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KOROVKIN TYPE APPROXIMATION CLOSURES
FOR VECTOR-VALUED FUNCTIONS

TOSHIHIKO NISHISHIRAHO

ABSTRACT. Korovkin type approximation closures are discussed
in the spaces of vector-valued functions on compact Hausdorff
spaces. For this, it is introduced that the notions of an Mrp-
envelope, an Mp-affine function as well as an Mrp-representing
operator and a T-Choquet boundary for a linear subspace M and
a positive linear operator 7" under certain appropriate require-
ments.

1. Introduction

Let X be a compact Hausdorff space and let E¥ be a Dedekind
complete normed vector lattice which contains an element e such that
e > 0,]le] = 1 and |a| < ||a|le for all a € E. We call e the normal
order unit of F ([22]). Concerning the general notions and terminol-
ogy needed from the theory of normed vector lattices, we refer to [25]
(cf. [1], [13]). Let B(X, FE) denote the normed vector lattice of all
FE-valued bounded functions on X with the usual pointwise addition,
scalar multiplication, ordering and the supremum norm || - ||. We shall
use the same symbol || - || for underlying norms. C(X, F) denotes the
closed linear sublattice of B(X, F) consisting of all F-valued contin-
uous functions on X. In the case when F is equal to the real line R,
we simply write B(X) and C(X) instead of B(X, E) and C(X, F),
respectively.

For any v € B(X) and a € F, we define (v ® a)(z) = v(z)a for
all z € X. Also, for any v € B(X) and f € B(X,FE), we define
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(vf)(z) = v(z)f(z) for all z € X. Clearly, v @ a and vf belong
to B(X,E), and |lv @ a|| = [jvllla|| and [jof|| < [[o[llf|l. Ifa €
E,v € C(X)and f € C(X, E), then v®a and v f belong to C(X, F).
C'(X) ® F stands for the linear subspace of C'(X, F) consisting of all
finite sums of functions of the form v® a, where v € C'(X) and a € F.
We define p(z) = e for all z € X. Notice that p is the normal order
unit of B(X, F). Let A(X, E) be a linear sublattice of C'(X, F) which
contains p.

The purpose of this paper is to show that our previous approach
[22] to approximation theorems of Korovkin type can be adapted to
the setting of an arbitrary positive linear operator 1" in the place of
the identity operator /. Consequently, the results of [10] (cf. [3], [4],
[5], 6], [7], [14], [15]) can be generalized to the context of functions
taking a value in an optional Dedekind complete normed vector lattice
with the normal order unit.

Concerning the background of the Korovkin type approximation
theory, see the recent book of Altomare and Campiti [2], in which
an excellent source and a vast literature of this theory can be found
(cf. [9], [11]). Also, for the quantitative treatments on the degree
of convergence of approximation processes with respect to positive
multiplication operators, we refer to [23] and [24] (cf. [16], [17], [18],
[19], [20], [21]).

2. Mp-envelopes and Mp-affine functions

Let M be a linear subspace of A(X, F/) which contains p and let T’
be a positive linear operator of A(X, F) into C'(X, E). For a function
f € A(X, F) and a point z € X, we set

My (f,2) ={T(h)(z) : [ < h,h € M}

and
M (f,x) = {T(h)(z): h < f,h € M}.

Since || < [|fllp, /T (p)(x) € M7(f,x) and || fI|T'(p)(x) € M](/,x)
For a given f € A(X, E), we define

Jr(z) = inf M7.(f,z)  (z € X)

and
JH@)=sup M (f,z) (z€X),



which are called the upper and lower Myp-envelope of f, respectively.
These functions have the following properties, which may follow im-
mediately from the definition:

Lemma 1. Let f,g € A(X, FE) and £ € R. Then we have:

(@) ST (p) < ST <T(f) < f7 < ST (p).

(b) I [ < g, then f;. < g7 and [T < gf.

(c)  (f+9r<frtorfl+a9 <(f+9g).

(d) If§ >0, then (£/); = §fy and (Sf)7 =&/)

(e) If £ <0, then (£f)7 = &f]. In particular, (—f)7 = —fI.

