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A REMARK ON THEOREM OF JARNIK

TAKANORI HINOKUMA AND HIROO SHIGA

1. Introduction

In this note we consider the Hausdorff dimension of a set arising

from Diophantine approximation. Set

Ea = {z E (0,1): Iz-EI < ~ for infinitely many positive integers p,q}.
q qa

Then the Hausdorff dimension of Ea , denoted by dimH Ea , is one when

a ~ 2 by Khinchine's theorem[3]. If a > 2, dimHEa = ~ by Jarnik's

theorem[l]. The Purpose of the present note is to show the following

result:

Proposition 1: Set

p Isin ql
Sa = {z E (0,1): Iz--I < for infinitely many positive integers Plq}.

q qa

Then

dimHS. = { ~
if a < 2

if a > 2.

In the case a ~ 2, the above result is contained in Khinchine's

h . foo l.in~ldt eorem sInce I 08'"- Z = 00.

The outline of the proof is based on [1]. But the essential part of

our estimation is changed anew to avoid discussing the distribution of

the set of prime numbers P satisfying Isin pi > c for a positive constant

c.
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2. Preliminaries

We first show the inequality dimHSa < ~ For each positive

integer q, we set

p Isinql
Sq = {z E [0,1] : Iz - -I < }.

q qa

Then Sq consists of q-1 intervals oflength 21 :i= ql and two end intervals

oflength I.~~ql. It is clear that Sa C U;:n G q for each positive integer

n. Hence if we choose n so that I~i::1 ::; 2~" ::; b, then

When 8 > ~, the above series is convergent. So 1{'(Sa) = 0 and we

have dimHSa ::; ~.

To prove converse inequality we prepare some lemmata.

Definition 2.1: Let {zn}, n = 1,2,··· be a sequence ofreal numbers.

The sequence {zn} is said to be well distrbuted mod 1 if for any pair

of numbers with 0 ::; a < b ::; 1 we can choose a number No which

does not depend on k such that

1#{ZiE[a,b):i=;+l, ... ,k+N} -(b-a)l<f

for N ~ No, where # denotes the cardinality.

Lenuna 2.2: Let c be a constant with 0 < c < 1. Then for any f > 0

there exists No so that if N ~ No

I
#{N < q ::; 2N : Isin ql > c} _ I ·1

N C < f
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[or some positive number Ie depending only on c.

Proof: Let Je be the subinterval of [0,11"] satisfying Isin zi > c. Then

we have

# {N < q ::; 2N : Isin qI > c}

= #{N < q ::; 2N : q E Je mod 11"}

q -=#{N < q ::; 2N : - E Je mod I},
11"

where i e denotes the subinterval of [0, 1] such that Isin 1I"zl > c. Since

{;-} q = 1,2,'" is well distributed by Weyl's Criterion ([2L Example

5.2), for any c > 0, there is a number No such that if N > No

#{N < q ::; 2N : ;- E i e mod I} _ I
e

n

where Ie is the length of i e. I

<c

Let [0,1] = Eo :J E1 :J E"J. :J ... be a decreasing sequence of sets

satisfying the following conditions:

(1) each Elc is a disjoint union of finite number of closed intervals,

(2) each interval of E lc contains at least two intervals of Elc+l'

(3) the maximal length of intervals in E lc tends to zero as k ~ 00.

Then the set F = n;::l Elc is totally disconnected subset of [0,1]. The

following lemma is contained in [1].

Lermna 2.3: Suppose in the above construction each interval of E Ic - 1

contains at least mlc intervals of E lc (k = 1,2,'" ) which are separated

by the distance at least Clc with 0 < Clc+! < Clc [or each k. Then
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3. Proof of Proposition 1

Throughout this section we fix a some constant real number c

with 0 < c < 1. We translate So: to the right by one and set

Gq = {z E (l+q-O:,2_q-0:): Iz-~I < -=- with reduced fraction ~}
q qO: q

Let n be a positive integer and qi (i = 1,2) be positive integers satis

fying n < ql < q2 < 2n. If !..l. #- 1') then
- ql qJ

Hence the distance between distinct centers of any pairs of intervals

in Gq1 and Gq ) is at least 4~). Since these intervals have lengths at

most 2cn-O:, the distance between any point of Gq1 and any point of

Gq) is at least

provided for sufficiently large n ~ no for some large no. Set

Cn = {n < q ::;; 2n : Isin ql > c}.

By Lemma 2.2 the cardinality of the set C n is at least ~lc if n ~ n~

for some large n~ ~ no. For such n the set

consists of intervals of length at least c(2n)-0: which are separated by

distance at least ~n-2. Let 1= [a,b] C [1,2] be an interval. Applying

the prime number theorem there are at least

1 (bq aq )- -----
2 log bq log aq
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primes in the range [aq, bq] for sufficiently large q. Moreover we have

1 (bq aq )- -----
2 log bq log aq

1 (b - a)qlog q + q(blog a - alog b)
2 (log q + log b)(log q + log a)
1 (b - a)q 1 qlll> - = ---
4 log q 4log q

for sufficiently large q. Thus there are at least

nlll
4logn

reduced fractions whose denominators are q in the range [a, b) if n <
q ~ 2n and n 2: n1 for some large n1 > n~. Summarizing the above

estimates, at least

intervals of Hn are contained in I = [a, b) provided that n 2: n1.

Let n1 be as above and ns. = nL1 for k = 2,3,···. Let Eo = [8,1]

and for k = 1,2,' .. let Es. consist of those intervals of Hn • which are

completely contained in Es.- 1. The intervals of Es. are of lengths at

least c(2ns.)-a and are separated by distance at least {Ie = ~nk2.

From the above argument each interval of EIe - 1 contains at least mle

intervals of E Ie , where
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if k 2: 2, where K = ~2-aclc. Note that we take m1 = 1 and mk 2: 2

for sufficiently large k. By Lemma 2.3

ex>

dimH( nE k )

k=l

1 [Kk-2 -a( )2-a 2 (1 1 )-1]. og n 1 n2 ... nk-2 n k- 1 og n2 ... og nk-1
> lIm
- k-+ex> -log [Knk.~\(81ognk)-1]

. log [K k- 2n1a(n2·· .nk_2)2-a(logn2·· .lognk_d-1] + 21ognk_1
= lim

k-+ex> -log(K/8) + log k(log nk-d + a log nk-1

2

sincelognk = n1kL Ifz E E k C H n ., then Iz-~I < q';. and c:S Isinql

where nk < q :S 2nk and ~ is a reduced fraction. Thus n:'=l Ek C Sa·

Hence dimHSa > 1..- a
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