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THE DEGREE OF CONVERGENCE OF
EQUI-UNIFORM SUMMATION PROCESSES OF
INTERPOLATION TYPE OPERATORS IN
BANACH SPACES

TOSHIHIKO NISHISHIRAHO

ABSTRACT. We give quantitative estimates of the rate of conver-
gence of equi-uniform summation processes of interpolation type
operators in Banach spaces in terms of the modulus of continuity
of functions to be approximated. Moreover, applications are pre-
sented by various equi-uniform summation processes of Bernstein
type and Hermite-Fejér type operators.

1. Introduction

Let (#,]) - ||) be a Banach space and let (X,d) be a metric space.
Let B(X, I) denote the Banach space of all F-valued bounded func-
tions on X with the supremum norm. BC(X,F) stands for the
closed linear subspace of B(X, I) consisting of all F-valued bounded
continuous functions on X. Also, we denote by C(X, F) the lin-
ear space consisting of all F-valued continuous functions on X. Let
{Yin:m € Ny,v € I'} be a family of finite sets, where Ny is the set
of all nonnegative integers and I is an index set.

Let A = {a), : @« € D,m € Ny, A € A} be a family of scalars,
where D is a directed set and A is an index set. Let A = {xm~(-; k) :
m € No,y € I'lk € Y;,,} be a family of scalar-valued functions on X
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such that

(1) Garn(T) =Y Z al) Xm (T3 k)| < 00

m=0keYy,

foreacha € D, € Ajye Iz € X and let {&, :m € No,y € I'} be
a family of mappings from Y;, -, to X. Then we define an interpolation
type operator by the form

(2) Koy (F)(z) = Z Xm,y(T; k) F (Em(K))

kE€Ym 4
(meNy, yel, Fe BO(X,FE), z € X)
(cf. [11], [12]). Furthermore, we define

(e}

(3) Kapy(F)(x) = 2_:0 0o Ko (F) ()

(aeD, e A, vel, FeBC(X,FE), z € X),

which converges in I/ because of (1). Let Xy be a subset of X. Then
the family 8 = {K,,, : m € No,v € I'} is called an equi-uniform
A-summation process on BC(X, F) if for every F' € BC(X, F),

(4) lim || Ko+ (F)(#)=F(z)|| = O uniformly in A € A,y € Iz € Xo.

The purpose of this paper is to give quantitative estimates of the
rate of convergence behavior (4) in terms of the modulus of continuity
of F'under certain appropriate conditions (cf. [13], [14], [15]). Besides,
applications are presented by the equi-uniform A-summation processes
of Bernstein type and Hermite-Fejér type operators.

2. A-summability methods

A is said to be regular if it satisfies the following conditions:
(A-1) For each m € Ny,

hm ad) = uniformly in A € A.

a,m

(A-2) hén Z a) =1 uniformly in A € A.

a,m

(A-3) For each a€ D XNEA,

Z |(1aml < 00,

m=0



and there exists an element oy € D such that
sup{a™ : a > ap, a € D, A € A} < 0.
A is said to be positive if
a >0 forall « € D,m € Ny and all A € A.

a,m

Also, A is said to be stochastic if it is positive and

[ee]

Za(’\znzl for all @ € D and all A € A.

a7
m=0

Obviously, if A is positive, then (A-2) already implies (A-3) and if
A is stochastic, then Conditions (A-2) and (A-3) are automatically
satisfied.

A sequence { [, }men, of elements in F is said to be A-summable
to fif

(5) lign“ i afj’,)nfm — fH = | uniformly in A € A,
m=0

where it is assumed that the series in (5) converges for each a € D
and each A € A.

Concerning the relation between the regularity of A and the A-
sumimability, A is regular if and only if every convergent sequence in
E is A-summable to its limit (cf. [1], [8]).

As the following examples with D = Nj show, there is a wide
variety of families A of particular interest which cover many important
summation methods scattered in the literature.

