琉球大学学術りポジトリ

A note on endomorphism rings of H －separable extensions

メタデータ	言語：
	出版者：Department of Mathematical Sciences，College of Science，University of the Ryukyus 公開日：2010－01－25 キーワード（Ja）： キーワード（En）： 作成者：Yamashiro，Yasukazu，山城，康一 メールアドレス： 所属：
http：／／hdl．handle．net／20．500．12000／15072	
URL	

A NOTE ON ENDOMORPHISM RINGS OF H-SEPARABLE EXTENSIONS

YASUKAZU YAMASHIRO

1. Introduction

Let $R \supset S$ be a ring extension. R is said to be an H-separable extension over S if as $R-R$-modules $R \otimes_{S} R\langle\oplus(R \oplus \cdots \oplus R)$. There is an equivalent definition of H-separable extension in terms of the natural $R-R$-homomorphism $\varphi: R \otimes_{S} R \longrightarrow \operatorname{Hom}\left(\Delta_{C}, R_{C}\right)$ where $\varphi(a \otimes b)(x)=a x b, C$ is the center of R and Δ is the commutor ring of S in R, i.e. $\Delta=R^{S}=\{x \in R: x a=a x$ for all $a \in S\}$. R is H-separable extension over S if and only if Δ is C-finitely generated projective and φ is an isomorphism. Let Q be a ring and P a $Q-Q$-bimodule. P is said to be Q-centrally projective if as $Q-Q$-bimodules $P\langle\oplus(Q \oplus \cdots \oplus Q)$. Furthermore, if P is ring extension over Q then $P \cong Q \otimes_{C} \Delta^{\circ}$ where Δ° is the commutor ring of Q in P and C is the center of P. For details see [1].

In this paper, we give some one to one correspondence between some class of intermediate rings of H -separable extension and some class of intermediate rings of centrally projective extension, by taking the endomorphism ring.

2. Main Results

Let $P \supset Q$ be a ring extension, Δ° the commutor ring of Q in P and C the center of Q. Furthermore, let \mathcal{B}_{r}° be the set of subrings
B of P such that $Q \subset B, Q_{Q} B_{B}\left\langle\oplus{ }_{Q} P_{B}\right.$ and the multiplication map $P \otimes_{Q} B \rightarrow P$ splits as a $P-B$-homomorphism, and \mathcal{D}_{r}^{0} the set of C-subalgebras D of Δ° such that $D_{D}\left\langle\oplus \Delta_{D}^{\circ}\right.$ and the multiplication map $\Delta^{\circ} \otimes_{C} D \rightarrow \Delta^{\circ}$ splits as a $\Delta^{\circ}-D$-homomorphism.

Lemma. Let P be Q-centrally projective, that is

$$
P\langle\oplus(Q \oplus \cdots \oplus Q)
$$

as $Q-Q$-bimodules. Then we have one to one correspondence between \mathcal{B}_{r}° and \mathcal{D}_{r}°, by taking $B \cap \Delta^{\circ}$ for $B \in \mathcal{B}_{r}^{\circ}$ and $Q D$ for $D \in \mathcal{D}_{r}^{\circ}$.

Proof: Let $B \in \mathcal{B}_{\tau}^{\circ}$ and p the $Q-B$-projection of P to B. Since, for any $q \in Q$ and $\delta \in \Delta^{\circ}$,

$$
q p(\delta)=p(q \delta)=r(\delta q)=p(\delta) q,
$$

we have $D \subset \Delta^{\circ}$ and $D_{D}\left\langle\oplus \Delta_{D}^{\circ}\right.$, where $D=p\left(\Delta^{\circ}\right)$. By $[\mathbf{2}$, Proposition 5.5], $P \cong Q \otimes_{C} \Delta^{\circ}$. Then we have

$$
B=p(P)=p\left(Q \Delta^{\circ}\right)=Q p\left(\Delta^{\circ}\right)=Q D .
$$

Since $D\left\langle\oplus \Delta^{\circ}\right.$, we have the commutative diagram

where two rows are exact and α is an isomorphism. Therefore $B \cong$ $Q \otimes_{C} D$. On the other hand, it is easy to check that $D=B \cap \Delta^{\circ}$. Now, for any $Q-Q$-bimodule M, we denote by M^{Q} the subset $\{m \in M ; q m=m q$ for all $q \in Q\}$ of M. Then we have the following isomorphisms

