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THE ORDER OF CONVERGENCE FOR POSITIVE
APPROXIMATION PROCESSES •

TOSHIHIKO NISHISHIRAHO

Abstract. Quantitative estimates for approximation processes of pos
itive linear operators are derived by using a modulus of continuity and
by taking higher order absolute moments with respect to test systems
under suitable assumptions. Furthermore, several applications are
also provided.

1. Introduction

Let X be a compact Hausdorff space and let B(X) denote the
Banach lattice of all real-valued bounded functions on X with the
supremum norm II . II. C(X) denotes the closed sublattice of B(X)
consisting of all real-valued continuous functions on X. Let A(X) be
a linear subspace of C(X) which contains the unit function defined by
1x (Y) = 1 for all y E X. Let {La ,;\ : a E D, ~ E A} be a family of
bounded linear operators of A(X) into B(X), where D is a directed
set and A is an index set, and let L be a bounded linear operator of
A(X) into B(X). Then the family {L a ,;\} is called an approximation
process with respect to L on A(X) if for every f E A(X),

(1) lim liLa ;\(1) - L(I)II = 0
a '

uniformly in ~ E A.

In particular, if {L a ,;\} is an approximation process with respect to
the identity operator I on A(X), then we simply say that it is an
approximation process on A(X) (cf. [47], [49], [55], [59]).

Let p be a positive real number and let G be a subset of A(X)
separating the points of X. Suppose that A(X) contains the set

Gp = {Ig - g(y)lxIP : g E G,y EX}.
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For a function 9 E G, we define

(y EX),

(ex E D,~ E A,g E G).

whose norm is called the p-th absolute moment for L with respect to
g.

Let {La,A : ex ED, ~ E A} be a family of positive linear operators
of A(X) into B(X) and put

JL~~(g) = JL(P)(La,A;g)

In [54] we observed that usual convergence of nets of positive lin
ear operators of A(X) into B(X) is valid for the convergence behavior
in the sense of (1), where L can be taken to be a positive multiplica
tion operator or a positive projection operator on A(X). That is, we
have the following results, which establish a generalized Korovkin-type
approximation theorem (cf. [9], [18], [22], [31], [44], [63]):

THEOREM A. Let U be a multiplication operator given by

(2) U(f) = hi (f E A(X)),

where h is an arbitrary fixed non-negative function in B(X). H for
every 9 E G,

uniformly in ~ E A

and if there exists a strictly positive function 1£ E A(X) such that

lim IILa,A(u) - U(u)11 = 0
a

uniformly in ~ E A,

then {La,A} is an approximation process with respect to U on A(X).

THEOREM B. Let T be a positive projection operator on A(X) satis
fying T i= I, T(l x ) = Ix and La,AT = T for all ex E D, ~ EA. Hfor
every 9 E G, JL(p)(T; g) E A(X) and

uniformly in ~ E A,
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then {La"d is an approximation process with respect to T on A(X).

In [58] we extended Theorem A to the context of functions tak
ing a value in an arbitrary normed linear space under the concept
of quasi-positive linear operators including convexity-monotone opera
tors introduced by Campiti [14] (cf. [59]). Moreover, further references
concerning the positive approximation processes can be also found in
[5] and the Korovkin-type approximation theory is extensively treated
in the books of Altomare and Campiti [6], Anastassiou [8], Donner
[17] and Keimel and Roth [30].

Now, in [55] we gave a quantitative version of Theorems A and B,
in which we estimated the rate of convergence behavior (1) of La,>. (f)
by using a suitable modulus of continuity of f under certain require
ments (cr. [53], [56]) motivated by the previous works of the author
[50, 51, 52] in the setting of compact metric spaces (cf. [60]).

The purpose of this paper is to refine these results for approxi
mation of functions having certain smoothness properties. Actually,
the results of the author [45, 49] can be improved by means of the
higher order moments. Applications will be made to various approxi
mation processes induced by the method of A-summability due to the
author [48] (cf. [49], [57]), which recovers that of Bell [10] (cf. [34],
[61]) including the method of almost convergence (F-summability) of
Lorentz [32], AB-summability of Mazhar and Siddiqi [35] and order
summability of Jurkat and Peyerimhoff [27, 28].

Consequently, we extend the results of Mohapatra [36] concerning
the almost convergence for continuously differentiable functions on the
bounded closed interval [a, b] in the real line R to the case of several
variables. Concrete examples of approximating operators can be pro
vided by the Bernstein-Lototsky-Schnabl operators ([49], cr. [18], [22],
[23], [62]), the Bernstein-Schnabl operators ([1], cf. [2], [7]), the gen
eralized Stancu-Miihlbach operators ([12], cr. [40]) and the strongly
continuous semigroups of Markov operators induced by them (cr. [3],
[4]' [7], [13], [46], [54], [56]). For the basic theory of semigroups of
operators on Banach spaces, we refer to [11], [16], [19], [25] and [43].