(1°) Given a matrix A = (Gnm)nmeNg, if L9, = anm for all n,m €
Ny and all A € A, then we obtain the usual matrix summability by A.

(2°) If A = Ny, then we obtain the summation method by intro-

duced by Petersen [16] (cf. [1]). In particular, if

n,m

o n%rl f A<m<A+n,
0 otherwise,

then we obtain the notion of almost convergence method introduced
by Lorentz [5].

(3°) Let @ = {¢¥ : X € A} be a familiy of sequences ¢ =
{¢™M},nen, of nonnegative real numbers such that

QW =gV + ¢V +-+¢M >0  (neNy, AeA).



We define

)
qn m f <
(A o ™) 1 m = TI;,
Apm = 9n _
0 if m>n.

Then A-summability method is called (N, @)-summability method

and in particular, if ¢™ = {gn}men, is a fixed sequence of nonnega-

tive real numbers satisfying gy > 0, then this reduces to the Norlund

summability method. Another special case of interest is the following:
Let A C[0,00), #> 0 and

¢V =CcPPD (N e A, meNy),

where 7 > —1 and

c =1, C= (

m+T> (t+)(r+2)-(t+m)
m!

= N).
. (m € N)

In particular, if A = {0}, then we obtain the Cesaro summability of

order f3.
(4°) Cesaro type : Let A C (0,00), f > —1 and define

vy(A—1 L .
N CODOB /BN if m <,
Pl 0 if m>n.

(5°) Euler-Knopp-Bernstein type : Let A C [0, 1] and define

o = (m))\ (1—-A)"" if m <n,
’ 0 if m > n.

(6°) Meyer-Konig- Vermes-Zeller type : Let A C [0,1) and define
a(A) - n—+m )\m(l . /\)n+1.
n,m m
(7°) Borel-Szisz type : Let A C [0,00) and define
(nA)™
m!
(8°) Baskakov type : Let A C [0,00) and define

o), = <'n, +m— 1) A1 4 )

a™ = exp(—n))

n,m

m

Note that all the families A of the generic entories a;),, given in the
above Examples (2°)-(8°) are stochastic and all the families A of the



generic entories a{"), given in the above Examples (4°)-(8°) are regular
for any finite interval A.

3. Convergence rates

Let I' € B(X, F) and let 6 > 0. Then we define
wa(F,8) = sup{[|F(z) — F(y)|| : 7,y € X, d(z,y) < 6},

which is called the modulus of continuity of F' with respect to d.
Evidently, wq(F, ) is a monotone increasing function on [0, 00) and

wa(F,0) =0, wa(F,6) < 2sup{||F(z)||: z € X} (6 > 0).
Note that if X is bounded, then
wa(F,8) = wa(F, 6(X)) (F e B(X,FE), 6 >6X)),

where 6(X) denotes the diameter of X, and F' is uniformly continuous
on X if and only if

lim wy(F,6) = 0.

6—+40

For 5 > 0, a function I’ € B(X, FE) is said to satisfy a Lipschitz
condition of order  with constant M > 0 with respect to d, or to
belong to the class Lipy(3, M) if

wy(F,6) < M&°
for all 6 > 0. Also, we set
M>0

which is called the Lipschitz class of order 8 with respect to d.
From now on, we suppose that there exist constants C' > 1 and
K > 0 such that

(6) wa(F,60) < (C'+ K&)wa(F, 6)
for all 6,6 > 0 and all F' € B(X, F).

