
琉球大学学術リポジトリ

Negative characters on the degree of the best
approximation in Banach spaces

言語: 

出版者: Department of Mathematical Sciences, Faculty

of Science, University of the Ryukyus

公開日: 2010-02-24

キーワード (Ja): 

キーワード (En): 

作成者: Nishishiraho, Toshihiko, 西白保, 敏彦

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/20.500.12000/15928URL



Ryukyu Math. J., 13(2000), 65-78

NEGATIVE CHARACTERS ON THE DEGREE OF
THE BEST APPROXIMATION IN BANACH SPACES

TOSHlHIKO NISHISHIRAHO

ABSTRACT. vVe consider some negative characters on the degree
of the best approximation associated with a total, fundamental
sequence of mutually orthogonal projections in Banach spaces.
Furthermore, applications are discussed under the setting of ab
stract Fourier expansions in Banach spaces as well as homoge
neous Banach spaces which include the classical function spaces
as particular cases.

1. Introduction

Let X be a Banach space with norm 11·llx, and let B[X] denote the
Banach algebra of all bounded linear operators of X into itself with
the usual operator norm II·IIB[X)' Let Z denote the set of all integers,
and let ~ = {Pj : j E Z} be a sequence of projection operators in
B[X] satisfying the following conditions:

(P-l) ~ is orthogonal, i.e., PjPn = bj,nPn for all j, nEZ, where bj,n
denotes Kronecker's symbol.

(P-2) ~ is fundamental, i.e., the linear span of the set UjE'lPj(X) is
dense in X.

(P-3) ~ is total, i.e., if J E X and Pj(J) = a for all j E Z, then
J = O.
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Let N be the set of all non-negative integers. For each 11, E N, Mn

stands for the linear span of the set {Pj(X) : IJI ::; n}, which is a
closed linear subspace of X. For a given 1 EX, we define

which is called the best approximation of degree 11, to 1 with respect
to Mn . Then we have

Eo (J) 2: E1(J) 2: ... 2: En (J) 2: En+ 1(J) 2: ... 2: 0,

and Condition (P-2) implies that for every 1 EX,

(1)

In [10], [11], [12] and [13], we studied the relation between the ra
pidity of convergence (1) and certain smoothness properties of 1 in
terms of the moduli of continuity of 1 induced by a strongly con
tinuous group of multiplier operators with respect to~. Such re
sults are sometimes called direct (Jackson-type) theorems and inverse
(Bernstein-type) theorems of the best approximation theory (d. [1],
[3], [6], [7], [16], [22]). For further general treatments and refinements
of the inverse theorems, see [14] and [15].

The purpose of this paper is to consider certain negative characters
about En(J) which assert the impossibility of constructing operators
with certain desirable properties. We will make the best use of our
results of [17], which extensively treats the best approximation by
bounded linear projections of X onto Mn . Moreover, applications are
discussed under the setting of abstract Fourier expansions in Banach
spaces as well as homogeneous Banach spaces (d. [4], [8], [18], [21])
which include the Banach space C27r of all 27f-periodic, continuous
functions 1 on the real line lR with the norm

1111100 = max{lf(t)1 : It1:s; 7f}

and the Banach spa.ce L~7r of all 27f-periodic, p-th power Lebesgue
integrable functions 1 on lR with the norm

(l:S;p<oo),

as special cases. Actually, further extensions are given to the classical
theorems of Kharshiladze-Lozinski, Faber and Berman (d. [3; Chap.6,
Sec.5], [6; Chap.7, Sec.3]).
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2. Best approximation by projections

For each n E ,'In denotes the set of all bounded linear operators
T of X into Mn such that T(g) = 9 for all 9 E Mn . In other words, 'In
is the set of all bounded linear projections of X onto Mn and it is a
closed subset of B[X] such that O'S+(l-O')T E 'In whenever S, T E 'In
and 0' is a scalar. In particular, 'In is a closed convex subset of B[X].
Let (57, /-L) be a probability measure space. Let 'I = {Tt : t E 57} and
11 = {Ut : t E 57} be uniformly bounded families of operators in B[X]
such that for all f E X and all T E B[X], the mapping t I---t TtTUt(f)
is strongly /-L-measurable on 57. For any T E B[X], we define

<Pr(f) = <Pr(T, ll; 1) = In TtTUt(f) d/-L(t) (f EX),

which always exists as a Bochner integral in X. Then <l>r belongs to
B[X] and the uniform boundedness ofT and II yields

II<l>rIIBIXj ~ ABIITIIB[X),

where

and

A = sup{IITtIIB[xj : t E 57} < 00 (2)

B = sup{IIUtIIB[xl : t E 57} < 00. (3)

From now on, we suppose that the following additional conditions

(n E N, t E 57).