2. Auxiliary Results

Let d be a pseudo-metric in X. For f E B(X) and 6 ~ 0, we
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define

w(f,6) = wd(f, 6) = sup{l/(z) - l(y)1 : z,y E X,d(z,y):::; 6},

which is called the modulus of continuity of 1 with respect to d. Ob
viously, for each 1 E B(X), w(f,') is a monotone increasing function
on [0,00) with

and

o:::; w(f,6) :::; 211/11

w(f,6) = w(f,6(X))

(6 ~ 0)

(6 ~ 6(X)),

where 6(X) denotes the diameter of X. Also,

lim w(f,6) = 0
6~+O

if and only if 1 is uniformly continuous with respect to the topology
induced by d.

Here we assume that there exist constants C, K > 0 such that

(3) (f E B(X), e,6 ~ 0).

REMARK 1: (d. [50; Lemma 3]) (a) Suppose that d is convex, i.e.,
if d( z, y) = a + b, a, b > 0, then there exists a point z E X such that
d(z, z) = a and d(z, y) = b. Then (3) holds for C = K = 1.

(b) Let X be a compact convex subset of a pseudo-metric linear
space (Y, d). Assume that d is invariant, i.e., d(z+z, y+z) = d(z, y) for
all z,y,z E Y, and that d(·,O) is starshaped, i.e., dCBz,O):::; f3d(z,O)
for all z E Y and all f3 with 0 :::; (3 :::; 1. Then (3) holds for C = K = 1.

(c) If (X,d) is a compact metric space having a coefficient of
convex deformation p = p(X), then (3) holds for C = 1 and K = P
([26; Theoreme 2]).

Note that if X is as in Remark 1 (b) with d being invariant and
if d((3z, 0) = (3d(z, 0) for all z E Y and all (3 with 0 < f3 < 1, then dis
convex. In particular, if d is a pseudo-metric induced by a seminorm,
then it is always convex.

Let p > 1 and let ~ be a non-negative function in B(X2 ), where
X 2 = X X X denotes the product space of X and X, such that ~(', y) E
A(X) for each y E X and

(4) cP'(z,y):::; ~(z,y) for all (z,y) E X 2
•
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A function I E C(X) is said to have the property (mvp) if
there exists a finite subset {il, 12,' .. , I.,} of C(X) and a finite subset
{hl, h2 ,' •• , h.,} of G such that

(5) I(z) - I(y) = L li(~d(hi(Z) - hi(y))
i=l

for all z, y E X, where {~l,6,'" ,~.,} is a set of l' points of X with

d(~i,Y) ~ d(z,y) (i = 1,2"" ,1').

In this event, we sometimes say that I has the property (mvp) asso
ciated with the system

(6) {il, 12, . .. , I., j h l , h2, ... , h., }.

REMARK 2: Let X be a compact convex subset of the 1'-dimensional
Euclidean space R" equipped with the metric

(7) d(z, y) = max{lzi - Yil : i = 1,2",' ,1'}

for z = (Zl,Z2,'" ,Z.,),y = (Yl,Y2,'" ,y.,) E Wand define

4>(z, y) = L IZi - YilP
,

i=l

which clearly satisfies (4). Then (3) holds for C = K = 1 and every
continuously differentiable function I on X has the property (mvp)
associated with the system

where Ii is the i-th partial derivative of I, i.e.,

(8)

and ei denotes the i-th coordinate function on X, i.e.,

From now on, we suppose that A(X) contains the set Gq , where

1 1 p- + - = 1, ~.e., q = --,
p q p-l

and that I E A(X) has the property (mvp) associated with the system
(6).
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LEMMA 1. Let <p be a positive linear functional on A(X) and let
y EX. Then for a116 > 0,

,.
(9) l<p(f) - f(y)<p(1 x )1 ~ L Ifi(y)II<p(hi - hi (y)1 x )1

i=l

,.
X L(<p(lhi - hi(y)1xI Q))1/Q

w(fi,6).
i=l

In particular, if <p(1x) = 1, then (9) reduces to

,.
l<p(f) - f(y)1 ~ L Ifi(y)II<p(hd - hi(y)1

i=l

,.
+ {C + 6- 1 K(<p(4J(·, y)))l/P } L (<p(lhi - hi (y)1 x IQ)) l/Qw(fi, 6).

i=l

PROOF: For all z E X, we define

,.
F(z) = f(z) - f(y) - L fi(y)(hi(z) - hi(y)).

i=l

Then we have

,.
(10) l<p(f) - f(y)<p(1 x )1 ~ L l!i(y)II<p(hj - hj (y)1x )1 + 1<p(F)I·

i=l

Now we extend <p to a positive linear functional on the whole space
C(X) and denote this functional by the same <po Since by (3), (4) and
(5) ,.

