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THE DEGREE OF INTERPOLATION TYPE
APPROXIMATION PROCESSES FOR

VECTOR-VALUED FUNCTIONS

TOSHIHIKO NISHISHlRAHO

ABSTRACT. We consider the convergence of equi-uniform approx
imation processes of interpolation type operators for vector-valued
functions and give quantitative estimates of the rate of its con
vergence in terms of the modulus of continuity of functions to be
approximated. Furthermore, applications are presented by Bern
stein type operators and Hermite-Fejér type operators.

1. Introduction

Let (E, Il . Il) be a normed linear space and let (X, d) be a metric
space. Let B(X, E) denote the normed linear space of all E-valued
bounded functions on X with the supremum norm. Also, we denote by
C(X, E) the linear space consisting of aU E-valued continuous func
tions on X and set BC(X, E) = B(X, E) n C(X, E). Let X o be a
subset of X. Let.R = {Ka,À : 0:' E D, À E A} be a family of operators
of BC(X, E) into B(Xo,E), where D is a direeted set and A is an
index set. Then.R is caUed an equi-uniform approximation process on
BC(X, E) if for aU FE BC(X, E),

li;n IIKa,À(F)(x) - F(x)11 = 0 uniformly in À E A, x E Xo (1)

([8]). We here consider a family .R of interpolation type operators on
BC(X, E) defined as follows:
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Let {Ya ,>. : a E D, À E il} be a family of finite sets. Let {ça,>. : a E

D, À E il} be a family of mappings of Ya,>. into X and let {Xa,>.(-; k) :
a E D, À E il, k E Ya ,>.} be a family of real-valued functions on X
which satisfy

Xa,>.(X;·) ~ 0, l: Xa,>.(X; k) = 1
kEYa,À

(x E X o).

Then we define an interpolation type operator by the form

Ka,>.(F)(x) = l: Xa,>.(X; k)F(ça,>.(k))
kEYa,À

(2)

(F E BC(X, E), x EX).

The purpose of this paper is to consider the convergence behavior of
(1), where X o is assumed to be compact and give quantitative estimate
of the rate of its convergence in terms of the modulus of continuity of
F under certain appropriate conditions.

2. A convergence theorem

Let X o be a compact subset of X. Here we suppose that there exists
an open subset OXo of X and a compact subset ZXo of X such that

(3)

Note that if X is locally compact, then (3) holds. In particular, if
X is a locally closed subset of the r-dimensional Euclidean space RT,
then (3) holds.

Let <I> be a nonnegative real-valued function on X ox X which satisfies

inf{<I>(x,y) : (x,y) E X o x X,d(x,y) ~ <5} > a (4)

for every <5 > O. We set

Ta,>' (X; <I» = l: Xa,>.(X; k)<I>(x, ça,>.(k))
kEYa,À

which is called the <I>-moment of Xa,À at x.

(a E D, À E il, xE X o),

Theorem 1. If

li;n Ta,>. (X; <I» = a uniformly in À E il, xE X o, (5)

then.ft is an equi-uniform approximation process on BC(X, E).
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Prao! This follows from [8, Corollary 1] (cf. [9, Theorem 1]), which
remains true without the completeness of E for interpolation type
operators.

In particular, if the function if> is given by the following special form,
then we are able to establish Korovkin type results for interpolation
type operators (cf. [8]). For an excellent source for references and a
systematic treatment of Korovkin type approximation theory, we refer
to the book of Altomare and Campiti [1] (cf. [3]): Let

m

and

if>(x, y) = Lai(X)gi(Y) ~ 0
i=l

((x,y) E X o x X)

if>(x, x) = 0 (x E X o),

where ai, 1 ::; i ::;: m, are real-valued bounded functions on X o and
gi,l ::; i ::; m, are real-valued continuous functions on X. In this case,
we have

To,>.(X; if» = f= ai(x) ( L Xo,>.(x; k)gi(Ço,>.(k)) - 9i(X)).
~=1 kEY""À

Also, if the function if> is defined by
r

if>(x, y) = L(hi(x) - hi(y))S ((x, y) E X o x X),
i=l

where s is an even positive integer and hi, 1 ::; i ::; r, are real-valued
bounded continuous functions on X, then we have

