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THE DEGREE OF CONVERGENCE OF
EQUI-UNIFORM SUMMATION PROCESSES OF

INTERPOLATION TYPE OPERATORS IN
BANACH SPACES

TOSHIHIKO NISHISHIRAHO

ABSTRACT. We give quantitative estimates of the rate of conver­
gence of equi-uniform summation processes of interpolation type
operators in Banach spaces in terms of the modulus of continuity
of functions to be approximated. Moreover, applications are pre­
sented by various equi-uniform summation processes of Bernstein
type and Hermite-Fejér type operators.

1. Introduction

Let (E, Il . Il) be a Banach space and let (X, d) be a metric space.
Let B(X, E) denote the Banach space of aIl E-valued bounded func­
tions on X with the supremum norm. BC(X, E) stands for the
closed linear subspace of B(X, E) consisting of aIl E-valued bounded
continuous functions on X. Also, we denote by C(X, E) the lin­
ear space consisting of aIl E-valued continuous functions on X. Let
{}~n,'Y : rn E No, r E r} be a family of fini te sets, where No is the set
of aIl nonnegative integers and r is an index set.

Let A = {a~>'~ : ex E D, rn E No, À E A} be a family of scalars,
where D is a dir'ected set and A is an index set. Let 21 = {Xm,-y (.; k) :
rn E No, r E r, k E Ym,'Y} be a family of scalar-valued functions on X
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such that
CXl

(1) 9a,>.,,(x) := L L la~~:nXm,,(x; k)1 < 00

m=O kEYm,'Y

for each Q' ED, A E A" E r,x E X and let {~m,,: rn E No" E r} be
a family of mappings from Ym " to X. Then we define an interpolation
type operator by the form

(2) Km,,(F)(x) = L Xm,,(X; k)F(~m,,(k))
kEYm,'Y

(rn E No, , E r, FE BC(X, E), x E X)

(d. [11], [12]). Furthermore, we define

(3)
CXl

Ka,>.,,(F)(x) = L a~~:nKm,,(F)(x)
m=O

(Q' E D, A E A, , E r, FE BC(X, E), x EX),

which converges in E because of (1). Let X o be a subset of X. Then
the family it = {Km " : rn E No" E r} is called an equi-uniform
A-summation process on BC(X, E) if for every F E BC(X, E),

(4) lirnIIKa,>.,,(F)(x)-F(x)11 = ouniformly inA E A" E r,x E Xo.

The purpose of this paper is to give quantitative estimates of the
rate of convergence behavior (4) in terms of the modulus of continuity
of F under certain appropriate conditions (d. [13], [14], [15]). Besides,
applications are presented by the equi-uniform A-summation processes
of Bernstein type and Hermite-Fejer type operators.

2. A-summability methods

A is said to be regular if it satisfies the following conditions:
(A-I) For each rn E No,

lim a(>') = 0 uniformly in A E J1.
Q' o:,m

(A-2) lim f: a~>'~ = 1 uniformly in A E A.
a m=O '

(A-3) For each Q' E D, A E A,

CXl

a(>') '= '" la(>') I < 00
Q . L...-t D: ,m ,

m=O
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and there exists an element ao E D such that

sup{a~A) : a ~ ao, a ED, ,\ E 11} < 00.

A is said to be positive if

a~~~ ~ a for all a ED, m E No and all ,\ E A.

Also, A is said to be stochastic if it is positive and
00

'"' a(A) = 1L-t Q,m
m=O

for all a E D and all ,\ E A.

Obviously, if A is positive, then (A-2) already implies (A-3) and if
A is stochastic, then Conditions (A-2) and (A-3) are automatically
satisfied.

A sequence {Jm}mENo of elements in E is said to be A-summable
to J if

(5)
00

liIPIIl:= a~~~Jm - JII = a
m=O

uniformly in ,\ E 11,

where it is assumed that the series in (5) converges for each a E D
and each ,\ E A.

Concerning the relation between the regularity of A and the A­
summability, A is regular if and only if every convergent sequence in
E is A-summable to its limit (cf. [1], [8]).

As the following examples with D = No show, there is a wide
variety of families A of particular interest which cover many important
summation methods scattered in the literature.

