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THE CONVERGENCE OF EQUI-UNIFORM
APPROXIMATION PROCESSES OF INTEGRAL

OPERATORS IN BANACH SPACES

TOSHIHIKO NISHISHIRAHO

ABSTH.ACT. We consider the convergence of equi-uniform approx
imation processes of integral operators in Banach spaces. Applica
tions are presented by various summation processes, interpolation
type operators and convolution type operators, and furthermore
several concrete examples of approximating operators are also pro
vided.

1. Introduction

Let N be the set of aU natural numbers, and put No = Nu {D}.
Let foo denote the Banach space of aU bounded sequences {Sn}nENo of
real numbers with the usual supremum norm. A sequence {Sn} E foo
is said to be almost convergent to S if <.p( {sn}) = S for every Banach
limit <.p on foo ([9]). If {sn} converges to s, then it is almost convergent
to s, but not conversely. Also, {sn} is almost convergent to S if and
only if

1 n+m

lim -- L Sk = S
n-+oo n + 1

k=m

uniformly in m E No

(cf. [9, Theorem 1]).
Let {En} be the sequence of Bernstein operators defined by

En(J)(x) = ta f(~) (~)Xk(l - xt-
k

Received November 30, 2003.

-79-



(J E C[O, 1], x E [0,1], nE N).

Then for all f E C[O,I], {Bn(J)(x)} is almost convergent to f(x)
uniformlyon [0,1] (cf. [7])

Let {an} be the sequence of Fejér operators defined by

1 J'Iran(J)(x) = - Fn(x - t)f(t) dt
27r -'Ir

where

Fn(u) = t (1 - JtL)e ijU (u ElR)
j=-n n + 1

is the nth Fejér kernel. Then for every f E C2'1r' {an (J)(x)} is almost
convergent to f (x) uniformly on the real line lR (cf. [7])

In view of these results, we generally make the following definition:
Let (E, Il . Il) be a Banach space and (X, d) a metric space. Let

B(X, E) denote the Banach space of all E-valued bounded functions
on X with the supremum norm. BC(X, E) stands for the c10sed lin
ear subspace of B(X, E) consisting of all E-valued bounded continuous
functions on X. Also, we denote by C(X, E) the linear space consist
ing of all E-valued continuous functions on X. Let X o be a subset
of X. Let.R = {Ko:,À : a E D, À E A} be a family of operators of
BC(X, E) into B(X, E), where D is a directed set and A is an in
dex set. Then.R is called an equi-uniform approximation process on
BC(X, E if for every FE BC(X, E),

lirn Il Ko:,À (F)(x) - F(x)11 = ° uniformly in À E A, xE Xo (1)

(cf. [12], [13], [14]). We here consider a family of .R of integral opera
tors on B C (X, E) defined as follows (cf. [17]):

Let Y be a separable topological space and let fl be a Borel measure
on Y. Let {';o:,>, : a E D, À E A} be a family of continuous mappings
of Y into X and 2l = {Xo:,>,(x;,) : a E D, À E A, x E X} a family
of functions in L I (y, fl), which denotes the Banach space of aU fl
integrable functions X on y with the norm

IlxiiI = fv Ix(y)1 dfl(Y)·

Then we define integral operators by the form

Ko:,>,(F)(x) = fv Xo:,À(x; y)F(';o:,À(Y)) dfl(Y) (F E BC(X, E)), (2)
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which exists as a Bochner integral.
The purpose of this paper is to consider the convergence behavior

of (1) for the family it of integral operators defined by (2) under cer
tain appropriate conditions. Furthermore, applications are presented
by various summation processes of interpolation type operators and
convolution type operators, and several concrete examples of approx
imating operators are also provided. These treatments will be carried
out by developing our techniques of [17].

2. Convergence theorems

Let X o be a compact subset of X. Here we suppose that there
exists an open subset OXa of X and a compact subset ZXa of X such
that

Xo ç OXa ç ZXo' (3)
under which in [16], we considered the refinement of Korovkin type
approximation processes of positive linear operators.
Remark 1. If X is locaUy compact, then (3) holds. In particular, if
X is a locaUy closed subset of the r-dimensional Euclidean space JRr,
then (3) holds.

Let 2t = {Xa,>.(x;,) : lX E D, À E A, x E X} be a family of functions
in L 1(y, j1). Then 2t is called an equi-uniform approximate kernel if it
satisfies the conditions

limsup(sup{IIXa,>.(x; ·)111: À E A,x E Xo}) < 00, (4)
a

lim rXa >.(x; y) dj1(Y) = 1 uniformly in À E A, x E X o, (5)
a Jy ,

and for any fixed 8 > 0,

lim r IXa,>.(x; y)1 dj1(Y) = 0 uniformly in À E A,x E X o.
a Jd(x,ço.>,(Y))?8

(6)
If for all lX E D, À E A and all x E X o,

Xa,>.(x; y) ~ 0 (j1-a.e. y E Y),

then 2t is said to be positive.
If for aU lX E D,À E A and aU x E Xo,

[Xa,>.(X;y) dj1(Y) = 1,

then 2t is said to be normal.
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Remark 2. If Ql is positive, then (5) already implies (4). Also, if Ql
is positive and normal and if (6) is satisfied for each 0 > 0, then it
becomes an equi-uniform approximate kernel.

Lemma 1. Let lJt be a nonnegative real-valued continuous function on
X 2 := X x X such that lJt(x, x) = 0 for all xE X o and

A := sup{lJt(x, t) : (x, t) E X o x X} < 00. (7)

IfQl satisfies (4) and (6), then

li~ fv IXa,À(x; y)llJt(x, ça,À(Y)) dJ.L(Y) = 0 uniformly in À E A, x E X o·

(8)

Proof Let E > 0 be given. 8ince lJt is uniformly continuous on
ZXo x ZXo' there exists a 00 > 0 such that lJt(x, t) < E for aH (x, t) E
X o x ZXo with d(x, t) < 00. Let 01 = d(Xo, X \ OXo) be the distance
between X o and X \ OXo' which is positive because of (3), and let
o< 0 < min{00, od. Now let tEX and x E X o. If d(x, t) < 0, then
t E ZXo and so lJt(x, t) < E. Therefore, by (7) we have

Aa,À(x) := fv IXa,À(x; y)llJt(x, ça,À(Y)) dJ.L(Y)

= h(X,(,o,>.(Y»<6 + h(X,(,o,>.(Y»?6

::; tIIXa,À(x; ,)111 + A r IXa,À(x; y)1 dJ.L(Y)·
Jd(x,(,o,>.(Y»2 6

By (4) and (6), there exists a positive constant B and an element
Qo E D such that

r IXa,À(x;y)JdJ.L(Y) < E
} d(x,(,o,>. (y) )26

for aH À E A, x E X o and aH Q E D, Q :2: Qo. Thus, we obtain

AQ,À(x) < (A + B)E

which implies (8).

