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GENERALIZED STATES AND MEASURING PROCESSES

FOR CONTINUOUS OBSERVABLES

Shuichi Mat.sumoto

Abstract. An extension of the concept of physical state is introduced. It is shown

that if we accept all the "generalized states" as initial states of an apparatus,

then we can circumvent the Ozawa's theorem which rules out the existence of

repeatable measuring processes for continnous observables. A generalization of

the Wigner-Araki- Yanase theorem is arglled.

1. Introduction

In its usual formulation, the theory of measurement of an ob

servable (i.e., a self-a.djoint operator) A of an object system (with

a Hilbert space 1ft} starts with fixing a measuring apparatus (with

a Hilbert space 1f2), its initial st.ate 0 (i.e., a densit.y operator on

1f2), an observable A of the apparatus, and a unitary operator U on

1ft @ 1f2·

DEFINITION 1.1: The four-tuple M = (1f2' A, 0, U) is a measur

ing process of A if it satisfies the relation

(1.1 )

for all densi t.y operators p on 1f 1 and all Borel su bsets 6. c It, where

J is the ident.it.y operator on 1f t and 6. -+ pA(6.) (pA(6.)) is the
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spectral measure associated with the self-adjoint operator A (resp.

A).

It can be proved that there is a measuring process of A for any

observable A. (Although the above statement can be proved in more

general formulation (see Ref. 1, p.84), we restrict ourselves to the case

of standard quantum theory.) Considering von Neumann's repeata

bility hypothesis2 , we say that a measuring process M = (H2' A, a, U)

of A is weakly repeatable if

for all density operators p on HI and all Borel sets ~, ~' c R.

When we deal with observables with discrete spectra, the concept

of weakly repeatable measuring process works well, however, Ozawa!

has shown the following theorem.

THEOREM 1.1: There does not exist any weakly repeatable mea

suring process of an observable with continuous spectrum.

On the other hand, most of the observables one deals with or

dinarily in either non-relativistic quantum mechanics or in quantum

field theory are those with continuous spectra, therefore, the above

theorem forces us to modify or generalize the concept of repeatable

measuring process so that it can be applied for any observable. In fact,

Davies and Lewis3 introduced the approximate repeatability condition.

In this article, we attempt to circumvent the above Ozawa's the

orem without appealing to any approximation. We shall show that it

can be done if we accept an extension of the concept of physical state.

2. Generalized states

Consider a physical system which is based on a separable Hilbert

space H. We denote by T(H) the Banach space (under the trace

norm) of all trace class operators on H, and by B(H) the Banach
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space (under the operator norm) of all bounded operators on 1i. It is

well-known that the linear functional on B(1i)

Iv : B(1i) :3 L f--' Tr[vLJ

is bounded for each v E T(1i), and that the correspondence

(2.1)

(2.2)

gives an isomorphism between T(1i) and a subspace of the dual space

B(1i)* of B(1i).

In the conventional formulation of quantum theory, physical states

of the system are characterized by density operators, i.e., positive trace

class operators of unit trace. It is well known that each positive trace

class operator of unit trace is identified, via (2.2), with a positive and

normal linear functional on B(1i) of unit norm, and vice versa4 • (A

linear functional on B(1i) is said to be normal if it is continuous under

the ultraweak topology of B(1i).)

In this article, we have to consider non-normal linear functionals.

Let N be a subspace of B(1i) such that:

(i)N:3 I.

(ii)If LEN, then Lt EN.

We define a generalized state on N to be a linear functional p : N ---+ C

which is continuous under the operator norm and satisfies:

(i)(p, Lt) = (p, L)* for all LEN.

(ii)If L is a nonnegative element in N then (p, L) ~ o. (2.3)

(iii)(p, I) = l.

(A linear functional which satisfies the above conditions is designated

"a state on N" in mathematical literature, however, we use the term

"generalized state" in order to avoid confusion.)

For each generalized state p on N, and for each self-adjoint oper

ator A on 1i such that pA(L~) E N for all Borel subsets 6 C R, we
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define Pr~ (~) according to the formula

(2.4)

If p is a physical state in the conventional meaning (i.e., a density

operator on 1i) then Pr~(~) = Tr[ppA(~)], therefore, Pr~(~) is

nothing but the probability that the outcome of an experiment to

observe A on an ensemble in the state p lies in the Borel set~. A

simple example of generalized state is as follows.

