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PROPER TIME AS AN OPERATOR 1

Shuichi ivfatsumoto

Abstract. When we quantize a system consisting of a single particle,
the prop0r time T and the rE'Bt mass m are usually dealt with as param
eters. In the present article, however, we introduce a new quantization
rule by which these quantities are regarded as operators in addition to
the position and the momentum. Applying this new rule to a scalar
particle and to a particle with spin 1/2, we analyze the time evolution
of thp. operator T. Tn the former case, the evolution of the proper time
perfectly matches several well-cstablishcd classical formulae. Tn the
case of t.he particle with spin 1/2, our new rule implies that an oscilla,..
tion appears in the time evolution of the operator T. This oscillation
is similar to Zitterbewegung which is well-known in the ordinary Dirac
theory. Vve formulate one physical effect of this oscillation by consid
ering the interaction with a gravitational field, and estimate how small
it is.

1. Introduction

We discussed a clock in a previous article [1]: Analyzing several
processps of measuring the mass of the clock, we concluded that there
should exist an uncertainty [(-'Iation

(1)

between the rest mass m and the proper time T of the clock. More
over, consirkring the fact that the proper time of a clock is clearly an
observable quantity, we suggested that it should be indudPd as a dy
namic variable in the appropriate Lagrangian. Vve showed that, with
this assumption, the general momentum conjugate to the proper time
Tis necpssarily the rest energy mc2 , and that T and m should therefore

1 Recciverl November 30, 1999
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be regarded as operators satisfying the commutation relation

(2)

whenever the system is quantized. Of course, the uncertainty relation
(1) follows from the commutation relation (2).

The principal reasons why we chose to discuss a clock in the previous
article are: (i) It seems quite natural that we regard the proper time of
a clock as an observable quantity of the system. (ii) Therefore, we can
hold, with rather strong conviction, the point of view that the proper
time should be dealt with as an operator. (iii) Moreover, some authors
[2] have shown that if a system has some function as a clock, then the
mass of the system has to fluctuate to an extent.

On the other hand, in the theory of classical mechanics, the concept
of the proper time of a particle is introduced through the equation

where (t, x) are the coordinates of the particle when observed from an
inertial system. Hence it is defined for every particle irrespective of
whether the particle has some function as a clock or not. Moreover,
it turns out that the analysis of means of measuring the mass of a
clock dnveloped in the introduction to Ref. 1 can be applied to every
particle, and that the same uncertainty relation (1) is valid for every
particle, again irrespective of the function of that particle.

From these considerations, we are led to the idea that proper time
and mass should be regarded as operators not only for a clock but
also for an arbitrary particle. The objective of the present article is to
invpstigate the validity of this idea. We approach it in the following
way:

1. We postulate a new quantization rule by which proper time T and
rest mass m are dealt with as self-adjoint operators that satisfy
the commutation relation

[T, m] = ih/c2

whnnever a system of a single particle is quantized.
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2. 'vVe apply this new rule to some typical cases and examine whether
the implications of the rule match any well established fact.

3. \V0. must formulate some predicted new phenomena, and discuss
ddection methods.

Quantum theoric..<; with proper time as a parameter have been exten
sively studied by many authors [3]. However, we could only find one
paper [1] in which proper time is proposed as an operator. It seems to
us that this our work is the first attempt to investigate the implications
of th0. idea that proper time should be regarded as an operator.

Of course, we fully realize that the new rule introduces various prob
l0.ms. For example, it is not trivial that the proper time of such a stable
particle as an electron is an ohservable quantity, and therefore it seems
difficult to justify our postulate in such a case. Hence, there is some
ambiguity as to the universality of the new rule. Furthermore, by using
Pauli's reasoning [5], it can be shown that the mass operator m cannot
hav0. any discrete eigenvalue if the commutation relation [T, m] = iTt/ c?
is assumed. This situation seems very unrealistic if we judge from the
simpleminded view that mass should be consideded as a discrete con
stant.