(À E A, x E X 0, Q E D, Q :2: Qo),

Theorem 1. If Ql is an equi-uniform approximate kernel, then R is
an equi-uniform approximation process on BC(X, E). In particular,
ifQl is positive, and if (5) and (6) are satisfied for each 0 > 0, then R
is an equi-uniform approximation process on BC(X, E).
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Prao! Let FE BC(X, E). Then we have

III Xa,>.(X; y)F(~a,>.(Y)) dJ-L(Y) - F(x)11

:::; II Xa,>.(X; y)dJ-L(Y) - 11 1IF(x)11

+I IXa,>.(X; y)IIIF(~a,>.(Y)) - F(x)lldJ-L(Y) = A~~~(x) + A~~~(x), (9)

say. By (5) and the boundedness of F, lima A~l~(X) = 0 uniformly in
À E A,x E X o. Taking tJt(u, v) = IIF(u) - F(~)II for all (u,v) E X 2

in Lemma 1, (8) implies limaA~2~(x) = 0 uniformly in À E A,x E X o.
Thus, (9) yields (1). '

Let <P be a nonnegative real-valued function on X o x X which sat
isfies Xa,>.(x; ·)<P(x, ~a,>.(-)) E U(Y, J-L) for each ex E D, À E A, x E Xo
and

M := inf{<P(x, t) : (x, t) E X o x X, d(x, t) ~ 8} > 0 (10)

for every 8 > O.
Remark 3. If there exist positive numbers q and C such that

dq(x, t) :::; C <P(x, t) for all (x, t) E X o x X,

then (10) is automatically fulfilled.
We set

(ex E D, À E A, x E X o),

which is called the absolute <P-moment of Xa,>. at x. In paricular, if
q> 0, x E X and Xa,>.(x; ·)dq(x, ~a,>.(·)) E L1(y, J-L), then the quantity

J-La,>.(X; q) := Ta,>. (X; dq) = IIXa,>.(X; ·)dq(x, ~a,>'('))111

is called the qth absolute moment of Xa,>. at x.

Lemma 2. If

lim Ta >.(X; <P) = 0
a '

uniformly in À E A, xE X o, (11)

then (6) holds fOT every 8 > O.

Prao! Let 8 > 0 and x E X o. Then by (10), we have

r IXa,>.(x; y)1 dJ-L(Y) :::; Ml Ta,>' (X; <P),
ld(xl.a .>.(Y))?8

which together with (11) implies (6).
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Theorem 2. If (4), (5) and (11) hold, then .R is an equi-uniform
approximation process on BC(X, E).

Proof. This immediately follows from Lemma 2 and Theorem 1.

Corollary 1. If21 is positive, and if (5)and (11) hold, then.R is an
equi-uniform approximation process on BC(X, E).

Corollary 2. Let {<Pl, <P2' ... ,<pr } be a finite subset of nonnegative
real-valued functions on Xo x X such that Xa,À(x; ')<Pi(X, ça,À(')) E
U(Y,jj) for each 0: E D,À E A,x E Xo and for i = 1,2, ... ,r.
Suppose that there exist positive constants q and C such that

r

dq(x, t) .s CL. <Pi(x, t)
i=l

for all (x, t) E X o x x.

If21 is positive and (5) holds, and if

li~Ta,À(X;<Pi) = 0 uniformly in À E A, xE X o

for i = 1,2, ... ,r, then .R is an equi-uniform approximation process
on BC(X,E).

Theorem 3. If (4) and (5) hold, and if for some q > 0,

li~jja,À(X; q) = 0 uniformly in À E A, xE X o, (12)

then.R is an equi-uniform approximation process on BC(X, E).

Proo! By taking <P = dq, this follows from Theorem 2, immediately.

Corollary 3. If21 is positive, and if (5) and (12) hold, then.R is an
equi-uniform approximation process on BC(X, E).

Next we consider the function <P which has the following special
form:

m

<p(x, t) = L. ai(x)wi(t) ~ 0 ((x, t) E X o x X), <p(x, x) = 0 (x E Xo),
i=l

where ai, 1 .s i .s m, are bounded functions on X o and Wi, 1 .s i .s
m, are continuous functions on X such that Xa,À (x; .)Wi (ça,À (-)) E
Ll(Y,jj) for each 0: E D,À E A,x E X o and for i = 1,2, ... ,m. Hw
is a continuous function on X such that Xa,À(x; ,)w(ça,À(')) E Ll(Y,jj)
for each 0: E D, À E A and x E X o, then we define

va,À(w)(x) = l Xa,À(x; y)w(ça,À(Y)) djj(y).
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lx denotes the unit function defined by lx (t) = 1 for all tEX. Then
we have the following Korovkin type results for integral operators.
For an excellent source for references and a systematic treatment of
Korovkin type approximation theory, we refer to the book of Altomare
and Campiti [1] (cf. [8]).

Theorem 4. Let W = {lx, WI, W2,··. ,wm }. Suppose that (10) is
satisfied for any b > 0 and that 2l is positive. If for aU W E W,

li~l/o,À(w)(x)= w(x) uniformly in À E A,x E Xo,

then.R is an equi-uniform approximation process on BC(X, E).

Proo! Since

m

To,À(X; cI» ::; 2:: lai(x)lll/o,À(Wi)(X)-Wi(X)1
i=l

(a E D,À E A,x E X o),

the desired result follows from Corollary 1.
Let s be any fixed even positive integer, and let

Hs = {h{ : i = 1,2, ... ,r, j = 1,2, ... ,s},

where {hl, h2 , ... ,hr } is a fini te subset of C(X, IR) such that

for each a E D,À E A,x E X o and h E H s . Let

W s = {lx, hf + h~ + ... + h~} U Hs - I .

Suppose that the function cI> defined by

r

cI>(x, t) = 2::(hi(x) - hi(t))S ((x, t) E X o x X)
i=l

satisfies (10) for any b > O.

