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On a minilTIum uncertainty
of space- time geometry

Shuichi Matsumoto

Abstract. We formulate some fluctuations of space-time which do not

generate any fluctuations in the curvature, but which nevertheless do

give rise to a spontaneous breakdown of the quantum superposition

principle for macroscopic objects.

Various arguments about the quantum uncertainty of space-time

geometry have appeared over a long period of time in connection with

quantization of gravity or a reexamination of the concepts of general

relativity. On the other hand, it has been recently shown that such

uncertainty may sometimes actually cause the quantum wave-packet

reduction for macroscopic objects. Karolyha.zy [1, 2] introduced a

model of the fluctuation of space-time in which he showed that the

fluctuation gives rise to a. spontaneous breakdown of the quantum

superposition principle for macroscopic systems.

In 1993 however, Di6si a.nd Lukacs [3] pointed out that the Karoly­

hazy's spacetime model is not very plausible since, for example, the

fluctuation of metric in his model generates some extremely high cur­

vatures comparable to or higher than those in neutron stars. Since

then, it has generally been judged that this kind of approach to the

problem of wave-packet reduction is unrealistic [4].

Our objective in this letter is to construct a desirable model. That

is to say, we will formulate some fluctuations of the metric which do
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not generate a,ny fluctuations in the curvature, but which nevertheless

do give rise to a spontaneous breakdown of the quantum superpo­

sition principle for macroscopic systems in space-time, The essential

approach in the following discussions is that the existence of the quan­

tum uncertainty of space-time geometry implies the existence of some

uncertainty of coordinate transformation functions between two coor­

dinate systems, Such uncertainty gives rise to some fluctuation of the

metric which will be shown to be desirable.

Firstly we briefly summa,rize the main features of the quantum

uncertainty of space-time geometry in order to clarify our basic stand­

point.

When we attempt to describe a physical state of space-time, we

have to construct a net of events as a coordinate system and have to

express the metric tensor through measuring the distances between

those events. Here an event means a coincidence, that is to say, a

collision of pa,rticles. Moreover physical instruments such as clocks

are necessary to measure the distances between such events. Nei ther

particles nor clocks can be independent of quant um physics, and the

various uncertainty relations impose some limitations on the accuracy

of the description of space-time.

Many investigations of such uncerta.inty of the space-time geom­

etry have been made over a period of some fifty years, resulting in a

va,riety of expressions for it. In this letter, we use a result originally

indicated by Wigner [5, 6] and recently ana1yzed by Di6si and Lukacs

[7]. In Wigner's gedanken experiment, a net of events (i.e. a coordi­

nate system) is composed of time-like geodesics of some real bodies

(clocks). Since those bodies are subject to various quantum uncer­

tainty relations, their geodesics are concluded to fluctuate to some

extent. Therefore when we measure a world line segment on this fluc­

tuating coordinate system, we cannot avoid some uncertainty in the

length s of the segment. Wigner indicated that

~s ~ )11(s)/Me
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(see also [8]), where (s) is the average value of sand M is the mass of

the clock.

Hereafter we restrict ourselves to a spa.ce-time which is Minkowski­

an in the classical sense and to coordinate systems which are inertial

at the macroscopic level.

We can make the uncertainty ~s as small as we wish by increasing

the mass 111. However, large masses bend space-time more, and a

space-time equipped with very heavy clocks will be non-Minkowskian.

This excludes the use of a net composed of too heavy clocks as a

coordinate system in our flat space-time.

In order to estimate a realistic upper bound to the ma.5S M, let <PI.J.V

be the difference between the Minkowski metric TJ/lV and the metric

generated by the distribution of those bodies. Further let cy be the

spatial distance between two adjacent geodesics (i.e. two adjacent

coordinate axes). Then we get from Einstein's gravitational equation

(2)

Therefore the mass M should satisfy the condition

Combining conditions (1) and (3), we get [7, 8]

~s ~ 19J(s)/cy,

(3)

(4)

where [g = JCh/c3 is the Planck length.