Lemma 1. Let Y be a finite set and p > 1. Let {x(z;-) :z € X} be
a family of scalar-valued functions on'Y and let T be a mapping from
Y to X. Then for all F € BC(X, E),x € X and all 6 > 0,

S Xk (F( )= F@)| < (€ X Il k) +Kelzsp,8) Jwul F8),

key key




where

o{;p,6) = min{ 677 3 (a3 k), (k) |,

key

> Ix(=; k)dp(z,r(k)ﬂ)l/p}.

keY

(S iwml)

key

Proof. This follows from [15, Lemma 2.7].
Let {2 be a strictly increasing continuous, subadditive function on
[0, 00) with 2(0) = 0. Then we define

dao(z,y) = 2(d(z,y))  ((z,y) € X x X),

which becomes a metric function on X x X. dg, is uniformly equivalent
to d and

(7) wd(F’ 6) = wdn(F’ 9(5))

for all F' € B(X, F) and all § > 0 ([14, Lamma 2], cf. [9, Lemma 3]).
If Xpm(z;k) > 0 for all m € No,v € I'N'k € Y,,,, and all z € X,
then 2 is said to be positive. Also, if

Z Xm,’v(x§ ]?) =1

k€Ym

for all m € Ng,y € I" and all x € X, then 2 is said to be normal.
Now, let K, be defined by (3) and for each « € D, F' € BC(X, F)
we define

Eo(F) = sup{|| Kap~(F)(z) — F(z)|| : A€ A,y € Iz € Xo}

and
I Fllxo = sup{||F'(2)] : = € Xo}.

Then R is an equi-uniform 4-summation process on BC(X, F) if and
only if
lim E.(F)=0

for every F' € BC(X, E).
Let p > 1 be any fixed real number and let {€,}acp be a net of
positive real numbers.

Theorem 1. For all F' € BC(X, E) and all @ € D,
(8) Ea(F) < [FllxoTa + Ta(p)wan (F, $2eava(p))),



where

Z(Inm Z X1n7~rll —1’ /\6/1,’)/6[1.1'6)(0}

{ m=0 k€Ym ~

Ta(p) = sup{Cgan(z) + K min{e;?, €;'gar,(z)'""/7}
A€ A yeT, zeXO}

and

:<sup{z|aam S X (3 K (2, €y ()

m=0 kEYm

1/p
AeA yerl m€X0}> .
Proof. In view of Lemma 1, we carry out the process as in the proof
of [15, Theorem 4.1] and use the equality (7).
Corollary 1. For all F' € Lipa, (3, M) and all o € D,
Eo(F) < ||F|lxo7a + MTa(p)‘Qﬁ(eaVa(p))-

Theorem 2. If 2 is positive and normal and if A is stochastic, then
forall F € BC(X,FE) and all « € D,

(9) Eo(F) < (C+ Kmin{e;', " Hwi,(F, 2(eava(p)))-

Proof. Since 7, = 0 and gar,(z) =1foralla € DA€ A,y e I
and all z € Xy, (9) immediately follows from (8).

Corollary 2. Suppose that 2 is positive and normal and that A is
stochastic. Then for all I' € Lipy, (8, M) and all « € D,

Eo(F) < M(C + K min{e.', €,7})2°(cava(p)).

Let Fy be a subset of £. Let ¥ = {T'(z) : = € X} be a family
of mappings from Fy to F such that for each f € FEj, the mapping
x +— T(z)(f) is strongly continuous and bounded on X and let L,y
denote the restriction of K,,m to the set {T'(:)(f) : f € Ep}, ie.,

(10) Lim, Z XA (T5 K) T (§m v (K))(f)

kEYm

(meNy, yel, feFEy, xeX).
We define

(11) La)\v Z a(’\) L y()(f) (f € Ey),



which converges in E because of (1). Then the family £ = {L,,,(z) :
m € Ng,v € I'z € X} is called an equi-uniform %-A-summation
process on Fy if for every f € Ly,

(12)

lim | Lax~()(f) = T(x)(f)|| =0 uniformly in A € A,y € [z € X,.

Concerning the rate of convergence behavior (12), we define

wd,‘l(f’ é) — SUp{HT(.T)(f) - T(y)(f)” HEUNIS X,d(.’l?,y) < é}
(f € EO) 6 > 0)7

which is called the modulus of continuity of f associated with T with
respect to d, and

ea(f) = sup{l|Lax(2)(f) = T(2)())Il : A € A,y € Iz € Xo}.