Theorem 5. If2l is positive and if for aU hE Ws,

li~ 1/0 ,À (h)(x) = h(x) uniformly in À E A, x E X o, (13)

then.R is an equi-uniform approximation process on BC(X, E).
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Proo! For aU (x, t) E X o x X, We have

Therefore, the desired result follows from Theorem 4.
In order to refine Theorem 5, we make the following definition:
Let Eo be a subset of E. Let 'I = {T(x) : x E X} and ..c

{La,>.(x) : Q' E D, À E A, x E X} be families of mappings of Eo into
E. Then..c is called an equi-uniform 'I-approximation process on Eo
if for every f E Eo,

li;n IILa,>.(x)(J)-T(x)(J)11 = 0 uniformly in À E A, x E X o. (14)

Now, we suppose that for each f E Eo, the orbit mapping x f-7

T(x)(J) is strongly continuous and bounded on X and define

La,>.(x)(J) = i Xa,>.(x; y)T(ça,>.(y))(J) dp,(y) (J E Eo) (15)

(cf. [17]). Shaw [19] considered the special case of (15) in the setting of
certain spaces of operator-valued functions and obtained several rep
resentation formulas for strongly continuous semigroups of bounded
linear operators on Banach spaces. For the families .R and ..c of in
tegral operators defined by (2) and (15), the limit-relation (1) is the
same as (14) for each function F(·) = T(·)(J), f E Eo.

Theorem 6. Assume that 2t is positive, and consider the following
assertions :

(a) (13) holds for every hE {lx} U H s .

(b) (13) holds for every h E W S •

(c) .R is an equi-uniform approximation process on BC(X, E).
(d) ..c is an equi-uniform 'I-approximation process on E o for every

'I.
(e) The family {l/a,>. : Q' E D, À E A} is an equi-uniform approxi

mation process on B C(X, .IR) .
Then the implications (a) =? (b) =? (c) =? (d) =? (e) hold. In particu
lar, if {hl, h2 ,'" ,hr } ç BC(X, .IR), then the statements (a) - (e) are
equivalent.

Proo! In view of Theorem 5, it will be sufficient to show that
(d) implies (e). Let w E BC(X,.IR) and we take the special family
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'I = {w(x)! : x EX}, where ! denotes the identity operator on E.
Let! E Eo and! f- O. Then (14) and (15) yield

li,;n Il!IIII/a,>.(w)(x) - w(x)1 = 0 uniformly in À E A,x E X o,

and so {I/a ,>.} becomes an equi-uniform approximation process on
BC(X,IR).

In the special case where q = s = 2, there is a wide variety of
applications of CoroIlary 2, Theorems 5 and 6 to equi-uniform ap
proximation processes of integral operators associated with positive
and normal kernels.

3. Equi-uniform A-summation processes

Let A = {a~>'~ : ex E D, mE No, À E A} be a family of scalars and
let {Xm(x;,) : :n E No, x E X} be a family of functions in Ll(y, j.1)
such that

f: J la~~1nxm(X; y)1 dj.1(Y) < 00
m=O y

for each ex E D, À E A and x E X. We define
00

Xa,>.(x;,) = L a~~1nXm(X;')
m=O

(ex E D, À E A, x EX),

which belongs to U(Y, j.1). Then by (2) and (15), we have

Ka,>.(F)(x) = f: a~~1n JXm(x; y)F(ça,>.(Y)) dj.1(Y)
m=O y

(F E BC(X, E), ex E D, À E A, x E X)

and

La,>.(x)(f) = fo a~~1n i Xm(x; y)T(ça,>.(y))(f) dj.1(y)

(f E Eo, ex E D, À E A, x EX).

In particular, if Y = X and ça,>.(Y) = y for aIl y E Y, ex E D and
À E A, then we have

00

Ka,>.(F)(x) = L a~~1nKm(F)(x)
m=O

(F E BC(X, E), ex E D, À E A, x EX),
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where

and

Kn(F)(x) = lx Xn(x; y)F(y) dJ.l(Y) (16)

where

00

La,À(x)(J) = L a~~~Tm(x)(J)
m=O

(J E Eo, a E D, À E A, x EX),

(n E No). (17)

Consequently, all the results obtained in the preceding section are
applied in the above setting, and these approximation processes can
be concerned with the summability methods by the family A defined
as follows (cf. [13], [14]):

A is said to be regular if it satisfies the following conditions:
(A-1) For each m E No,

lima(À) = 0
a a,m uniformly in À E A.

(A-2) lima f: a~À1n = 1 uniformly inÀ E A.
m=O '

(A-3) For each a E D, À E A,

00

a(À) '= " la(À) 1 < 00
Q • L-t a,m ,

m=O

and there exists ao E D such that

sup{a~À) : a ~ ao, a E D, À E A} < 00.

A is said to be positive if

a(À) > 0
o,m - for all a E D, mE No and À E A.

Also, Ais said to be stochastic if it is positive and
00

"a(À) = 1
~ Q',m

m=O
for all a E D and À E Ji.

Obviously, if A is positive, then (A-2) already implies (A-3) and if
A is stochastic, then Conditions (A-2) and (A-3) are automatically
satisfied.
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A sequence {Jm}mENo of elements in E is said to be A-summable
to J if

00

lirnll L a~~;TJm - JII = 0
m=O

uniformly in À E A, (18)

where it is assumed that the series in (18) converges for each a E D
and À E A.

Concerning the relation between the regularity of A and the A
summability, A is regular if and only if every convergent sequence in
E is A-summable to its limit (cf. [2], [13]).

As the foUowing examples with D = No show, there is a wide
variety of families A of particular interest which cover many important
summation methods scattered in the literature.

(10) Given a matrix A = (an,m)n,mENo' if a~~1n = an,m for aU n,m E
No and À E A, then we obtain the usual matrix summability by A.

(2°) If A = No, then we obtain the summation method by intro
duced by Petersen [18] (cf. [2]). In particular, if

a(>') = {~'n,m 0,
if À::; m ::; À + n - 1,

otherwise,

then we obtain the notion of almost convergence method introduced
by Lorentz [9].

(3°) Let Q = {q(À) : À E A} be a familiy of sequences q(À)

{q~) }mENo of nonnegative real numbers such that

We define

if m::; n,

if m > n.

