The degree of convergence of equi－uniform summation processes of interpolation type operators in Banach spaces

メタデータ	言語：
	出版者：Department of Mathematical Sciences，Faculty
	of Science，University of the Ryukyus
	公開日：2010－02－24
	キーワード（Ja）：
	キーワード（En）：
	作成者：Nishishiraho，Toshihiko，西白保，敏彦
	メールアドレス：
	所属：
	http：／／hdl．handle．net／20．500．12000／15910
URL	

THE DEGREE OF CONVERGENCE OF EQUI-UNIFORM SUMMATION PROCESSES OF INTERPOLATION TYPE OPERATORS IN BANACH SPACES

TOSHIHIKO NISHISHIRAHO

Abstract

We give quantitative estimates of the rate of convergence of equi-uniform summation processes of interpolation type operators in Banach spaces in terms of the modulus of continuity of functions to be approximated. Moreover, applications are presented by various equi-uniform summation processes of Bernstein type and Hermite-Fejér type operators.

1. Introduction

Let $(E,\|\cdot\|)$ be a Banach space and let (X, d) be a metric space. Let $B(X, E)$ denote the Banach space of all E-valued bounded functions on X with the supremum norm. $B C(X, E)$ stands for the closed linear subspace of $B(X, E)$ consisting of all E-valued bounded continuous functions on X. Also, we denote by $C(X, E)$ the linear space consisting of all E-valued continuous functions on X. Let $\left\{Y_{m, \gamma}: m \in \mathbb{N}_{0}, \gamma \in \Gamma\right\}$ be a family of finite sets, where \mathbb{N}_{0} is the set of all nonnegative integers and Γ is an index set.

Let $\mathcal{A}=\left\{a_{\alpha, m}^{(\lambda)}: \alpha \in D, m \in \mathbb{N}_{0}, \lambda \in \Lambda\right\}$ be a family of scalars, where D is a directed set and Λ is an index set. Let $\mathfrak{A}=\left\{\chi_{m, \gamma}(\cdot ; k)\right.$: $\left.m \in \mathbb{N}_{0}, \gamma \in \Gamma, k \in Y_{m, \gamma}\right\}$ be a family of scalar-valued functions on X

[^0]such that
\[

$$
\begin{equation*}
g_{\alpha, \lambda, \gamma}(x):=\sum_{m=0}^{\infty} \sum_{k \in Y_{m, \gamma}}\left|a_{\alpha, m}^{(\lambda)} \chi_{m, \gamma}(x ; k)\right|<\infty \tag{1}
\end{equation*}
$$

\]

for each $\alpha \in D, \lambda \in \Lambda, \gamma \in \Gamma, x \in X$ and let $\left\{\xi_{m, \gamma}: m \in \mathbb{N}_{0}, \gamma \in \Gamma\right\}$ be a family of mappings from $Y_{m, \gamma}$ to X. Then we define an interpolation type operator by the form

$$
\begin{align*}
& K_{m, \gamma}(F)(x)=\sum_{k \in Y_{m, \gamma}} \chi_{m, \gamma}(x ; k) F\left(\xi_{m, \gamma}(k)\right) \tag{2}\\
& \left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, F \in B C(X, E), x \in X\right)
\end{align*}
$$

(cf. [11], [12]). Furthermore, we define

$$
\begin{gather*}
K_{\alpha, \lambda, \gamma}(F)(x)=\sum_{m=0}^{\infty} a_{\alpha, m}^{(\lambda)} K_{m, \gamma}(F)(x) \tag{3}\\
(\alpha \in D, \lambda \in \Lambda, \gamma \in \Gamma, F \in B C(X, E), x \in X),
\end{gather*}
$$

which converges in E because of (1). Let X_{0} be a subset of X. Then the family $\mathfrak{K}=\left\{K_{m, \gamma}: m \in \mathbb{N}_{0}, \gamma \in \Gamma\right\}$ is called an equi-uniform \mathcal{A}-summation process on $B C(X, E)$ if for every $F \in B C(X, E)$,
(4) $\lim _{\alpha}\left\|K_{\alpha, \lambda, \gamma}(F)(x)-F(x)\right\|=0$ uniformly in $\lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}$.

The purpose of this paper is to give quantitative estimates of the rate of convergence behavior (4) in terms of the modulus of continuity of F under certain appropriate conditions (cf. [13], [14], [15]). Besides, applications are presented by the equi-uniform \mathcal{A}-summation processes of Bernstein type and Hermite-Fejér type operators.

2. \mathcal{A}-summability methods

\mathcal{A} is said to be regular if it satisfies the following conditions:
(A-1) For each $m \in \mathbb{N}_{0}$,

$$
\lim _{\alpha} a_{\alpha, m}^{(\lambda)}=0 \quad \text { uniformly in } \lambda \in \Lambda .
$$

(A-2) $\lim _{\alpha} \sum_{m=0}^{\infty} a_{\alpha, m}^{(\lambda)}=1 \quad$ uniformly in $\lambda \in \Lambda$.
(A-3) For each $\alpha \in D, \lambda \in \Lambda$,

$$
a_{\alpha}^{(\lambda)}:=\sum_{m=0}^{\infty}\left|a_{\alpha, m}^{(\lambda)}\right|<\infty,
$$

and there exists an element $\alpha_{0} \in D$ such that

$$
\sup \left\{a_{\alpha}^{(\lambda)}: \alpha \geq \alpha_{0}, \alpha \in D, \lambda \in \Lambda\right\}<\infty
$$

\mathcal{A} is said to be positive if

$$
a_{\alpha, m}^{(\lambda)} \geq 0 \quad \text { for all } \alpha \in D, m \in \mathbb{N}_{0} \text { and all } \lambda \in \Lambda
$$

Also, \mathcal{A} is said to be stochastic if it is positive and

$$
\sum_{m=0}^{\infty} a_{\alpha, m}^{(\lambda)}=1 \quad \text { for all } \alpha \in D \text { and all } \lambda \in \Lambda
$$

Obviously, if \mathcal{A} is positive, then (A-2) already implies (A-3) and if \mathcal{A} is stochastic, then Conditions (A-2) and (A-3) are automatically satisfied.

A sequence $\left\{f_{m}\right\}_{m \in \mathbb{N}_{0}}$ of elements in E is said to be \mathcal{A}-summable to f if

$$
\begin{equation*}
\lim _{\alpha}\left\|\sum_{m=0}^{\infty} a_{\alpha, m}^{(\lambda)} f_{m}-f\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda \tag{5}
\end{equation*}
$$

where it is assumed that the series in (5) converges for each $\alpha \in D$ and each $\lambda \in \Lambda$.

Concerning the relation between the regularity of \mathcal{A} and the \mathcal{A} summability, \mathcal{A} is regular if and only if every convergent sequence in E is \mathcal{A}-summable to its limit (cf. [1], [8]).

As the following examples with $D=\mathbb{N}_{0}$ show, there is a wide variety of families \mathcal{A} of particular interest which cover many important summation methods scattered in the literature.
$\left(1^{\circ}\right)$ Given a matrix $A=\left(a_{n m}\right)_{n, m \in \mathbb{N}_{0}}$, if $a_{n, m}^{(\lambda)}=a_{n m}$ for all $n, m \in$ \mathbb{N}_{0} and all $\lambda \in \Lambda$, then we obtain the usual matrix summability by A.
$\left(2^{\circ}\right)$ If $\Lambda=\mathbb{N}_{0}$, then we obtain the summation method by introduced by Petersen [16] (cf. [1]). In particular, if

$$
a_{n, m}^{(\lambda)}= \begin{cases}\frac{1}{n+1} & \text { if } \lambda \leq m \leq \lambda+n \\ 0 & \text { otherwise }\end{cases}
$$

then we obtain the notion of almost convergence method introduced by Lorentz [5].
$\left(3^{\circ}\right)$ Let $Q=\left\{q^{(\lambda)}: \lambda \in \Lambda\right\}$ be a familiy of sequences $q^{(\lambda)}=$ $\left\{q_{m}^{(\lambda)}\right\}_{m \in \mathbb{N}_{0}}$ of nonnegative real numbers such that

$$
Q_{n}^{(\lambda)}:=q_{0}^{(\lambda)}+q_{1}^{(\lambda)}+\cdots+q_{n}^{(\lambda)}>0 \quad\left(n \in \mathbb{N}_{0}, \lambda \in \Lambda\right)
$$