EXAMPLE: We set 1i = L 2(R). For two arbitrary real numbers

.x and q, we define density operators p£ = 11>£)(1)£1 (E > 0 ), where

Then we have 11</>£11 = 1 and

(2.5)

for all L E B(1i), where IILII is the operator norm of L. Let N be the

subspace of B(1i) constituted by all elements L for which the limit

(2.6)

exists. The inequality (2.5) says that the linear functional p is contin

uous on N, and it can be easily checked that p satisfies the condition

(2.3), that is, p is a generalized state on N. Furthermore, if a is a real

number then we have

PrW -00, aJ) = (p, P'« -00, aJ)) = U/2 if a > q,

if a = q,

if a < q,

(2.7)

(p, eit(x- q)) = 1 for all t E R, (2.8)

Prp((-oo, a)) = (p,pl\(-oo,a))) = Crrn)-1/2 J-~ e-
p2

/
hdp. (2.9)
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The interesting feature of the above formulae (2.7)-(2.9) is that

they clearly show that the position distribution is entirely concen

trated at {q} and the momentum distribution at {±oo} in the gen

eralized state p. The formula (2.7) or (2.9) also demonstrates the

fact that the linear functionals p (-00 < >., q < (0) are not normal

i.e., they are not continuous under the ultra-weak topology of B(H).

Non-normal states play an essential role when we generalize the con

ventional von Neumann-Liiders collapse postulate to observables with

continuous spectra5 (see also Ref. 6). As we shall see in the next

section, the concept of generalized state would be important also in

the theory of measuring process of continuous observable.

3. Generalized measuring process

DEFINITION 3.1: Let A be a self-adjoint operator in a separable

Hilbert space HI. A generalized measuring process M of A is a five

tuple M = (H2' ii, N, a, U) consisting of a Hilbert space H2, a self

adjoint operator ii on H2, a subspace N of B(H2)' a generalized state

a on N, and a unitary operator U on HI 0H2 for which the values

exist and

(3.1)

for all density operators p on HI and all Borel sets ~, ~, c R.

If a is an ordinary density operator on H2, then p 0 a is a density

operator on HI 0H2 and the formula (3.1) reduces to (1.1).

The generalization of repeatability condition (1.2) to the general

ized measuring process M = (H2' ii, N, a, U) is now straightforward.

DEFINITION 3.2: A generalized measuring process M =

(H2, ii, N, a, U) of A is weakly repeatable if

(p 0 a, Ut(pA(~) 0 pA(~'))U) = Tr[ppA(~ n ~')] (3.2)
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for all density operators p on 1fI and all Borel subsets ~, ~I C R.

The next example demonstrates the fact that there is a weakly

repeatable generalized measuring process of A even if A has a contin

uous spectrum. Thus, the acceptance of generalized states as initial

states of an apparatus enables us to circumvent the Ozawa's theorem

mentioned in section 1.

EXAMPLE: Let 1fI = 1f2 = L 2(R). The object system which

IS based on 1fI , as well as the observer system which is based on

1f2, is characterized by a single variable x and y respectively, running

continuously from -00 to +00. That is, let both be one-dimensional

particles. Let A = x, A = y, and U = exp(-iH{Ii), where the

Hamiltonian H is given by H = XPy.

Then we have Ut(A 0 1)U = A 0 I, and hence

(3.3)

for each Borel subset ~ of R. As is calculated in Ref. 2, (U<p)(x, y) =

<p(x, y - x) for all <p E 1fI 01f2. Therefore we have

ut(I 0 pA(~))U <p(x, y) = X~(y + x)<p(x, y),

where x~ is the characteristic function of the set ~.

(3.4)

(3.5)

Then, as in the example in the preceding section, we can get a gener

alized state ~ on a subspace N of B(1f2) satisfying

for all LEN.

(~, L) = lim(~£, L)
£-+0
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Now if p = 14>)(4)1 for a wave function 4> E HI, then the formulae

(3.3)-(3.6) imply that

(p ® a, Ut(pA(~) ® pA(l:/))U)

= lim Jdx JdyX~(x )14>(x )12X~I(Y + x)1?/J«y)!2
<--+0

= Crrn) -1/2 lim Jdx JdyX~ (x )14>(x) 12X~1 (ty + x) exp( _y2In)
<--+0

= JdXX~n~/(x)I4>(x)12

= Tr[ppA(~ n ~/)].

The above equation means that M = (H2' ii, N, a, U) is a weakly

repeatable generalized measuring process of A.