To,>.(X;if» = tt(-l)S-j(~)hrj(X)
i=l j=O J

x ( L Xo,>.(x;k)h{(ço,>.(k)) - h{(x))
kEY""À

r s-l ( )
= L L(-lr-j ~ hrj(x)

i=l j=O J

x ( L Xo,>.(x; k)h{(ço,>.(k)) - h{(x))
kEY""À

r

+ L Xo,>.(x; k) L h:(ço,>.(k))
kEY""À i=l
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Also, if

tJ>(x, y) = <p(d(x, y)) ((x, y) E X o x X),

where <p is a strictly increasing function on [0,(0) with <p(0) = 0, then
Condition (4) is satisfied. In particular, if

then

q > 0, <p(t) = tq (t ~ 0),

Ta,À(X; dq) = L Xa,À(x; k)dq(x, ça,À(k))
kEY",.>.

is called the qth moment of Xa,À at x. Using this quantity, it follows
from Theorem 1 that if for sorne q > 0,

lim Ta À(X; dq) = 0
a '

uniformly in À E A, x E X o,

then jt is an approximation process on BC(X, E).

3. Estimates of the rate of convergence

Let FE B(X, E) and let b ~ O. Then we define

wd(F,b) = sup{IIF(x) - F(y)ll: x,y E X,d(x,y):'S b},

which is called the modulus of continuity of F. Obviously, wd(F,') is
a monotone increasing function on [0,(0) and

wd(F,b):'S 2sup{IIF(x)ll: x E X} (b ~ 0).

Note that if X is bounded, then

wd(F, b) = wd(F, b(X))

for all b ~ b(X), where b(X) denotes the diameter of X, and F is
uniformly continuous on X if and only if

For j3 > 0, a function F E B(X, E) is said to satisfy a Lipschitz
condition of order j3 with constant M > 0, or to belong to the class
Lipd(j3, M) if
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for aIl 8 ~ O. Also, the class Lipd fJ consists of aIl F E Lipd(fJ, M) for
some constant M> O. That is, we set

Lipd fJ = U Lipd(fJ, M),
M>O

which is caIled the Lipschitz class of order fJ. It is easy to see that

Lipd, C Lipd fJ (0 < fJ :::; ,).

We give here quantitative versions of Theorem 1, in which we esti
mate the rate of convergence in terms of the modulus of continuity of
functions to be approximated. For this it is always supposed that the
foIlowing conditions (6) and (7) are satisfied:

There exist constants C ~ 1 and K > 0 such that

wd(F, ç8) :::; (C + KÇ)Wd(F, 8)

for aIl FE B(X, E) and aIl 8, ç ~ O.
There exist constants q ~ 1 and K, > 0 such that

dq(x, y) :::; K,l[>(x, y)

(6)

(7)

for aIl (x, y) E Xo x X.
Note that Condition (7) implies (4).
d is said to be convex if d(x, y) = a + b, a, b > 0, then there exists

a point z E X such that d(x, z) = a and d(z, y) = b. Let (V, p) be a
metric linear space. If p(x, y) = p(x+z, y+z) for aIl x, y, z E V, then p
is caIled a translation invariant metric function. A real-valued function
<p on a linear space S is said to be starshaped if <p(fJx) :::; fJ<p( x) for
aIl x E S and aIl fJ E [0,1].

The foIlowing lemma foIlows from [10, Lemma 2.4], which generalizes
[5, Lemma 3], and it gives sufficient condition such that (6) holds with
C = K = 1, which can be more convenient for later applications:

Lemma 1. (a) If d is convex) then (6) holds with C = K = 1.
(b) If X is a convex subset of a metric linear space with the transla

tion invariant metric function d and if d(·, 0) is starshaped) then (6)
holds with C = K = 1. In pariicular) if X is a convex subset of a
normed linear space) then (6) holds with C = K = 1.

Let [2 be a strictly increasing continuous, subadditive function on
[0,00) with [2(0) = O. Then we define

dn(x, y) = [2(d(x, y)) ((x, y) E X x X),

for which the foIlowing lemma holds (cf. [6, Lemma 3]):
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(t 2: 0).