We define

$$
a_{n, m}^{(\lambda)}= \begin{cases}\frac{q_{n-m}^{(\lambda)}}{Q_{n}^{(\lambda)}} & \text { if } m \leq n \\ 0 & \text { if } m>n\end{cases}
$$

Then \mathcal{A}-summability method is called (N, Q)-summability method and in particular, if $q^{(\lambda)}=\left\{q_{m}\right\}_{m \in \mathbb{N}_{0}}$ is a fixed sequence of nonnegative real numbers satisfying $q_{0}>0$, then this reduces to the Nörlund summability method. Another special case of interest is the following:

Let $\Lambda \subseteq[0, \infty), \beta>0$ and

$$
q_{m}^{(\lambda)}=C_{m}^{(\lambda+\beta-1)} \quad\left(\lambda \in \Lambda, m \in \mathbb{N}_{0}\right)
$$

where $\tau>-1$ and

$$
C_{0}^{(\tau)}=1, \quad C_{m}^{(\tau)}=\binom{m+\tau}{m}=\frac{(\tau+1)(\tau+2) \cdots(\tau+m)}{m!} \quad(m \in \mathbb{N}) .
$$

In particular, if $\Lambda=\{0\}$, then we obtain the Cesàro summability of order β.
(4) Cesàro type : Let $\Lambda \subseteq(0, \infty), \beta>-1$ and define

$$
a_{n, m}^{(\lambda)}= \begin{cases}C_{n-m}^{(\lambda-1)} C_{m}^{(\beta)} / C_{n}^{(\beta+\lambda)} & \text { if } m \leq n, \\ 0 & \text { if } m>n .\end{cases}
$$

(5 ${ }^{\circ}$) Euler-Knopp-Bernstein type : Let $\Lambda \subseteq[0,1]$ and define

$$
a_{n, m}^{(\lambda)}= \begin{cases}\binom{n}{m} \lambda^{m}(1-\lambda)^{n-m} & \text { if } m \leq n, \\ 0 & \text { if } m>n .\end{cases}
$$

(6°) Meyer-König-Vermes-Zeller type : Let $\Lambda \subseteq[0,1)$ and define

$$
a_{n, m}^{(\lambda)}=\binom{n+m}{m} \lambda^{m}(1-\lambda)^{n+1} .
$$

(7°) Borel-Szász type : Let $\Lambda \subseteq[0, \infty)$ and define

$$
a_{n, m}^{(\lambda)}=\exp (-n \lambda) \frac{(n \lambda)^{m}}{m!} .
$$

(8°) Baskakov type : Let $\Lambda \subseteq[0, \infty)$ and define

$$
a_{n, m}^{(\lambda)}=\binom{n+m-1}{m} \lambda^{m}(1+\lambda)^{-n-m} .
$$

Note that all the families \mathcal{A} of the generic entories $a_{n, m}^{\lambda)}$ given in the above Examples $\left(2^{\circ}\right)-\left(8^{\circ}\right)$ are stochastic and all the families \mathcal{A} of the
generic entories $a_{n, m}^{(\lambda)}$ given in the above Examples $\left(4^{\circ}\right)-\left(8^{\circ}\right)$ are regular for any finite interval Λ.

3. Convergence rates

Let $F \in B(X, E)$ and let $\delta \geq 0$. Then we define

$$
\omega_{d}(F, \delta)=\sup \{\|F(x)-F(y)\|: x, y \in X, d(x, y) \leq \delta\}
$$

which is called the modulus of continuity of F with respect to d. Evidently, $\omega_{d}(F, \cdot)$ is a monotone increasing function on $[0, \infty)$ and

$$
\omega_{d}(F, 0)=0, \quad \omega_{d}(F, \delta) \leq 2 \sup \{\|F(x)\|: x \in X\} \quad(\delta \geq 0)
$$

Note that if X is bounded, then

$$
\omega_{d}(F, \delta)=\omega_{d}(F, \delta(X)) \quad(F \in B(X, E), \delta \geq \delta(X))
$$

where $\delta(X)$ denotes the diameter of X, and F is uniformly continuous on X if and only if

$$
\lim _{\delta \rightarrow+0} \omega_{d}(F, \delta)=0
$$

For $\beta>0$, a function $F \in B(X, E)$ is said to satisfy a Lipschitz condition of order β with constant $M>0$ with respect to d, or to belong to the class $\operatorname{Lip}_{d}(\beta, M)$ if

$$
\omega_{d}(F, \delta) \leq M \delta^{\beta}
$$

for all $\delta \geq 0$. Also, we set

$$
\operatorname{Lip}_{d} \beta=\bigcup_{M>0} \operatorname{Lip}_{d}(\beta, M)
$$

which is called the Lipschitz class of order β with respect to d.
From now on, we suppose that there exist constants $C \geq 1$ and $K>0$ such that

$$
\begin{equation*}
\omega_{d}(F, \xi \delta) \leq(C+K \xi) \omega_{d}(F, \delta) \tag{6}
\end{equation*}
$$

for all $\delta, \xi \geq 0$ and all $F \in B(X, E)$.
Lemma 1. Let Y be a finite set and $p \geq 1$. Let $\{\chi(x ; \cdot): x \in X\}$ be a family of scalar-valued functions on Y and let τ be a mapping from Y to X. Then for all $F \in B C(X, E), x \in X$ and all $\delta>0$,

$$
\left\|\sum_{k \in Y} \chi(x ; k)(F(\tau(k))-F(x))\right\| \leq\left(C \sum_{k \in Y}|\chi(x ; k)|+K c(x ; p, \delta)\right) \omega_{d}(F, \delta)
$$

where

$$
\begin{gathered}
c(x ; p, \delta)=\min \left\{\delta^{-p} \sum_{k \in Y}\left|\chi(x ; k) d^{p}(x, \tau(k))\right|\right. \\
\left.\delta^{-1}\left(\sum_{k \in Y}|\chi(x ; k)|\right)^{1-1 / p}\left(\sum_{k \in Y}\left|\chi(x ; k) d^{p}(x, \tau(k))\right|\right)^{1 / p}\right\} .
\end{gathered}
$$

Proof. This follows from [15, Lemma 2.7].
Let Ω be a strictly increasing continuous, subadditive function on $[0, \infty)$ with $\Omega(0)=0$. Then we define

$$
d_{\Omega}(x, y)=\Omega(d(x, y)) \quad((x, y) \in X \times X)
$$

which becomes a metric function on $X \times X . d_{\Omega}$ is uniformly equivalent to d and

$$
\begin{equation*}
\omega_{d}(F, \delta)=\omega_{d_{\Omega}}(F, \Omega(\delta)) \tag{7}
\end{equation*}
$$

for all $F \in B(X, E)$ and all $\delta \geq 0$ ([14, Lamma 2], cf. [9, Lemma 3]).
If $\chi_{m, \gamma}(x ; k) \geq 0$ for all $m \in \mathbb{N}_{0}, \gamma \in \Gamma, k \in Y_{m, \gamma}$ and all $x \in X_{0}$, then \mathfrak{A} is said to be positive. Also, if

$$
\sum_{k \in Y_{m, \gamma}} \chi_{m, \gamma}(x ; k)=1
$$

for all $m \in \mathbb{N}_{0}, \gamma \in \Gamma$ and all $x \in X_{0}$, then \mathfrak{A} is said to be normal.
Now, let $K_{\alpha, \lambda, \gamma}$ be defined by (3) and for each $\alpha \in D, F \in B C(X, E)$ we define

$$
E_{\alpha}(F)=\sup \left\{\left\|K_{\alpha, \lambda, \gamma}(F)(x)-F(x)\right\|: \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}
$$

and

$$
\|F\|_{X_{0}}=\sup \left\{\|F(x)\|: x \in X_{0}\right\}
$$

Then \mathfrak{K} is an equi-uniform \mathcal{A}-summation process on $B C(X, E)$ if and only if

$$
\lim _{\alpha} E_{\alpha}(F)=0
$$

for every $F \in B C(X, E)$.
Let $p \geq 1$ be any fixed real number and let $\left\{\epsilon_{\alpha}\right\}_{\alpha \in D}$ be a net of positive real numbers.