TtPj = PjTt for all j E Z, t E 57,

UtPj = PjUt for all j E Z, t E 57,

and
TtUt = I for all t E 57,

where I is the identity operator on X.
For each n EN, we define

n

Sn = L Pj ,

j=-n

which belongs to 'In. Then (4) and (5) imply

SnTt = TtSn, SnUt = UtSn

Also, for each n E N we define

'I~ = {T E 'In : <l>rPj = 0 for all j E Z, Ijl > n}.
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By (P-1), (7) and [17; Lemma 2.1]' Sn belongs to 'I~. Concerning the
approximation by operators in 'I~, we have the following result:

Theorem 1. ((17; Theorem 2.4)} Let S be an operator in B[X] such
that SUt = UtS or STt = TtS for all t E Q. Then there holds

liS - SnIIB[X] ~ ABin£{IIS - TIIB[xj : T E 'I~}

In particular, if AB ~ 1, then

liS - SnIIB[X] = min{IIS - TIIB[Xj : T E 'I~}

(n EN).

(n E N),

which implies Sn is an operator of best approximation to S from 'I~.

Let s:u = {'It : t E Q} be a uniformly bounded family of operators
in B[X] such that for each f EX, the mapping t f-t 'It(f) is strongly
p,-measurable on Q. Let X be a p,-integrable function on Q and W E
B[X]. Then we define the convolution type operator associated with
ll,X and W by

(X*W)(f) = (X*W)QJ(J) = kx(t)'It(W(J))d/-L(t) (J EX), (8)

which e:cists as a Bocher integral in X (d. [8], [10]). X *W belongs to
B[X] and

where

and

C = sup{II'ltIIB[Xj : t E Q} < 00

Ilxlh = k Ix(t) Idp.(t) < 00.

(9)

(10)

Theorem 2. Suppose that VuUt = UtVu and WUt = UtWor VuTt =
TtVu and WTt = TtW for all t, u E Q. Then we have

Ilx * W - SnllBIXj ~ ABin£{llx * W - TIIB[Xj : T E~} (n EN).

In particular, if AB ~ I, then Sn is an operator of best approximation
to X * W from 'I~.

Proof Assume that VuUt = UtVu and WUt = UtW for all t, u E Q.

Then we have

(X * W)Ut = Ut(X * W)

for all t E Q, and so the desired result follows from Theorem 1. The
case of V';l T t = TtVu and WTt = TtW is also similar.
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Corollary 1. There holds

IISnIIB[X] ~ AB{IITIIB[XI : T E ~}

In particular, if AB ~ I, then

IISnIIB[Xj = min{IITIIB[XI : T E ~}

(n EN).

(n EN).

3. Results on negative characters

In order to achieve our aim we will make the best use of the results
of Section 3. For this we always here suppose that

lim sup IISnIIB[X] = +00.
n-+oo

(11)

Theorem 3. Let Ln E 'I~ for each n E N. Then there exists an
element fo E X for which the sequence {IILn(Jo)llx} is unbounded.
Also, there exists an element go E X such that {Ln(go)} does not
converge.

Proof By Corollary 1, we have

(n EN),

and so the desired result follows from (11) and the uniform bounded
ness principle.

Theorem 4. For each n E N, let Ln be a bounded linear operator of X
into Mn such that cPLnPj = 0 for every j E Z, IJ/ > n. Then there does
not exist a nonnegative continuous function p on [0,00) with p(O) = 0
such that

IILn(J) - fllx ~ p(En(f))

for all f E X and all n EN.