Lemma 2. (X, da) is a metric space and da is uniformly equivalent
ta d. Furthermore, we have

wd(F, 8) = wdn(F, [2(8))

for aU F E B(X, E) and aU 8 2: O.

A typical example of the above function [2 is given as follows:
Let a > 0, b 2: 0,0 < (3 S; 1 and let w be a nonnegative, increas

ing continuous function on [0, (0) such that the function w( t) / tf3 is
decreasing on (0, 00). Then we define

t f3

[2(t) = a + bw(t)

For any 0:' E D, FE BC(X, E) we define

Ea(F) = sup{IIKa).(F)(x) - F(x)11 : À E A, xE Xo}.

Note that Jt is an equi-uniform approximation process on BC(X, E)
if and only if

lim Ea(F) = 0
a

for every F E BC(X, E). Now, we recast Theorem 1 in the following
quantitative form.

Theorem 2. Let {Ea}aED be a net of positive real numbers. Then for
aU F E BC(X, E) and aU 0:' E D,

Ea(F) S; (C + K min{ ,,;llqE~l, ";E~q} )Wdn (F, [2(EaTa(<P; q))), (8)

where

Prao! This follows from Lemma 2 and [9,Theorem 2] (cf. [10,
Theorem 3.2]), which remains true without of the completeness of E
for interpolation type operators and for D instead of No = N U {O},
where N denotes the set of aIl positive integers.

Corollary 1. For aU F E LiPdn({3, M) and aU 0:' E D,

Ea(F) S; M( C + K min{ ,,;llqE~l, ";E~q} ) [2f3(EaTa(<P; q)).
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In the rest of this section, we restrict the interpolation type operators
Ka). defined by (2) to the subclass of BC(X, E) as follows:

Let Eo be a subset of E and let 'I = {T(x) : x E X} be a family
of mappings of Eo into E such that for each f E Eo, the mapping
x f---t T(x) (J) is strongly continuous and bounded on X. Let La,>..
denote the restriction of Ka,>.. to the set {T(·)(J) : f E Eo}, i.e.,

La,>..(x)(J) = L Xa,>..(X; k)T(ça,>..(k))(J)
kEYQ,À

(J E Eo)· (9)

Then the family ~ = {La,>..(x) : 0: E D,).. E A, x E X} is called an
equi-uniform 'I- approximation process on Eo if for every f E Eo,

li;n [[La,>..(x)(J) -T(x)(J)[1 = 0 uniformly in ).. E A, x E X o. (10)

By Theorem 1, if (5) holds, then ~ is an equi-uniform 'I-approximation
process on Eo.

Concerning the rate of convergence behavior (10) for the family ~,

we define

Wd,'I(J,6) = sup{IIT(x)(J) - T(y)(J)II: x,y E X,d(x,y):S; 6}

(J E Eo, 6 ~ 0),

which is called the modulus of continuity of f associated with T, and

ea(J) = sup{IILa,>..(x)(J) - T(x)(J)11 :).. E A,x E Xo}.

Note that ~ is an equi-uniform 'I-approximation process on Eo if and
only if

limea(J) = 0
a

for every f E Eo.
For j3 > 0, an element f E Eo is said to satisfy a Lipschitz condition

of order j3 with constant M > 0 with respect to the family T, or to
belong to the class LiPd,'I(j3, M) if

wd,'I(J,6) :s; M 6(3

for all 6 ~ O. Also, we set

Lipd,'I j3 = U Lipd,'I(j3, M),
M>O

which is called the Lipschitz class of order j3 with respect to the family
'I. It is easy to see that

Lipd,'I 'Y C LiPd,'I j3
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Theorem 3. Let {EojaED be a net of positive real numbers. Then for
all f E"Bo and all a E D)

ea(f) :::; (C + Kmin{~I/qE~I, M~q} )Wdn,'I(f, [2(EaTa(<P; q))).

Proof Since

Wdn,'I(f, <5) = wdn(T(·)(f), <5), ea(f) = Ea(T(·)(f))

(f E Eo, <5 ~ 0, a E D),

we take F(·) = T(·)(f) in (8).

Corollary 2. For all f E LiPdn,'I({3, M) and all a E D)

ea(f) :::; M(C + K min{~I/qE~l, ~E~q} )[213(Ea Ta (<P; q)).