IF(z)1 ~ L I!i(~d - !i(y)llhi(z) - hi(y)1
i=l

,.
~ L (C + 6- 1Kd(~j,Y)) w(fi,6)lhj (z) - hi(y)1

i=l
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"
~ L (c + 6-1Kd( Z, y)) W(fi, 6)lhi(z) - hi(y)1

i=1

"
~ L (C + 6-1K(cP(z, y))1/P ) w(fi, 6)lhi(z) - hi(y)1

i=1

"=L (Clhi(z) - hi(y)1 + 6-1K(cP(Z,y))1/P lhi(z) - hi(y)l) w(fi,6),
i=1

applying cp to both sides of this inequality with respect to the variable
z and using Holder's inequality, we get

"
Icp(F)1 ~ L{C(cp(l x ))1/P (cp(lhi - hi(y)l x Iq)) 1/q

i=1

"=L (C(cp(l x ))1/p +6-1K(cp(cP(.,y)))1/P )

i=1

X (cp(lhi - hi(y)lx Iq)) 1/
q
w(/i, 6),

which together with (10) implies the desired inequality (9).

As an immediate consequence of Lemma 1, we have the following:

PROPOSITION 1. Let L be a positive linear operator of A(X) into
B(X). Then for all y E X and all 6 > 0,

"
(11) IL(f)(y) - f(y)L(lx )(y)1 ~ 'L Ifi(y)IIL(hi - hi(y)lx )(y)1

i=1

+ {C(L(l x )(y))1/p + 6- 1 K(m(Lj cP)(y))1/p}

" 1/
x 'L(JL(q)(Ljhd(y)) qw(fi,6),

i=1
where

(12) m(Lj cP)(y) = L(4)(·, y))(y).
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In particular, if L(lx ) = Ix, then (11) reduces to

.,
(13) IL(f)(y) - f(y)1 :::; L Ifi(y)IIL(hd(y) - hi(y)1

i=1

.,
+ {C + 8- 1 K( m(Lj ep)(y))1/P } L (JL(q)(Lj hi)(y)) 1/

q
w(fi, 8).

i=1

LEMMA 2. Let cp be a positive linear functional on A(X). Let L be a
positive linear operator of A(X) into itself such that

(i=I,2, .. ·,'l'),

where m(Lj ep) is the function defined by (12). Then for all 8 > 0,

.,
(15) Icp(L(f)) - cp(f)1 :::; L Ilfillcp(IL(hd - hi!)

i=1

.,
x L (cp(JL(q)(Lj hi))) 1/

q
w(/i, 8).

i=1

In particular, ifcp(lx) = 1, then (15) reduces to

.,
Icp(L(f)) - cp(f)1 :::; L 1I/illcp(IL(hd - hi!)

i=1

.,
+ {C + 8- 1K( cp(m(Lj ep) ))1/P } L (cp(JL(q)( Lj hi))) 1/qW(fi, 8).

i=1

PROOF: We extend cp to a positive linear functional on the whole
space C(X) and denote this functional by the same cp. Then applying
cp to both sides of (13) and using Holder's inequality, we establish the
desired estimate (15).

From Lemma 2, we derive the following:
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PROPOSITION 2. Let Sand L be positive linear operators of A(X)
into itself. Suppose that L(lx ) = Ix and (14) is satisfied. Then for
all y E X and all 8 > 0,

l'

(16) IS(L(f»(y) - S(f)(y)1 :S L 1IIiIIS(IL(hd - hil)(y)
i=l

+ {C(S(lx )(y»l/p + 8- 1 K(S(m(L; !l>»(y))l/P }

l' 1/
X L (S(p,(q)(L;hd)(Y») qw(fi,8).

i=l

In particular, if SL = L, then (16) reduces to

l'

IL(f)(Y) - s(f)(y)1 :S L IlfiIIS(IL(hd - hil)(y)
i=l

l'

+ {C + 8- 1 K(S(m(L; !l»)(y»l/P } L (S(p,(q)(L; hd)(y») l/
q
w(fi, 8).

i=l

3. Main Results

Here we assume that A(X) contains Gp for each p > 1. If f E
B(X), 8 2: 0 and if {gl' g2, ... ,gm} is a finite subset of G, then we
define

where

(17) d(z, y) = max{lgi(Z) - gi(y)1 : i = 1,2,··· ,m},

which is a pseudo-metric in X. This quantity is called the modulus of
continuity of f with respect to gl,g2,··· ,gm ([53], d. [45], [49]).

In order to achieve our purpose it is always supposed that there
exist constants C, K > 0 such that
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for all f E B{X),e,h ~ 0 and for all finite subsets {gl,g2,'" ,gTn} of
G.