(12)

Proof Assume that there exists a nonnegative continuous function
p on [0,00) with p(O) = 0 satisfying (12) for all f E X and all n E N.
Then (1) and (12) imply liIIln-+oo IILn(J) - fllx = 0 for all f E X.
Also, again from (12) we have

IILn(g) - gil X ~ p(En(g)) = p(O) = 0

whenever 9 E M n ; and so Ln belongs to 'I~. This conflicts with
Theorem 3.
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Corollary 2. Let Ln be as in Theorem 4. Then there does not exist
a constant K > 0 such that

IILn(J) - fllx s K En(J)

fOT all f E X and all n EN.

4. Applications

For any f EX, we associate its (formal) Fourier series expansion
CXl

f rv

j=-CXl

(13)

An operator T E B[X] is called a multiplier operator on X if there
exists a sequence {Tj : j E 7l} of scalars such that for every f EX,

CXl

j=-CXl

and the following notation is used:

T rv

j=-CXl

(d. [2]' [8], [9], [20]). Let M[X] denote the set of all multiplier
operators on X, which is commutative closed subalgebra containing
I and Sn, which is the n-th partial sum operator associated with the
Fourier series (13).

From now on let [2 be a separable topological space and f-L a Borel
probability measure on [2. Let 'I = {Tt : t E [2} and II = {Ut : t E [2}

be families of operators in M[X] satisfying (2) and (3) and having the
expansIons

CXl

Tt rv L ej(t)Pj
j=-CXl

and
CXl

Vt L fj(t)Pj
j=-CXl

(t E [2)

(t E [2),

(14)

(15)

where {ej : j E 7l} and {fj : j E 7l} are sequences of scalar-valued
continuous functions on [2 such that

(16)
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By (14), we have

lim IITt(g) - Tu(g)llx = lim lej(t) - ej(u)lllgllx = 0t-.....u t-.....u (u E .0)

for every 9 E Pj(X),j E Z. Therefore, the mapping t I----t Tt(f) is
strongly continuous on .0 for each f EX, since ~ is fundamental
and 'I is uniformly bounded. Similarly, the mapping t I----t Ut(f) is
strongly continuous on fl for each f EX. Therefore, the mapping
t I----t TtTUt(f) is strongly continuous on fl for each f E X. Also, in
view of (14), (15) and (16), there hold Conditions (4), (5) and (6).
Consequently, all the results obtained in the preceding sections hold
under the above setting.

Now, we assume that

in ej(t)fk(t) df-L(t) = 0 for all j, k, j of- k. (17)

Let QJ = {\It : t E fl} be a family of operators in M[X] satisfying (10)
and having the expansions

00

L Vj(t)Pj
j=-oo

(t E fl), (18)

where {Vj : j E Z} is a sequence of scalar-valued continuous functions
on fl and

00

W rv L WjPj.
j=-oo

Then the convolution type operator (X * W)'2J given by (8) belongs to
M[X] and there holds

where

(X * W)'2J rv

00

L Cj(QJ, X)wjPj,
j=-oo

(19)

Cj(QJ, X) = in X(t)Vj(t) df-L(t) (j E Z)

(d. [10; Lemma 2], [11; Lemma 1]). Thus we have the following result
(d. [17; Corollary 3.3]):

Theorem 5. There holds

Ilx * W - SnllBfXI ::; ABinf{llx * W - TllBIXj : T E 'In} (n EN).

In particular, if AB ::; 1, then Sn is an operator of best approximation
to X * W from 'In.
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Proof By [17; Lemma 3.1]' we have 'I~ = 'In for each n E N.
Therefore, the desired result follows from Theorem 2.

Corollary 3. We have

IISnIIB[Xj S; in£{IITIIBIXj : T E 'In}

In particular, if AE S; I, then

(n EN).

(n EN).

In the following results, we always suppose that (11) holds.

Theorem 6. Let Ln E 'In for each n E N. Then there exists an
element fo E X such that the sequence {IILn(fo)llx} is unbounded.
Also, there exists an element go E X such that {Ln(go)} does not
converge.

Proof This immediately follows from [17; Lemma 3.1] and Theorem
3.