4. Bernstein type operators

Let 1 :::; P :::; 00 be fixed and let X be a locally closed convex subset
of the r-dimensional Euclidean space ]RT with the metric

(1 :::; P < 00)

(p = 00),

where x = (XI,XZ, ... ,xT),Y = (YI,YZ, ... ,YT) E ]RT. Therefore, by
Lemma 1 (b), Condition (6) holds with C = K = 1. For i =
1,2, ... ,r, Pi denotes the ith coordinate function on ]RT defined by
Pi(X) = Xi for all x = (Xl, Xz, ... ,xT) E ]RT. Then vie have

T

(d(p)(x, y))q :::; c(p, q, r) L IPi(X) - Pi(YW
i=l

where

(X,Y E ]RT, q > 0),

{

rq/ p

c(p, q, r) = ~

Therefore, (7) holds with

(1 :::; P < 00, P -# q)
(1 :::; P < 00, P = q)
(p = 00).

T

~ = c(p, q, r), <P(x, y) = L(Pi(X) - Pi(y))q (q ~ 1),
i=l
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(a E D, i = 1,2, ... , r)

and so aIl the estimates obtained in the previous section hold for

Ta(<P; q) = (sup{Ta,À(X; d(q)q) : >. E A, x E X o})l/q (q 2: 1).

Let

X = [O,oot = {x = (XI,X2, ... ,Xr) E IRr
: Xi 2: O,i = 1,2, ... ,r}

be the region of the first hyperquadrant and let X o be a closed subset
of Ir, where

Ir = {x = (Xl, X2, ... , Xr) E IRr : °::; Xi ::; 1, i = 1,2, ... , r}

is the unit r-cube. Let

ma,i : A -t N, aa,i: A -t (0,00)

and let

Ya,À = {k = (k l ,k2, ... ,kr) E N~: 0::; ki ::; ma,i(>'),i = 1,2, ... ,r}.

We define

Xa,À(X; k) = tr (ma~(>'))X~i(1 - Xdm""i(À)-ki (x E X, k E Ya,À)
t=l t

and

Then the corresponding interpolation type operators Ka,À defined by
(2) and La,À defined by (9) are called the Bernstein type operators.
These generalize the r-dimensional Bernstein operators, which are de
fined as follows (cf. [4], [8]):

Let {Vn,dnEN, i = 1,2, ... , r, be strictly monotone increasing se
quences of positive integers. Then we define

and
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Now, we have

where

(a,i(À, x) = (aa,i(À)ma,i(À) - I)Zp;(x)

+ aa,i(À)Zma,i(À)Pi(x)(1 - Pi(X)).

Therefore, Theorems 2 and 3 establish the following result for the
Bernstein type operators.

Theorem 4. (a) For aU F E BC(X, E) and aU a E D J

Ea(F) :::; ra(P, r)wd{p)n(F, D(Ea(a)).

(b) For aU f E Eo and aU a E D J

ea(J) :::; ra(P, r)wd{p)n,'I(J, D(Ea(a)).

Here

. {vc(p,r) c(p,r)}
ra(p,r) = 1 + mm , -Z-

Ea Ea

and

(11)

(12)

{
r2/ p

c(p,r) = 1

In particularJ if

(1 :::; p < 00, p =1- 2)
(p = 2, (0).

ma,i(À)aa,i(À) = 1

for aU a E D, À E A and for i = 1,2, ... ,rJ then (11) and (12) hold
with

( {
rI }) I/Z

(a = sup ~ ma,i(À) (Pi(X) - p;(x)) : À E A, xE Xo .
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We define

Ilcils = sup{IIC(x)11 : x E S} (C E B(X, E), S ç X).