Then A-summability method is caUed (N, Q)-summability method
and in particular, if q(À) = {qm}mENo is a fixed sequence of nonnegative
real numbers satisfying qo > 0, this reduces to the classical Nûrlund
summability method. The special case of interest is the foUowing:

Let A ç [0, (0), f3 > 0 and

q;;) = C;;+f3- 1) (À E A, mE No),
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where T > -1 and

(m EN).

In particular, if A = {O}, then we have the Cesàro summability of
order (3.

(4°) Let A ç: (0,00), (3 > -1 and define

{

C(>,-l)C({3)/C({3+>") if m <_ n,
a(>") = n-m m n ,

n,m ° if m > n.,

(Cesàro type).
(5°) Let A ç [0,1] and define

{
( n)Àm(l _ À)n-m

a(>") = m '
n,m a,

if mS n,

if m > n

(Euler-K nopp-Bernstein type).
(6°) Let A ç: [0,1) and define

a~~:n = (n:m)Àm(l_ Àt+1

(Meyer-Konig- Vermes-Zeller type).
(7°) Let A ç: [0,00) and define

(nÀ)m
a(>") = exp(-nÀ)-'---

n,m m!

(Borel-Szâsz type).
(8°) Let A ç: [0,00) and define

a~~:n = (n +: -1)Àm(1 +À)-n-m

(Baskakov type).
Note that aH the families A of the generic entories a~)m given in

the above Examples (2°)_(8°) are stochastic and aH the fa~ilies A of
the generic entories a~~ given in the above Examples (4°)-(8°)) are,
regular for any finite interval A.

Now, in view of the definition of A-summability method, we say
that a sequence {Un: n E No} of operators of BC(X, E) into B(X, E)
is an equi-uniform A-summation process on BC(X, E) if the family
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11 = {Ua). : ex E D, À E 11} is an equi-uniform approximation process
on BC(X, E), where each operator Ua,>.. is defined by

00

Ua,>..(F)(x) = L a~~~Um(F)(x)
m=O

(F E BC(X, E), X EX),

which is assumed to be convergent. Also, a family {Vn(x) : nE No, x E

X} of operators of Eo into E is called an equi-unifom '1'-A-summation
process on Eo if the family QJ = {Va,>..(x) : ex E D, À E 11, x E X} is
an equi-uniform '1'- approximation process on Eo, where each operator
Va,>.. (X) is defined by

00

Va,>..(x)(f) = L a~~~Vm(x)(f)
m=O

(f E Eo, X EX),

which is assumed to be convergent.
Let {çn : n E No} be a sequence of continuous functions of Y into X

and let {Xn(x;,) : n E No, x E X} be a family offunctions in LI (Y, p,).
We define

Un(F)(x) = i Xn(x; y)F(çn(Y)) df.1(Y)

(F E BC(X,E), nE No, x E X)

and

Vn(X)(f) = i Xn(x; y)T(çn(y))(f) df.1(Y)

(f E Eo, nE No, x EX).

Then we have the following:

(19)

(20)

Theorem 7. Suppose that A is positive and that Conditions (A-1)
and (A-2) are satisfied. Funhermore) suppose that {Xn(x;,)} is ap
proximate kernel) i.e.) Conditions (4)) (5) and (6) hold uniformly in
xE X o with ex = n E No, Xa,>..(x;,) = Xn(x;,) and ça,>" = çn' Then the
following statements hold:

(a) Let U = {Un: n E No} be the sequence of integml opemtors
defined by (19) and V = {Vn(x): n E No,x E X} thefamily ofintegml
opemtors defined by (20). Then 11 is an equi-uniform A-summation
process on BC(X, E), and so QJ is an equi-uniform '1'-A-summation
process on Eo. In panicular) if {Xn (x; .)} is positive) and if

lim rXn(x;y)df.1(Y) = 1
n-too Jy

-91-
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and

uniformly in x E X o

for some q > 0, then il is an equi-uniform A -summation process on
BC(X, E), and so QJ is an equi-uniform 'I-A-summation process on

Eo·
(b) Let le = {Kn : n E No} be the sequence of integral operators

defined by (16) andT = {Tn(x) : n E No,x E X} thefamily ofintegral
operators defined by (17). Then le is an equi-uniform A-summation
pracess on BC(X, EL and so T is an equi-uniform 'I-A-summation
process on E o. In particular, if {Xn(X; .)} is positive, and if

and

lim r Xn(X; y) dJ.L(Y) = 1
n-too } X

uniformly in x E X o

uniformly in x E X o

for some q > 0, then le is an equi-uniform A -summation process on
BC(X, E), and so T is an equi-uniform 'I-A-summation process on

Eo·

Prao! (a) By Theorem 1 (cf. [17, Theorem 1]), there holds

lim iIUn(F)(x) - F(x)11 = a
n-too

uniformly in x E X o,

and so the desired result follows from the regularity of A.
(b) This immediately follows from Part (a).

4. Interpolation type operators

Let Y be a fini te set. Then the integral operators defined by (2)
and (15) reduce to

Ka,>.(F)(x) = L Xa,>.(X; k)F(~a,>.(k))
kEY

and

(F E BC(X, E)) (21)

La,>.(x)(J) = L Xa,>.(x; k)T(~a,>.(k))(J)
kEY

-92-

(J E E o), (22)



respectively. These are called interpolation type operators with the
interpolation system {Xa,>. (.; k) : k E Y} and nodes {ça,>. (k) : k E Y}.
Also, we have

{La,>. (X; q) = L IXa,>.(x; k)ldq(x, ça,>.(k))
kEY

(q> 0, x EX).

Here we restrict ourselves to the following situation:
Let 1 :S P :S 00 be fixed and let X be a locally closed subset of the

r-dimensional Euclidean space lRr with the metric

(l:Sp<oo)

(p = (0),

where x = (Xl, X2,'" ,xr ), t = (tl, t2,'" ,tr ) E lRr
. Therefore, in

view of Remark 1, Condition (3) holds. For i = 1,2, ... ,r, Pi de
notes the ith coordinate function defined by Pi (x) = Xi for aIl X =
(Xl, X2,.·. ,xr ) E lRr

. Then we have

r

d~(x, t) :S c(p, q, r) L Ipi(X) - Pi(t) Iq
i=l

(X,t E lRr
, q > 0) (23)

for sorne constant c(p, q, r) > O. Consequently, in view of (23) and
Remark 3, by taking

r

<f>(x, t) = L(hi(x) - hi(t))S, hi = Pi
i=l

(i=I,2, ... ,r),

Theorem 6 applied in the above setting and so we have a far-reaching
generalization of [5, Theorem 1.2.6]. Also, as an immeditate conse
quence of Corollary 2 we have the following result which can be more
convenient for later applications to the concrete examples of interpo
lation type operators.