Wc hope to discuss these problems in subsequent papers. Here,
we focus our attention on the time evolution of the operator T. (In
order to avoid unnecessary confusion, we must emphasize that each
Hamiltonian considered in this paper does not include proper time as
a variable, ~md that the Heisenherg representation of the operator m
th('f0.fore satisfies thc equation dm(t)/dt = 0, that is, the quantity m
is cons0.rved.)

In the m~xt section, we apply our new rule to a system consisting
of a scalar particle moving in a gravitational field. As for the time
cvoltIt ion of T, the implications of the rule completely match both the
classical formula for the time delay of a moving particle and the rela""
tivist ic r0.d-shift formula. In the third section, we apply the rulc to a
fr0.e partide with spin 1/2. In this case, there appears an oscillation
in the time evolution of T. The oscillation is similar to Zitterbewe
gung which appears in the orbit of the particle in the ordinary Dirac
th0.ory. However, it turns out that we can never observe any physical
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effect of the oscillation so long as we deal with a free particle. In the
fourth section, in order to SP.€ some physical effect of this oscillation,
we consider a particle with spin 1/2 moving in a gravitational field. In
this situation, we can formulate a physical effect, but, as estimated in
the last section, it is very small. We close this paper by showing that
proper time cannot be dealt ,,,it.h as an operator in ordinary quantum
thmries.

In the present article, we use the system of units in which the equa
tions C = fI, = 1 are assumed.

2. Scalar particle in a gravitational field

A gravitational field gJlV is assumed to be given, and we consider a
scalar particle moving in the field. We assume for simplicity that the
field g/lV is so-called static in the following sense:

1. The functions gJlV depend only on xt, x2
, x3

.

2, For j = 1,2,3, we have gjo(= gOj) = o.

\Ve consider [1]

3

H = f(x) m 2 + L gjk(X)PjPk
j,k=l

(3)

as the Hamiltonian of the system, i.e. the energy of the particle, where
f is dpflned by goo = F (J > 0) and t = xO is regarded as the inde
ppndpnt variable.

\;Ve quantizp this system according to our new rule mentioned in the
introduction: We consider the proper time r and the rest mass m as
operators which satisfy the commutation relations

[r,m] = i, [T,X j ] = [r,pj] = [m,x j]= [m,pj] = 0 (j = 1,2,3), (4)

as well as the position x j and the momentum Pj satisfying the ordinary
commutation relations.
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(6)

(v = the velocity of the particle).

The operfltors T, m, x j and Pj (j = 1,2,3) can be represented in the
JTilh0rt spacp. of square integrable functions of T, Xl, x 2 , x3 . In particu
lflr, the operat.or m is represent.ed by the differential operator -W/fh,
and ther0fore the rest mass m cannot have any discrete spectrum. As
mentioned in the introduction, we do not attempt, in the present ar
ticle, to discuss the problems concerned with such a mass spectTum.
Inst.0ad, we focus our attention on the time evolution of the operator
T. \Ve should note here that m is conserved because the Hamiltonian
(3) d00S not depend on the variable T.

For the Heisenberg representation of the operator T

T(t) = eitHTe- itH ,

we find, by using the commutation relations (4), that

i(t) = -ieitH[T,Il]e-itH = eitH
2 :I(X)k e- itlf , (5)Jm + Lj,k=l gJ (X)PjPk

where the dot denotes the differential with respect to the parameter t.

Hence, if the space-time is flat, then we have

i(t) = V ;n+ 2'm p

Consider a state for which the momentum operator p and the mass
operfltor m have definite values p' and m /(> 0) respectively. The mean
value of (6) in such a state is equal to

m'(i(t)) = VI - v 2 (7)
= vm/2 + p/2 '

where we have used the expression
I

I m.v
p = VI - v 2

The equation (7) completely matches the classical formula for the delay
of proper time of a moving particle.