Theorem 7. Let Ln be a bounded linear operator of X into Mn for
each n EN. Then there does not exist a nonnegative continuous func
tion p on [0, (0) with p(O) = 0, for which

IILn(f) - fllx S; p(En(f))

for all f E X and all n E N.

Proof Use [17; Lemmas 2.3 and 3.1] and Theorem 4.

Corollary 4. Let Ln be as in Theorem 7. Then there does not exist
a constant K > 0 such that

IILn(f) - fllx S; K En(f)

for all f E X and all n EN.

If Mn is a Chebyshev subspace of X, that is, for every f E X there
exists a unique element En (f) of best approximation to f from Mn,
then the mapping En : X -t M n is called the best approximation
operator on X with respect to Mn . For general problems concerning
the existence and uniqueness of elements of the best approximation in
normed linear spaces, see e.g., [16], and the literatures cited there.
Remark 1. We have Bn(g) = g for all g E Mn and

(f EX). (20)
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(21 )(n 2': 0, TrI.2': 1).

Therefore, we conclude from (20) and Corollary 4 that if (11) holds,
then {Bn } is the sequence of nonlinear operators of X onto Mn .

Next, let us improve Corollary 4 by increasing the degree of the
approximating operators. For this, let An E 'In for each n E Nand
we define the gliding mean operators by

1 n+m-l
An,m = m L A j

J=n

Then An,m belongs to 'In and

IIAn,m(J) - fllx :::; IIAn,m - IIIB[xjEn(J)

:::; (1IAn,mIIB[Xj + l)En(J) (J E X) (22)

(d. [10; Theorem 4]). Therefore, if

K 1 = sup{IIAn,mIIB[Xj : n 2': 0, m 2': I} < 00,

then we have

(J EX).

Let (In, n E N, be the Cesaro type mean operators, that is,

1 n

(In = AO,n+l = -- L A j (n EN).
n + 1 j=O

Then (21) becomes

An,m = ~ {(n + mkn+m-l - n(Jm-l}

and we have the following de la Vallee-Poussin type estimate:

Theorem 8. If

(23)

K = suP{II(JnIIB[Xj : n E N} < 00, (24)

then for all f EX, n E N and all mEN \ {O},

En+m-1(J) :::; IIAn,m(J) - fllx:::; (K(l + :) + 1) En(J). (25)

Proof By (23) and (24), we have

1{ KIIAn,mIIBIXj::; - (n+m)ll(Jn+m-lIIBlxj+nll(Jm-IIIB[xj::; -(2n+m),
nl nl

which together with (22) implies the desired inequality (25).
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Let An = Sn for all n E N. If we take m = n 2': 1 in (21), then
Theorem 8 reduces to [10; Theorem 6]. Note that if

(n,fL) = ([-7f,7f], 2~dt)

and
Vj(t) = e-ijt

in (18), then (19) reduces to

(x * W)QJ

where

00

L xU)wjPj ,
j=-oo

(26)

U E Z)

(n EN),

1 /71" ..xU) = - x(t)e-ZJtdt
27f -71"

is the j-th Fourier coefficient of X, and (24) always holds. Indeed, let
Fn(t) be the Fejer kernel, i.e.,

1 {Sin 1 (n+1)t}2 n( j)Fn(t) = -- 2. 1 = 1+2L 1- -- cosjt
n + 1 sm'it j=l n + 1

t (1 - JtL )eijt
.

j=-n n + 1

Then, in view of (26), we have

n IJI n A •

O"n = L (1 - -)pj = L Fn(J)Pj = (Fn * I)QJ
j=-n n+ 1 j=-n

and so (9) yields

II00nIIB[Xj S; CIIFnl1 1 = C (n EN),

which implies (24). Also, let Dn(t) be the Dirichlet kernel, i.e.,

sin(2n + l)lt n n ..
Dn(t) = . 1 2 = 1 + 2Lcosjt = L eZ]t.