(10) Given a matrix A = (anmkmENo' if a~~~ = anm for all n, m E
No and all ,\ E 11, then we obtain the usual matrix summability by A.

(2°) If 11 = No, then we obtain the summation method by intro­
duced by Petersen [16] (d. [1]). In particular, if

{

_1_ if,\ ::::; m ::::; ,\ + n,
a(A) = n+1

n,m a otherwise,

then we obtain the notion of almost convergence method introduced
by Lorentz [5].

(3°) Let Q = {q(A) : ,\ E 11} be a familiy of sequences q(A)
{q~) }mENo of nonnegative real numbers such that

Q~A) := qbA) + qiA) + ... + q~A) > a (n E No, ,\ E 11).
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We define

a~>':n = {~~A) if Tn:::; n,
, a if Tn> n.

Then A-summability method is called (N, Q)-summability method
and in particular, if q(>') = {qm}mENo is a fixed sequence of nonnega­
tive real numbers satisfying qo > 0, then this reduces to the Norlund
summability method. Another special case of interest is the following:

Let A ~ [0,00),13 > a and

q~) = C~+f3-1) (). E A, Tn E No),

where 7> -1 and

C67) = 1, C(7) = (Tn + 7) = (7 + 1)(7 + 2)··· (7 + Tn) (Tn EN).
m Tn Tn!

In particular, if A = {a}, then we obtain the Cesaro summability of
order 13.

(4°) Cesaro type: Let A ~ (0,00), 13 > -1 and define

{

C(>.-l)CU3)/CU3+>.) if Tn < n(>.) _ n-m m n - ,anm -
'0 if Tn> n.

(5°) Euler-Knapp-Bernstein type: Let A ~ [0,1] and define

{
( n).m(l _ ).)n-m

a(>') = m
n,m a

if Tn:::; n,

if Tn> n.

(6°) Meyer-Konig- Vermes-Zeller type: Let A ~ [0,1) and define

a~~;n = (n:Tn) ).m(1 _ ).t+1
•

(7°) Borel-Szasz type : Let A ~ [0,00) and define

(>.) _ (n).)m
anm - exp(-n).)-~,-.

, Tn.

(8°) Baskakov type: Let A ~ [0,00) and define

a~~:n = (n +:-1) ).m(l +).(n-m.

Note that all the families A of the generic entories a~)m given in the
above Examples (2°)_(8°) are stochastic and all the fa~ilies A of the
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generic entories a~'\:n given in the above Examples (4°)_(8°) are regular
for any finite inter'val J1.

3. Convergence rates

Let FE B(X, E) and let 6 ~ O. Then we define

wd(F, 6) = sup{IIF(x) - F(y)ll: x,y E X,d(x,y):S; 6},

which is called the modulus of continuity of F with respect to d.
Evidently, wd(F,') is a monotone increasing function on [0,00) and

wd(F,O) = 0, wd(F,6):S; 2sup{IIF(x)11 : x E X}

Note that if X is bounded, then

(6 ~ 0).

(F E B(X, E), 6 ~ 6(X)),

where 6(X) denotes the diameter of X, and F is uniformly continuous
on X if and only if

lim Wd( F, 6) = O.
0->+0

For (J > 0, a function F E B(X, E) is said to satisfy a Lipschitz
condition of order (J with constant M > 0 with respect to d, or to
belong to the class Lipd((J, M) if

wd(F,6):S; M6{3

for all 6 ~ O. Also, we set

Lipd (J = U Lipd((J, M),
M>O

which is called the Lipschitz class of order (J with respect to d.
From now on, we suppose that there exist constants C ~ 1 and

K > 0 such that

(6) wd(F, (6) :s; (C + K()Wd(F, 6)

for all 6, ( ~ 0 and all F E B(X, E).

Lemma 1. Let Y be a finite set and P ~ 1. Let {x(x; .) : x E X} be
a family of scalar-valued functions on Y and let T be a mapping from
Y to X. Then for all F E BC(X,E),x E X and all 6> 0,

II L X(x; k)(F(T(k))-F(x))11 :s; (C L Ix(x; k)I+Kc(x;p, 6) )Wd(F, 6),
kEY kEY

-17 -



where

c(x; P, 6) = min{ 6-PL Ix(x; k)dP(x, T(k))I,
kEY

( )
l-l/P( )l/P}

6- 1
~ Ix(x; k)1 ~ Ix(x; k)dP(x, T(k))1 .