Let {En}nEN be a sequence of positive integers. Then in view of (11)
and (12), we have the following estimates for the Bernstein operators:

IIBn(F) - Fllxo :::; 'Yn(P, r)wd(p)n(F, n(EnOn)) (13)

(F E G(lir , E));

IIGn(·) (f) - T(·) (f) Ilxo :::; 'Yn(P, r )Wd(p)n,'r(f, n(En, On)) (14)

(f E Eo)·

Here

. {Jc(p,r) c(p,r)}
'Yn(P, r) = 1 + mm , -----=---:-,-

En E;
and

( {
rI }) 1/2

On = max L ~(Pi(X) - p;(x)) : x E X o .
t=1 n,t

Therefore, (13) and (14) yield the following estimates:

IIBn(F) - Fllnr :::; On(P, r)wd(p)n (F, n(En ~ u:,J) (15)

(F E G(lir,E));

IIGn(-)(f) - T(·)(f)llnr :::; On(p,r)Wd(p)n,T(f, n(En

(f E Eo).

Here

t~)) (16)
i=1 n,t

. {JC(P' r) c(p, r)}
On(p,r) = 1 +mm '2'

2En 4En

Let {1i(t) : a :::; t :::; 1, i = 1,2, ... ,r} be a family of strongly
continuous mappings of Eo into itself such that for every t, U E [0, 1],
t1i(u) commutes with (1 - t)I, where 1 is the identity operator on E
and 1i(v)n = 1i(nv) whenever v E [0,1], nE No and nv E [0,1]. If

r

T(x) = II 1i(Xi)
i=1
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for aU x = (Xl, X2, . .. ,Xr) E ][r, then we have

Gn(X)(j) = g((I- xi)1 + X/liC/~) )Vn'i(j)

= il (1 + Xi(1i(f) - 1) )Vn'i (j).
i=l n,t

Therefore, the inequality (16) estimates the rate of convergence in [7,
Theorem 5] for l' = 1, which improve the estimate in [2, Proposition
1.2.9].

Let {nO}OED be a net of positive integers. If

mo,i(À) = no + [À] + i

and

(a E D,À E J1 ç [O,oo),i = 1,2, ... ,1')

(a E D,À E J1 ç [O,oo),i = 1,2, ... ,1'),

where [À] denotes the Iargest integer not exceeding À, then we have

Eo(F) ::; B(p, 1')wd(p)n (F, n( Jn: + 1)) (F E BG(X, E))

and

where

fl( ) _ 1 . {J1'c(p, 1') 1'c(p, 1')}
u p, l' - + mm 2 ' 4 .

AIso, for the Bernstein operators, (15) and (16) establish

IIBn(F) - Fllnr ::; B(p, 1')wd(p)n (F, n(~))

and

IIGn(-)(j) - T(· )(j) Ilnr ::; B(p, 1')wd(p)n,'I (l, n(~) )
where

(j E Eo),

Vn = min{vn,i : i = 1,2, ... ,1'}.

We can consider the statements analogous to the above results for
the foUowing setting:
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(Œ E D,i = 1,2, ... ,r)

Let Xo be a closed subset of d r , where
r

d r = {x = (Xl, X2, ... ,Xr ) E }Rr : Xi 2: 0, i = 1,2, ... ,r, LXi::; 1}
i==l

is the standard r-simplex. Let

mo : 11 ---+ N, ao,i: 11 ---+ (0,00)

and let

Yo,>. = {k = (kl , k2, ... ,kr ) E N~ : kl + k2 + ... + kr ::; mo(À)}.

We define

Xa,À(x;k) = (m~À)) gX;'(l- tXjro(À)~L:;_,k,

(x E X, k E Yo ,>.) ,

where

and

Then we have the following result:

Theorem 5. (a) For ail F E BC(X, E) and ail Œ E D,

Ea(F) ::; /o(p, r)wd(p}n (F, D(EoDo)). (17)

(b) For ail f E Eo and ail Œ E D,

eo(f) ::; /a(P, r)Wd(p} n,'I (f, D(EaDa)). (18)

Here

and
Do,i(À, x) = (ao,i(À)ma(À) - 1)2p;(x)

+ ao,i(À)2ma(À)pi(x)(1 - Pi(X)),
In pariticular, if

ma(À)aa,i(À) = 1

for ail Œ E D, À E 11 and for i = 1,2, ... ,r, then (17) and (18) yield

Ea(F) ::; T/xo(p, r)wd(p}n(F, D(f-la))
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and

whe1'e

and

ea(f) ::; TJxo(p, 1')Wd(p)g,'I(f, J?(f-La)) ,

f-La = /sup{ ma

1
(À) : À E A}

TJxo (p, T)