Evidently, £ is an equi-uniform %-A-summation process on £ if and
only if
lim ea(f) =0

for every f € Fj.

For # > 0, an element f € Fj is said to satisfy a Lipschitz condition
of order 3 with constant M > 0 associated with ¥ with respect to d,
or to belong to the class Lipg< (3, M) if

was(f,6) < M&°
for all 6 > 0. Also, we set
Lipgz 3= |J Lipaz(8, M),
M>0

which is called the Lipschitz class of order [ associated with T with
respect to d.

Let 7o, 7Ta(p) and v4(p) be as in Theorem 1. Then we have the
following result which estimates the rate of convergence of the equi-
uniform T-A-summation process £ on F.

Theorem 3. Forall f € Fy and all « € D,
(13) eal ) ST ()xoTa + Ta(P)wag s (f, 2(cata(p)))-
Proof. Since
(14)  wies(f,8) = wa o (T()()),0), ealf) = Ea(T()(f))
(f € Ey, 6§>0, a€D)
taking F'(-) = T'(-)(f) in (8) we have the desired inequality (13).




Corollary 3. For all [ € Lipg,<(8, M) and all « € D,
calf) S NTCUHllxoTa + MTa(p) 2% (cava(p))-

Theorem 4. If 2 is positive and normal and if A is stochastic, then
forall f € Ey and all « € D,

(15)  ealf) < (C+ Kmin{eg!, " wan,s(f, 2(eata(p))).
Proof. In view of (14), the inequality (15) immediately follows from
(9).

Corollary 4. Suppose that 2 is positive and normal and that A is
stochastic. Then for all f € Lipg, (8, M) and all « € D,

ea(f) < M(C + Kmin{e;', e} 2% (cava(p)).

« )

Let @ be a nonnegative real-valued function on X x X and suppose
that there exists a constant « > 0 such that

(16) d*(z,y) < KP(z,y)
for all (z,y) € Xo x X. We define
fa(P;p) = (Sup{ eSOkl D Imn(@; K)|D(, Gy (K))
m=0

k€Yo

1/p
:/\EA,’yEF,zEXO}) )

Then we have

Va(p) < K7 pa(®; p)
for all @« € D. Therefore, all the above results hold with k= !/7¢,
instead of ¢, and with . (®; p) instead of v,(p). In particular, in view
of Theorems 2 and 4, we obtain the following result which can be more
convenient for later applications.

Theorem 5. Suppose that U is positive and normal and that A is
stochastic. Then we have:
(a) For all F' € BCO(X, F) and all « € D,
Eq(F) < (C + K min{x!/Pe; !, Ke P wa, (F, 2(eapia(P;p))).

(b) For all f € Fy and all « € D,
calf) <(C+ Kmin{s'Pe;", re Ywag ([, 2(aptal®;p)))-



Corollary 5. Let A and A be as in Theorem 5.
(a) For all F' € Lipy, (B, M) and all a € D,
EL(F) < M(C + K min{x"Pe', ke P})2° (€apia(P;p)).
(b) For all f € Lipa,<(8,M) and all « € D,

ea(f) < M(C + K min{s'?e;!, ke;?}) 2 (€apial(®;p)).

4. Summation process of Bernstein type operators

Let X be a convex subset of a metric linear space Z with the trans-
lation invariant metric function d, i.e.,

d(z,y) = d(z + 2,y + 2)
for all x,y,2 € Z and with d(-,0) being starshaped, i.e.,

d(fBz,0) < fd(z,0)

for all z € Z and all § € [0, 1]. Then, in view of [14, Lemma 1 (b)] (cf.
[15, Lemma 2.4 (b)], [10, Lemma 3 (ii)]), all the results obtained in the
preceding section hold with C' = K = 1. Here we restrict ourselves to
the following situation:

Let 1 < q < 0o be fixed and let X be a convex subset of the
r-dimensional Euclidean space R" with the usual metric