Proof This follows from [15, Lemma 2.7].
Let J2 be a strictly increasing continuous, subadditive function on

[0,(0) with J2(0) = O. Then we define

dfl(X, y) = J2(d(x, y)) ((x,y) E X x X),

which becomes a metric function on X x X. dfl is uniformly equivalent
to d and

(7)

for all F E B(X, E) and all 6 ;:::: 0 ([14, Lamma 2], d. [9, Lemma 3]).
If Xm,')' (x; k) ;:::: 0 for all m E No, r E r, k E Ym,')' and all x E X o,

then 2{ is said to be positive. Also, if

L Xm,')'(x;~) = 1
kEYm,-y

for all m E No, r E r and all x E X o, then 2{ is said to be normal.
Now, let Ka ,>.,')' be defined by (3) and for each a E D, FE BC(X, E)

we define

Ea(F) = sup{ II Ka,>.,')'(F)(x) - F(x) II : AE 11, r E r, x E X o}

and

1IFlixo = sup{IIF(x)11 : x E X o}.

Then R is an equi-uniform A-summation process on BC(X, E) if and
only if

for every F E BC(X, E).
Let P ;:::: 1 be any fixed real number and let {Ea}aED be a net of

positive real numbers.

Theorem 1. For all F E BC(X, E) and all a E D,

(8) Ea(F) :s; IIFllxoTa + Ta(P)Wdn(F, J2(Eal/a(P))),
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wher'e

To = sup{1 f a~~~~ I: Xm,I'(X; k) - 11: A E il" E r,x E Xo},
m=O kEYm ,")

To(p) = suP{CgO ,A,I'(X) + Kmin{E~7, E~lgo,A'I'(X)l-l/P}

: A E il, ,E r, x E X o}
and

I/o (p) = (sup{ f la~~~1 I:lxm,l'(x; k)dP(x, ~m'l'(k))1
m=O kEY",,")

})

l/p

: A E il, ,E r, x E X o .

Proof In view of Lemma 1, we carry out the process as in the proof
of [15, Theorem 4.1] and use the equality (7).

Corollary 1. For all F E Lipdf]({3, M) and all QED,

Eo(F) ::::: 1IFlixoTn + MTn(p)Df3(Enl/n(P))·

Theorem 2. If 2l is positive and normal and if A is stochastic, then
for all F E BC(X, E) and all a E D,

(9) Eo(F) ::::: (C + Kmin{E~l, E~P})Wdf](F, D(EnVn(P))).

Proof Since To = 0 and gn,A,I'(X) = 1 for all Q E D,A E il" E r
and all x E X o, (9) immediately follows from (8).

Corollary 2. Suppose that 2l is positive and normal and that A is
stochastic. Then for all F E Lipdf]({3, M) and all QED,

En(F) ::::: M( C + K min {E~l, E~P} )Df3(Enl/n(P)).

Let Eo be a subset of E. Let 'I = {T(x) : x E X} be a family
of mappings from Eo to E such that for each f E Eo, the mapping
.7: t---t T(x) (J) is strongly continuous and bounded on X and let Lm ,1'
denote the restriction of K m,')' to the set {T(·)(J) : f E Eo}, i.e.,

(10) Lm,l'(x)(J) = I: Xm,1' (x; k)T(~m,l'(k))(J)
kEY",,")

(m E No, , E r, f E Eo, x EX).

We define

(11)
00

LO ,A,I'(X)(J) = I: a~~~Lm'l'(x)(J)
m=O

-19 -
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which converges in E because of (1). Then the family £ = {Lm,,(.T) :
'Tn E No" E r, x E X} is called an equi-uniform 1'-A-summation
process on Eo if for every f E Eo,
(12)
lim IILa,>.,,(x)(J) - T(x)(J)11 = 0 uniformly in A E A" E r,x E Xo·

Concerning the rate of convergence behavior (12), we define

wd,'I(J,b) = sup{IIT(x)(J) - T(y)(J)II: x,y E X,d(x,y) s: b}

(J E Eo, b ~ 0),
which is called the modulus of continuity of f associated with l' with
respect to d, and

ea(J) = sup{IILa,>.,,(x)(J) - T(x)(J)11 : A E A" E r,x E Xo}.