$$
\begin{aligned}
& \operatorname{Hom}\left(Q-\Delta^{\circ} Q \otimes_{C} \Delta_{Q-D}^{\circ}, Q-\Delta^{\circ} Q \otimes_{C}\left(\Delta^{\circ} \otimes_{C} D\right)_{Q-D}\right) \\
& \cong \operatorname{Hom}\left(\Delta^{\circ} \Delta_{D}^{\circ}, \Delta^{\circ} \operatorname{Hom}\left({ }_{Q} Q_{Q}, Q\right.\right. \\
& \left.\left.Q \otimes_{C}\left(\Delta^{\circ} \otimes_{C} D\right)_{Q}\right)_{D}\right) \\
& \cong \operatorname{Hom}\left(\Delta^{\circ} \Delta_{D}^{\circ}, \Delta^{\circ}\left(Q \otimes_{C}\left(\Delta^{\circ} \otimes_{C} D\right)\right)_{D}^{Q}\right) \\
& \cong \operatorname{Hom}\left(\Delta^{\circ} \Delta_{D}^{\circ}, \Delta^{\circ} Q^{Q} \otimes_{C}\left(\Delta^{\circ} \otimes_{C} D\right)_{D}\right) \\
& =H o m\left(\Delta^{\circ} \Delta_{D}^{\circ}, \Delta^{\circ} C \otimes_{C}\left(\Delta^{\circ} \otimes_{C} D\right)_{D}\right) \\
& \cong \operatorname{Hom}\left(\Delta^{\circ} \Delta_{D}^{\circ}, \Delta^{\circ} \Delta^{\circ} \otimes_{C} D_{D}\right)
\end{aligned}
$$

The inverse map of the composition of these isomorphism is given by $f \longmapsto[q \otimes \delta \mapsto q \otimes f(\delta)]$ where $f \in \operatorname{Hom}\left(\Delta^{\circ} \Delta_{D}^{\circ}, \Delta^{\circ} \Delta^{\circ} \otimes_{C} D_{D}\right), q \in Q$ and $\delta \in \Delta^{\circ}$. Furthermore, since

$$
P \otimes_{Q} B \cong\left(Q \otimes_{C} \Delta^{\circ}\right) \otimes_{Q}\left(Q \otimes_{C} D\right) \cong Q \otimes_{C}\left(\Delta^{\circ} \otimes_{C} D\right)
$$

and the multiplication map $P \otimes_{Q} B \longrightarrow P$ splits as a $P-B$-homomorphism, there exist a splitting map of the multiplication map $\Delta^{\circ} \otimes_{C}$ $D \longrightarrow \Delta^{\circ}$ as a $\Delta^{\circ}-D$-homomorphism. Therefore $D \in \mathcal{D}_{r}^{\circ}$.

Next let $D \in \mathcal{D}_{r}^{\circ}$ and $B=Q D$. Since $D\left\langle\oplus \Delta^{\circ}\right.$, we have the commutative diagram

where two rows are exact and α is an isomorphism. Therefore $B \cong$ $Q \otimes_{C} D$. Then we have

$$
{ }_{Q} B_{B} \cong_{Q}\left(Q \otimes_{C} D\right)_{Q-D}\left\langle\oplus_{Q}\left(Q \otimes_{C} \Delta^{\circ}\right)_{Q-D} \cong_{Q} P_{B}\right.
$$

and

$$
\begin{aligned}
P P \otimes_{Q} B_{B} & \cong_{Q-\Delta^{\circ}}\left(Q \otimes_{C} \Delta^{\circ}\right) \otimes_{Q}\left(Q \otimes_{C} D\right)_{Q-D} \\
& \left.\cong_{Q-\Delta^{\circ}} Q \otimes_{C}\left(\Delta^{\circ} \otimes_{C} D\right)_{Q-D} \oplus\right\rangle_{Q-\Delta^{\circ}} Q \otimes_{C} \Delta_{Q-D}^{\circ} \\
& \cong_{P} P_{B}
\end{aligned}
$$

Therefore $B \in \mathcal{B}_{r}^{\circ}$. If $D^{\prime}=B \cap \Delta^{\circ}$ then $D^{\prime} \in \mathcal{D}_{r}^{\circ}$, for the result of the first half. Since $D\left\langle\oplus \Delta^{\circ}\right.$ and $D \subset D^{\prime}, D\left\langle\oplus D^{\prime}\right.$. So, tensoring Q over C to the short exact sequence

$$
0 \longrightarrow D \longrightarrow D^{\prime} \longrightarrow D^{\prime} / D \longrightarrow 0
$$

we have the short exact sequence

$$
0 \longrightarrow Q \otimes_{C} D \longrightarrow Q \otimes_{C} D^{\prime} \longrightarrow Q \otimes_{C} D^{\prime} / D \longrightarrow 0
$$

But $Q \otimes_{C} D \cong B \cong Q \otimes_{C} D^{\prime}$. Then $Q \otimes_{C} D^{\prime} / D=0$. On the other hand, D^{\prime} / D is C-finitely generated projective,for so are D^{\prime} and D and $D\left\langle\oplus D^{\prime}\right.$. Hence D^{\prime} / D is $C-f l a t$ and

Therefore $D^{\prime} / D=0$ and $D^{\prime}=D$. This completes the proof.