- 1/q
d(z,y) = d9(z,y) = (Zm s — yz-l"> (1<g<oo)
max{|z; —y]:1<i<r} (¢ = 00),

where z = (x1,Z2, ... ,Zr),y = (Y1, Y2, - ,Yr) E R". Fori =1,2,...,r,
pi denotes the ith coordinate function defined by p;(z) = z; for all

x = (r1,%2,...,x,) € R". Then we have
(17) (d'9(z,y))? < clp, q,7 lel pil (z,y €R", p>0),
where
P/ (1<q<o00,q#Dp)
C(pv(Iar): 1 (1§C]<00,(1:P)
1 (g = 00).



Therefore, (16) holds with
(18) k=clp,qr), D,y =) |pz)-
i—1

Let
X = [0,00)" := {2 = (#1,%2,-.. ,T) ERT i 5, 20, i =1,2,... ,7}
be the region of the first hyperquadrant and let
i i L =N, bpi: I — (0, 00) (meNy, i=1,2,...,r1),

where N denotes the set of all positive integers.
Let Xy be a subset of I, where

L=z =(xy,25,. .. yB ) EX : 0L ;£ 1, 4=1,2,... ,r}
is the unit r-cube and
o= {k = (BrsBgs= « s Bp) ENG 10 L s € () L1 27}

(meNy, yel).

Then we define the corresponding interpolation type operators (2) and
(10) by

(19) B, (F = ¥ H <nm, ) Fi(] — gg)rmitn ks

k€lm ~1=1
X F'(bm,1(7)k1, bm2(7)k2, - - - 5 bnr (7)kr)
(meNy, yel, Fe BC(X,E), x € X)
and

(20) Crnqy(z Z H (nmz > fi(l _ xi)nm,i(v)*ki

k€lm 1=1
X T(bm,1(V)k1, b2 (1) k2, - - - ,bm,r(’Y)k'r)(f)
(meNy, yel, feFy, ze€X),

respectively (cf. [12]). These are called the Bernstein type operators
associated with the unit r-cube I,.

Now, we assume that A is stochastic. Let {€,}acp be a net of
positive real numbers and we define

c(q,r
calq,r) =1+ min{ (4 ), c(q;r) },
€a €2



where
r?/e (1<g<o0, ¢#2)
c(g,r) = B
1 (g = 2,060)-

We take

(21} Kuo(Fl= By AF) (meNy, yel, Fe BCOX,FE))
and

(22)  Loy)f) = Cua()f)  (meNg, vET, f € Ey).
Theorem 6. (a) For all F' € BC(X,F) and all « € D,

(23) Ea(F) < ca(q, T)wa@ , (F 2(€ala))-
(b) For all f € Fy and all « € D,

(24) ealf) < ca(q T)waw o5 (f5 £2(€ala))-

Here

1/2
a:(Sup{ZZ(I(A) le Y, T )\GA,’YEF,(E€X0}>

i=1 m=0

and

Cmi(1 ) = (M i(V)bm.s(7) — 1203 (@) + 1o s (V)b2,:(7) (0i(2) — P (2))-
(c) If

(25) il )b sly) =1 (meNy, i=1,2,...,7)

for ally € I', then (23) and (24) hold with

Co = <Sup{izr;(pi(;v) —p?(:z))mio nm(jz’)’) AGAYEL BE Xo})l/Q.
Proof. We define
Yo (B3 )= ﬁ (nm}gh)%?(l —ay) O (@€ X, k€ Tng)
frue | f
and

Emﬁ(k) = (bm,1 (V) k1, bm2(V) k2, - -, b (V) Er) (k€ A

Then % is positive and normal. Furthermore7 we have

Z Xm,‘?(‘r:/ k)lpl(‘r) - p‘i(f.m."/(k))IQ - Cm.'i(’yyl‘) (? — 172, S ,l')

k€lm



for all m € Ng,v € I' and all z € Xy. Therefore, in view of (17) and
(18), the desired result follows from Theorem 5.