On the other hand, if the space-time is the Schwarzschild's exterior
solution, then the function f has the form [61

f(x) = JI - 4a/r
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when viewed from a suitable coordinate system. Consider a state which
satisfies the condition that it is not only well localized around a point
but also has a negligible momentum p compared with the value of mass
m. If we consider the mean value of (5) in such a state, then we have

(f(t)) ~ VI - 4a/(r) (8)

for sufficiently small t. The equation (8) leads to the relativistic red
shift formula.

Thus, in this case, there is no contradiction with such well-established
facts concerning the time evolution of proper time.

3. Free particle with spin 1/2

In this section, we quantize a system of a free particle with spin 1/2
according to our new rule. We consider the Dirac's Hamiltonian

3

H = LQjPj + 13m.
j=1

(9)

(Though the same Hamiltonian is used, the following argum0nt will be
difTercnt from the ordinary Dirac theory in the sense that mass m is
d0.alt with as an operator.) As is well known, Qj (j = 1,2,3) and {3 are
Hermitian matrices such that

{32 = 1.

In the pr0S0.nt article, we occasionally use the representation

(j=1,2,3) and (3=(~ ~I)'

where OJ (j = 1,2,3) are the Pauli matrices, and I is the unit matrix
of degr0e 2.

Now, t he motion equation for the IIeisfmberg represfmtation of 7 is

f(t) = _ieitH [7, H]e- itH = (3(t).

-42-
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Fllrtll('rmorc, we have

i/3(1) = [fJ(L) , Jl] = 2{3(t) H - [{3(t) , H]+ = 2{3(t)H - 2m (11)

and
i/3(t) = 2/3(t)ll.

Solving (12), we gd
/3(t) = /3(0)e-2itH ,

and comhining (10), (11) and (13), we get

(12)

(13)

i(l) = {3(t) = ~/3(0)e-2illlJI-l+mH-l = ({3-mH-l)e-2iIH+mlI-l,

(14)
where Jl- 1 dcnotps the inverse operator of H.

Thl? f'quation (14) is similar to the equation

x(l) = a(t) = ~Q(0)e-2itHJI- 1 +pH- 1 = (0: - pH-I) e-2itH +pH-I,

(15)
which is quitl? familar in the ordinary Dirac theory [7]. The oscillation
which appears in (15) is named Zitterbewegung. The fact that asimilar
oscillation appears also in the time evolution of T is one of the results
of our new quantization rule. (Tn the ordinary Dirac theory, proper
time is considen:>d only as a parameter, and therefore the question of
oscillation does not arise. 'vVe will argue this point in detail in the last
section of this paper.)

The momentum p, the mass m, and the energy H mutually com
mute, and therefore there exists a state for which those operators p,
m, find Jl have definite values p', m'(> 0), and E = Jm f2 + p'2, re
spectively. \Ve will take the meRn value of i in such a state with the
posi t ive energy.

The mean vfllue of the IRst term m/ JI of (14) is equal to

m'
(mlJI) = J 2 12·m' +p

On the other hand, the mPan value of

-43-
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(18)

turns out to be o. This can be shown in the following way: \Ve denote
the projection operator to positive energy states by P+. That is to say,
defining an operator II+ by II+ =Jm2 + p2, we set

1 ( -1)P+ - 2 1 + IJ ll+ .

Then we have

1
[fJ, P+] = -{2{3H - [{3, IJ]+ }H+ -I = { {3H - m }H+-t,

2

and hence we have

This implies that the mean value of the oscillating term

({3 - mH- 1
) e-2itH

in the positive energy state is equal to O.

Therefore, combining (16) and the above result, we have

ml

(r(t)) = Jm12 +pl2'

which completely corresponds to the classical formula for the time
delay of a moving particle (see, Eq. (7)).

Thus we have shown that although a strange oscillation appears in
the time evolution of T, it does not reveal any physical effect as long
as we consider positive energy states.

4. Spin 1/2 particle in a gravitational field

In this section, we consider the interaction with a gravitationa.I field.
Then, as shown in the following, we can formulate a new phenomenon
induced by the oscillating term.