Theorem 1. For all $F \in B C(X, E)$ and all $\alpha \in D$,

$$
\begin{equation*}
E_{\alpha}(F) \leq\|F\|_{X_{0}} \tau_{\alpha}+\tau_{\alpha}(p) \omega_{d_{\Omega}}\left(F, \Omega\left(\epsilon_{\alpha} \nu_{\alpha}(p)\right)\right) \tag{8}
\end{equation*}
$$

where

$$
\begin{gathered}
\tau_{\alpha}=\sup \left\{\left|\sum_{m=0}^{\infty} a_{\alpha, m}^{(\lambda)} \sum_{k \in Y_{m, \gamma}} \chi_{m, \gamma}(x ; k)-1\right|: \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}, \\
\tau_{\alpha}(p)=\sup \left\{C g_{\alpha, \lambda, \gamma}(x)+K \min \left\{\epsilon_{\alpha}^{-p}, \epsilon_{\alpha}^{-1} g_{\alpha, \lambda, \gamma}(x)^{1-1 / p}\right\}\right. \\
\left.: \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}
\end{gathered}
$$

and

$$
\begin{gathered}
\nu_{\alpha}(p)=\left(\operatorname { s u p } \left\{\sum_{m=0}^{\infty}\left|a_{\alpha, m}^{(\lambda)}\right| \sum_{k \in Y_{m, \gamma}}\left|\chi_{m, \gamma}(x ; k) d^{p}\left(x, \xi_{m, \gamma}(k)\right)\right|\right.\right. \\
\left.\left.: \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}\right)^{1 / p} .
\end{gathered}
$$

Proof. In view of Lemma 1, we carry out the process as in the proof of [15, Theorem 4.1] and use the equality (7).

Corollary 1. For all $F \in \operatorname{Lip}_{d_{\Omega}}(\beta, M)$ and all $\alpha \in D$,

$$
E_{\alpha}(F) \leq\|F\|_{X_{0}} \tau_{\alpha}+M \tau_{\alpha}(p) \Omega^{\beta}\left(\epsilon_{\alpha} \nu_{\alpha}(p)\right)
$$

Theorem 2. If \mathfrak{A} is positive and normal and if \mathcal{A} is stochastic, then for all $F \in B C(X, E)$ and all $\alpha \in D$,

$$
\begin{equation*}
E_{\alpha}(F) \leq\left(C+K \min \left\{\epsilon_{\alpha}^{-1}, \epsilon_{\alpha}^{-p}\right\}\right) \omega_{d_{\Omega}}\left(F, \Omega\left(\epsilon_{\alpha} \nu_{\alpha}(p)\right)\right) \tag{9}
\end{equation*}
$$

Proof. Since $\tau_{\alpha}=0$ and $g_{\alpha, \lambda, \gamma}(x)=1$ for all $\alpha \in D, \lambda \in \Lambda, \gamma \in \Gamma$ and all $x \in X_{0}$, (9) immediately follows from (8).
Corollary 2. Suppose that \mathfrak{A} is positive and normal and that \mathcal{A} is stochastic. Then for all $F \in \operatorname{Lip}_{d_{\Omega}}(\beta, M)$ and all $\alpha \in D$,

$$
E_{\alpha}(F) \leq M\left(C+K \min \left\{\epsilon_{\alpha}^{-1}, \epsilon_{\alpha}^{-p}\right\}\right) \Omega^{\beta}\left(\epsilon_{\alpha} \nu_{\alpha}(p)\right)
$$

Let E_{0} be a subset of E. Let $\mathfrak{T}=\{T(x): x \in X\}$ be a family of mappings from E_{0} to E such that for each $f \in E_{0}$, the mapping $x \mapsto T(x)(f)$ is strongly continuous and bounded on X and let $L_{m, \gamma}$ denote the restriction of $K_{m, \gamma}$ to the set $\left\{T(\cdot)(f): f \in E_{0}\right\}$, i.e.,

$$
\begin{gather*}
L_{m, \gamma}(x)(f)=\sum_{k \in Y_{m, \gamma}} \chi_{m, \gamma}(x ; k) T\left(\xi_{m, \gamma}(k)\right)(f) \tag{10}\\
\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, f \in E_{0}, x \in X\right)
\end{gather*}
$$

We define

$$
\begin{equation*}
L_{\alpha, \lambda, \gamma}(x)(f)=\sum_{m=0}^{\infty} a_{\alpha, m}^{(\lambda)} L_{m, \gamma}(x)(f) \quad\left(f \in E_{0}\right) \tag{11}
\end{equation*}
$$

which converges in E because of (1). Then the family $\mathfrak{L}=\left\{L_{m, \gamma}(x)\right.$: $\left.m \in \mathbb{N}_{0}, \gamma \in \Gamma, x \in X\right\}$ is called an equi-uniform \mathfrak{T} - \mathcal{A}-summation process on E_{0} if for every $f \in E_{0}$,
$\lim _{\alpha}\left\|L_{\alpha, \lambda, \gamma}(x)(f)-T(x)(f)\right\|=0$ uniformly in $\lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}$.
Concerning the rate of convergence behavior (12), we define

$$
\begin{gathered}
\omega_{d, \mathfrak{I}}(f, \delta)=\sup \{\|T(x)(f)-T(y)(f)\|: x, y \in X, d(x, y) \leq \delta\} \\
\left(f \in E_{0}, \delta \geq 0\right)
\end{gathered}
$$

which is called the modulus of continuity of f associated with \mathfrak{T} with respect to d, and

$$
e_{\alpha}(f)=\sup \left\{\left\|L_{\alpha, \lambda, \gamma}(x)(f)-T(x)(f)\right\|: \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}
$$

Evidently, \mathfrak{L} is an equi-uniform \mathfrak{T} - \mathcal{A}-summation process on E_{0} if and only if

$$
\lim _{\alpha} e_{\alpha}(f)=0
$$

for every $f \in E_{0}$.
For $\beta>0$, an element $f \in E_{0}$ is said to satisfy a Lipschitz condition of order β with constant $M>0$ associated with \mathfrak{T} with respect to d, or to belong to the class $\operatorname{Lip}_{d, \mathfrak{T}}(\beta, M)$ if

$$
\omega_{d, \mathfrak{F}}(f, \delta) \leq M \delta^{\beta}
$$

for all $\delta \geq 0$. Also, we set

$$
\operatorname{Lip}_{d, \mathfrak{z}} \beta=\bigcup_{M>0} \operatorname{Lip}_{d, \mathfrak{z}}(\beta, M),
$$

which is called the Lipschitz class of order β associated with \mathfrak{T} with respect to d.

Let $\tau_{\alpha}, \tau_{\alpha}(p)$ and $\nu_{\alpha}(p)$ be as in Theorem 1. Then we have the following result which estimates the rate of convergence of the equiuniform \mathfrak{T} - \mathcal{A}-summation process \mathfrak{L} on E_{0}.
Theorem 3. For all $f \in E_{0}$ and all $\alpha \in D$,

$$
\begin{equation*}
e_{\alpha}(f) \leq\|T(\cdot)(f)\|_{X_{0}} \tau_{\alpha}+\tau_{\alpha}(p) \omega_{d_{\Omega}, \mathfrak{z}}\left(f, \Omega\left(\epsilon_{\alpha} \nu_{\alpha}(p)\right)\right) . \tag{13}
\end{equation*}
$$

Proof. Since

$$
\begin{align*}
\omega_{d_{\Omega}, \mathfrak{z}}(f, \delta)= & \omega_{d_{\Omega}}(T(\cdot)(f), \delta), \quad e_{\alpha}(f)=E_{\alpha}(T(\cdot)(f)) \tag{14}\\
& \left(f \in E_{0}, \delta \geq 0, \alpha \in D\right),
\end{align*}
$$

taking $F(\cdot)=T(\cdot)(f)$ in (8) we have the desired inequality (13).