A function f E C{X) is said to have the property (MVP) if
there exists a finite subset {It, 12," . , f,,} of C{X) and a finite subset
{h 1 ,h2 ,'" ,h,,} ofG satisfying (5), where {el,e2,'" ,e,,} is a set ofr
points of X with

(19) Ig{ed - g{y)1 :s; Ig{z) - g(y)1

for all g E G and for i = 1,2"" , r. In this event, we sometimes say
that f has the property (MVP) associated with the system (6).

Let {La,>. : ex ED, A E A} be a family of positive linear operators
of A{X) into B{X) with

(20) TJa = sup{IILa ,>.(lx)11 : A E A} < 00

for each ex E D. If L is a positive linear operator of A(X) into B{X)
and f E C{X), then we define

IILa(f) - L(f)IIA = sup{IILa,>.(f) - L(f)11 : AE A}
and

IILa(f) - f L a (1x )IIA = sup{IILa,>.(f) - f L a ,>.(1x )11 : A E A},
which are finite by virtue of (20). Obviously, {La,>.} is an approxima
tion process with respect to L on A{X) if and only if

lim IILa(f) - L(f)IIA = 0 for every f E A(X).
a

If {gl,g2,'" ,gTn} is a finite subset of G and 8 > 1, then we define

1'~)(9"'" ,9=) = (sup{ ~1'~.~(9') : oX E A}f'
Furthermore, for f E B(X) and g E G, we define

wa(f, g) = inf{Ca(p, t)JL~/(P-l))(g)w(f;gl,'" , grn, tJLC:)(gl,'" , grn)) :

p> 1,t > O,gl,'" ,Urn E G,JLC:)(gl,'" ,Urn) > O,m = 1,2,"'},
where

Ca(p,t) = sup{IIC(La,>.(1X))l/P +t-1Kl x ll: A E A}.

We are now in a position to recast Theorem A in a quantitative
form with the rate of convergence for functions having the property
(MVP). Let f be a function in A(X), which has the property (MVP)
associated system (6) and let U be as in (2).
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THEOREM 1. Let 11. be a strictly positive function in A(X) having the
property (MVP) associated the system {u.1' 11.2, .•. ,11., j Vb V2, ... ,V,}.
Then for all a E D,

IILa(f) - U(f)IIA ::; 111/u.IIIILa(u.) - U(u.)IIA

+ II!!ull {~ lIudlllLa ( Vi) - v, La (1x )IIA +~ Wa(u" v;) }

? ?

+ L 1IIiIIIILa(hi ) - hi La(1x )IIA + L wa(fi, hd·
i=l i=l

PROOF: For all a E D, we have

(21) IILa(f) - U(f)IIA::; III/u.IIIILa(u.) - U(u.)IIA

+1I1/u.IIIILa(u.) - u.La(1x )IIA + IILa(f) - I La(1x )IIA.

Let p > 1,6> 0 and let {gl,g2,'" ,gm} be a finite subset of G. We
define

(22)
m

4>(z,y) = L Igi(Z) - gi(y)IP
i=l

x

for all (z, y) E X2. Then with the pseudo-metric d in X given by (17),
inequalities (3) and (4) hold because of (18) and (22). Furthermore
I has the property (mvp) associated with the system (6) by virtue of
(19). Therefore, taking L = La,>. in Proposition 1, we arrive at

?

ILa,>.(f)(y) - l(y)La,>.(1x)(y)1 ::; L 1IIiIIIILa,>.(hd - hi La,>.(1x)11
i=l

+ {C( La.> (1X )(y))l/p + 6- 1 K (~La.> (19' _ 9,(y)Ix IP)(Y») l/

P

}

~ ( (pl(p-1» ) 1-1/p
LJ /La,>. (hd(y) W(fijg1,'" ,gm,6)
i=l
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7'

~ L 1IIiIlIILa(hi) - hi L a (1x )IIA
i=l

7'

X L IIJL~{(P-1»(hdI11-1/PW(fi;g11··· ,gml 8)
i=l

~ 1llillllLa(hd - hi La (1x )IIA

+ {C(La,,\(1x )(y))l/P + 8- 1 KJL<J)(g11··· I gm)}

7'

X L JL<J/(p-1»(hi)w(fi; g1l ... Igml 8).
i=l

Now putting 8 = £JL<J) (g1l ... I gm) > 0 and taking the suprernurn
over all y E X, we get

7'

IILa,'\(f) - f La,,\(1x )11 ~ I: IlfdlllLa(hd - hiLa(1x )IIA
i=l

7'

X I: JL<J/(p-1»(hdw(fi; gl,··· Igml £JL":)(gl,··· ,gm)),
i=l

and so

7'

IILa(f) - f La(1x )IIA ~ I: IlfillllLa(hd - hiLa(1x )IIA
i=l

7'

+ Ca(p,£) I:JL~/(p-1»(hdw(fi;g11··· Igml£JL~)(g11··· ,gm)),
i=l

which yields
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l'

(23) IILa(f) - I La(1x )IIA ~ L Wa(fi, hd
i=l

l'

+ L Il/dlllLa(hd - hiLa(1x )IIA.
i=l

Similarly, we have

• •
IILa(u)-uLa(1x)IIA ~ L Il udIIILa(vd- V i La(1x)IIA +LWa(Ui,vd,

i=l i=l

which together with (23) and (21) implies the desired result.