4. Wigner-Araki-Yanase's theorem

The quantum theory of measurement shows up some limitations

on the measurability of physical quantities. A type of limitation arises

from the existence of conservation laws, like the conservation of linear

momentum or angular momentum. This type of limitation was discov

ered by Wigner 7 and it has long been discussed by several authors8 - 11 .

Recently, Ozawa10 claimed that this type of limitation is not generally

valid if the conserved quantity is not bounded.

In this section we restrict ourselves to the case of bounded con

served quantity, and show that Wigner-Araki-Yanase's theorem is

valid for the generalized measuring processes.

Let M = (H2' ii, N, a, U) be a genera.lized measuring process of

a self-adjoint operator A on HI. Let

8 1 == {L E B(Hd : Ut(L ® pA(~))U E B(H1 ) ®N for a.ll ~},

82 == {L E B(H2) : Ut(pA(~) ® L)U E B(Hd ®N for all ~}.

The linear functional

(4.1 )
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is continuous (under the trace norm) for each]{ E B(1id0N. There

fore the fact that the duality between the Banach space T(1id and

its dual B(1id can be expressed by the bilinear form Tr[vLl (v E

T(1id, L E B(1id) guarantees the existence of a linear ma,pping

[M (D.) : B1 -t B(1id such that

(4.2)

for all density operators p on 1i1 and all L E B1 .

The conditions (2.3) for the generalized state a immediately imply

the following properties.

{[M (D.)L} t = [M (D.)(L t) for all L E B1 .

H L 2 0 then [M (D.)L 2 o.

[M (R)1 = 1.

(4.3)

(4.4)

(4.5)

Moreover, the condition (3.1) for the generalized measuring process

indicates that

(4.6)

for all Borel sets .0. c R.

THEOREM 4.1: For all L E B1 and all Borel sets D., D.' c R, we

have

[M (D.)L = pA(D.)[M (R)L,

[[M (D.) L, pA (D.')] = o.

(4.7)

(4.8)

Proof: Let L be a self-adjoint operator in B1· Since -IlL II! :s; L :s;
IILI11, it follows from (4.4) and (4.6) that

(4.9)

for all Borel sets .0. CR. Hence we have
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On the other hand, we have

where ~c is the complement of~. Since pA(~)pA(~c)= 0, it follows

from (4.9) that pA(~)[M(~C)L= o. Thus we obtain (4.7). Moreover

(4.10) implies

[[M(~n 6/)L]pA(~/) = pA(~/)[M(~n ~/)L,

[[M (~n ~/c)L]pA(~/) = pA(~/)[M(~n ~/C)L = o.

From the above equations we get (4.8).

THEOREM 4.2: Let M = (H2' A,N, (J, U) be a generalized mea

suring process of a self-adjoint operator A on HI. Let L = L 1 ® I +
I ® L2 (L 1 E 8 1 , L2 E 8 2 ) be a bounded self-adjoint operator on

HI ® H2 such that [L, U] = 0, i.e., a constant of motion of the system

HI ® H 2 wi th respect to U. Assume that

(4.12)

Then we have [L 1 , pA(~)] = 0 for all Borel sets ~ C R.

Proof: The condition [L, U] = 0 implies that

and, therfore, we have

(p ® (J, L1 ® I) = -(p ® (J,I ® L2) + (p ® (J, Ut(L 1 ® 1)U)

+ (p ® (J, ut(I ® L2 )U)

for all density opera.tors p on HI. Hence, we have

Tr[pL 1 ] = -((J, L2 )+Tr[p[M (R)L 1 ]

+ Tr[pEa(Ut(I ® L2 )U)],
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where Ea : B(HI) ®N --lo B(HI ) is a linear mapping such that

Tr[vEa(I{)] = (v ® (J, I<)

for all trace class operators v on HI (see (4.1)). Equation (4.14) means

Since we have already shown in Theorem 4.1 that [EM (R)L I , pA(.6)]

= 0, all we must do now is to prove the following:

for all Borel sets .6 C R. Using the assumption (4.12)' we have

Tr[pEa(Ut (I ® L2 )U)pA (.6)]

= (( pA (.6)p) ® (J, Ut (I ® L2) U)

= (p ® (J, Ut(I ® L 2 )U(pA(.6) ® I))

= (p ® (J, Ut (pA (.6) ® L2 )U)

= (p ® (J, (pA(.6) ® I)Ut(I ® L 2)U)

= ((ppA(.6)) ® (J, Ut(I ® L2 )U)

= Tr[ppA(.6)Ea(Ut(I ® L2 )U)].

(4.16)

In the above, p is an arbitrary density operator on HI, thus we get

(4.16).
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