Corollary 3. For all $f \in \operatorname{Lip}_{d_{\Omega}, \mathfrak{z}}(\beta, M)$ and all $\alpha \in D$,

$$
e_{\alpha}(f) \leq\|T(\cdot)(f)\|_{X_{0}} \tau_{\alpha}+M \tau_{\alpha}(p) \Omega^{\beta}\left(\epsilon_{\alpha} \nu_{\alpha}(p)\right) .
$$

Theorem 4. If \mathfrak{A} is positive and normal and if \mathcal{A} is stochastic, then for all $f \in E_{0}$ and all $\alpha \in D$,

$$
\begin{equation*}
e_{\alpha}(f) \leq\left(C+K \min \left\{\epsilon_{\alpha}^{-1}, \epsilon_{\alpha}^{-p}\right\}\right) \omega_{d_{\Omega}, \mathfrak{F}}\left(f, \Omega\left(\epsilon_{\alpha} \nu_{\alpha}(p)\right)\right) . \tag{15}
\end{equation*}
$$

Proof. In view of (14), the inequality (15) immediately follows from (9).

Corollary 4. Suppose that \mathfrak{A} is positive and normal and that \mathcal{A} is stochastic. Then for all $f \in \operatorname{Lip}_{d_{\Omega}, \mathfrak{T}}(\beta, M)$ and all $\alpha \in D$,

$$
e_{\alpha}(f) \leq M\left(C+K \min \left\{\epsilon_{\alpha}^{-1}, \epsilon_{\alpha}^{-p}\right\}\right) \Omega^{\beta}\left(\epsilon_{\alpha} \nu_{\alpha}(p)\right) .
$$

Let Φ be a nonnegative real-valued function on $X \times X$ and suppose that there exists a constant $\kappa>0$ such that

$$
\begin{equation*}
d^{p}(x, y) \leq \kappa \Phi(x, y) \tag{16}
\end{equation*}
$$

for all $(x, y) \in X_{0} \times X$. We define

$$
\begin{gathered}
\mu_{\alpha}(\Phi ; p)=\left(\operatorname { s u p } \left\{\sum_{m=0}^{\infty}\left|a_{\alpha, m}^{(\lambda)}\right| \sum_{k \in Y_{m, \gamma}}\left|\chi_{m, \gamma}(x ; k)\right| \Phi\left(x, \xi_{m, \gamma}(k)\right)\right.\right. \\
\left.\left.: \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}\right)^{1 / p} .
\end{gathered}
$$

Then we have

$$
\nu_{\alpha}(p) \leq \kappa^{1 / p} \mu_{\alpha}(\Phi ; p)
$$

for all $\alpha \in D$. Therefore, all the above results hold with $\kappa^{-1 / p} \epsilon_{\alpha}$ instead of ϵ_{α} and with $\mu_{\alpha}(\Phi ; p)$ instead of $\nu_{\alpha}(p)$. In particular, in view of Theorems 2 and 4 , we obtain the following result which can be more convenient for later applications.

Theorem 5. Suppose that \mathfrak{A} is positive and normal and that \mathcal{A} is stochastic. Then we have:
(a) For all $F \in B C(X, E)$ and all $\alpha \in D$,

$$
E_{\alpha}(F) \leq\left(C+K \min \left\{\kappa^{1 / p} \epsilon_{\alpha}^{-1}, \kappa \epsilon_{\alpha}^{-p}\right\}\right) \omega_{d_{\Omega}}\left(F, \Omega\left(\epsilon_{\alpha} \mu_{\alpha}(\Phi ; p)\right)\right) .
$$

(b) For all $f \in E_{0}$ and all $\alpha \in D$,

$$
e_{\alpha}(f) \leq\left(C+K \min \left\{\kappa^{1 / p} \epsilon_{\alpha}^{-1}, \kappa \epsilon_{\alpha}^{-p}\right\}\right) \omega_{d_{\Omega}, \mathfrak{Z}}\left(f, \Omega\left(\epsilon_{\alpha} \mu_{\alpha}(\Phi ; p)\right)\right) .
$$

Corollary 5. Let \mathfrak{A} and \mathcal{A} be as in Theorem 5.
(a) For all $F \in \operatorname{Lip}_{d_{\Omega}}(\beta, M)$ and all $\alpha \in D$,

$$
E_{\alpha}(F) \leq M\left(C+K \min \left\{\kappa^{1 / p} \epsilon_{\alpha}^{-1}, \kappa \epsilon_{\alpha}^{-p}\right\}\right) \Omega^{\beta}\left(\epsilon_{\alpha} \mu_{\alpha}(\Phi ; p)\right)
$$

(b) For all $f \in \operatorname{Lip}_{d_{\Omega}, \mathfrak{T}}(\beta, M)$ and all $\alpha \in D$,

$$
e_{\alpha}(f) \leq M\left(C+K \min \left\{\kappa^{1 / p} \epsilon_{\alpha}^{-1}, \kappa \epsilon_{\alpha}^{-p}\right\}\right) \Omega^{\beta}\left(\epsilon_{\alpha} \mu_{\alpha}(\Phi ; p)\right)
$$

4. Summation process of Bernstein type operators

Let X be a convex subset of a metric linear space Z with the translation invariant metric function d, i.e.,

$$
d(x, y)=d(x+z, y+z)
$$

for all $x, y, z \in Z$ and with $d(\cdot, 0)$ being starshaped, i.e.,

$$
d(\beta x, 0) \leq \beta d(x, 0)
$$

for all $x \in Z$ and all $\beta \in[0,1]$. Then, in view of $[14, \operatorname{Lemma} 1$ (b)] (cf. [15, Lemma 2.4 (b)], [10, Lemma 3 (ii)]), all the results obtained in the preceding section hold with $C=K=1$. Here we restrict ourselves to the following situation:

Let $1 \leq q \leq \infty$ be fixed and let X be a convex subset of the r-dimensional Euclidean space \mathbb{R}^{r} with the usual metric
$d(x, y)=d^{(q)}(x, y):= \begin{cases}\left(\sum_{i=1}^{r}\left|x_{i}-y_{i}\right|^{q}\right)^{1 / q} & (1 \leq q<\infty) \\ \max \left\{\left|x_{i}-y_{i}\right|: 1 \leq i \leq r\right\} & (q=\infty),\end{cases}$
where $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right), y=\left(y_{1}, y_{2}, \ldots, y_{r}\right) \in \mathbb{R}^{r}$. For $i=1,2, \ldots, r$, p_{i} denotes the i th coordinate function defined by $p_{i}(x)=x_{i}$ for all $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in \mathbb{R}^{r}$. Then we have

$$
\begin{equation*}
\left(d^{(q)}(x, y)\right)^{p} \leq c(p, q, r) \sum_{i=1}^{r}\left|p_{i}(x)-p_{i}(y)\right|^{p} \quad\left(x, y \in \mathbb{R}^{r}, p>0\right) \tag{17}
\end{equation*}
$$

where

$$
c(p, q, r)= \begin{cases}r^{p / q} & (1 \leq q<\infty, q \neq p) \\ 1 & (1 \leq q<\infty, q=p) \\ 1 & (q=\infty)\end{cases}
$$

Therefore, (16) holds with

$$
\begin{equation*}
\kappa=c(p, q, r), \quad \Phi(x, y)=\sum_{i=1}^{r}\left|p_{i}(x)-p_{i}(y)\right|^{p} \tag{18}
\end{equation*}
$$

Let

$$
X=[0, \infty)^{r}:=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in \mathbb{R}^{r}: x_{i} \geq 0, i=1,2, \ldots, r\right\}
$$

be the region of the first hyperquadrant and let

$$
n_{m, i}: \Gamma \rightarrow \mathbb{N}, \quad b_{m, i}: \Gamma \rightarrow(0, \infty) \quad\left(m \in \mathbb{N}_{0}, i=1,2, \ldots, r\right)
$$

where \mathbb{N} denotes the set of all positive integers.
Let X_{0} be a subset of \mathbb{I}_{r}, where

$$
\mathbb{I}_{r}:=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in X: 0 \leq x_{i} \leq 1, i=1,2, \ldots, r\right\}
$$

is the unit r-cube and

$$
\begin{gathered}
I_{m, \gamma}:=\left\{k=\left(k_{1}, k_{2}, \ldots, k_{r}\right) \in \mathbb{N}_{0}^{r}: 0 \leq k_{i} \leq n_{m, i}(\gamma), 1 \leq i \leq r\right\} \\
\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma\right)
\end{gathered}
$$

Then we define the corresponding interpolation type operators (2) and (10) by

$$
\begin{gather*}
B_{m, \gamma}(F)(x)=\sum_{k \in I_{m, \gamma}} \prod_{i=1}^{r}\binom{n_{m, i}(\gamma)}{k_{i}} x_{i}^{k_{i}}\left(1-x_{i}\right)^{n_{m, i}(\gamma)-k_{i}} \tag{19}\\
\times F\left(b_{m, 1}(\gamma) k_{1}, b_{m, 2}(\gamma) k_{2}, \ldots, b_{m, r}(\gamma) k_{r}\right) \\
\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, \quad F \in B C(X, E), x \in X\right)
\end{gather*}
$$

and

$$
\begin{gather*}
C_{m, \gamma}(x)(f)=\sum_{k \in I_{m, \gamma}} \prod_{i=1}^{r}\binom{n_{m, i}(\gamma)}{k_{i}} x_{i}^{k_{i}}\left(1-x_{i}\right)^{n_{m, i}(\gamma)-k_{i}} \tag{20}\\
\times T\left(b_{m, 1}(\gamma) k_{1}, b_{m, 2}(\gamma) k_{2}, \ldots, b_{m, r}(\gamma) k_{r}\right)(f) \\
\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, f \in E_{0}, x \in X\right)
\end{gather*}
$$

respectively (cf. [12]). These are called the Bernstein type operators associated with the unit r-cube \mathbb{I}_{r}.