COROLLARY 1. Let U be as in Theorem 1. Then for all a E D,

IILa(f) - IliA ~ 111/uIIIILa(u) - uliA

+ Ilf/ull {t lIudlll£.(v;) - v;£.(lx)IIA + t",·(u;,v;)}
l' l'

+ L Il/illllLa(hd - hiLa(1x)IIA + LWa(/i,hd.
i=l i=l

COROLLARY 2. For all a E D,

l' l'

+ L Il/illllLa(hd - hiLa(1x )IIA + Lwa(fi,hd.
i=l i=l

REMARK 3: Let 9 E G. Then the following estimates hold for all
a E D:

IILa(g) - gLa(1x )IIA ~ JL<.1')(g)1J~-l/p (p> 1);

JL<.1'/(P-l»(g) ~ JL<.1')(g)1J<.1'-2)/p (p ~ 2).

Suppose that A(X) contains the set

F1a (G) = {gi: g E G,i = 0,1,2"" ,k}
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for an even positive integer k. Let {gl,g2"" ,gm} be a finite subset
of G. Then for all ex E D,

In particular, if h = lx, i.e., U = I and if La,>.(gi) = gi for all
ex ED,>' E A,g E G and for j = 0,1"" ,k -1, then (24) reduces to

Thus Corollary 2 yields the estimate for IILa(f) - IliA in terms of the
corresponding quantities for the test system G" = {g" : 9 E G}.

Let T as in Theorem B and suppose that

(i = 1,2,'" ,1')

and
(8 > 1,9 E G).

For ex E D and for i = 1,2"" ,1', we define

If {gl' g2,'" ,gm} is a finite subset of G and 8 > 1, then we define

Furthermore, for I E B(X) and 9 E G, we define

x w(fjgll'" ,gm,tJL<:)(Tjg1"" ,gm)) :

p> 1,t > 0,91,'" ,9m E G,JL<:)(Tjg1"" ,gm) > O,m = 1,2,"'}'

Now concerning the degree of convergence in Theorem B we have
the following:
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THEOREM 2. For all a E D,

7 7

IILa(f) - T(f)IIA ~ L Il/iIIIILa(IT(hd - hil)llA +L wa(T; li,hd·
i=1 i=1

PROOF: Let p> 1,6' > 0 and let {g1,g2'··· ,gm} be a finite subset of
G. Let ~ be the function given by (22). Then taking S = La,>. and
L = T in Proposition 2, we have

7

ILa,>.(f)(y) - T(f)(y)1 ~ Lilli IILa,>.(IL(hi ) - hi I)(y)
i=1

x

which gives

7

IILa(f) - T(f)IIA ~ L Il/iIlIILa(IT(hd - hil)llA
i=1

7

X L J.L~/(p-1»(T; hdw(fi; g1l g2,· .. ,gm, 6').
i=1

Therefore, Putting 6' = f.J.L~)(T; g1l ••• ,gm) > 0 and taking the infi

mum over allp > l,t" > O,g1,··· ,gm E G,J.L~)(T;g1'··· ,gm) > 0 and
m = 1,2,·· ., we obtain the desired result.

COROLLARY 3. IfT(g) = 9 for all 9 E G, then

7

IILa(f) - T(f)IIA ~ L wa(T; Ii, hi)
i=1
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for all a E D.

REMARK 4: For all a E D, we have:

IILa( IT(hi ) - hd)IIA S; JL~)(T; hd (p > 1, i = 1,2, ... , 1');

JL~/(p-l»(T;g) S; JL~)(T;g) (p ~ 2,g E G).

If A(X) contains Fle(G) for an even positive integer k and

(25) (g E G,i = 0,1,2,···,k -1),

then we have

and so Corollary 3 gives an estimate for IILa(f) - T(f)IIA in terms of
the corresponding quantities for the test system Gle .

In the rest ofthis section it is assumed that A(X) contains Fla (G)
for an even positive integer k. Let T be a positive projection operator
on A(X) with T =f:. I, which satisfies (25) and La,AT = T for all
a E D, >. E A. In addition, we suppose that each La, A maps A(X)
into itself and

for all a ED,>' E A and all g E G, where {~a,A : a ED,>' E A} is a
family of real numbers with °< ~a,A < 1.