In this letter this uncertainty (4) is the starting point of our dis­

cussions. Since we cannot measure a world line segment to higher

precision than the uncertainty ~s in (4), it would be natural to think

that the metric of our space-time (even if it is flat in the classical

sense) cannot be definitely determined but fluctuates in a real sense.

In fact Ka.rolyhazy [1, 2] elahorated a model of a hazy space-time

in which the metric tensor fluctuates statistically and a certain uncer­

tainty sirnilar to (4) is realized. Unfortunately it was pointed out by
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Diosi and Lukacs that the fluctuation of the Kiloryhizy's metric gen­

erates too large fluctuation of the curvature. It seems to the author

however that the Kiloryha,zy's metric includes some needless fluctua­

tion. Our objective in this letter is to formulate some fluctuations of

the metric which satisfy the uncertainty (4), but which nevertheless

do not generate any fluctuation of the curvature.

Now as stated above, in Wigner's gedanken experiment, the un­

certainty (1) originated in the fad that the coordinate axes generally

fluctuate when we attempt to set a coordinate system in our space­

time. A more exact expression would be as follows: If we consider

two coordinate systems, the coordinate axes of one of them must gen­

era.lly be seen to fluctuate when viewed from another system. There­

fore the transformation between two coordinate systems (say, (x ll )

and (x 'll )) must genera.Ily have some uncertajnty around an average

Lorentz transformation. In order to express this uncertainty of the

coordinate transformation, we introduce some statistically fluctuating

functions ~Il and assume that

(5)

In the following we will formulate some desirable fluctuations of the

metric using these fluctuating functions e.
First, once we assume the uncertainty (5) of the coordinate trans­

formation, we ha,ve to adopt the existence of some fluctuation in the

metric as a simple logical consequence. The reasons are as follows:

Let gllv(x) and g~v(X') be the metric coefficients on (x ll ) and (x 'll )
respectively. Then we have the relation between them:

(6)

Here the functions e(x) are fluctuating, hence even if we fix the coef­

ficients g~,8(X'), the relation (6) claims that the value of gllv(x) must

fluctuate. The inverse relation to (6) alike requires some fluctuation
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of the value of g~IJ(X'). On the other hand, since our space-time is as­

sumed to be Minkowskian at the classical level, it is natural to expect

that the averages of gJ1.V and g~v are both 1]J1.V. Therefore we should

conclude that the coefficients grllJ have at least the fluctuation

(The same can be said of g~'J") Hereafter we restrict ourselves to this

minimum uncertainty of the metric coefficients.

The formula (7) means that the metric 9 J1.V on the x-coordinate

is isometric with the flat metric 1]a(3 on the x'-coordinate. That is to

say, \\'e consider many metrics on the x-coordinate each of which is

isometric with the flat metric 1]a(3 via the transformation (5).

Secondly, let us note that our minimum uncertainty of the metric

does not generate any fluctuation of the curvature. This is trivial if

we recall that each metric 9 J1.V on the x-coordinate is isometric with

the flat metric r)a(3 and that the curvature corresponding to 1]a(3 is o.
Before continuing, we should note the following in order to avoid

misunderstanding: The formula (6) means that

(8)

where RJ1.vCJp and R~(315 are curvature tensors of gJ1.V and g~(3 respec­

tively. Hence it is trivial that the curvature R rtVCJp is always 0 under

our assumption g~(3 = 1]a(3 introduced in the formula (7). On the

other hand, if we relax our condition and argue about more general

spa.ce-time which is not Minkowskian, then R~(315 is not necessarily

o and therefore the curvature RJ1.vCJp in (8) fluctuates to some extent

since ~J1. fluctuate. Even then, however, the deviation of RJ1.vCJp from

its average must be small as far as the condition 1~J1.,vl ~ 1 is satisfied.
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Thus the metric fluctuation induced from the uncertajnty of coordi­

nate transformation does not generate such high curvatures that Di6si

and Llika,cs mentioned in Ref. [3].