A function f € A(X, F) is said to be Mp-affine if f7 is equal to
JT. Obviously, f is Mp-affine if and only if fI' = 1I'(f) = f;. For a
given x € X, we define
Mr(z) = {f € A(X, E) : [/ (z) = fi(=)},
which is a linear subspace of A(X, ) containing M. Also, we set
MT = ﬂ M'I‘(’f),
zeX

which is a linear subspace of A(X, E) containing M. Clearly, we have
My ={f € A(X,E): [l = i} ={f € AX,E): [T =T(f) = f7}.

Lemma 2. Let [ € My. Then for any ¢ > 0, there exist finite subsets
{91,92, e ’.(]'m} and {hl, h27 e ,hm} OfM such that

g1 <T(f) < hp, hyp—gr <ep, (1)
where
.Q’\I/‘ = sup{T(gl)7 T(QQ)’ e aT(gm)}

and
h’/I\‘ — inf{T(h]), T(h2), T, T(h'm)}‘

Proof. Since fT'(z) = T(f)(z) = f;(z) for each z € X, there exist
functions g, h, € M such that

0 <[ <hgy T(h)(@) — Tlg:)(@) < 3e.

Therefore, there exists an open neighborhood V,, of z such that

T(hg)(t) — T(gz)(t) < ee forallteV,.



Since the family {V, : x € X} is an open covering of X, it has a
subcovering {V,, : i = 1,2,--- ,m}. Then the functions

9i = Gz;» hi:h’-’l«'i (1‘:]-,21 7""’)

have the desired properties.

Let A and B be normed vector lattices, and let L be a mapping
of A into B. Then L is said to be increasing if f,g € Aand f < g
imply L(f) < L(g). Evidently, if L is linear, then L is increasing if
and only if L is positive. Furthermore, if A has a normal order unit a
and if L is a positive linear operator of A into B, then L is bounded
and [|L]| = || L{a)].

From now on let D be a directed set and let A be an index set.

Proposition 1. Let z € X. If {ftar : @ € D, A € A} is a family of
increasing mappings of A(X, F) into E satisfying

lim |, r (k) — T'(k)(z)|| =0 uniformly in A € A (2)
for allk € M, then
Um [[pa,x(f) = T(f)(2)[[ =0 uniformly in A € A (3)

for all f € My(z).

Proof. Let g and h be functions in M such that g < f < h. Then
for every € > 0, by (2) theres exists an element oy € D such that

ar(g) = T(g)(@)|| <€ and |lpax(h) — T(h)(z)|| <€
for all @« € D,a > ag and all A € A. Since
[pax(uw) — T(u)(@)| < [[par(u) = T(u)(z)lle  (a€ D,AeA)
whenever u belongs to A(X, F) and
Har(9) < par(f) < par(h) (€ D, X € A),
we conclude that for all @ € D,a > oy and all A € A,
T(g)(z) — ce < pap(f) < T(h)(z) + ee,

which yields
71 (@) — e < pap(f) < fr(z) + ee.
Therefore, we have

ap(f) =T (f)(z)| <ee  (a€D,a>ap €A



because of fT(x) = T(f)(z) = f3(z). Thus we obtain
lax () =T(N)(2)l| <€ (a€D,a>a,)eAn),
which implies (3).

Corollary 1. Let {T,,» : @« € D,\ € A} be a family of increasing
mappings of A(X, F) into B(X,E). Then the following statements
hold:

(a) Let z € X. If

im [|Tox(9)(2) = T(g)(z)[| =0  uniformly in A € A
for all g € M, then

lim [Tua(f)(@) — T(N)@)| =0 unifomly in X € A
for all f € Myp(z).
(b) If

lim [|75,2(g9) — T'(9)ll =0 uniformly in A € A

for all g € M, then

im [ Toa(f)(z) = T(f)()| =0 uniformly in X € A

for all z € X and f € My.

Proposition 2. If {T,» : @« € D,X € A} is a family of increasing
mappings of A(X, E) into B(X, E) satisfying

lim [ Tax(g9) — T(g)|| =0 uniformly in A € A (4)
for all g € M, then
lim [ Top(f) ~ T(1)| =0 wniformlyin \€A (3)

for all f € My.