Sill 'it j=l j=-n

Then we have
n n

Sn = L Pj = L DnU)Pj = (Dn * Ib
j=-n j=-n

and so

(n EN),

(n EN), (27)
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where An = II Dn11 1 , n E N, are called the Lebesgue constants. Note
that

4
zlog(n + 1) < An S 1 + log(2n + 1)
7f

S 1 + log 3 + logn < 3 + logn (n 2: 1) (28)

(d. [1; Proposition 1.2.3], [3; Chap.6, Sec.5, Lemma]' [6; Chap.l,
Sec.2, Theorem 2]). Since An,l = An = Sn, (22), (27) and (28) yield
the following Lebesgue type estimate:

IISn(J) - fllx S IISn - JIIB[XjEn(J) S (1ISnIIB[Xj + l)En(J)

S (1 + C(l + log(2n + 1)))En(J) S (1 + C(3 + logn))En(J)
(J E X, n 2: 1)

(d. [10; Theorem 5]).
Remark 2. Suppose that

A = sup{IITtIIB[x] : t E lR} < 00

and
00

T t f'V L e>"jtP j
j=-oo

(t E lR), (29)

where {Aj : j E Z} is a sequence of scalars. Then 'I = {Tt : t E IR}
becomes a strongly continuous group of operators and there holds

U E D(G)),
j=-oo

where G is the in£nitesimal generator of 'I with domain D(G) ([8;
Proposition 2]). Let Q = [a, b] ~ R Then in view of (16) and (29),
(15) reduces to

00L e->"jtPj
j=-oo

(t E [a, b]).

(t E [a, b])

Also, typical examples of the sequences {ej} and {h} satisfying (16)
and (17) are given by

ej(t) = e-imj'p(t) , fj(t) = eimj'p(t) (t E [a, b], j E Z),

where
27f (1 )rp(t) = - t - -(a + b)

b - a 2
and {mj : j E Z} is a sequence of integers such that mj t- mk whenever
j t- k.
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Remark 3. Let (5 = {gj, 9;hEZ be a fundamental, total biorthogonal
system on X, where {gj : j E Z} and {g; : j E Z} are sequences of
elements in X and X* (the dual space of X), respectively (d. [5],
[19]). That is, (5 is a system which satisfies the following conditions:

(G-l) (5 is fundamental, i.e., the linear span of {gj : j E Z} is dense
in X.

(G-2) (5 is total, i.e., if f E X and g;(J) = 0 for all j E Z, then
f = O.

(G-3) (5 is biorthogonal, i.e., g;(gk) = bj,k for all j, k E Z.
Then we define

Pj(J) = g;(J)gj (J E X,j E Z),

which satisfies Conditions (P-l), (P-2) and (P-3). Therefore, our re
sults obtained in this section are applied in this setting.

Finally, we restrict ourselves to the case where X is a homogeneous
Banach space (d. [4], [8], [18], [21]). That is, X a function space
which satisfies the following conditions:

(H-l) X is a linear subspace of L~7r and it is a Banach space with
norm II· Ilx.

(H-2) X is continuously embedded in L~7r' i.e., there exists a constant
K > 0 such that

Ilflll ::; Kllfllx for all f E X.

(H-3) The right translation operators Tt defined by

Tt(J)(·) = f(- - t) (J EX)

is isometric on X for each t E JR.
(H-4) For each f EX, the mapping t 1-----+ Tt(J) is strongly continuous

on R

Typical examples of homogeneous Banach spaces are C27r and L~7r' 1 ::;
p < 00. For other examples, see [8] (d. [4]' [18], [21]).

Now take

(fl,jL) = ([-7r,7f], 2~dt),

ej(t) = e- ijt , fj(t) = gj(t) = eijt (j E Z, It I ::; 7f),

g;(J) = J(j) (j E Z, f E X)
(d. Remarks 2 and 3). Then Mn is the 2n + I-dimensional linear
subspace of X consisting of all trigonometric polynomials of degree at
most n.
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Consequently, all the results stated in this section hold for homo
geneous Banach spaces and in particular, Corollary 3, Theorem 6 and
Theorem 7 extend [3; p.212, Theorem, 6; Chap.7, Theorem 7]' [3;
Kharshiladze-Lozibski Theorem 1] (d. [6; Chap.7, Theorem 8]) and
[6; Chap.7, Theorem 9] to more general homogeneous Banach spaces,
respectively.
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