= 1 + min{ Jc(p, 1'11~(Pi - p;)II~o2, c(p, 1')II~(Pi - p;)llxJ·
If we define

(a E D,À E A ç [0,00))

and

(a E D,À E A ç [O,oo),i = 1,2, ... ,1'),

j = 1,2, ... ,no

(aED, i=1,2, ... ,1')

then the following estimates hold:

Ea(F) ::; O(p, 1')wd(p)g (F, J?(~)) (F E BC(X, E));

ea(f) ::; O(p, 1')wd(p)g,'I(f, n(~)) (f E Eo).

5. Hermite-Fejér type operators

Let (IRr,d(p»),l ::; p::; 00, be as in Section 4. Let X = [-l,Ir
and let X o be a closed subset of X. Let Qn(t) = cos(n arccos t) be
the Chebyshev polynomial of degree n, and let tn,j, j = 1,2, ... ,n be
zeros of Qn(t), i.e.,

(
2j - 1 )

tn,j = cos 2n 7f ,

Let

ma,i : A -t N, aa,i: A -t [-1,1]

and let

Ya,À = {k = (k I , k2 , •.. ,kr) E Nr
: 1 ::; ki ::; ma,i(À), i = 1,2, ... ,1'}.
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We define

"
Xa,À('7.:; k) = II Xma,i(À) (X'i; ki )

i=l

where

(x E x, k E Ya,À),

and

ça,À(k) = (aa,l (À)tma,1(À),k1, ... ,aa,,,(À)tma,r(À),kJ (k E Ya,À)'

Then the corresponding interpolation type operators Ka,À defined by
(2) and La,À defined by (9) are called the Hermite-Fejér type operators.
These generalize the r-dimensional Hermite-Fejér operators, which are
defined as follows (cf. [3], [8]):

Let {Vn,dnEN, i = 1,2, ... ,T, be strictly monotone increasing se
quences of positive integers. Then we define

V n ,l I/n,2 l/n,r

Hn(F)(x) = E E ... E F(tvn,},kll tvn,z,kz"" ,tvn,r,kJ
kl=l kz=l kr=l

and
I/n,1 I/n ,2 Vn,r

Gn(x)(f) = E E ... E T(tvn,},kll tvn,z,kz,' .. ,tvn,r,k,..)(f)
kl=lkz=l kr=l

Now, we have

Tla:= 7a (<1>;2) = (suP{~Tla'i(À'x): À E Â,x E xo}r /2
,

where

- 35-



ma,iP,)
+ (a;,i(>') - 1) L tma,i(À),k/Xma,i()I)(Xi; ki ).

ki=1
Therefore, Theorems 2 and 3 yield the following result for the Hermite
Fejér type operators.

Theorem 6. (a) For ail F E C(X, E) and ail a E D)

Ea(F) :::; ra(P, r)wd(p)f}(F, D(Ea 17a)). (19)

(b) For ail f E Eo and ail a E D)

ea(f) :::; ra(P, r)Wd(p) f},'I (f, D(Ea17a)). (20)

In pariticular) if

aa,i(>') = 1

for ail a E D, >. E A and for i = 1,2, ... ,r) then (19) and (20) hold
wth

( {

r (Qma,i(À) 0Pi)2(x) }) 1/2
17a = sup L(>.) : >. E A, x E Xo .

i=1 ma,t

In view of (19) and (20), we have the following estimates for the
Hermite-Fejér operators:

IIHn(F) - Fllxo :::; rn(P, r)wd(p)f}(F, D(EnTn))

(F E C(X, E));

IIGnO(f) - T(·)(f)llxo :::; rn(p,r)wd(p)f},'I(f, D(EnTn))

(f E Eo).

Here

( {

r (Qvni o Pi)2(X) })1/2
Tn = max L ' :x E X o .

v .i=1 n,t

In particular, the following estimates hold:

IIHn(F) - Fllx :::; rn(P, r)wd(p)f} (F, D(En ~ v~,J)

(F E C(X, E));

IIGn(·)(f) - T(·)(f)llx :::; rn(p,r)wd(Plf},'I(f, D(En ~ v~,J)

(f E Eo).
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