The covariant Dirac equation in a curved spacetime is given [8] by

(19)
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where 1° arc Dirac matrices associated with the spin 1/2 irreducible
repff'Sentation of the Lorentz group, \,~/1 is a vierbein, and r is defined
by

1
( 'E0

{3 _ - [",,0 ,'lj ).
4

The metric tensor 9/11; is related to the Minkowski metric
TJo8 = diag(l, -1, -1, -1) by

9/11; (x) = \10/1 (:r) \I{3v(x )TJo{3'

In the present article, we use the representation of the Dirac matrices:

,0 = (3, (j = 1,2,3).

We consider the Earth's gravitational field. We can introduce [9] a
coordinate system {:r/1} in which we approximately have

3

ds2 = (1 + 2c/» (dXO)2 - (1 - 2c/» L(d:1J )2
j=1

near the particle, where 9 denotes the acceleration of gravity. Then
the vierbein has the form

and the others =0. Hence, the Dirac equation (19) has the form

3
hO (1 + 2c/»-1/2 00 + i (1 - 2c/»-1/2 L ,,)OJ + hOVQJLrJL - m = O.

j=1

(

1 + 2c/»1/2 3

-i _ c/> LO'jOj + (1 + 2c/»1/2 (3m + lV
1 2 j=1

3

~ -i (1 + 2c/» L O'jOj + (1 + c/» (3m + W,
j=1

where we have made some approximations assuming that c/> « 1.
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Here we rpgard the equation (20) as the Schr6dinger equation for the
particle, and we consider the right-ha.nd side of (20) as the Hamiltonian
operator (say, ll). The Ha~iltonianoperator should be Hermitian, so
it is natural to think that 1I has the form

II =
1 3- L OJ [ -iBj, 1 +- 2q; ]+ +- (1 +- q;){3m +- (W +- Wt)j2
2 j=1

3

H +- L OJ [Pj, q;(x) ]+ +- q;(x){3m +- (W +- Wt)j2,
j=1

where H is the free Hamiltonian given by (9) and we have set

(j = 1,2,3).

Now, for the Heisenberg representation of the operator T

we have

7(t) = _ieitii[T, Il]e- itil = {3(t){1 +- q;(x(t))}. (21)

Ld 1/) be a state which satisfies the following conditions:

1. It is an eigenstate of If with a positive eigenvalue (say, E).

2. When it is dpcomposed into the sum of eigenstates of m, negative
eigenvalues never appear in the spectrum.

\lve will take the mean value of 7 in such a state 'if at t = O.

First, we have

7(0) = ({3 - mH- 1){1 + q;(x)} +- mH- 1{1 +- q;(x)} (22)

and

(23)
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S0cond, we consider the mean value of (f3 - mH- 1) {I + cP(x)}. Note
that it is equ<1] to the mC<1n value of (f3 - mJf- I ) cP(x) by virtue of
(17). We can show by calculation that 7jJ h<1s the form

(
W(T,X) )

'lj)(T,X) = ;~~tlll(T,X)

wl10n r0pn~scnted <1S a function of the variables T and x, where III is a
two-compommt function which satisfies the condition

(24)

Using this form, we have

TIl(' first torrn in the l<1st line offsets the second one by virtue of the
condition (21), and the product i(O" . P)0"3 in the third term C<1n be
repl<1ccd by

i[O" . P, 0"~lJ/2 = -(0" x ph
bccmlsc the mC<1!1 v<1lu8 should be a real number. Eventually we have
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Combining (23) and (25), we finally have

j ((J x ph 1
(7-(0)) = 9 drdx'lJt(r, x) E(E + m) 'lJ(r, x) + E(m(1 + gx3

)). (26)

Let us assume that the operators p and m have very sharp values
p' FInd m'(> 0), respp.ctively, in the state 'IjJ. Then, by virtue of (24),
R cFln he p.stimated FlS

FInd thp. p,quFltion (26) cFln be rewritten as

(7-(0)) ~ (g ) jdrdx'lJt(r,x)((J x p'h'lJ(r,x) + m' (1 + g(x3
)).

