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On Schrödinger's variation principle 1

Shoju Kudaka and Shuichi Matsumoto

Almost a century has passed since the birth of quantum theory.
Yet even now it is hard to say that we have a sufficiently established
concept of the quantization procedure for a given dynamieal system.
However, the fact that we have had mueh sueeess in theoretical and
applied areas proves that the theory is indeed effective in deseribing the
quantum world. vVe feel that the opportunity for a further evolution of
the theory lies in reexamining this unbalaneed situation and searehing
for a more universal eoneept of quantization.

We ean find in one of Sehröclinger's historie articles l ) an interest­
ing variation prineiple from whieh he derived his wave equation for a
quantized system. Although he did not emphasize the prineiple itself,
the authors feel that Sehröclinger's variation principle touehes on the
essenee of the quantization proeedure. Our objective in this article
is to review this principle, and to show that it has some remarkable
eharacteristics.

It is in this article that Sehröclinger first proposed the quantization
of classical dynamieal systems: First, he considers the Hamilton-Jacobi
equation

H (q, ~:) = E

and suhstitutes Klog'l/l for S, where 'I/I(q) is an unknown function.
(The background to this substitution is given in another paper2).) The
equation then becomes a quadratic form of the function '1/1 and its
first derivatives. Second, he integrates over q spaee, and considers the
variation of the integral due to the change of '1/1. He then arrives at the
correct wave equation for the quantized system.

1Receivcd November 30, 2001.
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For example, let H be the Hamiltonian for a particle moving in
a potential V. Then from the Hamilton-Jacobi equation, substituting
K log 'ljJ for the Hamilton:.Jacobi function 5, we get

(
8'ljJ)2 (8'ljJ)2 (8'ljJ)2 2m 2- + - + - --(E-V)'ljJ =0.
8x 8y 8z K2

The variation defined by

(1)

leads us to
2m

ll'ljJ + K2 (E - V)'ljJ = 0, (3)

which is, of course, the quantum theoretical wave equation for such a
particle.

Schrödinger proceeds, in his paper, to analyze equation (3), and
does not return to any discussion of the general relation between such
a variation principle and quantization procedures. Such an argument
seems not to be in his subsequent papers either.

This intriguing variation principlc turns out to have some un­
expected universalities. We will consider these through some simple
calculations in the following.

When Schrödinger considered the above variation problem, he
used Cartesian coordinates to describe the motion of the particle. Let
us here go through an equal procedure in terms of polar coordinates.
The Hamiltonian has the form

1 (2 1 2 1 2)H = -2 Pr + 2 PO + 2 . 20P<j> + V(r),m r r sm

and therefore, assuming the expression

5 = Klog'ljJ,

we have the equality
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from the Hamilton-Jacobi equation. The postulate that the variation
of the left hand side of the equality should be zero:

[(
81/J)2 1 (81/J)2 1 (81/J)2 2m 2]

DJ 8r + r 2 8B + r 2 sin2 B 8e/> - K2 (E - \l)1/J

r 2 sin BdrdBde/> = 0

leads us to

which is exactly equivalent to (3).

Dirac's quantization method3) assumcs some commutation rela­
tions between canonical variables qi, Pi and interprets the equation

1l1/J = E1/J

as a fundamental equation for the quantized dynamical system. His
method gives the correct wave equation (3) if we use Cartesian coordi­
nates for the variables qi; however, as is weIl known, treatment of the
polar coordinate representation does not proceed so smoothly. This
suggests that Schrödinger's variation principle is more universal than
Dirac's method.

Next let us consider Schrödinger's variation principle for a dynam­
kaI system with a constraint. As a simple example, we considcr the
case of a particle with mass m on a slope inclined at Bperpendicular to
a uniform gravitational field with the acceleration g. The Lagrangian
for this particle is given by

",here q!, q2 are the coordinates of the particle, >. is an additional vari­
able, and we have set

a = -sinO,
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The eonjugate momenta are given by

8L .
PI = 8ei! = mqI,

and
8L

p>.. = -. = O.
8>"

Therefore we should eonsider

1 2 2
H = 2m (PI + P2) + mgq2 + >..(aqI + be/'l.) + UcPI (5)

as the total Hamiltonian, with the eonstraint

cPI - P>.. = 0

and where u is a Lagrange's undetermined multiplier.

Sinee we have

and
[cP3, HT] = -(>" + bmg) - -cP4, [cP4, HT] = u,

the motion of the particle is restrieted within the submanifold Af de­
fined by cPI = cP2 = cP3 = cP4 = 0 in the phase spaee.

Introdueing new variables Q and P by equations

qI = Qeos(), q2 = Qsin()

and
PI = P eos (), P2 = P sin (),

we ean easily show that

(6)

(7)

are new eanonieal variables, and that Q, P ean be interpreted as eanon­
ieal variables on the submanifold Al. Hcnee the motion of the particle
ean be deseribed with the variables Q, P, in whieh ease the Hamilto­
nian has the form

p 2

K(Q, P) = 2m - mgaQ.
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Thcrcfore it seems to be very natural that we adopt the eqllation

h2 J2~ .--+ mgaQ~ = -E~
2mdQ2

as the wave equation for the quantized dynamical system.

(8)

Now our concern is whether Schrödinger's variational method
leads us to the same equation (8). If we follow his method, we have to
substitute K log ~ for the function S in the Hamilton-Jacobi equation

H(q,8S/8q) = E,

where ~ is a fllnction of variables ql, lJ2 and q3 = A, and the Hamilto­
nian is given by (5). Then we have

and hence

We have to take the integral of the left hand side of the above
equality over q space, and consider its variation due to the change
in the function ~. Here, because of the existence of the constraints
<PI = <P2 = <P3 = <P4 = 0, the integral should not be taken ovp.r the
whole (ql, q2, q3) space but rather over a subspace defined by

</Jz = aql + blJ2 = 0, <P4 = q3 + bmg = 0.

A coordinate in this subspace is given by Q introouced in equation (6)
above. Moreover it is easily shown that

( 8~)2 + (iN)2 = (8~)2 + (iN)2
8qI 8q2 8Q 8</Jz

Therefore, the variation of the integral turns out to be

8J[(:r-~[E+mgaQJ;;2] dQ = 0,
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whieh leads us to the equation

J2'ljJ 2m
dQ2 + K2 (E + mgaQ)'ljJ = 0,

whieh is indeed identieal to equation (8).

We have shown some interesting facts eoneerning Sehrödinger's
variation principle. We do not yet know whether they are aecidental
results for restrieted examples, or whether they suggest that his varia­
tion prineiple touehes on a fundamental essenee of the quantum theory.
A more systematie study will be given in subsequent papers.
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