Evidently, £ is an equi-uniform 1'-A-summation process on Eo if and
only if

lim ea(J) = 0
a

for every f E Eo·
For f3 > 0, an element f E Eo is said to satisfy a Lipschitz condition

of order f3 with constant M > 0 associated with l' with respect to d,
or to belong to the class Lipd,'I(f3, M) if

Wd,'I (J, b) s: M bf3

for all b ~ o. Also, we set

Lipd,'I f3 = U Dipd,'I(f3, M),
M>O

which is called the Lipschitz class of order f3 associated with l' with
respect to d.

Let Ta,Ta(p) and l/a(P) be as in Theorem 1. Then we have the
following result which estimates the rate of convergence of the equi­
uniform 1'-A-summation process £ on Eo.

Theorem 3. For all f E Eo and all 0: ED)

(13) ea(J) s: IIT(-)(J)llxoTa + Ta(P)Wdn,'I(J, J7(Eo l/a (p))).

Proof Since

(14) Wdn,'I(J, b) = Wdn (T(-)(J), b), ea(J) = Ea(T(- )(J))

(J E Eo, b ~ 0, 0: ED),

taking F(-) = T(·)(J) in (8) we have the desired inequality (13).

- 20-



Corollary 3. For all f E LiPdn,'I({3, M) and all a E D)

ea(f) ::; IIT(·)(f)llxoTa + MTa(p) [i\Ea //a (p)).

Theorem 4. If Qt is positive and normal and if A is stochastic) then
for all f E Eo and all a E D)

(15) ea(f)::; (C+Kmin{(~-l, <?})wdn,'I(f,S2(EaVa(P))).

Proof In view of (14), the inequality (15) immediately follows from
(9) .

Corollary 4. Suppose that Qt is positive and normal and that A is
stochastic. Then for all f E LiPdn,'I({3, M) and all a E D)

ea(f)::; M(C + Kmin{E~l, E~P})S2{3(EaVa(P)).

Let <P be a nonnegative real-valued function on X x X and suppose
that there exists a constant /'i, > 0 such that

(16) dP(x, y) ::; /'i,<P(x, y)

for all (x, y) E X o x X. We define

J-ta(<P; p) = (sup { t la~~1n1 L IXm,-y(x; k)I<P(x, ~m,-y(k))
m=O kEYm,-y

})
lip

: A E .11, I E r, x E X o .

Then we have
Va(p) ::; /'i,l/pJ-ta( <P; p)

for all a E D. Therefore, all the above results hold with /'i,-l/PEa

instead of Ea and with J-ta(<P;p) instead of va(p). In particular, in view
of Theorems 2 and 4, we obtain the following result which can be more
convenient for later applications.

Theorem 5. Suppose that Qt is positive and normal and that A is
stochastic. Then we have:

(aJ For all F E BC(X, E) and all a E D)

Ea(F) ::; (C + Kmin{/'i,l/PE~l, /'i,E~P})Wdn(F, S2(EaJ-ta(<P;p))).

(b) For all f E Eo and all a E D)

ea(f) ::; (C + Kmin{/'i,l/PE~l, /'i,E~P})Wdn,'I(f, S2(EaJ-ta(<P;p))).

- 21-



Corollary 5. Let 21 and A be as in Theorem 5.
(aJ For all F E LiPdn((3, M) and all a E D)

Ea(F) ::; M( C + K min{KYPE~l, K;E~P} )f2/J(EaJ-la (<1>; p)).

(bJ For all f E LiPdn,'I((3, M) and all a E D)

eo (1) ::; M( C + K min {K;I/PE~I, K;E;/}) f2/J (EaJ-la( <1>; p)).