EE+~ E
(27)

The second term on the right-hand side of (27) is estimated as

and it corresponds to the right-hand side of (18). On the other hand,
the first term is an effect of the oscillFlting term appearing in (14).

Thus we have succeeded in formulating a new phenomenon induced
by the oscillating term in (14) by considering the interaction with a
gravitational field.

We here have to note that the normalization condition

[ ]

1/2

Ill/'ll == j drdxl/,t(r, x) 'ljJ(r, x) = 1

can be expressp.d in the form

j 2E
drdx'lJt(r, x) E + m'lJ(r,x) = 1.

5. Discussions
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(28)



Now we would like to estimat0. how small the first term on the right
hand side of (27) is. We consider how small it is compared to the
s0.cond t<>rm:

9 ) JdrdxlJlt(j x p'hlJl x (mE')-l
E(E +m'

JL 1 JdrdxlJlt(j x p'hlJl
m' E+m'

< JL Ip'l < JL
ml E - m"

where we have used the condition (28).

For an electron and a muon, we have

(29)

and

rpspcdively, which are rather small. Even if we consider the gravita~

tiona] acceleration on the surface of the sun (say, 9s), the order of these
values hardly changes because 9s/9 ~ 10.

The expressions

900 ~ (1 + 2¢) and 9jj ~ - (1 - 2¢) (j = 1,2,3; ¢(x) = 9x3)

mean that 9 can be interpreted as the rate of change of the metric
tensor per unit length. Therefore we can suppose that the ratio (29)
can be the order of 1 only when the space-time is so curved that the
mdric tpnsor varies conspicuously even in the region of the Compton
wav0.l0.ngth 1/m' of the particle.

The first term on the right-hand side of (27) has the remarkable
characteristic that it depends on the directions of the spin and the mo
mentum. We might be able to devise some good experiment to observe
this 0.ffcd by making use of this characteristic. In any case, it is certain
that we have to devise a rather precise method in order to see such
a small effect. Unfortunately, at present, the authors cannot suggest
such a suitable experiment, but sincerely hope that experimentalists
will pay att,(mtion to this subject.
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Thus we have discussed a nmv quantization rule that treats the
proper time and the rest mass as opp,rators. The rule led us to the
existence of an oscillating term in the time evolution of the proper
time of a spin 1/2 particle. We have formulated one physical effect of
this term, and have estimated how small it is.

Before closing this paper, in order to emphasize the signincance of
our argument, we need to examine whether the proper time can be
dealt with as an operator in the ordinary Dirac theory.

In the classical relativistic mechanics, the proper time T is denned
by the equation

i (t.) = J1 - x(t)2
, ( 30)

where x(t) represents the orbit of the particle. If we attempted to deal
with the proper time as an operator in the Dirac theory, we would nrst
think of utilizing this definition, that is, we would try to denne the
"time evolution of operator T" by replacing x in (30) by the operator
x(t) = a(t) given by (15). However, this method can be dismissed
trivially, because the equation (15) tells us that

X(t)2 = a(t)2 = 3,

and therefore the above mentioned substitution only leads us to the
meaningkss equation

If we must replace x in (30) by some operator, it probably should
be pJI- 1 , which is only a part of the operator x(t). In fact, this
substitution leads us to

i(t) = /1 - p2/ [{2 = m .
V Jm2 + p2

The evolution thus denned corresponds to the classical formula for the
timp, delay of the moving particle, but is not desirable in the sense that
it is not equivalp,nt to the time evolution (15) of the operator x. That
is to say, even if we attempt to utilize (30) in order to deal with the
proper time as an operator, the Approach does not work well.

We have been unable to nnd any desirable means of repr('sp,nting
proper time as an operator, despite a reeXAmination of both the theory
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of [(:1 at ivity and thR ordinary Dirac thPOry. 'We must conclude therdore
that it only hAs meAning in the lAtter theory as a parAmeter.
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