Corollary 6. (a) For all F' € Lipya (3, M) and all o € D,
Eo(F) < Mca(q,7)82° (€ala).
(b) For all f € Lipga ,<(8, M) and all o € D,

Ca(f) £ MCa(Qa T)Qﬁ(eaga)'

We assume that (25) holds for all v € I'. Then we can reduce (19)
and (20) to

N, 1(7) o, 2(77) nm,r(7) kl k
26] Byl F ' L
( ) 'y LIZO QZ Z <nm 1 (7) nm,r(ﬂ)/) )

X H (nmg~7 )mfi(l — )i
=1 %

(meNy, vyel, Fe(Cl,FE), z€l,)

and
Mm,1(7) 7om,2(7) N, r () kl k
o T I i
122 kzzo krz—:o (nm,1(7) nm,r(7))(f)

nmﬂ' v 23 i (V) —kq
X H( b )xf (1 — g;)"msM =k
=1 J

(meNy, yel, feFy, ze€l,),

respectively (cf. [12], [14]).

Let {n,, }men, be a strictly monotone increasing sequence of positive
integers and let v : I' — [0,00). We define

Nmi(7Y) = N + [0(Y)] + 4 (meNy, vel,i=12...,r)
and

1
bm i = .
i) N + [V(7)] + ¢

where [v(7y)] denotes the largest integer not exceeding v(7y). Then, in
view of Theorem 6 (c), for all F € C(L,, F), f € Fy and all @ € D,
(23) and (24) hold with

(T?ZEN(), ")/GF, 2.':1’27"-5"‘)7

r

o = (sun{ S 0e) ~ B2 3

=1 m=0




1/2
:)\E/l,*yEF,:ceXOD

T o) (A) 1/2
< (sup{g:(jvz Z Cam ) e A x € X0}> :
i=1 T, + 1
Lt {¥nebmengt = L2 ox T be strictly monotone increasing se-
quences of positive integers. We define
1 .
Tn il V) =¥imgs Dmaly) = . (meNy, yel,i=12,...,r).

Then (26) reduces to the r-dimensional Bernstein polynomial oper-
ators on C(L, E) for E = R ([6], cf. [2], [3]), and for all ' €
C,,E), f € Ey and all a € D, (23) and (24) hold with

r 5 o) ag;\gn 1/2
o= (sup{S(pi@) ~ph(a) 3 " ixe 4 s e Xop)
= | m=0 ",

Next, let Xy be a subset of A,, where
A, 5= {.’1’,‘:(.’1,’1,.1’2,... ) ER™ 12, >0, 1 <i <y in < 1}
i=1

is the standard r-simplex. Let

N ' I = N, b2 I' — (0,00) (meNy, i=1,2,...,7)
and

Iy = {k = (k1,ko,... ,kr) ENy i ki + kot -+ ke <np(y)}

(meNy, yel).

Now we define the corresponding interpolation type operators (2) and
(10) by

(27)  Buy(F)(z) = (nm57)> [T=k(1- Zm)”’"m*z":‘ &
kE€Jm k i=1 j=1
X F(b7n,1(7)k717 bm,2(7)k‘27 sy bm,T(V)kT)
(meNy, yel, Fe BOX,FE), z € X)
and

(28) Cm‘.y(l')(f) == Z (’lm ) l_I.r ( Z I_J)"m Z;,l k;

k€Jm,y J=1

X T (b1 (VK1 b2 (V) ks - -3 b (7)) ()



(meNy, yel, feFEy, zeX),

where

M () N (7)!
ko) T kel ko (nm(7) — k1 — kg — - — k)l

respectively (cf. [12]). These are called the Bernstein type operators
associated with the standard r-simplex A,. Let K,, , and L, be as
n (21) with (27) and (22) with (28), respectively. Then the similar
argument as in the proof of Theorem 6 yields the following result.