Proof. For any ¢ > 0, by Lemma 2 there exist finite subsets

{gla g2, -, gm} and {h17 h'2, ) hm} of M satisfying (1)' By (4)$
there exists an element oy € D such that

1Ton(9i) — T(g)ll <€, [ Tap(hs) =T (i)l <€ (i=1,2,---,m) (6)
forall @ € D,a > ag and all A € A. Since for all z € X
Top(k)(z) — T(k)(2)] < [[Tap(k)(z) — T(k)(z)lle  (a€D,A€A)



whenever k belongs to A(X, F) and
Toa(g:) < Tap(f) < Toa(hi)  (i=1,2,---,m)
for all @« € D and all A € A, by (6) we conclude that
T(gi)(z) — ee < Top(f)(x) < T(hs)(z) +ee  (1=1,2,---,m)

for all @ € D,a > ag and all A € A. Therefore, for all z € X we
obtain

gi(x) — ee < Toa(f)(z) < b (z) + €e (e € D,a > ap, A € A),

which together with (1) gives

Tax()(z) = T(f)(z)] <3ee (@€ D,a=anAeh),
and so

1Tax(H)(@) = T(N(@) <3¢ (a € D,a>ag)€AN),
which implies

[ Tapn(f) = TN <3¢ (a€D,a=ag, €.

Hence, (5) remains true.

Remark 1. If g@e € My and T(g®@¢) = g®@ e for every g € C(X),
then T (M) separates the points of X.

3. My-representing operators and 7-Choquet boundaries

For a given z € X, a positive linear operator p of A(X, F) into F
is called an Mrp-representing operator for z if u(g) = T'(g)(z) forall g €
M. For each z € X, we define é,(f) = f(z) for every f € B(X, F).
The operator §, is called the evaluation operator at z. Clearly, we have
8:(p) = e and ||6;]| = 1. Also, é, o T is always the Mp-representing
operator for z. Let RT(M) denote the set of all My-representing
operators for z.

For r € X and f € A(X, E), we denote by [fI(z), f+(x)] the
order interval in F, i.e.,

[ (@), (@) ={a € E: f](z) < a < Ji(z)}.

Then we have the following result, which gives the close connection
between the Mp-envelpoes and Myp-representing operators.



Lemma 3. Let x € X and let f € A(X, F). Then we have

(£ (@), fi(@)] = {u(f) - € Ry (M)}

Proof. Let p € RT(M), and let g and h be functions in M such
that ¢ < f < h. Then we have

T(g)(z) = p(g) < pu(f) < u(h) =T(h)(z),
which establishes
S (@) < p(f) < fr(z).

Conversely, let a be an arbitrary element in [f7(x), f7-(z)], and
let V be a linear subspace of A(X, F) spanned by f. We define

p(g) = gr(z)  for every g € A(X, E)

and

po(Ef) =&a  for every £ € R.
Then, by Lemma 1, the mapping p : A(X, F/) — F is sublinear and
po is a linear operator of V into F satisfying po(g) < p(g) for all
g € V. Therefore, by the vector-valued Hahn-Banach theorem ([1;
Theorem 2.1|, cf. [13; Theorem 1.5.4]), there exists a linear operator
puof A(X, F) into E such that u(g) = po(g) for all g € V and u(h) <
p(h) for all h € A(X,E). If h € A(X, F) and h < 0, then Lemma 1
(b) gives

u(h) < p(h) = () < O3(x) =0,
which implies that p is positive. Furthermore, for every g € M we
have

wg) < plg) = gr(x) = g/ (z) = T(g)(x)
and
—g) = p(—g) < p(=9) = (=9)r(z) = —T(g)(=),
and so u(g) = T'(g)(x). Thus p belongs to RT (M) and p(f) = po(f) =

a. The proof of the lemma is now complete.
As an immediate consequence of Lemma 3, we have the following.

Lemma 4. Let f € A(X, E). Then the following assertions hold:

(a) Let € X. Then f belongs to Mp(z) if and only if u(f) =
(65 0 T)(f) for all p € RT(M).

(b) [ belongs to My if and only if u(f) = (65 0 T)(f) for all
r € X and all p € RT(M).



We define
FL(X) = {z € X : RI(M) = {8, 0 T}},

which is called the T-Choquet boundary of X with respect to M. This
can be characterized by Lemma 4 (a) as follows:

Lemma 5. A point x € X belongs to OT(X) if and only if fI'(z) =
() for all f € A(X, E), i.e., Mp(z) = A(X, E).

According to Lemma 4 (b) and Lemma 5, we have the following.

Proposition 3. My = A(X, E) if and only if 01,(X) = X.