4. Summation process of Bernstein type operators

Let X be a convex subset of a metric linear space Z with the trans­
lation invariant metric function d, i.e.,

d(x,y) = d(x+z,y+z)

for all x,y,z E Z and with d(·,O) being starshaped, i.e.,

d((3x, 0) ::; f3d(x, 0)

for all x E Z and all f3 E [0,1]. Then, in view of [14, Lemma 1 (b)] (cf.
[15, Lemma 2.4 (b)], [10, Lemma 3 (ii)]), all the results obtained in the
preceding section hold with C = K = 1. Here we restrict ourselves to
the following situation:

Let 1 ::; q ::; 00 be fixed and let X be a convex subset of the
r-dimensional Euclidean space jRr with the usual metric

(l::;q<oo)

(q=oo),

where x = (Xl, X2, ... , xr), y = (YI' Y2, ... ,Yr) E jRr. For i = 1,2, ... ,r,
Pi denotes the ith coordinate function defined by Pi (x) = Xi for all
X = (Xl, X2, ... ,xr) E jRr. Then we have

r

(17) (d(q)(x,y))P::; c(p,q,r)L:lpi(X)-Pi(Y)!P
i=l

where

(X,y E jRr, P > 0),

{

T P/ q

c(p, q, r) = ~

(1 ::; q < oo,q ~ p)
(1::; q < oo,q =p)

(q=oo).
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Therefore, (16) holds with
r

(18) /'\, = e(p,q,r), <J>(x,y) = L Ipi(X) - Pi(y)IP.
i=l

Let

X = [O,oor:= {x = (Xl,X2,'" ,Xr) E IRr
: Xi?: 0, i = 1,2, ... ,r}

be the region of the first hyperquadrant and let

nm,i: r -----t N, bm,i: r -----t (0, (0) (m E No, i = 1,2, ... ,r),

where N denotes the set of all positive integers.
Let Xo be a subset of Kr , where

Kr := {x = (Xl,X2,'" ,xr) EX: 0::; Xi::; 1, i = 1,2, ... ,r}

is the unit r-cube and

I m;y := {k = (k1, k2, ... , kr) E N~ : 0 ::; ki ::; nm,ky)' 1 ::; i ::; r}

(m E No, "y E r).
Then we define the corresponding interpolation type operators (2) and
(10) by

(19) Bm''Y(F)(x) = L IT (nm~("'())X~i(1 - xitrn,ib)-ki
kEITn,,,,! i= 1 t

X F(bm,l ("'()k1, bm,2("'()k2, ... , bm,r("'()kr)

(m E No, "y E r, F E BC(X, E), x E X)

and

(20) Crn''Y(x)(J) = L IT (nm~("Y))X~i(1 - XitTn,ib)-ki
kEIrn,,,,! i=l t

X T(bm,l ("'()k1, brn ,2("'()k2, ... ,brn,r("'()kr)(J)

(m E No, "y E r, f E Eo, x EX),

respectively (d. [12]). These are called the Bernstein type operators
associated with the unit r-cube Kr .

Now, we assume that A is stochastic. Let {Ea}aED be a net of
positive real numbers and we define

. {Ve(q, r) e(q, r)}
ea (q, r) = 1 + mm , --2- ,

Ea Ea
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where

{

r 2/ q

c(q,r) = 1

We take

(21) Km,'Y(F) = Bm,'Y(F)

and

(1 ~ q < 00, q f 2)
(q = 2,00).

(Tn E No, , E F, FE BC(X, E))

(22) Lm,'Y(·)(J) = Cm,'Y(·)(J) (Tn E No, , E F, f E Eo)·

Theorem 6. (a) For all F E BC(X, E) and all ex E D)

(23) Eo(F) ~ co(q, r)wd(q)n(F, f?(Eo(o))'

(b) For all f E Eo and all ex E D)

(24) eo(J) ~ co(q, r)wd(q)n,T(J, f?(Eo(o)).

Here

{

r ' (X) 1/2
(0 = (sup ~~oa~~~(m,ib,x):A E 11" E F,x E Xo})

and

(m,ib, x) = (nm,ib)bm,ib) - 1)2p;(x) + nm,ib)b~,ib)(Pi(x) - p;(x)).

(c) If

(25) nm,ib)bm,ib) = 1 (Tn E No, i = 1,2, ... ,r)

for all, E F) then (23) and (24) hold with

( {

r (X) aP.l })1/2
(0 = sup ~(Pi(X) - P;(.T)) ~o nm~i'h) : A E 11, I' E F, x E Xo .