Now, we assume that \mathcal{A} is stochastic. Let $\left\{\epsilon_{\alpha}\right\}_{\alpha \in D}$ be a net of positive real numbers and we define

$$
c_{\alpha}(q, r)=1+\min \left\{\frac{\sqrt{c(q, r)}}{\epsilon_{\alpha}}, \frac{c(q, r)}{\epsilon_{\alpha}^{2}}\right\}
$$

where

$$
c(q, r)= \begin{cases}r^{2 / q} & (1 \leq q<\infty, q \neq 2) \\ 1 & (q=2, \infty) .\end{cases}
$$

We take

$$
\begin{equation*}
K_{m, \gamma}(F)=B_{m, \gamma}(F) \quad\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, F \in B C(X, E)\right) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{m, \gamma}(\cdot)(f)=C_{m, \gamma}(\cdot)(f) \quad\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, f \in E_{0}\right) \tag{22}
\end{equation*}
$$

Theorem 6. (a) For all $F \in B C(X, E)$ and all $\alpha \in D$,

$$
\begin{equation*}
E_{\alpha}(F) \leq c_{\alpha}(q, r) \omega_{d^{(q)} \Omega}\left(F, \Omega\left(\epsilon_{\alpha} \zeta_{\alpha}\right)\right) \tag{23}
\end{equation*}
$$

(b) For all $f \in E_{0}$ and all $\alpha \in D$,

$$
\begin{equation*}
e_{\alpha}(f) \leq c_{\alpha}(q, r) \omega_{d^{(q)} \Omega, \mathfrak{T}}\left(f, \Omega\left(\epsilon_{\alpha} \zeta_{\alpha}\right)\right) . \tag{24}
\end{equation*}
$$

Here

$$
\zeta_{\alpha}=\left(\sup \left\{\sum_{i=1}^{r} \sum_{m=0}^{\infty} a_{\alpha, m}^{(\lambda)} \zeta_{m, i}(\gamma, x): \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}\right)^{1 / 2}
$$

and
$\zeta_{m, i}(\gamma, x)=\left(n_{m, i}(\gamma) b_{m . i}(\gamma)-1\right)^{2} p_{i}^{2}(x)+n_{m, i}(\gamma) b_{m, i}^{2}(\gamma)\left(p_{i}(x)-p_{i}^{2}(x)\right)$.
(c) If

$$
\begin{equation*}
n_{m, i}(\gamma) b_{m, i}(\gamma)=1 \quad\left(m \in \mathbb{N}_{0}, i=1,2, \ldots, r\right) \tag{25}
\end{equation*}
$$

for all $\gamma \in \Gamma$, then (23) and (24) hold with

$$
\zeta_{\alpha}=\left(\sup \left\{\sum_{i=1}^{r}\left(p_{i}(x)-p_{i}^{2}(x)\right) \sum_{m=0}^{\infty} \frac{a_{\alpha, m}^{(\lambda)}}{n_{m, i}(\gamma)}: \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}\right)^{1 / 2} .
$$

Proof. We define

$$
\chi_{m, \gamma}(x ; k)=\prod_{j=1}^{r}\binom{n_{m, j}(\gamma)}{k_{j}} x_{j}^{k_{j}}\left(1-x_{j}\right)^{n_{m, j}(\gamma)-k_{j}} \quad\left(x \in X, k \in I_{m, \gamma}\right)
$$

and

$$
\xi_{m, \gamma}(k)=\left(b_{m, 1}(\gamma) k_{1}, b_{m, 2}(\gamma) k_{2}, \ldots, b_{m, r}(\gamma) k_{r}\right) \quad\left(k \in I_{m, \gamma}\right)
$$

Then \mathfrak{A} is positive and normal. Furthermore, we have
$\sum_{k \in I_{m, \gamma}} \chi_{m, \gamma}(x ; k)\left|p_{i}(x)-p_{i}\left(\xi_{m, \gamma}(k)\right)\right|^{2}=\zeta_{m, i}(\gamma, x) \quad(i=1,2, \ldots, r)$
for all $m \in \mathbb{N}_{0}, \gamma \in \Gamma$ and all $x \in X_{0}$. Therefore, in view of (17) and (18), the desired result follows from Theorem 5.

Corollary 6. (a) For all $F \in \operatorname{Lip}_{d^{(q)}}{ }_{\Omega}(\beta, M)$ and all $\alpha \in D$,

$$
E_{\alpha}(F) \leq M c_{\alpha}(q, r) \Omega^{\beta}\left(\epsilon_{\alpha} \zeta_{\alpha}\right)
$$

(b) For all $f \in \operatorname{Lip}_{d^{(q)} \Omega, \mathfrak{\Sigma}}(\beta, M)$ and all $\alpha \in D$,

$$
e_{\alpha}(f) \leq M c_{\alpha}(q, r) \Omega^{\beta}\left(\epsilon_{\alpha} \zeta_{\alpha}\right)
$$

We assume that (25) holds for all $\gamma \in \Gamma$. Then we can reduce (19) and (20) to

$$
\begin{align*}
& B_{m, \gamma}(F)(x)=\sum_{k_{1}=0}^{n_{m, 1}(\gamma)} \sum_{k_{2}=0}^{n_{m, 2}(\gamma)} \cdots \sum_{k_{r}=0}^{n_{m, r}(\gamma)} F\left(\frac{k_{1}}{n_{m, 1}(\gamma)}, \cdots, \frac{k_{r}}{n_{m, r}(\gamma)}\right) \tag{26}\\
& \times \prod_{i=1}^{r}\binom{n_{m, i}(\gamma)}{k_{i}} x_{i}^{k_{i}}\left(1-x_{i}\right)^{n_{m, i}(\gamma)-k_{i}} \\
&\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, F \in C\left(\mathbb{I}_{r}, E\right), x \in \mathbb{I}_{r}\right)
\end{align*}
$$

and

$$
\begin{aligned}
C_{m, \gamma}(x)(f)= & \sum_{k_{1}=0}^{n_{m, 1}(\gamma)} \sum_{k_{2}=0}^{n_{m, 2}(\gamma)} \cdots \sum_{k_{r}=0}^{n_{m, r}(\gamma)} T\left(\frac{k_{1}}{n_{m, 1}(\gamma)}, \ldots, \frac{k_{r}}{n_{m, r}(\gamma)}\right)(f) \\
& \times \prod_{i=1}^{r}\binom{n_{m, i}(\gamma)}{k_{i}} x_{i}^{k_{i}}\left(1-x_{i}\right)^{n_{m, i}(\gamma)-k_{i}} \\
& \left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, f \in E_{0}, x \in \mathbb{I}_{r}\right),
\end{aligned}
$$

respectively (cf. [12], [14]).
Let $\left\{n_{m}\right\}_{m \in \mathbb{N}_{0}}$ be a strictly monotone increasing sequence of positive integers and let $v: \Gamma \rightarrow[0, \infty)$. We define

$$
n_{m . i}(\gamma)=n_{m}+[v(\gamma)]+i \quad\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, i=1,2, \ldots, r\right)
$$

and

$$
b_{m, i}(\gamma)=\frac{1}{n_{m}+[v(\gamma)]+i} \quad\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, i=1,2, \ldots, r\right),
$$

where $[v(\gamma)]$ denotes the largest integer not exceeding $v(\gamma)$. Then, in view of Theorem 6 (c), for all $F \in C\left(\mathbb{I}_{r}, E\right), f \in E_{0}$ and all $\alpha \in D$, (23) and (24) hold with

$$
\zeta_{\alpha}=\left(\operatorname { s u p } \left\{\sum_{i=1}^{r}\left(p_{i}(x)-p_{i}^{2}(x)\right) \sum_{m=0}^{\infty} \frac{a_{\alpha, m}^{(\lambda)}}{n_{m}+[v(\gamma)]+i}\right.\right.
$$

$$
\begin{gathered}
\left.\left.: \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}\right)^{1 / 2} \\
\leq\left(\sup \left\{\sum_{i=1}^{r}\left(p_{i}(x)-p_{i}^{2}(x)\right) \sum_{m=0}^{\infty} \frac{a_{\alpha, m}^{(\lambda)}}{n_{m}+i}: \lambda \in \Lambda, x \in X_{0}\right\}\right)^{1 / 2}
\end{gathered}
$$