4. T-Korovkin closures and 7T-Korovkin spaces

Let A and B be normed linear spaces, and let £ be a class of
mappings of A into B. Let S be a subset of A and let L. € £. Then
we define Kor(£;9, L) to be the set of all f € A with the property
that if {L, : @ € D, X € A} is an arbitrary family of mappings in £
satisfying

lim |Lax(9) — L(g)]| =0  uniformly in A € A

for all g € .9, then
liénHLa,,\(f) —L(f)||l=0 uniformly in A € A.

We call Kor(£;S,L) an L-Korovkin closure of S with respect to
£. Also, S is said to be an L-Korovkin set with respect to £ if
Kor(£; S, L) is identical with A. In this event, if S is a linear subspace
of A, then we shall say that .S is an L-Korovkin space with respect to
£

If A and B are normed vector lattice, then J[A, B] and B[A, B]
denote the classes of all increasing mappings of A into B and positive
linear operators of A into B, respectively.

Theorem 1. Let x € X. Then the following statements are equiva-
lent:
(a) z belongs to %,(X).
(b) M is a 8, 0T- Korovkin space with respect to J[A(X, E), E].
(¢c) M is a b, 0 T-Korovkin space with respect to B[A(X, F), ]



Proof. If z € 8%,(X), then we have
Kor(J[A(X,E),E|; M,6, 0 T) = A(X, E)

because of Lemma 5 and Proposition 1. Therefore, (a) implies (b). It
is obvious that (b) implies (c). Now, suppose that

Kor(BlA(X, E), E]; M, 6,0 T) = A(X, E)

and let p be an arbitrary element in RT(M). Then for all a € D and
all A\ € A, we define p,,» = p, which is an operator in B[A(X, E), E]
satisfying

im [|pa(g) = (60 T)(g)[| =0  uniformly in A € A
for all g € M. Therefore for every f € A(X, F), we have

licrlnllua,,\(f) — (6o T)(H)||=0 uniformly in A € A,
which yields p = é, 0 T, and so z € 8%,(X). Thus (c) implies (a).
Theorem 2. In the following assertions, the implications (a) = (b) =

(c) hold:

(a) OT(X) is identical with X .
(b) M is a T-Korovkin space with respect to J[A(X, E), B(X, F)].
(c) M is a T-Korovkin space with respect to B[A(X, F), B(X, F)].

Proof. 1f 8%,(X) = X, then it follows from Propositions 2 and 3
that

A(X, E) = My C Kor(J[A(X, E), B(X, E)]; M,T) C A(X, E),
and so we have
Kor(J[A(X, E), B(X, E); M,T) = A(X, E).

Thus (a) implies (b). It is clear that (b) implies (c).

In order to show that the implication (c) = (a) in the statements
of Theorem 2, we assume that X is a first countable, compact Haus-
dorff space and that D is the set N of all natural numbers in the
remaining part of this section.

Proposition 4. We have

My = Kor(3[A(X, E), B(X, E)}; M,T) = Kor(BIA(X, E), B(X, E);; M,T).



Proof. 1t follows from Proposition 2 and Theorem 2 that
My C Kor(J[A(X, E), B(X, E)]; M,T) C Kor(BIA(X, E), B(X, E)}; M,T).

Now, let f be an arbitrary function in Kor(P[A(X, E), B(X, E)|; M, T).
Let z € X and p € RT(M). Since X satisfies the first countability
axiom, there is a fundamental system {V,, : n € N} of open neighbor-
hoods of z such that

‘/12‘/222Vn:_)vn+12

For each n € N, by Urysohn’s lemma there exists a function u,, €
C(X) such that

DLug(t) £1 [HeX), ufe)=1, u,(t)=0 (teX\V,)
Now, for each n € N and A € A we define

Taa(9) = un @ pulg) + (Ix —ua)T(g) (g9 € A(X, E)),
where
Ix(t)=1 for every t € X. (7)
Then {7}, » : n € N, A € A} is a family of operators in B[A(X, F), C(X, F)]
satisfying
nh_{& I Tox(h) —T(R)||=0 uniformly in A € A

for every h € M. Therefore we have
Jim W Tua(f) —T(f)||=0  uniformly in A € A,
and so

lim ||To(f)(z) = T(f)(z)|| =0 uniformly in A € A.

n—o0

This yields p(f) = (6z 0 T)(f), since To A (f)(z) = p(f) for all n € N
and all A € A. Hence, by Lemma 4 (b), f belongs to My, and so we
have

My D Kor(BlA(X, E), B(X, E)}; M, T).