Theorem 8. Suppose that 2l is positive and normal. If

li~ L Xa,>.(x;k)lpi(X)-Pi(Ça,>.(k))lq = 0 uniformly in>' E A,x E X o
kEY

for some q > 0 and for i = 1,2, ... ,r, then .R is an equi-uniform
approximation process on BC(X, E), and so ..c is an equi-uniform 'l'
approximation process on Eo.
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Let

X = [O,ooY:= {x = (Xl,X2"" ,Xr) E]Rr: Xi 2 O,i = 1,2, ... ,r}

be the region of the first hyperquadrant and let

mo:,i: A----. N, ao:,i: A----. (0,00) (ex E D,i = 1,2, ... ,r). (24)

Let Xo be a closed subset of Ir, where

Ir := {X = (Xl, X2, ... ,Xr) EX: 0 ::::; Xi ::::; 1, i = 1,2, ... ,r}

is the unit r-cube and

Jo:,À := {k = (kl , k2,·.· ,kr) E N~ : 0 ::::; ki ::::; mo:,i('\), 1 ::::; i ::::; r}.

Then we define the corresponding interpolation type operators (21)
and (22) by

Bo:,À(F)(x) = L tr (mO:~i('\))X7i(1 - Xi)m",i(À)-ki
kEl",À ~=l

X F(ao:,l('\)kl , ao:,2('\)k2, ... ,ao:,r('\)kr) (F E BC(X, E), X E X)
and

Co:,À(x)(J) = L tr (mO:'i('\))X7i(1 - Xi)m",i(À)-ki
kEl" Ài=l k~

x T(ao:,1('\)kl ,ao:,2('\)k2, ... ,ao:,r('\)kr)(f) (J E Eo, X EX),

respectively.

Theorem 9. If, for i = 1,2, ... ,r,

uniformly in ,\ E A

(X E X, k E 100,À)

and
hm ao: i(,\ )2mo: i(,\) = 0 uniformly in ,\ E A,
0:' ,

then {Bo:,À : ex E D,'\ E A} is an equi-uniform approximation process
on BC(X, E), and so {Co:,À(x) : ex E D,'\ E A, X E X} is an equi
uniform T-approximation process on Eo.

Proo! We define

Xo:,À(x; k) = tr (mO:~('\))x~j (1 - Xj)m",j(À)-k j

)=1 )

and
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Then for aIl ex E D,À E A,x E X o and for i = 1,2, ... ,r we have

L Xa,>.(x; k)lpi(X) - Pi(ça,>.(k))1 2

kEln,À

= (aa,i(À)ma,i(À) - 1)2pi (x)2 + aa,i(À)2ma,i(À)(Pi(x)(1 - Pi(X)),

Therefore, applying Theorem 8 with q = 2 we obtain the desired result.
We assume that

aa,i(À)ma,i(À) = 1 (ex E D, i = 1,2, ... ,r) (25)

for aIl À E A and we define Ba,>. (F)( X) and Ca,>. (X) (f) for aIl F E
C(lir , E), f E Eo and X E lir . Then we have the following:

Corollary 4. Ii for i = 1,2, ... ,r)

lim ma i(À) = +00 uniformly in À E A, (26)
a '

then {Ba,>. : ex E D, À E A} is an equi-uniform approximation process
on C(lir,E), and so {Ca,>.(x) : ex E D,À E A,x E lir } is an equi
uniform T-approximation process on Eo.

Let D = No and let {lIn,dnENo, i = 1,2, ... ,r, be strictly monotone
increasing sequences of positive integers. We define

(n ENa, i = 1,2, ... ,r)

for aIl À E A, and so (25) holds with ex = n ENa. Then we write
BVn ,),Vn,2,... ,Vn,r and CVn ,)Vn,2, ... ,Vn,r instead of B n ,>. and Cn ,>., respectively.
Therefore, as an immediate consequence of Corollary 4 we have the
following (cf. [15]):

J!..~ Il BVn ,),Vn,2"" ,vn,r(F)(x) - F(x) Il = 0 uniformly in x E lir (27)

for aIl FE C(lir , E), and so

J!..~ II CVn,),Vn,2, ... ,Vn,r(x)(f)-T(x)(f) Il = 0 uniformly in xE lir . (28)

for aIl f E Eo
The statement (27) generalizes the uniform convergence theorem

[10] (cf. [4], [6]) for the r-dimensional Bernstein operators on C(lir , IR)
and also the statement (28) generalizes [5, Corollary 1.2.8] to the
multi-dimensionnal case. More generaIly, Theorem 7 (a) establishes
that if Ais stochastic with (A-l), then {BVn ,),Vn,2, ... ,Vn,r : n ENa} is an
equi-uniform A-summation process on C(lir , E), and so {CVn ), ... ,Vnr(x) :
n E No, x E lir } is an equi-uniform T-A-summation process ,on E~.
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Next, let X o be a closed subset of d r , where

r

d r := {x = (Xl, X2,.·. ,xr) E JRr : Xi ~ 0,1 ::; i ::; r, 2: Xi ::; 1}
i=l

is the standard r-simplex. Let mo. : A ~ N, a E D and let {ao.,i} be
as in (24) and

Jo.,>. := {k = (k l , k2, ... ,kr) E N~ : kl + k2+ ... + kr ::; mo.(À)}.

Now we define the corresponding interpolation type operators (21)
and (22) by

Bo.,>.(F)(x) = 2: (mQ~À)) il X~i (1 - t Xj )mo
(>')-2:=;=1 kj

kEJo.À t=l )=1

x F(ao.,l (À)kl , ao.,2(À)k2, . .. ,ao.,r(À)kr)

and

(F E BC(X, E), X E X)

where

(f E Eo, X EX),

respectively.

Theorem 10. If, for i = 1,2, ... ,r)

uniformly in À E A

and

li~ ao.,i(À)2mo.(À) = a uniformly in À E A,

then {BQ,>. : a E D, À E A} is an equi-uniform approximation process
on BC(X,E)) and so {Co.,>.(x) : a E D,À E A,x E X} is an equi
uniform 'I-A-summation process on Eo.