Proof We define

Xm,'Y(X; k) = IT (nmk,:(I'))X~j(l - Xjtm,jbl-kj (.T E X, k E Jm,'Y)
j=1 J

and

Then 2t is positive and normal. Furthermore, we have

L Xm,'Y(x; k)lpi(X) - Pi(~m,'Y(k))12 = (m,ib, x)
kElm,-y

- 24-
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for all m E No" E r and all x E Xo. Therefore, in view of (17) and
(18), the desired result follows from Theorem 5.

Corollary 6. (a) For all F E LiPd(q)nU3, M) and all a E D J

Ea(F):::; Mca(q,r)f2 f3 (Ea(a).

(b) For all f E LiPd(q)n,T((3, M) and all a E D,

ea(J) :::; Mca(q, r)f2f3 (Ea(a).

We assume that (25) holds for all , E r. Then we can reduce (19)
and (20) to

nm,l(-Y) nm,2(-Y) nm,r(-Y) k
1

k
r

(26) Bm,-y(F)(x) = k~O k~O ... k~O F(nm,lb)"" 'nm,rb))

x IT (nm'ib))X7i (1 - Xitm,i(-y)-ki
i=l kt

(m E No, , E r, FE C(lIr , E), x E lIr)

and
nm,l(-Y) nm,2(-Y) nm,r(-Y) k

1
k
r

Cm,-y(x)(J) = k~O k~O ... k~O T(nm,lb)"" 'nm,rb))U)

x IT (nm'ib))X7i (1 - Xi)nm,i(-y)-ki
i=l kt

(m E No, , E r, f E Eo, x E lIr ),

respectively (cf. [12], [14]).
Let {nm}mENo be a strictly monotone increasing sequence of positive

integers and let v : r -----t [0,00). We define

nm.ib) = nm + [vb)] + i (m E No, , E r, i = 1,2, ... ,r)

and
1

bm i b) = (m E No, , E r, i = 1, 2, . .. , r),
, nm+[vb)]+i

where [vb)] denotes the largest integer not exceeding vb). Then, in
view of Theorem 6 (c), for all F E C(lIr, E), f E Eo and all a E D,
(23) and (24) hold with

( {

TOO a(.),)

(0 = sup l)Pi(X) - p;(x)) L + tr)] + .
i=l m=O nm v, 'L
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: AE 11, 'Y E r, x E X 0 } ) 1/2

::s (SUP{iJPi(X) - p;(X)) f a~~1n.: A E 11, x E X O})1/2.
i=l m=O nm + 2

Let {Vm,dmENo' i = 1,2, ... ,r, be strictly monotone increasing se­
quences of positive integers. We define

1
nm,ib) = Vm,i, bm,ib) = - (m E No, 'Y E r, i = 1,2, ... ,r).

Vm,i

Then (26) reduces to the r-dimensional Bernstein polynomial oper­
ators on C(TIn E) for E = lR ([6], cf. [2]' [3]), and for all F E

C(TIr , E), f E Eo and all ex E D, (23) and (24) hold with

(0 = (SUP{~(Pi(X) - p;(x)) %;0 ::: ·A E A, x E Xo}r
Next, let X o be a subset of L1r , where

r

L1r := {x = (Xl,X2,'" ,xr ) E lRr
: Xi ~ 0,1::S i::S r, LXi::S I}

i=l

is the standard r-simplex. Let

nm : r ---t N, bm,i: r ---t (0,00)

and

(m E No, i = 1,2, ... ,r)

Jm,-y := {k = (k1 , k2, ... , kr) E N~ : k1 + k2 + ... + kr ::s nmb)}

(m E No, 'Y E r).
Now we define the corresponding interpolation type operators (2) and
(10) by

(27) Bm,-y(F)(x) = L (nm~'Y)) IT X7i (1- tXjfrnb)-L:;=lk
j

kEJrn,') z=l J=l

X F(bm,lb)k1 , bm,2b)k2, ... ,bm,rb)kr)

(m E No, 'Y E r, F E BC(X, E), x E X)

and

(28) Cm,,(x)(f) = kE~" (n",~'Y))Dx;' (1 - t Xjr-hl
- I:;_, k,

x T(bm,l b)k1 , bm,2b)k2, ... ,bm,rb)kr)(I)
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(rn E No, , E r, f E Eo, x EX),

where

respectively (d. [12]). These are called the Bernstein type operators
associated with the standard r-simplex L1r . Let Km ,,,! and Lm ,,,! be as
in (21) with (27) and (22) with (28), respectively. Then the similar
argument as in the proof of Theorem 6 yields the following result.