The proof of the proposition is now complete.

Theorem 3. The following assertions are equivalent:
(a) 03,(X) = X.
(b) Kor(J[A(X, E), B(X, E); M,T) = A(X, E).
(c) Kor(BA(X, E), B(X, E); M,T) = A(X, E).
(d) Mr = A(X, E).



Proof. This immediately follows from Theorem 2, Propositions 3
and 4.

Now, we are interested in that 7" is a finitely defined operator of
order n, which is defined as follows (cf. [8], [14], [15]):

Let {v,vg,--- ,v,} be a finite set of non-negative functions in
C(X) and let {¢1, 92, -, @n} be a finite set of continuous mappings
of X into itself. Then we define

T(f):Z:'ui-(fogoi) for every f € A(X, E).

Consequently, all the results can be applicable to this setting.

From now on we restrict ourselves to the case where n = 1,v; =
1x and ¢ = ¢, where ¢ : X — X is an arbitrary continuous mapping.
We set T, = T'. That is, this operator is given by

T,(f)y=fogp  forevery f e A(X,E). (8)
Remark 2. We set
=0 ad f.=f (fe€AXE)),
which are called the upper and lower M -envelope of f, respetively and
O (X) = 94(X),

which s called the Choquet boundary (cf. [22]). Let x € X and
f € A(X, E). Then it follows immediately from the definition that

f1,@) = [*(p(2), f(z) = fo(o(2)).
Thus, by Lemma 5, we have
zedr(X) < olz) € du(X). (9)

As a consequence of Theorem 3 and the above equivalence (9),
we have the following corollary which can be more convenient for later
applications.

Corollary 2. Let T, be as in (8). If Om(X) coincides with X, then
M is both a T,-Korovkin space with respect to J[A(X, E), B(X, E)|
and a T,-Korovkin space with respect to P[A(X, E), B(X, F)].

Remark 3. The following assertions hold:

(a) If M is an I-Korovkin space with respect to J[A(X, F), B(X, F)],
then 1t is a T,,-Korovkin space with respect to J[A(X, F), B(X, F)].



(b) If M is an I-Korovkin space with respect to B[A(X, F), B(X, E)|,
then it is a T,,-Korovkin space with respect to ‘B[A(X, ), B(X, E)].

5. T,~-Korovkin sets and 7,- Korovkin spaces

Recall that 1x is the normal order unit of C'(X) defined by (7),
and let T, be as in (8). Here we consider the case of A(X,FE) =
C(X,F), and let M be a linear subspace of C(X, F) which contains
ly @afor alla € E. We set

J=7J[C(X,E),B(X, E))

and

Theorem 4. If for each point x € X, there exists a function h, €
C(X) such that

hy >0, hy(x) =0 and h,(t) >0 for all t € X witht#z (10)

and
h,@ae M for every a € F, (11)

then M s both a 1,-Korovkin space with respect to J and a T,-
Korovkin space with respect to 3.

Proof. This follows immediately from [22;Lemma 7] and Corollary

For a given subset S of C'(X), we define
S@QE={v®@a:veESack}

and let span(S ® F) denote the linear subspace of C(X, I) spanned
by S ® E. Notice that S @ F is a T,,-Korovkin set with respect to 3
if and only if span(S @ F) is a T,,-Korovkin space with respect to .

Corollary 3. Let {uy,ug, - ,un} be a finite subset of C(X) and let
U= {IX)u17u27“' ,um}® E.

Suppose that for each point r € X, there exists a finite subset
{a1(z),as(z), - ,am(z)} of R such that the function

i=1
satisfies (10) and (11). Then span(U) is a T,-Korovkin space with

respect to J and U is a T.,-Korovkin set with respect to ‘B.



From now on let p be an arbitrary fixed even positive integer.

Corollary 4. Let {vy,ve,- - ,u,} of C(X) which separates the points
of X and let

n
o 2 2 x| p—1
V= {1Xavla"' yUnyUpy ot Uyt 71)5) y "ty Un 7va}®E
=1

Then span(V') is a T,-Korovkin space with respect to J and V is a
T,-Korovkin set with respect to 3.