Proof This can be similar to the proof of Theorem 9.
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Corollary 5. Suppose that

aa,i(À)ma(À) = 1 (a E D, i = 1,2,. __ ,r) (29)

for aU À E A and we define Ba,>.(F)(x) and Ca,>.(x)(f) for aU F E
C(,dn E), f E Eo and x E ,dr- If

lim ma(À) = +00 uniformly in À E A,
a

then {Ba,>. : a E D, À E A} ia an equi-uniform approximation process
on C(,dnE), and so {Ca,>.(x) : a E D,À E A,x E ,dr} is an equi
uniform T-approximation process on Eo.

Let D = No and let {Vn}nENo be a strictly monotone increasing
sequence of positive integers. We define

(a E D,i = 1,2, ... ,r)

for all À E A, and so (29) holds with a = n E No- Then we write
Bvn and CVn instead of Bn ,>. and Cn ,>., respectively_ Therefore, as an
immediate consequence of Corollary 5 we have the following (cf. [15]):

For all F E C(,dn E),

J~~ IIBvJF)(x) - F(x)11 = 0

and so for all f E Eo,

J~~ IICvJx)(f) - T(x)(f)11 = 0

uniformly in x E ,dr,

uniformly in x E ,dr.

(j = 1,2, ... ,n).

This result generalizes the uniform convergence theorem [10] of the
r-dimensional Bernstein operators on C(,dr, IR). More generally, The
orem 7 (a) establishes that if Ais stochastic with (A-l), then {Bvn :
n E No} is an equi-uniform A-summation process on on C(,dr, E),
and so {CvJx) : n E No,x E ,dr} is an equi-uniform T-A-summation
process on Eo

Let X = IRr and let X o be a closed subset of X r := [-1, Ir. Let
{ma,i}, {aa,i} be as in (24) and

Na,>. := {k = (k1 , k2 , ... , kr ) E Nr
: 1 :::; ki :::; ma,i (À), 1 :::; i :::; r}.

Let Qn(t) = cos(n arccos t) be the Chebyshev polynomial of degree n
and let tn,j, j = 1,2, ... ,n, be zeros of Qn(t), i.e.,

(
2j - 1 )

tn,j = cos 2n 7r ,
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Then we define the corresponding interpolation type operators (21)
and (22) by

( )( ) _ '" nT ( ){ QmO,i(À)(Xi) }2
Ha,À F x - L.,; 1 - Xitmo,i(À),ki .(À)( _ t )

kENo,>' i=l ma,t Xt mo,i(À),ki

x F( aa,l (À)tmo,l(À),kll .. 0 ,aa,T(À)tmo,r(À),kr)

(F E BC(X, E), x E X)

and

( )() '" nT ( ){ Qmoi(À)(Xi) }2
Ga,À x f = L.,; 1 - Xitmo,i(À),ki .(À)(' _ t )

kENo,>. i=l ma,t Xt mo,i(À),ki

X T( aa,l (À)tmo,l (À),k1 , •.. ,aa,T (À )tmo,r(À),kr)(f)
(f E Eo, x EX),

respectively.

Theorem 11. If, fOT i = 1,2, ... , T, (26) holds and

lim aa i(À) = 1 uniformly in À E A,
a '

then {Ha,À : ex E D, À E A} is an equi-uniform approximation pTOceSS
on BC(X,E), and so {Ga,À(x) : ex E D,À E A,x E X} is an equi
uniform cr-approximation process on Eoo

Proo! We define

where

T

Xa,À(x; k) = nXmo,i(À) (Xi; ki)
i=l

(x E X, k E Na,À),

Then for aIl ex E D, À E A, x E X o and for i = 1,2, ... ,T, we have

L Xa,À(X; k)lpi(X) - Pi(ça,À(k))1 2

kENo,>.
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m",i(>')

+ (an,i(À)2 - 1) L tm",i(>.),k/Xm",i(>') (Xi; ki ).
ki=l

Therefore, applying Theorem 8 with q = 2 we obtain the desired result.
We assume that

an,i(À) =1 (aED,i=I,2, ... ,T) (30)

for aH À E A and we define Hn,>' (F)(x) and Gn,>' (x) (f) for aH F E

C(Xr , E), f E Eo and X E X r . Then it immediately foHows from The
orem 11 that if (26) holds for i = 1,2, ... ,T, then {Hn ,>. : a E D, À E

A} is an equi-uniform approximation process on C(Xr , E), and so
{Gn,>.(x) : a E D, À E A, xE X r } is an equi-uniform 'I-approximation
process on Eo. Also, let D = No and let {Vn,dnENa, i = 1,2, ... ,T, be
strictly monotone increasing sequences of positive integers. We define

mn,i(À) = Vn,i, an,i(À) = 1 (n E No, i = 1,2, ... ,T)

for aH À E A, and so (30) holds with a = n E No. Then we write
HVn ,I,Vn,2"" ,Vn,r and GVn ,I,Vn,2,... ,Vn,r instead of Hn ,>. and Gn ,>., respec
tively. Then we have the foHowing:

Jl.~ IIHvn,I,Vn,2, ... ,vn,r(F)(x) - F(x)11 = 0 uniformly in xE X r (31)

for aH F E C(Xn E), and so

Jl.~ IIGvn ,I,Vn,2, ... ,Vn,r(x)(f) - T(x)(f) Il = 0 uniformly in x E X r

for aH f E Eo. The statement (31) generalizes the uniform convergence
theorem (cf. [8], [11]) for the classical Hermite-Fejér operators on
C(X1 , IR). More generaHy, Theorem 7 (a) yields that if Ais stochastic
with (A-l), then {HVn ,I>Vn,2, ... ,Vn,r : n E No} is an equi-uniform A
summation process on C(Xr , E), and so {Gvn l,vn 2, ... ,Vn r : n E No} is
an equi-uniform 'I-A-summation process on Eo.' ,

5. Convolution type operarors

Here, we treat equi-uniform A-summation processes of convolution
type operators defined as foHows:

Let (IRr, d), d = dp , 1 :::; P :::; 00, be as in the preceding section.
Let c > 0 and let {gn : n E No} be a sequence of nonnegative even
continuous functions on [-c, c] such that

[Cc gn(t) dt = 1.
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Let
r

X = II[ai, bi], 0 < bi - ai ::; C,· i = 1,2, ... ,r
i=l

and
r

Xo = II [ai + 8i,bi - 8i],
i=l

1
0 <8 < -(b - a·)t 2 t t , i = 1,2, ... ,r.