Theorem 7. (a) For all F E BC(X, E) and all 0: E D,

(29)

(b) For all f E Eo and all 0: E D,

(30)

Here

( {

roo }) 1/2
On = SUp ~~oa~~:nOm,i(r,X):'\E A" E r,X E X o

and

Om,i(r, x) = (nm(r)bm,i(r) - 1)2p;(x) + nm(r)b~,i(r)(Pi(X) - p;(x)).

(c) If

(31) nm(r)bm,i(r) = 1 (rn E No, i = 1,2, ... ,r)

for all, E r, then (29) and (30) hold with

( {

roo aU') }) 1/2
On = SUp ~(Pi(X) - p;(X)) ~o n:(~) :,\ E A" E r,X E X o .

Corollary 7. (a) For all F E LiPd(q)n(f3, M) and all 0: E D,

En(F) ::; Mcn(q, r)f?f3(EnOn).

(b) For all f E LiPd(q) n,'I ((3, M) and all 0: ED,

en(J) ::; Mcn(q, r)f?f3(EnOn).
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We suppose that (31) holds for alI, E r. Then we can reduce (27)
and (28) to

(32) Bm,,(F)(x) = L (n~I)) IT X7i (1- tXjfmh)-l:;=lk j

kEJm,-r t=l J=l

(
k1 k2 kr )

x F nm({) , nm({) , ... , nm({)

(m E No, IE r, FE C(L1r , E), x E L1r )

and

Cm,,(X)(J) = L (nm~I)) IT X7i (1- tXjfmh)-l:;=lkj

kEJm,-r t=l J=l

(
k1 k2 kr ) .

x T -(),-(), ... ,-() (j)nml nml nml
(m E No, I E r, f E Eo, x E L1r ),

respectively (d. [12]; [14]).
Let {um }mENo be a strictly monotone increasing sequence of posi tive

integers and let v : r -----> [0,(0). We define

(m E No, IE r)

(m E No, I E r, i = 1, 2, . . . , r).

and
1

bm,i({) = U
m

+ [v({)] (m E No, IE r, i = 1,2, ... , r).

Then, in view of Theorem 7 (c), for all FE C(L1r , E), f E Eo and all
a E D, (29) and (30) hold with

( {

roo a(.X) }) 1/2

Do. = sup &;(Pi(X)-pnT )) ];0 1
1m

+o.r:({)] : A E /1" E r,x E X o .

Also, we define

1
nm({) = Um, bm,i({) = -

Um

Then (32) reduces to the r-dimensional Bernstein polynomial opera­
tors on C(L1r , E) for E = lR (d. [6]), and for all F E C(L1r , E), f E Eo
and all a E D, (29) and (30) hold with

( {

roo alA) 1/2

60. = sup &;(Pi(X) - p;(x)) ];0 l~:n :A E /l,x E X o}) .
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5. Summation process of Hermite-Fejer type operators

Let X = jRT and let Xo be a subset of X T := [-1, It. Let

nm,i: r -----+ N, bm i : r -----+ jR, (m E No, i = 1,2, ... ,T)

and

Nm" := {k = (k1 , k2 , ... ,kT) E NT : 1 :::; k.i :::; nm,ky) , 1 :::; i :::; T}.

Let Qn(t) = cos(n arccos t) be the Chebyshev polynomial of degree n
and let tn,j, j = 1,2, ... ,n, be zeros of Qn(t), i.e.,

(
2j - 1 )tn,j = cos 2n 7r (j = 1, 2, . . . ,n).