Indeed, with the help of the function

n

he =) (vi —vi(z))P (2 € X),

i—1
this follows from Corollary 3.

Theorem 5. Let G be a subset of C(X) separating the points of X
and let

W:{gi:QEG,iZO,l,Q,"' ,p}®E7

where ¢° = 1x. Then span(W) is a T,,-Korovkin space with respect to
J and W is a T,,-Korovkin set with respect to .

Proof. It was shown in the proof of [22; Theorem 5] that
Ospan(w)(X) = X.

Therefore, the desired result follows from Corollary 2.

Corollary 5. Let X be a compact subset of a real locally conver Haus-
dorff vector space F with its dual space F*, and let

H={(hlx):heFi=0,1,2,--- ,p}®E,

where h|x denotes the restriction of h to X. Then span(H) is a T,-
Korovkin space with respect to J and H is a T,-Korovkin set with
respect to .

Applying Corollary 4 and Theorem 5 to the case of p = 2, we
shall now mention some examples of 7,,-Korovkin sets with respect
to P and T,-Korovkin spaces with respect to J, which include the
classical cases for T, = I, thus, ¢ : X — X is the identity mapping
(cf. [12], [22]).



(1°) Let X be a compact subset of the n-dimensional Euclidean
space R™. For each k = 1,2,---,n, pr denotes the k-th coordinate
function defined by

pilz) =23 for every x = (z1, 29, -+ ,2,) € X.
Then \ .
Ki={1x,p,pe P Y P} @ F
o k=1

K2 = {]-Xaplap?a"' 7PmP¥aP§a”' ’pi}®E

are T'p-Korovkin sets with respect to 3. Also, span(K) and span(K)
are T,-Korovkin spaces with respect to J.
(2°) Let X be a compact subset of the n-dimensional unitary space

C", where C denotes the complex plane. For each k =1,2,--- ,n, we
define

gr(z) = Re(2x) and 7(2) = Im(24)

for every z = (21,29, -+ ,2,) € X, where Re(z;) and Im(z;) stand for
the real part and the imaginary part of zj, respectively. Then

n

K3 = {1X1QIaQZ5"' yQnyT1,T2,° " arnaz(ql?: +TI%)}®E
k=1

and
_ 2 2 .2 2
K4 — {1x,(I1,"' yQnyT1, " Ty qyy " Gy, Ty, " ,’I‘n}®E

are T,-Korovkin sets with respect to 3. Also, span(K3) and span(K})
are T,-Korovkin spaces with respect to J.
(3°) Let X be the n-dimensional torus T", i.e,

™ = {Z: (21,22,"' 1z‘n) eC*: le{ — lak: 1727"' 7”}1
and g and ry (k = 1,2,--- ;n) be as in the example (2°). Then
K5 = {1X,Qh(12,"‘ yqnyT1,7T2,° " ’Tn}®E

is a T,,-Korovkin set with respect to 3 and span(K3) is a T,,-Korovkin
space with respect to J.

(4°) Let Cyr(R™, ) denote the normed vector lattice of all F-
valued continuous functions f on R™ which are periodic with period
27 in each variable with the norm

11l = sup{[|/(z)[| : 2 € R}



Then C(T™, E) is isometrically isomorphic to Cor(R™, F). For each
k=1,2,--- ,n, we define

ck(z) = coszy, and  sg(z) =sinzy
for every x = (1,22, -+ ,2,) € R". Then
K6:{1R"7clac2)'” ,C,L,Sl,Sg,"',Sn}@E

is a T,,-Korovkin set with respect to P and span(Kjs) is a T),-Korovkin
space with respec to J, where ¢ : R® — R" is a continuous mapping.

Remark 4. Let A and B be normed linear spaces, and let £ be a set
of mappings of A into B. Let Ng = N U {0} and let A = {a((;\zl ta €
D,A € A,n € Ny} be a family of scalars. Let {L, : n € Ny} be a
sequence of mappings in £, L. € £ and f € A. Then the sequence
{L.(f) : n € Ny} is said to be A-summable to L(f) with respect to £

of
lim I i a((;},)an(f) —L(f)|l=0 uniformly in A € A, (12)

n—0

where it is supposed that the series in (12) converges for each a € D
and X € A.