Finally, we wish to show that there exist some models of fluc­

tuation of <;"(:r) from which we can derive the uncertainty (4). For

simplicity we consider two coordinate systems (x/.l) and (X'/.l) such that

they are seen to be at rest at the classical level when viewed from each

other. Then the formulas (5) and (7) reduce to

(9)

and

(10)

where ~/.l,V are assumed to be so small that the higher terms can be

neglected, and rajsing and lowering of suffixes are made with TJ/-lV here

and hereafter.

Before advancing to the main subject, let us show that the formula

(11 )

holds for each Lorentz matrix (b/.l v ). Let (X/.l) and (X'/.l) be coordinate

systems denoted by

(12)

respectively. It would be natural to think that the physical relation

between (XI1) and (X'/-l) is the same as the relation between (Xl!)

and (X'/-l). Therefore the uncert.ainty in the coordinate transformation

between (X/-l) and (X'/.l) should be represented by the same functions

<;" as in (9):

(13)

Combining (13), (12) and (9), we have t.he formula (11).
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Now we consider a world line segment which starts from the origin

of the system (Xl') and ends at a point xJ1. = pJ1.. (For simplicity

it is assumed t.o be time-like.) Let s be the length of this segment

xJ1.(t) = tpl' (O:S; t :s; 1) measured by the fluctuating metric gJ1.V in

(10) and let L = J- pPpJ1., then we have

(14)

where again we have assumed that ~ll,V are so small that their higher

order terms can be neglected. This means that (s) = Land

(15)

and therefore if the formula

(16)

is satisfied, then the uncertainty (4) is derived.

Combining the formulas (11) and (16), we have

for all real numbers r, where we set

PT = (cr, 0, 0, 0).

Here, making the assumption that 8J)Ve = 0, we denote by

(17)

(18)

e(x) =_1_ L [cJ1.(k)e i(kX-kX
O

) + cJ1.(k)*e-i(kX-kX
O

)]

JV k (19)

(k == Ikl)

the Fourier expansion of e(x) in a large box of volume V in three

dimensional space. (The summation in (19) should cover only the

range k :s; l/a. See [8].) Each complex coefficient cJ1.(k) is supposed
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to vary around the average value 0, and each set of specific values for

every cJ-l(k) determines a e(x). Then we have

[
0 0]2 2 J 2( ~ (PT) - ~ (0) ) = 7f2(CT)3 dkk G(k/(cT))(l- cosk),

where \ve have assumed t.hat

(20)

(21)

and that G(k) == (lcO(k)1 2
) depends only on Ikl = k. Hence if we take

~O(x) such that

(22)

then the condi tion (] 7) is satisfied.

For instance, if each cO(k) distributes independently of k under

the Gaussian probability density

(23)

then the conditions (21) and (22) a.re both satisfied.

Thus we have succeeded in constructing a model of metric f1uc­

t.uation which does not generate any fluctuation of the curvature but

which nevertheless realizes t.he uncertainty (4).

Lastly we should consider the order of magnitude of CY. At present

we do not know how densely the coordinate axes can be set up in our

space-time. However an estimate of the order of CY may be made by

assuming our clock has the same order of precision as an atomic clock,

and we have

(24)

(see [8] for the det.ails). The formulas (19), (21) and (22) lead us to

(25)

On the other hand, if we take the formula (11) into consideration, it

would be natural to t.hink that the functions ~J-l,v(x) ha,ve the same
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order of magnit.ude as ~o,o(x). Therefore the range for 0' of (24) IS

consist.ent with the condition

(26)

which we have assumed in t.his letter. Moreover such a metric fluctu­

at.ion causes the localization of wave functions of macroscopic objects

as we have showed in Ref. [8].

I am grateful to Shoju 1< udaka and Kiyotaka 1< akazu for illumi­

nating discussions.
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