Let $\left\{\nu_{m, i}\right\}_{m \in \mathbb{N}_{0}}, i=1,2, \ldots, r$, be strictly monotone increasing sequences of positive integers. We define

$$
n_{m, i}(\gamma)=\nu_{m, i}, \quad b_{m, i}(\gamma)=\frac{1}{\nu_{m, i}} \quad\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, i=1,2, \ldots, r\right)
$$

Then (26) reduces to the r-dimensional Bernstein polynomial operators on $C\left(\mathbb{I}_{r}, E\right)$ for $E=\mathbb{R}([6]$, cf. [2], [3]), and for all $F \in$ $C\left(\mathbb{I}_{r}, E\right), f \in E_{0}$ and all $\alpha \in D,(23)$ and (24) hold with

$$
\zeta_{\alpha}=\left(\sup \left\{\sum_{i=1}^{r}\left(p_{i}(x)-p_{i}^{2}(x)\right) \sum_{m=0}^{\infty} \frac{a_{\alpha, m}^{(\lambda)}}{\nu_{m, i}}: \lambda \in \Lambda, x \in X_{0}\right\}\right)^{1 / 2}
$$

Next, let X_{0} be a subset of Δ_{r}, where

$$
\Delta_{r}:=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in \mathbb{R}^{r}: x_{i} \geq 0,1 \leq i \leq r, \sum_{i=1}^{r} x_{i} \leq 1\right\}
$$

is the standard r-simplex. Let

$$
n_{m}: \Gamma \rightarrow \mathbb{N}, \quad b_{m, i}: \Gamma \rightarrow(0, \infty) \quad\left(m \in \mathbb{N}_{0}, i=1,2, \ldots, r\right)
$$

and

$$
\begin{gathered}
J_{m, \gamma}:=\left\{k=\left(k_{1}, k_{2}, \ldots, k_{r}\right) \in \mathbb{N}_{0}^{r}: k_{1}+k_{2}+\cdots+k_{r} \leq n_{m}(\gamma)\right\} \\
\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma\right)
\end{gathered}
$$

Now we define the corresponding interpolation type operators (2) and (10) by

$$
\begin{gather*}
B_{m, \gamma}(F)(x)=\sum_{k \in J_{m, \gamma}}\binom{n_{m}(\gamma)}{k} \prod_{i=1}^{r} x_{i}^{k_{i}}\left(1-\sum_{j=1}^{r} x_{j}\right)^{n_{m}(\gamma)-\sum_{j=1}^{r} k_{j}} \tag{27}\\
\times F\left(b_{m, 1}(\gamma) k_{1}, b_{m, 2}(\gamma) k_{2}, \ldots, b_{m, r}(\gamma) k_{r}\right) \\
\left(m \in \mathbb{N}_{0}, \quad \gamma \in \Gamma, \quad F \in B C(X, E), x \in X\right)
\end{gather*}
$$

and

$$
\begin{gather*}
C_{m, \gamma}(x)(f)=\sum_{k \in J_{m, \gamma}}\binom{n_{m}(\gamma)}{k} \prod_{i=1}^{r} x_{i}^{k_{i}}\left(1-\sum_{j=1}^{r} x_{j}\right)^{n_{m}(\gamma)-\sum_{j=1}^{r} k_{j}} \tag{28}\\
\times T\left(b_{m, 1}(\gamma) k_{1}, b_{m, 2}(\gamma) k_{2}, \ldots, b_{m, r}(\gamma) k_{r}\right)(f)
\end{gather*}
$$

$$
\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, f \in E_{0}, x \in X\right)
$$

where

$$
\binom{n_{m}(\gamma)}{k}=\frac{n_{m}(\gamma)!}{k_{1}!k_{2}!\cdots k_{r}!\left(n_{m}(\gamma)-k_{1}-k_{2}-\cdots-k_{r}\right)!},
$$

respectively (cf. [12]). These are called the Bernstein type operators associated with the standard r-simplex Δ_{r}. Let $K_{m, \gamma}$ and $L_{m, \gamma}$ be as in (21) with (27) and (22) with (28), respectively. Then the similar argument as in the proof of Theorem 6 yields the following result.

Theorem 7. (a) For all $F \in B C(X, E)$ and all $\alpha \in D$,

$$
\begin{equation*}
E_{\alpha}(F) \leq c_{\alpha}(q, r) \omega_{\left.d^{(q)}\right)_{\Omega}}\left(F, \Omega\left(\epsilon_{\alpha} \delta_{\alpha}\right)\right) \tag{29}
\end{equation*}
$$

(b) For all $f \in E_{0}$ and all $\alpha \in D$,

$$
\begin{equation*}
e_{\alpha}(f) \leq c_{\alpha}(q, r) \omega_{d^{(q)}, \Omega, \mathfrak{z}}\left(f, \Omega\left(\epsilon_{\alpha} \delta_{\alpha}\right)\right) \tag{30}
\end{equation*}
$$

Here

$$
\delta_{\alpha}=\left(\sup \left\{\sum_{i=1}^{r} \sum_{m=0}^{\infty} a_{\alpha, m}^{(\lambda)} \delta_{m, i}(\gamma, x): \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}\right)^{1 / 2}
$$

and

$$
\delta_{m, i}(\gamma, x)=\left(n_{m}(\gamma) b_{m, i}(\gamma)-1\right)^{2} p_{i}^{2}(x)+n_{m}(\gamma) b_{m, i}^{2}(\gamma)\left(p_{i}(x)-p_{i}^{2}(x)\right) .
$$

(c) If

$$
\begin{equation*}
n_{m}(\gamma) b_{m, i}(\gamma)=1 \quad\left(m \in \mathbb{N}_{0}, i=1,2, \ldots, r\right) \tag{31}
\end{equation*}
$$

for all $\gamma \in \Gamma$, then (29) and (30) hold with

$$
\delta_{\alpha}=\left(\sup \left\{\sum_{i=1}^{r}\left(p_{i}(x)-p_{i}^{2}(x)\right) \sum_{m=0}^{\infty} \frac{a_{\alpha, m}^{(\lambda)}}{n_{m}(\gamma)}: \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}\right)^{1 / 2} .
$$

Corollary 7. (a) For all $F \in \operatorname{Lip}_{d^{(q)} \Omega_{\Omega}}(\beta, M)$ and all $\alpha \in D$,

$$
E_{\alpha}(F) \leq M c_{\alpha}(q, r) \Omega^{\beta}\left(\epsilon_{\alpha} \delta_{\alpha}\right)
$$

(b) For all $f \in \operatorname{Lip}_{d^{(q)}}^{\Omega, \mathfrak{z}}{ }^{(}(\beta, M)$ and all $\alpha \in D$,

$$
e_{\alpha}(f) \leq M c_{\alpha}(q, r) \Omega^{\beta}\left(\epsilon_{\alpha} \delta_{\alpha}\right) .
$$