As the examples mentioned in [19] (cf. [17], [18]) show, there
are a wide variety of families A = {ag’},)l ca € DA€ Ajn € Ny} of
particular interest which cover several summability methods scatered
wn the literatures. Consequently, all the results obtained in this paper
can be applied to the A-summability in the sense of (12).

References

(1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Aca-
demic Press, New York, 1985.

[2] F. Altomare and M. Campiti, Korovkin-type Approximatin
Theory and its Applications, Walter de Gruyter, Berlin-New
York, 1994.

(3] H. Bauer, Theorems of Korovkin type for adapted spaces, Ann.
Inst. Fourier, 23(1973), 245-260.

[4] H. Bauer, Approzimation and abstract boundaries, Amer. Math.
Monthly, 85(1978), 632-647.

[5] H. Bauer and K. Donner, Korovkin approzimation in Cy(X),
Math. Ann. 236(1978), 225-237.



[6] H. Bauer, G. Leha and S. Papadopoulou, Determination of
Korovkin closures, Math. Z. 168 (1979), 263-274.

[7] H. Berens and G. G. Lorentz, Theorems of Korovkin type for
positive linear operators on Banach lattices, in: Approximation
Theory (Proc. Internat. Sympo., Austin 1973; ed. by G. G.
Lorentz), Academic Press, New York, 1973, 1-30.

[8] A. S. Cavaretta, Jr., A Korovkin theorem for finitely defined
operators, in: Approximation Theory (Proc. Internat. Sympo.,
Austin 1973; ed. by G. G. Lorentz), Academic Press, New
York, 1973, 299-305.

[9] K. Donner, Extensions of Positive Operators and Korovkin
Theorems, Lecture Notes in Math. 904, Springer Verlag, Berlin-
Heidelberg-New York, 1982.

[10] M. W. Grossman, Korovkin theorems for adapted spaces with
respect to a positive operator, Math. Ann. 220(1976), 253-262.

[11] K. Keimel and W. Roth, Ordered Cones and Approximation,
Lecture Notes in Math. 1517, Springer Verlag, Berlin-Heidelberg-
New York, 1992.

[12] P. P. Korovkin, Linear Operators and Approximation Theory,
Hindustan Publ. Corp., Delhi, 1960.

[13] P. Meyer-Nieberg, Banach Lattices, Springer Verlag, Berlin-
Heidelberg-New York, 1991.

[14] C. A. Micchelli, Chebyshev subspaces and convergence of pos-
itwe linear operators, Proc. Amer. Math. Soc., 40(1973),
448-452.

[15] C. A. Micchelli, Convergence of positive linear operators on
C(X), J. Approx. Theory, 13 (1975), 305-315.

[16] T. Nishishiraho, The degree of convergence of positive linear
operators, Tohoku Math. J., 29 (1977), 81-89.

[17] T. Nishishiraho, Saturation of multiplier operators in Banach
spaces, Tohoku Math. J., 34 (1982), 23-42.

[18] T. Nishishiraho, Quantitative theorems on approximation pro-
cesses of positive linear operators, in: Multivariate Approxi-
mation Theory II (Proc. Internat. Conf. Math. Res. Inst.,
Oberwolfach, 1982; ed. by W. Schempp and K. Zeller), ISNM.
Vol. 61, Birkhaser Verlag, Basel-Boston-Stuttgart, 1982, 297-
311.

[19] T. Nishishiraho, Convergence of positive linear approzimation
processes, Tohoku Math. J., 35 (1983), 441-458.



[20] T. Nishishiraho, The convergence and saturation of positive lin-
ear operators, Math. Z., 194 (1987), 397-404.

[21] T. Nishishiraho, The order of approzimation by positive linear
operators, Tohoku Math. J., 40 (1988). 617-632.

[22] T. Nishishiraho, Approzimation of the Korovkin type for vector-
valued functions, Ryukyu Math. J., 7(1994), 65-81.

[23] T. Nishishiraho, Approzimation processes with respect to posi-
tiwe multiplication operators, Comput. Math. Appl., 30(1995),
389-408.

[24] T. Nishishiraho, The order of convergence for positive approz-
imation processes, Ryukyu Math. J., 8(1995), 43-82.

[25] H. H. Schaefer, Banach Lattices and Positive Operators, Springer
Verlag, Berlin-Heidelberg-New York, 1974.

Department of Mathematical Sciences
College of Science

University of the Ryukyus
Nishihara-Cho, Okinawa 903-01
JAPAN



