju Kudaka and Shuichi Matsumoto

Almost a century has passed since the birth of quantum theory.
Yet even now it is hard to say that we have a sufficiently established
concept of the quantization procedure for a given dynamical system.
However, the fact that we have had much success in theoretical and
applied areas proves that the theory is indeed effective in describing the
quantum world. We feel that the opportunity for a further evolution of
the theory lies in reexamining this unbalanced situation and searching
for a more universal concept of quantization.

We can find in one of Schrédinger’s historic articles?) an interest-
ing variation principle from which he derived his wave equation for a
quantized system. Although he did not emphasize the principle itself,
the authors feel that Schrodinger’s variation principle touches on the
essence of the quantization procedure. Our objective in this article
is to review this principle, and to show that it has some remarkable
characteristics.

It is in this article that Schrédinger first proposed the quantization
of classical dynamical systems: First, he considers the Hamilton-Jacobi

equation
oS

and substitutes Klogvy for S, where 1(q) is an unknown function.
(The background to this substitution is given in another paper?.) The
equation then becomes a quadratic form of the function ¢ and its
first derivatives. Second, he integrates over q space, and considers the
variation of the integral due to the change of ¥. He then arrives at the
correct wave equation for the quantized system.
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For example, let H be the Hamiltonian for a particle moving in
a potential V. Then from the Hamilton-Jacobi equation, substituting
K log vy for the Hamilton-Jacobi function S, we get
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The variation defined by
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leads us to

dzdydz =0 (2)

Aw4-3—(E V) = (3)

which is, of course, the quantum theoretical wave equation for such a
particle.

Schrodinger proceeds, in his paper, to analyze equation (3), and
does not return to any discussion of the general relation between such
a variation principle and quantization procedures. Such an argument
seems not to be in his subsequent papers either.

This intriguing variation principle turns out to have some un-
expected universalities. We will consider these through some simple
calculations in the following.

When Schrodinger considered the above variation problem, he
used Cartesian coordinates to describe the motion of the particle. Let
us here go through an equal procedure in terms of polar coordinates.
The Hamiltonian has the form
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and therefore, assuming the expression
S = Klog,

we have the equality
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from the Hamilton-Jacobi equation. The postulate that the variation
of the left hand side of the equality should be zero:
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which is exactly equivalent to (3).

Dirac’s quantization method® assumes some commutation rela-
tions between canonical variables g;, p; and interprets the equation

Iy = Ey

as a fundamental equation for the quantized dynamical system. His
method gives the correct wave equation (3) if we use Cartesian coordi-
nates for the variables g;; however, as is well known, treatment of the
polar coordinate representation does not proceed so smoothly. This
suggests that Schrodinger’s variation principle is more universal than
Dirac’s method.

Next let us consider Schrédinger’s variation principle for a dynam-
ical system with a constraint. As a simple example, we consider the
case of a particle with mass m on a slope inclined at 6 perpendicular to
a uniform gravitational field with the acceleration g. The Lagrangian
for this particle is given by

m . .
k= 5((1? +43) — mgq — Magqi + bga),

where ¢, ¢, are the coordinates of the particle, A is an additional vari-
able, and we have set

a = —sinf, b= cos@.



The conjugate momenta are given by
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Therefore we should consider
1
H = —(p} + p3) + mgqa + Maq + bge) + ugy (5)

2m

as the total Hamiltonian, with the constraint

P1=pr=0
and where u is a Lagrange’s undetermined multiplier.

Since we have

¢s
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and
(3, Hr] = —(A + bmg) = —ds, [bs, Hr] = u,

the motion of the particle is restricted within the submanifold A de-
fined by ¢1 = ¢2 = ¢3 = ¢4 = 0 in the phase space.

Introducing new variables ) and P by equations

¢1 = Qcosl, ¢ = Qsinf (6)

and
p1 = Pcosf, p, = Psinb, (7)

we can easily show that

(Q7¢2’ ¢47 P7 ¢37¢1)

are new canonical variables, and that @), P can be interpreted as canon-
ical variables on the submanifold M. Hence the motion of the particle
can be described with the variables @), P, in which case the Hamilto-

nian has the form )

K@ P) = 5~ —mgaQ.



Therefore it seems to be very natural that we adopt the equation
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as the wave equation for the quantized dynamical system.

Now our concern is whether Schrodinger’s variational method
leads us to the same equation (8). If we follow his method, we have to
substitute K log for the function S in the Hamilton-Jacobi equation

H(q,05/9q) = E,

where 9 is a function of variables q;,¢, and g3 = A, and the Hamilto-
nian is given by (5). Then we have
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and hence
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We have to take the integral of the left hand side of the above
equality over g space, and consider its variation due to the change
in the function 1. Here, because of the existence of the constraints
01 = ¢ = 3 = ¢4 = 0, the integral should not be taken over the
whole (q1, g2, g3) space but rather over a subspace defined by

$po=aq +bg =0, ¢4=q3+bmg=0.

A coordinate in this subspace is given by ) introduced in equation (6)
above. Moreover it is easily shown that

() + () - (%) + ()

Therefore, the variation of the integral turns out to be
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which leads us to the equation

d?y 2m
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which is indeed identical to equation (8).

We have shown some interesting facts concerning Schrédinger’s
variation principle. We do not yet know whether they are accidental
results for restricted examples, or whether they suggest that his varia-
tion principle touches on a fundamental essence of the quantum theory.
A more systematic study will be given in subsequent papers.
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