For f E B( X) and 8 > 0, we define

Using this quantity, we have the following result which is more
convenient for later applications.
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COROLLARY 4. Let {na : 0 E D} be a net of positive integers and let
Ua,>. = L:~>. be the na-iteration of La,>. for eacb. 0 E D, A E A. Then
for all 0 E D I we have:

7'

(26) IlUa(f) - filA::; L JL~lt/(lt-l»(hdr(li, (a)
i=l

7'

::; LJL~lcl(lt-l»(hdrUi' (naea)l/lc),
i=l

where

( )
lilt

(a = sup{1 - (1 - ea,>.t a
: A E A}

and
ea = sup{ea,>. : A E A}i

7'

(27) IIUaU) - T(f)IIA ::; 2:JL~kl(lt-l»(Ti hdr(fi, fa),
i=l

where

and

( )

na/lt
fa = sup{1 - ea,>. : A E A} .

Indeed, by induction on the degree of iteration, it can be verified
that

and

Ua,>.T = T (0 E D, A E A)

(0 ED, A E A, 9 E G).

Thus (26) and (27) follow from Corollaries 2 and 3, respectively.
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4. Applications

Let A(X) be a closed linear subspace of C(X) which contains Ix.
A mapping L of A(X) into itself is called a Markov operator on A(X)
if it is a positive linear operator with L(lx) = Ix. Let N denote the

set of all non-negative integers. Let {a~~~ : 0: E D, A E A, n E N} be a
family of non-negative real numbers with

(28)
00

~ a(;\) = 1L...J a,n
n=O

for each 0: ED, A E A.

For examples of such families, see, for instance, [48], [49], [50], [52]
and [57]. Let {in : n E N} be a sequence of positive integers and
{kn : n E N} a sequence of non-negative integers. Let {Ln : n ~ I}
be a sequence of Markov operators on A(X). For any f E A(X), we
define

(29)
00

Ta,;\(f) = L a~~~L;:(f)
n=O

(0: E D, A E A),

which converges in A(X) because of (28). Let {W(t) : t ~ O} be a
family of Markov operators on A(X) such that for each f E A(X), the
map t ~ W(t)(f) is strongly continuous on [0,00), {4>;\ : A E A} a
family of non-negative continuous functions on [0,00) and {va : 0: E
D} a net of positive real numbers with lima Va = 0 or lima Va = +00.
For any f E A(X), we define

(30)

and

(0: E D, AE A)

(31) Ra,;\(f) = Va100

exp(-vat)W(4);\(t))(f)dt (0: E D, AE A),

which exist in A(X).

All the operators given above are Markov operators on A(X) and
our general results obtained in the preceding section are applicable to
them. As illustrations of these general results we restrict ourselves to
the following setting:
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Let X be a compact convex subset of a real locally convex Haus
dorff vector space E and let G = G(X) be the space of all real-valued
continuous affine functions on X. Note that (18) holds for C = K = 1
(see, [45; Lemma 1]). Also, it is assumed that each point ~i in (5) is
an internal point of the segment joining z and y (cr. [45; Definition
2]). Therefore, (19) is automatically fulfilled. Let T be a positive pro
jection operator of C(X) onto a closed linear subspace containing 1x
and G (which is the case where A(X) = C(X) and k = 2).

For applications of Corollary 4 it is convenient to make the fol
lowing definition: Let {P"( : I E r} be a family of Markov operators
on C(X) and {z,,( : IE r} a family of non-negative real numbers. We
say that {P"(} is of type [T; z"(] if

for all I E r and all g E G.

Now we first consider the case where E = R", in which the metric
d( z, y) is given by (7). Then we have

w(/; ell' .. ,e", 6) = w(/, 6) (/ E B(X), 6 ~ 0).

Let {La,'\' : a E D, A E A} be a family of positive linear operators of

C(X) into B(X). If JL~2)(el"" ,e,,) = 0 for all 0: E D, then La ,,\,(/) =
fL a ,,\,(lx ) for all f E C(X), 0: E D and all AE A ([cf. [45; Lemma 2]'
[50; Lemma 1]). Thus we always consider the case where

(0: ED).

Then for all f E B(X), 0: E D and for i = 1,2, ... ,1', we have

where

Therefore, in view of Remark 2, we extend the results of Mohapatra
[36] (cf. [15], [38], [39], [65]) and give a quantitative version of the
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Korovkin type convergence theorem due to Karlin and Ziegler [29;
Theorem 1 and Remark 2] for all functions in C(l)(X), which denotes
the space of all continuously differentiable functions on X.