Theorem 7. (a) For all F' € BC(X, F) and all « € D,

(29) Eo(F) < ca(q, T)wga , (F, £2(€aba))-

(b) For all f € Ey and all a € D,
(30) ea(f) < Calq, M)waw o 3(f, £2(€aba))-

Here

1/2
By = <sup{z > a(A) 2 Omi(v,z): Aed,yel,z e X0}>
i=1m=0

and

8 (1,2) = (M (V)bmi(7) = 1)*PE(2) + 1 (1)07, (1) (pi() — P ()
(c) If

(31) N (Y)bm () = 1 (meNy, i=1,2,...,7)
for ally € I', then (29) and (30) hold with

r a®

By = <sup{2(pi($) —p?(a:))nio T deAvyel,ze XO})I/Q.

i1 =0 (V)

Corollary 7. (a) For all F € Lipya (3, M) and all o € D,
Eo(F) < Mca(q,7)2° (€464).
(b) For all f € Lipya (8, M) and all « € D,

Ca(f) < Meca(q, T)Qﬂ(%éa)-



We suppose that (31) holds for all ¥ € I'. Then we can reduce (27)
and (28) to

(82} B dF)ay= > <nm}§’7)> ﬁlff(l B imj)nm(v)—z;lkj

K€ Tm 3=1
(-l R ke
N (Y) " Mn(7Y) N (7Y)

(meNy, yelI, FeC(A,LE), € A,)

r

Crr@)(N) = Y (”mhfﬂ)f[lﬁi(l_zlxj)nm(w—z;;l@

[ -
" T( ki ko ke
o Nn (Y)

(1) ) )
(meNy, yeI, feEy, xze€A,),

respectively (cf. [12]; [14]).
Let {Vm }men, be a strictly monotone increasing sequence of positive
integers and let v : I' — [0,00). We define

N (V) = Vi + [0(7)] (meNy, yeI)
and
1
i) = )

Then, in view of Theorem 7 (c), for all F' € C(A,, F), f € Iy and all
a € D, (29) and (30) hold with

(meNg, yel,i=1,2,...,7).

. ‘ SR 1/2
I <sup{ (pi(z)—p2(z)) —2" - NeAyel,ze XO}> :
; mzz:o Vi + [v(7)]

Also, we define

1
M (Y) = Uy bma(y) = — (meNy, yel,i=1,2,...,r).

Vi

Then (32) reduces to the r-dimensional Bernstein polynomial opera-
tors on C(A4,, F) for £ =R (cf. [6]), and for all F' € C(A,, E), f € Ey
and all « € D, (29) and (30) hold with

r ( 0 o) 1./2
&, = <sup{2(p7;(.1:) —pi(z) Y 2R AeAzE X0}> .

=] m=0 Vm




5. Summation process of Hermite-Fejér type operators

Let X = R" and let X, be a subset of X, := [—1,1]". Let
Mmi:d =N, bp;: >R (meNy, i=1,2,...,r)
and

Ny i={k = (ki, kg, ... k) EN 11 <k <mppi(y),1 <i < r}.

Let Qn(t) = cos(n arccost) be the Chebyshev polynomial of degree n
and let ¢, ;,7 = 1,2,... ,n, be zeros of Q(t), i.e.,
29 =1
tn,j:cos< J2n 7r> (g =1,2,..: 1)

Then we define the corresponding interpolation type operators (2) and
(10) by

(33) Hm,'y(F)(z) = Z F(bm,l('y)tnm,l(v),klv cee 7bm,r('7)tnm,r('y),kr)
kENm

LT . ){ @np () (Ti) }2
z:l nm 0 nm,i(V)(Ii - tnm,i(')’)vki)

(meNy, yel, Fe BOC(X,FE), € X)

and
(34)
Gm,w(-”’)(f) = Z T(b"n,l(’Y)tnm,l("/)»}"?]? e abm,r(7)t7lm,r(7),kr)(f)

kENm,'y

y ( ){ Qnm,i(v)(mi) }2
1 ORI s (V) (@ = L, ) k)

(meN, yel, fe Ey, z€X),

respectively (cf. [12]). These are called the Hermite-Fejér type oper-
ators. We take

Kpo(F) = Hno(F)  (meN,, v €I, Fe BC(X,E)),

Liny()(f) = Gy ()(f)  (meNo, ye I, [ € L)

and suppose that A is stochastic. Then the similar argument as in
the proof of Theorem 6 establishes the following result.