We suppose that (31) holds for all $\gamma \in \Gamma$. Then we can reduce (27) and (28) to

$$
\begin{align*}
& B_{m, \gamma}(F)(x)=\sum_{k \in J_{m, \gamma}}\binom{n_{m}(\gamma)}{k} \prod_{i=1}^{r} x_{i}^{k_{i}}\left(1-\sum_{j=1}^{r} x_{j}\right)^{n_{m}(\gamma)-\sum_{j=1}^{r} k_{j}} \tag{32}\\
& \times F\left(\frac{k_{1}}{n_{m}(\gamma)}, \frac{k_{2}}{n_{m}(\gamma)}, \ldots, \frac{k_{r}}{n_{m}(\gamma)}\right) \\
&\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, F \in C\left(\Delta_{r}, E\right), x \in \Delta_{r}\right)
\end{align*}
$$

and

$$
\begin{aligned}
C_{m, \gamma}(x)(f)= & \sum_{k \in J_{m, \gamma}}\binom{n_{m}(\gamma)}{k} \prod_{i=1}^{r} x_{i}^{k_{i}}\left(1-\sum_{j=1}^{r} x_{j}\right)^{n_{m}(\gamma)-\sum_{j=1}^{r} k_{j}} \\
& \times T\left(\frac{k_{1}}{n_{m}(\gamma)}, \frac{k_{2}}{n_{m}(\gamma)}, \ldots, \frac{k_{r}}{n_{m}(\gamma)}\right)(f) \\
& \left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, \quad f \in E_{0}, x \in \Delta_{r}\right),
\end{aligned}
$$

respectively (cf. [12]; [14]).
Let $\left\{\nu_{m}\right\}_{m \in \mathbb{N}_{0}}$ be a strictly monotone increasing sequence of positive integers and let $v: \Gamma \rightarrow[0, \infty)$. We define

$$
n_{m}(\gamma)=\nu_{m}+[v(\gamma)] \quad\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma\right)
$$

and

$$
b_{m, i}(\gamma)=\frac{1}{\nu_{m}+[v(\gamma)]} \quad\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, i=1,2, \ldots, r\right)
$$

Then, in view of Theorem 7 (c), for all $F \in C\left(\Delta_{r}, E\right), f \in E_{0}$ and all $\alpha \in D,(29)$ and (30) hold with

$$
\delta_{\alpha}=\left(\sup \left\{\sum_{i=1}^{r}\left(p_{i}(x)-p_{i}^{2}(x)\right) \sum_{m=0}^{\infty} \frac{a_{\alpha, m}^{(\lambda)}}{\nu_{m}+[v(\gamma)]}: \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}\right)^{1 / 2}
$$

Also, we define

$$
n_{m}(\gamma)=\nu_{m}, \quad b_{m, i}(\gamma)=\frac{1}{\nu_{m}} \quad\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, i=1,2, \ldots, r\right)
$$

Then (32) reduces to the r-dimensional Bernstein polynomial operators on $C\left(\Delta_{r}, E\right)$ for $E=\mathbb{R}\left(c f\right.$. [6]), and for all $F \in C\left(\Delta_{r}, E\right), f \in E_{0}$ and all $\alpha \in D,(29)$ and (30) hold with

$$
\delta_{\alpha}=\left(\sup \left\{\sum_{i=1}^{r}\left(p_{i}(x)-p_{i}^{2}(x)\right) \sum_{m=0}^{\infty} \frac{a_{\alpha, m}^{(\lambda)}}{\nu_{m}}: \lambda \in \Lambda, x \in X_{0}\right\}\right)^{1 / 2}
$$

5. Summation process of Hermite-Fejér type operators

Let $X=\mathbb{R}^{r}$ and let X_{0} be a subset of $X_{r}:=[-1,1]^{r}$. Let

$$
n_{m, i}: \Gamma \rightarrow \mathbb{N}, \quad b_{m, i}: \Gamma \rightarrow \mathbb{R} \quad\left(m \in \mathbb{N}_{0}, i=1,2, \ldots, r\right)
$$

and

$$
N_{m, \gamma}:=\left\{k=\left(k_{1}, k_{2}, \ldots, k_{r}\right) \in \mathbb{N}^{r}: 1 \leq k_{i} \leq n_{m, i}(\gamma), 1 \leq i \leq r\right\} .
$$

Let $Q_{n}(t)=\cos (n \arccos t)$ be the Chebyshev polynomial of degree n and let $t_{n, j}, j=1,2, \ldots, n$, be zeros of $Q_{n}(t)$, i.e.,

$$
t_{n, j}=\cos \left(\frac{2 j-1}{2 n} \pi\right) \quad(j=1,2, \ldots, n) .
$$

Then we define the corresponding interpolation type operators (2) and (10) by

$$
\begin{gather*}
H_{m, \gamma}(F)(x)=\sum_{k \in N_{m, \gamma}} F\left(b_{m, 1}(\gamma) t_{n_{m, 1}(\gamma), k_{1}}, \ldots, b_{m, r}(\gamma) t_{n_{m, r}(\gamma), k_{r}}\right) \tag{33}\\
\times \prod_{i=1}^{r}\left(1-x_{i} t_{n_{m, i}(\gamma), k_{i}}\right)\left\{\frac{Q_{n_{m, i}(\gamma)}\left(x_{i}\right)}{n_{m, i}(\gamma)\left(x_{i}-t_{n_{m, i}(\gamma), k_{i}}\right)}\right\}^{2} \\
\left(m \in \mathbb{N}_{0}, \quad \gamma \in \Gamma, F \in B C(X, E), x \in X\right)
\end{gather*}
$$

and

$$
\begin{gather*}
G_{m, \gamma}(x)(f)=\sum_{k \in N_{m, \gamma}} T\left(b_{m, 1}(\gamma) t_{n_{m, 1}(\gamma), k_{1}}, \ldots, b_{m, r}(\gamma) t_{n_{m, r}(\gamma), k_{r}}\right)(f) \tag{34}\\
\times \prod_{i=1}^{r}\left(1-x_{i} t_{n_{m, i}(\gamma), k_{i}}\right)\left\{\frac{Q_{n_{m, i}(\gamma)}\left(x_{i}\right)}{n_{m, i}(\gamma)\left(x_{i}-t_{n_{m, i}(\gamma), k_{i}}\right)}\right\}^{2} \\
\quad\left(m \in \mathbb{N}, \gamma \in \Gamma, f \in E_{0}, x \in X\right),
\end{gather*}
$$

respectively (cf. [12]). These are called the Hermite-Fejér type operators. We take

$$
\begin{gathered}
K_{m, \gamma}(F)=H_{m, \gamma}(F) \quad\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, F \in B C(X, E)\right), \\
L_{m, \gamma}(\cdot)(f)=G_{m, \gamma}(\cdot)(f) \quad\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, f \in E_{0}\right)
\end{gathered}
$$

and suppose that \mathcal{A} is stochastic. Then the similar argument as in the proof of Theorem 6 establishes the following result.

Theorem 8. (a) For all $F \in B C(X, E)$ and all $\alpha \in D$,

$$
\begin{equation*}
E_{\alpha}(F) \leq c_{\alpha}(q, r) \omega_{d^{(q)} \Omega}\left(F, \Omega\left(\epsilon_{\alpha} \eta_{\alpha}\right)\right) \tag{35}
\end{equation*}
$$

(b) For all $f \in E_{0}$ and all $\alpha \in D$,

$$
\begin{equation*}
e_{\alpha}(f) \leq c_{\alpha}(q, r) \omega_{d^{(q)}, \mathfrak{T}}\left(f, \Omega\left(\epsilon_{\alpha} \eta_{\alpha}\right)\right) \tag{36}
\end{equation*}
$$

Here

$$
\begin{aligned}
& \eta_{\alpha}=\left(\sup \left\{\sum_{i=1}^{r} \sum_{m=0}^{\infty} a_{\alpha, m}^{(\lambda)} \eta_{m, i}(\gamma, x): \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}\right)^{1 / 2} \\
& \eta_{m, i}(\gamma, x)= \frac{Q_{n_{m, i}(\gamma)}^{2}\left(x_{i}\right)}{n_{m, i}(\gamma)}-2 x_{i}\left(b_{m, i}(\gamma)-1\right) \sum_{k_{i}=1}^{n_{m, i}(\gamma)} t_{n_{m, i}(\gamma), k_{i}} \chi_{n_{m, i}(\gamma)}\left(x_{i} ; k_{i}\right) \\
&+\left(b_{m, i}^{2}(\gamma)-1\right) \sum_{k_{i}=1}^{n_{m, i}(\gamma)} t_{n_{m, i}(\gamma), k_{i}}{ }^{2} \chi_{n_{m, i}(\gamma)}\left(x_{i} ; k_{i}\right)
\end{aligned}
$$

and

$$
\chi_{n_{m, i}(\gamma)}\left(x_{i} ; k_{i}\right)=\left(1-x_{i} t_{n_{m, i}(\gamma), k_{i}}\right)\left\{\frac{Q_{n_{m, i}(\gamma)}\left(x_{i}\right)}{n_{m, i}(\gamma)\left(x_{i}-t_{n_{m, i}(\gamma), k_{i}}\right)}\right\}^{2}
$$