Next theorem is the purpose of this paper. Let $R \supset S$ be a ring extension, Δ the commutor ring of S in R and C the center of R. Furthermore, let \mathcal{B}_{l} be the set of subrings B of R such that $S \subset B$, ${ }_{B} B_{S}\left\langle\oplus_{B} R_{S}\right.$ and the multiplication map $B \otimes_{S} R \rightarrow R$ splits as a $B-R$-homomorphism, and \mathcal{D}_{l} the set of C-subalgebras D of Δ such that ${ }_{D} D\left\langle\oplus_{D} \Delta\right.$ and the multiplication map $D \otimes_{C} \Delta \rightarrow \Delta$ splits as a $D-\Delta$-homomorphism.

Theorem. Let $R \supset S$ be an H-separable extension and M a right R-module such that faithfully balanced. And let $P=\operatorname{Hom}\left(M_{S}, M_{S}\right)$, $Q=\operatorname{Hom}\left(M_{R}, M_{R}\right)$. Then we have one to one correspondence between \mathcal{B}_{l} and \mathcal{B}_{r}°, by taking the endomorphism ring.

Proof: First we have

$$
P^{Q}=\operatorname{Hom}\left(M_{S}, M_{S}\right)^{Q}=\operatorname{Hom}\left({ }_{Q} M,_{Q} M\right)^{S} \cong R^{S}=\Delta .
$$

Considering the ring structure, we have that $P^{Q} \cong \Delta^{\circ}$ (it means that the opposite ring of Δ). By the same way, we have that $Q^{Q}=C$, that
is the center of Q. By [3, proposition 2.1], P is Q-centrally projective. By [2, Proposition 5.6], $P \cong Q \otimes_{C} \Delta^{\circ}$.

Let $B \in \mathcal{B}_{l}$ and $D=R^{B}$. By $[\mathbf{4},(1.3)], D \in \mathcal{D}_{l}$ and $D^{\circ} \in \mathcal{D}_{r}^{\circ}$. Then we have

$$
\begin{aligned}
\tilde{B} ; & =\operatorname{Hom}\left(M_{B}, M_{B}\right)=\operatorname{Hom}\left(M_{S}, M_{S}\right)^{B}=P^{B} \\
& \cong\left(Q \otimes_{C} \Delta^{\circ}\right)^{B}=Q \otimes_{C} \Delta^{\circ B}=Q \otimes_{C} D^{\circ} .
\end{aligned}
$$

By Lemma, $\tilde{B} \in \mathcal{B}_{r}^{\circ}$. By $[4,(1,3)]$,

$$
\begin{aligned}
& \operatorname{Hom}\left(\tilde{B} M,_{\tilde{B}} M\right)=\operatorname{Hom}\left(Q-D^{\circ} M,_{Q-D^{\circ}} M\right) \\
& \operatorname{Hom}\left({ }_{Q} M,_{Q} M\right)^{D^{\circ} \cong R^{D^{\circ}}=R^{D}} \\
& =B .
\end{aligned}
$$

Next let $B \in \mathcal{B}_{r}^{\circ}$ and $D=\Delta^{\circ} \cap B$. By Lemma, $D \in \mathcal{D}_{r}^{\circ}$ and $D^{\circ} \in \mathcal{D}_{l}$. Then, by [4, (1.3)], we have

$$
\begin{aligned}
& \tilde{B} ;=\operatorname{Hom}\left({ }_{B} M,_{B} M\right)=\operatorname{Hom}\left({ }_{Q} M,_{Q} M\right)^{B} \\
& =\operatorname{Hom}\left({ }_{Q} M,_{Q} M\right)^{Q-D}=\operatorname{Hom}\left({ }_{Q} M,_{Q} M\right)^{D} \\
& \cong R^{D}=R^{D^{\circ} \in \mathcal{B}_{l}}
\end{aligned}
$$

By $[4,(1.3)], R^{\dot{B}}=D^{\circ}$, and by the above result,

$$
\begin{aligned}
& \operatorname{Hom}\left(M_{\tilde{B}}, M_{\tilde{B}}\right) \cong Q \otimes_{C} D^{\circ 0} \\
& =Q \otimes_{C} D \cong B .
\end{aligned}
$$

This completes the proof.

References

1. K. Hirata, Some types of separable extensions of rings, Nagoya Math. J. 33 (1968), 107-115.
2. K. Hirata, Separable extensions and centralizers of rings, Nagoya Math. J. 35 (1969), 31-45.
3. K. Hirata and Y. Yamashiro, Ring extensions and endomorphism rings of a module, Tsukuba J. Math. 17 (1993), 77-84.
4. K. Sugano, On some commutor theorems of rings, Hokkaio Math. J. 1 (1972), 242-249.

Department of Mathematics
College of General Education
University of the Ryukyus
Nishihara-cho, Okinawa 903-01
JAPAN