Take X = 1", the unit r-cube, i.e.,

and let F be the closed linear subspace of C(I,,) spanned by the set

Let {Bn : n 2: I} be the sequence of the Bernstein operators on C(I,,)
given by

for f E C(I,,) and z = (Zl,Z2,'" ,z,,) E I" (see, e.g., [33]). It can be
verified that B 1 is a positive projection operator of C(I,,) onto F and
that {Bn} is of type [B1 i lin]. Consequently, if Ln = Bn,n 2: 1, then
{Ta,A} is of type [B1 i 1 - Za,A]' where

00 ( 1 ) le"
Z ,= ""'" a(A) 1 - -a,A L a,n .

n=O 3n
(0: ED,>' E A),

and so Corollary 4 can be applied to these operators. In particular,
concerning the degree of approximation by iterations of the Bernstein
operators, we have the following estimates: For all f E C(l)(I,,) and
all n EN,

(32)

X W(fi, (1- (l-l/in)le" f/2 t ~) : t > O}

~ i~tinr{(1+<-l)W(/;,<~ -;) :<> o}
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and

(33)

X w(/i' (1-I/in)k,,/2€~) : € > O},
where Ii stands for the i-th partial derivative of I given by (8).

Taking € = 2/..[i, (32) and (33) yield

(34) IIB;:U) - III :s; i (1 + v:) (1 - (1 - 1/in)k,,) 1/2

and

(35)

7'

x Lw(ii, (1-I/in)k"/2),
i=1

respectively. In particular, if r = 1, then (34) and (35) reduce to

which is given in [33; Theorem 1.6.2] for {kn} = {I} and {in} = {n}
and
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respectively (cf. [39], [41], [42]).

Statements analogous to the above-mentioned results may be de
rived for the case where En' n ~ 1, are the Bernstein operators on
C(~,.) with the standard 'l'-simplex

given by

n!
x

for f E C(~,.) and ~ = (~1'~2'··· ,~,.) E~,. (see, e.g., [33]). These
can be obtained in the following very general setting.

Recall that X is a compact convex subset of a real locally convex
Hausdorff vector space E and let G = G(X). If L is a Markov operator
on C(X), then for point ~ E X, a Radon probability measure v'" on
X is called an L(G)-representing measure for ~ if

L(f)(~) =Lf dv", for everyf E G

(cf. [24], [37]). Let M = {Mn : n ~ I} be a sequence of Markov
operators on C(X), v(U) = {v""n : ~ E X, n ~ I} a family of Radon
probability measures on X such that v""n is an Mn(G)-representing
measure for ~, P = (Pnj )n,j~l an infinite lower triangular stochastic
matrix, Y = {y", : ~ E X} a family of points of X, and P = {Pn : n ~ I}
a sequence of functions of X into [0,1]. Then we define

where ft denotes the Dirac measure at t, and also define the mapping

n

1r'n,P : X n
-+ X by (~1l~2'··· ,~,.) I-t LPnj~j.

j=l
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For a given I E C(X), we define

which is called the n-th Bernstein Lototsky-Schnabl function of I on
X with respect to 11M , P, Y and p ([49], cf. [18], [22], [23], [62]).

For any I E C(X), we define

(z E X,n ~ 1).

Obviously, Hn is a positive linear operator of C(X) into B(X) with
Hn(1x) = Ix. If {gl' g2,'" ,grn} is a finite subset of G and a E D,
then we define

Hereafter, let I be a function in C(X) having the property (MVP)
associated with the system (6). Now take

(n = 0, 1, 2, ... ), Ln = Bn (n - 1 2 ... )- " ,

and define the operators Ta ." by (29). Then we have the following.

THEOREM 3. Suppose that Mn(g) = 9 for all n ~ 1 and all 9 E G.
Then the following statements hold:

(a) IfYiD = z for every z E X, then for all a E D,

(36)

where

IITa(f) - IliA ~ L1Jia(fi,hd,
i=l
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(b) If Pn = 1x for all n 2: 1, then (36) holds with

and

L a~~~ L pj,.1t L(HIt(gl) - gn
n=O 1t>1 i=1

00 Tn

PROOF: Assume that YOB = z for all z EX. Then, by [49; Lemma 4]'
it can be seen that Ta,>.. (g) = 9 and

00

JL(2)(Ta,>.. , g) = Ta,>..(l) - g2 = L a~~~ L pj,.ltPIt (Hit (g2) -l)
n=O 1t>1

for all ex E D, A E A and all 9 E G. Therefore, the desired estimate
(36) follows from Corollary 2. The proof of Part (b) is similar.