(c) If

$$
\begin{equation*}
b_{m, i}(\gamma)=1 \quad\left(m \in \mathbb{N}_{0}, i=1,2, \ldots, r\right) \tag{37}
\end{equation*}
$$

for all $\gamma \in \Gamma$, then (35) and (36) hold with

$$
\eta_{\alpha}=\left(\sup \left\{\sum_{i=1}^{r} \sum_{m=0}^{\infty} a_{\alpha, m}^{(\lambda)} \frac{\left(Q_{n_{m, i}(\gamma)} \circ p_{i}\right)^{2}(x)}{n_{m, i}(\gamma)}: \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}\right)^{1 / 2}
$$

Corollary 8. (a) For all $F \in \operatorname{Lip}_{\left.d^{(q)}\right)_{\Omega}}(\beta, M)$ and all $\alpha \in D$,

$$
E_{\alpha}(F) \leq M c_{\alpha}(q, r) \Omega^{\beta}\left(\epsilon_{\alpha} \eta_{\alpha}\right)
$$

(b) For all $f \in \operatorname{Lip}_{d^{(q)} \Omega, \mathfrak{T}}(\beta, M)$ and all $\alpha \in D$,

$$
e_{\alpha}(f) \leq M c_{\alpha}(q, r) \Omega^{\beta}\left(\epsilon_{\alpha} \eta_{\alpha}\right)
$$

We assume that (37) holds for all $\gamma \in \Gamma$. Then we can reduce to (33) and (34) to

$$
\begin{gather*}
H_{m, \gamma}(F)(x)=\sum_{k_{1}=1}^{n_{m, 1}(\gamma)} \sum_{k_{2}=1}^{n_{m, 2}(\gamma)} \cdots \sum_{k_{r}=1}^{n_{m, r}(\gamma)} \prod_{i=1}^{r} \chi_{n_{m, i}(\gamma)}\left(x_{i} ; k_{i}\right) \tag{38}\\
\times F\left(t_{n_{m, 1}(\gamma), k_{1}}, t_{n_{m, 2}(\gamma), k_{2}}, \ldots, t_{n_{m, r}(\gamma), k_{r}}\right)
\end{gather*}
$$

$$
\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, F \in C\left(X_{r}, E\right), x \in X_{r}\right)
$$

and

$$
\begin{gathered}
G_{m, \gamma}(x)(f)=\sum_{k_{1}=1}^{n_{m, 1}(\gamma)} \sum_{k_{2}=1}^{n_{m, 2}(\gamma)} \cdots \sum_{k_{r}=1}^{n_{m, r}(\gamma)} \prod_{i=1}^{r} \chi_{n_{m, i}(\gamma)}\left(x_{i} ; k_{i}\right) \\
\times T\left(t_{n_{m, 1}(\gamma), k_{1}}, t_{n_{m, 2}(\gamma), k_{2}}, \ldots, t_{\left.n_{m, r}(\gamma), k_{r}\right)}\right)(f) \\
\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, f \in E_{0}, x \in X_{r}\right),
\end{gathered}
$$

respectively (cf. [12], [14]).
Let $\left\{\nu_{m, i}\right\}_{m \in \mathbb{N}_{0}}, i=1,2, \ldots, r$, be strictly monotone increasing sequences of positive integers and let $v: \Gamma \rightarrow[0, \infty)$. We define
$n_{m, i}(\gamma)=\nu_{m, i}+[v(\gamma)], \quad b_{m, i}(\gamma)=1 \quad\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, i=1,2, \ldots, r\right)$
Then, in view of Theorem 8 (c), for all $F \in C\left(X_{r}, E\right), f \in E_{0}$ and all $\alpha \in D$, (35) and (36) hold with

$$
\eta_{\alpha}=\left(\sup \left\{\sum_{i=1}^{r} \sum_{m=0}^{\infty} a_{\alpha, m}^{(\lambda)} \frac{\left(Q_{\nu_{m, i}+[v(\gamma)]} \circ p_{i}\right)^{2}(x)}{\nu_{m, i}+[v(\gamma)]}: \lambda \in \Lambda, \gamma \in \Gamma, x \in X_{0}\right\}\right)^{1 / 2} .
$$

Also, we define

$$
n_{m, i}(\gamma)=\nu_{m, i}, \quad b_{m, i}(\gamma)=1 \quad\left(m \in \mathbb{N}_{0}, \gamma \in \Gamma, i=1,2, \ldots, r\right) .
$$

Then (38) generalizes the classical Hermite-Fejér interpolating polynomial operators on $C\left(X_{1}, \mathbb{R}\right)(c f .[4],[7])$, and for all $F \in C\left(X_{r}, E\right), f \in$ E_{0} and all $\alpha \in D$, (35) and (36) hold with

$$
\eta_{\alpha}=\left(\sup \left\{\sum_{i=1}^{r} \sum_{m=0}^{\infty} a_{\alpha, m}^{(\lambda)} \frac{\left(Q_{\nu_{m, i}} \circ p_{i}\right)^{2}(x)}{\nu_{m, i}}: \lambda \in \Lambda, x \in X_{0}\right\}\right)^{1 / 2} .
$$

References

[1] H. T. Bell, Order summability and almost convergence, Proc. Amer. Math. Soc., 38 (1973), 548-552.
[2] P. L. Butzer, On two-dimensional Bernstein polynomials, Can. J. Math., 5 (1953), 107-113.
[3] T. H. Hildebrandt and I. J. Schoenberg, On linear functional operations and the moment problem for a finite interval in one or several dimensions, Ann. of Math., 34 (1933), 317-328.
[4] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Corp., Delhi, 1960.
[5] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167-190.
[6] G. G. Lorentz, Bernstein Polynomials, Univ. of Toronto Press, Toronto, 1953.
[7] I. P. Natanson, Constructive Function Theory, Vol. III. Interpolation and Approximation Quadratures, Frederick Ungar, New York, 1965.
[8] T. Nishishiraho, Saturation of multiplier operators in Banach spaces, Tôhoku Math. J., 34 (1982), 23-42.
[9] T. Nishishiraho, Refinements of Korovkin-type approximation processes, Proc. the 4th Internat. Conf. on Functional Analysis and Approximation Theory, Acquafredda di Maratea, 2000, Suppl. Rend. Circ. Mat. Palermo 68 (2002), 711-725.
[10] T. Nishishiraho, Convergence of positive linear approximation processes, Tôhoku Math. J., 35 (1983), 441-458.
[11] T. Nishishiraho, Approximation processes of integral operators in Banach spaces, J. Nonlinear and Convex Analysis, 4 (2003), 125-140.
[12] T. Nishishiraho, The convergence of equi-uniform approximation processes of integral operators in Banach spaces, Ryukyu Math. J., 16 (2003), 79111.
[13] T. Nishishiraho, The degree of convergence of equi-uniform approximation processes of integral operators in Banach spaces, Proc. the 3rd Internat. Conf. on Nonlinear Analysis and Convex Analysis, 401-412, Yokohama Publ., 2004.
[14] T. Nishishiraho, The degree of interpolation type approximation processes for vector-valued functions, Ryukyu Math. J., 17 (2004), 21-37.
[15] T. Nishishiraho, Quantitative equi-uniform approximation processes of integral operators in Banach spaces, to appear in Taiwanese J. Math..
[16] G. M. Petersen, Almost convergence and uniformly distributed sequences, Quart. J. Math., 7 (1956), 188-191.

Department of Mathematical Sciences
Faculty of Science
University of the Ryukyus
Nishihara-cho, Okinawa 903-0213
JAPAN

[^0]: Received November 30, 2005.