Theorem 8. (a) For all F' € BC(X,F) and all @ € D,

(35) Eo(F) < calg, T)wd(Q)n(Fa 2(€ata))
(b) For all f € Ey and all « € D,
(36) ealf) = caly, T)wd(‘1>g,‘1(f7 2(€ana)).
Here
r [ee] 1/2
'a:<sup{ZZaamnm1 Y,z ) )\EA,’YEF,.’EEX()}> )
i=1 m=0
lemi (z;) nim,i(7)
nm,i(%x) - ¢_2xi(bm,i(7)_l) Z tnm,i(“r),kix7lm,i(’7)($i; kl)
T, i(Y) fer=]
5 nm,i(7) 5
+ Wil ) — 1 X b sltiis” Xinemslod (53 )
ki=1
and

Qn '(7)(7;1') 2
XTLmi (mzakz — (1 - zztnmz N5 { st } 4
' o ) ’ (’Y) * ) nmvl(V)(‘rl - tnm,i('}')vki)
(c) If
(37) byglry) = 1 (meNy, i=1,2,...,7)
for ally € I, then (35) and (36) hold with
1/2
‘a_<sup{22a Qn””)Opz)() )\EA,’yEF,mEXU}> .

i=1 m=0 ’n’m,'t(’y)

Corollary 8. (a) For all F' € Lipya (8, M) and all « € D,
Ea(F) S MCQ((], T)Qﬁ(eana)-
(b) For all f € Lipya), (8, M) and all « € D,

ealf) < Mca(q, )92 (€ana)-

We assume that (37) holds for all v € I'. Then we can reduce to
(33) and (34) to

Nm, 1 (7) N, 2(7) m,r(’Y) P
(38) Hm 7 Z Z Z H Xnm,i('y)(xﬁ kz)
ki=1 ko=1 k=1 =1
X F<tnm,l(7)akl’ tnm,2(7)7k27 LR ) tnm,r('}’),kr)



(meNy, yel, Fe(C(X,,E), z€X,)

and
‘ T, 1(Y) Pm,2(7) nmr(Y) 1
Gan, = > 2 2 xmm(@sk)
ki=1  ko=1 k=1 i=1

X T 1(v)sk1s Ema(r)kas - - > Erm ey e ) (F)
(meNy, yel, feFEy, ze€X,),

respectively (cf. [12], [14]).
Let {Vm.i}meng,? = 1,2,...,r, be strictly monotone increasing se-
quences of positive integers and let v : I" — [0, 00). We define

nm‘,i(r)l) = Vm»i + [’U(’Y)L bm,l(ﬁy) - 1 (m & N07’y = F,’L — 1,27 A ’T)

Then, in view of Theorem 8 (c), for all F' € C(X,, E), f € Ep and all
a € D, (35) and (36) hold with

o), (Qum+oin) © Pi)*(2) })1/2
o= (e 2 MR e ay e naexa})

Also, we define

N i(Y) = Vmgy, bms(y) =1 (meNy, yerl, 1=1,2,...,7).

Then (38) generalizes the classical Hermite-Fejér interpolating polyno-
mial operators on C(X1,R) (cf. [4], [7]), and for all F € C(X,, E), f €
Fo and all @ € D, (35) and (36) hold with

T = <sup{z Z f;\m (@ o p:)*(z) TAEA xE X0}>1/2.

1=1'm=0 I/m:l
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