Then we define

Kn(F)(x) := lx t1 (9n 0 Pi)(X - y)F(y) dy

and

Tn(x)(J) = lx t1 (9n 0 Pi)(X - y)T(y)(J) dy

(F E C(X, E), x E X)

(J E Eo, x EX),

which are called convolution type operators.

Theorem 12. Suppose that A is positive and that Conditions (A -1)
and (A-2) are satisfied. If

lim (C t29n(t) dt = 0, (32)
n-+CX) Jo

then K = {Kn : n E No} is an equi-uniform A-summation process on
C(X, E), and so T = {Tn(x) : n E No, x E X} is an equi-uniform
T-A-summation process on Eo.

Proo! We define
r

Xn(x; y) := II (9n 0 Pi)(X - y)
i=l

(x, Y E X, n E No).

Then by [17, Lemma 4] and (32), we. have

o::; 1- lx Xn(x; y) dy ::; (2~ ;'f) 1c

t29n(t) dt

---; 0 uniformly in x E X o
and

lx Xn(x; y)~(x; y) dy ::; 2r1c

t29n(t) dt ---; 0 uniformly in x E X o·

Therefore, applying (23) with q = 2, the desired result follows from
Theorem 7 (b).
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Let <p be a nonnegative, even continuous function on [-c, c] such
that <p is decreasing on [0, c] and

We define

<p(0) = 1, 0 ~ <p(t) < 1 (0 < t ~ c).

where

(Itl ~ c, nE No),

Then we have

Kn(F)(x) = p~ lxD<pnOPi(x-y)F(y) dy

(n E No).

(F E C(X, E), x EX),

which reduce to the Korovkin operators in case r = 1 and E = IR, and

Tn(x)(J) = p~ lxD<pn 0 Pi(X - y)T(y)(J) dy

Note that

(J E Eo, x EX).

. jC 2 . J~t2<p(t)ndt
hm t gn (t) dt = hm !tc () d = 0n-+oo -c n-+oo 0 <p t n t

(cf. the proof of [8, Theorem 5]), and so Theorem 12 holds. More
precisely, if there exist constants q, s > 0 such that

r l-<p(t)
t--:~o t B = q,

then

lC egn(t) dt = °(n;/B ) (n - (0)

(cf. [3, Lemma 2] and the proof of [3, Theorem 1]). Several important
examples of <p are the following:

(10) Weierstrass:

<p(t) = e-
t2

; 0 < c < 00, s = 2, q = 1.

(2°) Picard:

<p(t) = e- 1tl ; 0 < c < 00, s = 1, q = 1.

(3°) Bui-Fedorov- Cervakov:

<p(t) = e-W/"; 0 < c < 00, 1/ > 0, s = 1/1/, q = 1.
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(4°) Landau:

<p(t) = 1 - t2
; C = 1, s = 2, q = 1.

(5°) Mamedov:

<p(t) = 1 - t2m
; C = 1, mEN, s = 2m, q = 1.

(6°) Let v > 0 and

<p(t) = 1 - ItI V
; c = 1, s = v, q = 1.

(7°) de la Vallée-Poussin:

1
<p(t) = cos2 2t; C = K, S = 2, q = 1/4.

(8°) Let v > 0 and

<p(t) = (cos ~t)V; C = K, S = 2, q = v/8.

Next, we consider the convolution operators for the whole space ]RT.

Let {hn : nE No} be a sequence of nonnegative Lebesgue measurable
functions on ]R such that

(n ENa),khn(t) dt = 1

and for q > 0, we define

/Ln(q) = /L(q; hn) := kItlqhn(t) dt < 00,

(33)

which is called the qth absolute moment of hn . Let X = ]RT. We define

(F E BC(X, E), x E X)

and

(J E Eo,x EX).

Then we have the following:

Theorem 13. Suppose that A is positive and that Conditions (A-l)
and (A-2) are satisfied. If

lim /Ln (q) = 0
n-t(X)
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for some q > 0, then le = {Kn : n ENa} is an equi-uniform A
summation process on BC(X, E), and so T = {Tn(x) : n E No, x E
X} is an equi-uniform T-A-summation process on Eo.

Proo! We define

r

Xn(x; y) := II(hn 0 Pi)(X - y) dy
i=l

(x, y E X, ,n ENa).

Then by (33), (34) and (23) we have

lx Xn(x; y) dy = 1 (x E X, nE No)

and

lx Xn(x; y)dq(x; y) dy ::; rc(p, q, r)J1n(q) --t 0 uniformly in x E X o·

Therefore, the desired result follows from Theorem 7 (b).
Let {kn : n ENa} be a sequence of nonnegative, even, 21r-periodic,

Lebesgue measurable functions on IR having Fourier series expansions

00

kn(t) '" L kn(j)eijt
,

j=-oo

with

and we define

h,,(t) = {~~kn(t)

Then we have the following.

(n ENa),

(Itl ::; 1r)

(Itl > 1r).

(35)

(36)

Theorem 14. Suppose that A is positive and that Conditions (A-l)
and (A-2) are satisfied. If

(37)

then le = {Kn : n E No} is an equi-uniform A -summation process on
BC(X, E), and so T = {Tn(x) : n E No, x E X} is an equi-uniform
T-A- summation process on Eo.
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Proo! By (35) and (36), hn clearly satisfies (33). Also, by Jordan's
inequality

we have

2
-t:S sint:S t
1T

(38)

Therefore, the desired result follows from Theorem 13 with q = 2.
Let (Àn(j)) (n,j = 1,2, ... ) be a lower triangular infinite matrix of

real numbers and we define
n

ko(t) = 1, kn(t) = 1 + 2 L Àn(j) cosjt
j==l

(n E N, t E IR).

Then applying the Abel's transformation twice to the function kn(t),
we have

n-1
kn(t) = L(j + I)Fj (t)Ll2 Àn(j) + (n + I)Àn(n)Fn(t), Àn(O) = 1,

j==O

where Fm(t) is the mth Fejér kernel and

Ll2 Àn(j) := Àn(j) - 2Àn(j + 1) + Àn(j + 2).