Then we define the corresponding interpolation type operators (2) and
(10) by

(33) Hm,,(F)(x) = L F(bm,I("()tnm,lh),kI"'" bm,T("()tnm,rh),kJ
kENm,"'f

and
(34)

Gm,,(.T)(J) = L T(bm,1 ("()tnm,lh),kI'''' ,bm,T("()tnm,rh),kJU)
kENm,"'f

ITT ( . ){ Qnm,ih) (Xi) }2
X 1 - Xitnm,ih),ki

i=l nm,kY)(·Ti - tnm,ih),kJ

(m EN, "y E r, f E Eo, X EX),

respectively (d. [12]). These are called the Hermite-Fejer type oper­
ators. We take

Km,,(F) = Hm,,(F) (m E No, "y E r, FE BC(X, E)),

Lm,,(·)(f) = Gm,,(·)(f) (m E No, "y E r, f E Eo)

and suppose that A is stochastic. Then the similar argument as in
the proof of Theorem 6 establishes the following result.
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Theorem 8. (a) For all F E BC(X, E) and all ex E D)

(35) Ea(F) S ca(q,r)wd(q)n(F, D(EaT/a)).

(b) For all f E Eo and all ex E D)

(36) ea(f) S ca(q, r)wd(q)n,'I(f, D(EaT/a)).

Here

T/a = (suP{~~o a~~1nT/m,ky,x): A E A,,, E r,x E X o}Y/
2,

nrn,ih')
+ (b~,ih) - 1) L tnrn,ih'),ki2Xnrn ,i(-r) (Xi; ki)

ki=l
and

( . k ) _ ( ){ Qnrn,i(-r) (Xi) }2
Xnrn,i(-r) Xi, i-I - Xitnrn,i(-r),ki ( )( ) .

nm i 'V Xi - tn .(-v) k
1 I mIt " t

(C) If

(37) bm,ih) = 1 (m E No, i = 1,2, ... ,r)

for all" E r, then (35) and (36) hold with

_ ( {~~ (A) (Qnrn,i(-r) 0 Pi)2(x) . \ A r X })1/2
T/a - sup tS-r~oaa,m nm,ih) . /\ E ,,, E ,X Eo·

Corollary 8. (a) For all F E LiPd(q)n(f3, M) and all ex E D)

Ea(F) S Mca(q, r)D!3(EaT/a).

(b) For all f E LiPd(q)n,'I((3, M) and all ex E D)

ea(f) S Mca(q, r)D!3(EaT/a).

We assume that (37) holds for all " E r. Then we can reduce to
(33) and (34) to

nrn,l(-r) nrn ,2(-r) nrn,r(-r) T

(38) Hm,-y(F)(x) = L L'" L IT Xnrn,i(-r) (Xi; ki )
kl=l k2=1 kr=l i=l
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(m E No, r E r, FE C(Xr , E), x E X r )

and
nm,lb) nm,2b) nm,rb) r

Gm,'Y(x)(f) = L L'" L IT Xnm,ib) (Xi; ki )
k1=1 k2=1 kr=l i=l

X T(tnm,lb),kl' t nm,2b),k2' ... ,tnm,rb),kJ(f)

(m E No, I E r, f E Eo, x E X r),
respectively (d. [12], [14]).

Let {l/m,dmENa, i = 1,2, ... ,r, be strictly monotone increasing se­
quences of positive integers and let v : r -+ [0,(0). We define

nm.,i(r) = l/m,i + [v(r)], bm,i(r) = 1 (m E No, IE r, i = 1,2, ... ,r)

Then, in view of Theorem 8 (c), for all FE C(Xr , E), f E Eo and all
ex E D, (35) and (36) hold with

_ ( {~~ (,\) (Qvm,i+[vb)] 0Pi)2(x) . \ A r X })1/2
'r/o. - sup L L ao.,m . [()] . /\ E " E ,x Eo·

i=l m=O l/m,z + V I

Also, we define

nm,i(r) = l/m,i, bm,i(r) = 1 (m E No, I E r, i = 1,2, ... ,r).

Then (38) generalizes the classical Hermite-Fejer interpolating polyno­
mial operators on C(X1 , IR) (cf. [4], [7]), and for all F E C(Xr , E), f E
Eo and all ex E D, (35) and (36) hold with

( {

roo (Q. 0p)2(X) })1/2
'r/o. = sup ~ fo a~~~ vm"l/m,i z : AE A, x E X o .
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