Therefore, if Àn(n) ~ 0 and {Àn(j) : jE No} is convex, i.e., Ll2 Àn(j) ~

ofor all j E No, then kn(t) is a nonnegative, even trigonometric poly
nomial of degree at most n satisfying (35), and so Theorem 14 holds
with kn (l) = Àn (1).

Several examples of Àn(j) produce important summability kernels
as follows:

(1°) Fejér:

{
1- -L

Àn(j) = 0 n+1

(2°) de la Vallée-Poussin:
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(3°) Fejér-Korovkin :

Àn(j) = {~n L::'~o "maj lm

where

(l:S;j:S;n)

(j > n),

. (m + 1)
am = sm n + 2 n

In this case, we have

(m = 0,1, ... ,n), (

n )-1
An = fo a~ .

kn(t) = Anli=o ameimtl2,

(4°) Norlund:

where

(l:S;j:S;n)

(j > n),

n

Qn:= L qm
m=O

(n E No).

Obviously, if qn = 1 for aU n E No, then the N6rlund kernel reduces
to the Fejér kernel.

(5°) Cesàro:

(l:S;j:S;n)

(j > n),
((3 2: 1)

if t is a multiple of 2n,

if t is not a multiple of 2n

where C~T) (n E No, T > -1) is defined as in Example (3°) of Section
3. Note that if qn = C;(3-1) for aU nE No, then N6rlund kernel reduces
to the Cesàro kernel. In particular, if (3 = 1, then the Cesàro kernel
turns out the Fejér kernel.

Other important examples of nonnegative, even, 2n-periodic con
tinuous functions kn(t) on IR satisfying (35) and (37) are the foUowing:

(6°) Jackson:

{
( )

2S
sin«n+l)t/2)

kn(t) = cn,s sin(t/2) ,

(n + 1)2S,
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where sEN and the normalizing constant Cn,s > 0 is taken in such a
way that

117r

- kn(t) dt = l.7f a

Since kn(t) = Cn,s(n + l)S Fn(t)S, kn(t) is a nonnegative, even trigono
metric polynomial of degree ns and we have, for s = 1, Cn,1 = 1/(n+1),
and so kn(t) becomes the nth Fejér kernel. AIso, we have, for s = 2,

3
Cn,2 = (n + 1)(2(n + 1)2 + 1)'

Furthermore, making use of Jordan's inequality (38) we have that for
s 2: 3,

(
7f)1-2S 2S - 1 (7f)2S
"2 2s (n + 1)1-2S < cn,s:S "2 (n + 1)1-2S

and

A (7f)2(2S-1) 8s
0< 1 - kn (1) <"2 37f(2s _ 3) (n + 1)-2 ---* 0 (n ---* 00).

(7°) Abel-Poisson:

00

kn (t) = 1 + 2 L r: cos mt
m=1

(n ENa, t E IR),

where {rn : n E No} is a sequence of real numbers to one such that
o :S r n < 1 for aU n ENa. Thus, limn->oo kn(1) = limn->oo r n = l, and
smce

~ m 1 + Z (1 + reit )(l- re-it ) 1 - r2 + 2irsint
1+2L....,z =--= =-----------::-

m=1 1 - z Il - reit
l
2 1- 2rcost + r2

for aIl z = reit , 0 :S r < 1, we have

k
n

(t) = 1 - r~ 1 - r;
1 - 2rn cos t + r~ - (1 - rn)2 + 4rnsin2(t/2)'

(8°) Gauss- Weierstrass:

(n ENa, t E IR),

-106-



where {Tn : n E No} is a sequence of positive real numbers converging
to zero. We can rewrite kn(t) as

00

kn(t) = 1 + 2 L e-Tnm2 cosmt,
m=l

and so limn--->oo kn (1) = limn--->oo e-Tn = 1.
Finally, we give several examples of nonperiodic functions hn(t) sat

isfying (33) for which Theorem 13 can be applied, from a probabilistic
point of view. These can be induced by various probability density
functions as follows:

Let {an: n E No} and {Sn: n E No} be sequences of positive real
numbers, and let q > O.

(9 0
) Gauss type distribution:

(t E IR).

Then we have

( ) =_1r(q + 1) q/2
/Ln q J7f 2 an,

where
r(x) := 1000

tX-1e-t dt (x > 0)

is the gamma function. In particular, we have

and

/Ln(2m) = (m - ~) (m - ~) (m - ~) ... ~~a:
(100

) Laplace type distribution:

(m EN).

(t E IR).

Then we have
/Ln (q) = qr(q)a~.

In particular, we have

( )_ ,m
/Ln m - m.an

and so

(m EN),
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(110) Student (t) type distribution:

h (t):= ra;; r(f3n) (1 + a e)-f3n
n V-:; r(f3n _ 1/2) n

Then we have

(t E IR).

and so

(t > 0)

(t ~ 0).

Then we have

In particular, we have

1 m-1

Iln(m) = f3;r: !! (an + i)

and so

where

(m EN),

(0 < t < 1)

(t ~ 0 or 1 ~ t),

(x, y > 0)B(x, y) = 11 tX
-

1(1- t)Y-l dt

is the beta function. Then we have

Iln(q) = B(an + q,f3n) = r(an + f3n) r(an + q)
B(an,f3n) r(an) r(an +f3n+q)"
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In particular, we have

m-l .

( )- II an + ~Jln m - .
i=O an + f3n + ~

and sa

(m EN),

(14°) Landau type distribution:

Then we have

and sa

(Itl ::; 1)

(Itl > 1).

In particular, if an = 2, then

r (~) r (f3n + ~)
Jln(q) = .Ji r(f3n + ~) ,

and sa

1 r(f3n + ~)
Jln(1) = .Ji f3n r (f3n) ,

and furthermore, if f3n = n + l, then

1
Jln(2) = 2f3n + l'

and sa

(n + 0(n - ~) (n - Ü(n - ~) ... H
Jln(l) = (n + 1)! '
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Also, if Rn := l/an EN, then

( )
_ r(Rn(q + 1)) r(fJn + Rn)

/-Ln q - r(Rn) r(fJn + Rn(q + 1))'

and sa

2fn -l i

/-Ln(1) = It fJn + i'

(15°) Weibull type distribution:

{

f3n tf3n-1 exp(- t(3n)
hn(t):= On On

o
Then we have

and sa

(t > 0)
(t ::; 0).
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