If {g1' g2, ... ,gTn} is a finite subset of G, then we define

1/2
Tn

()n(g1,'" ,gTn) = LP;;P; L(H;(gl) - gn
;~1 i=1

COROLLARY 5. Let M be as in Theorem 3. Then the following asser
tions hold:

(a) IfyOB = z for every z E X, then for all n 2: 1,

7'

(37)

where

IIBn(f) - III ~ L "pn(fi, hi),
i=1
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(b) If pn = Ix for all n ~ 1, then (37) holds with
1/2

and
1/2

m

(In(gl,''' ,gm) = LP~j L(Hj(gl) - gl)
j?l i=l

From now on we suppose that

M n = I (n ~ I), Yz = Z (z EX),

Pn = Ix (n ~ I), vz,n = V z (z EX, n ~ I),

where V z is a representing measure for z (i.e., an I( G)-representing
measure for z) such that the mapping

z r--. H(f)(z) = vz(f) = Lf dvz

belongs to G for every f E C(X). Consequently, each Bn maps C(X)
into itself and B1 = H is a positive projection operator of C(X) onto
G (d. [23j Proposition], [49j Remark 7]).

For any f E B(X) and 8 > 0, we define

{ (

Tn 1/2)
{}(f,8)=inf (l+t- 1)w fjg1,"',gm,bt {;t(H(gl}-9?)

• > 0,9','" ,9_ E G, t<H(911 - 9il > O,m = 1,2, ... }.

Let {rna: a ED} be a net of positive integers. If {L a, ;\ : a E D, A E
A} is a family of Markov operators on C( X) and if L is a Markov
operator on C(X), then we define

IlL:" (f) - L(f)IIA = sup{IIL:>.(f) - L(f)11 : A E A}.
I

Now take
Ln = Bn (n = 1,2",,),

and defines the operators Ta, ;\ by (29). Then we have the following.
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THEOREM 4. Let {ma : a E D} be a net of positive integers. Then
for all a E D,

7'

(38) liT:" (I) - filA :S Ta L IIH(h;) - h; 11
1

/
2 [J(li, T a ),

i=1

where

and

7'

(39) liT:" (I) - H(I)IIA :S Va L IIH(h;) - h;1I 1
/

2 [J(Ii, Oa),
i=1

where

Oa = (sup{f a~~l (1 _~pLi) "" :.\ E A}) m.. /2
n=O 1~1

PROOF: By the induction on the degree k of iteration of B n , it can
be verified that {B:} is of type

(n, k = 1,2,,,, ).

Therefore, {Ta ,,\} is of type

[
Hi 1-f a~~l (1 _~ P]"i) ""]

n=O 1>1

(a E D,.\ E A),

and so the desired result follows from Corollary 4.
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COROLLARY 6. For all n E N,

7'

IIB~:(f) - III ~ Cn L IIH(h;) - h;1I 1
/

2 Q(fi, cn)
i=l

where

and
7'

IIB~:(f) - H(f)11 ~ bn L IIH(h;) - h; 11
1

/
2 Q(/i, bn ),

i=l

where

COROLLARY 7. Let D = N \ {OJ, A = N and we define

1 a+>'-l

Ta >. = - "" B~". a L...J J ..
n=>.

(a ED,>' E A).

Then for all a E D, (38) and (39) hold with

and

(41) (Ja = (sup {~ a~l (1 _~pLi) It.. : >. E A}) _./2 ,

n=>. 1~1
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respectively.

REMARK 5: In particular, if {rna} = {I}, then (40) and (41) reduce
to

and

respectively and Corollary 7 gives the estimate on the degree of almost
convergence (F-summability) (in the sense of Lorentz [32]) of {B~: :
n EN}.

Let {na : a E D} be a net of non-negative integers and {ta : a E
D} a net of numbers in the unit open interval (0,1). If L is a Markov
operator on C(X), then for any f E C(X) we define

ua,i(Ljf) = 1+ 1 :ELi+i(f) (a E D,i E N)
n a i=O

and
00

Aa,i(Lj f) = (1 - ta) L t~Li+i (f)
i=O

(aED,iEN).

Note that if {L} is of type [Tj z], then {ua,i(Lj·n and {AaAL;·n
are of types

[
H. 1 _ ..:.....(1_-_z....:.....)i....:....(1:------.:.(_1---,,---:z)_n.._+~l)]

, z(na +l)

and

[
H. 1 _ (1 - t a )(l- z)i]

, 1 - t a (1 - z) ,

respectively. Therefore, in view of this fact, making use of Corollary
4 we have the following quantitative ergodic type theorem for itera
tions of the discrete Cesaro and Abel means of the Bernstein-Lototsky
Schnabl operators.

- 70-



THEOREM 5. Let m, j ~ 1 be fixed, and set

{3 = (3(m,j) = (1- LP~i/'
i>l

Let {ka : a E D} be a net of positive integers and A = N. Then the
following statements hold:

(a) For all a ED,

l'

11<T:"(Btni f) - HU)IIA ::; Za L IIH(h;) - h;11 1
/

2{}Ui, Za),

i=l

where

(42) (
1 _ (3n .. +1 ) "' .. /2

Za = (1 - (3)(n a + 1)

(b) For all a E D,

l'

IIA:" (Btni f) - HU)IIA ::; Ya L IIH(h;) - h;11 1
/

2{}Ui, Ya),
i=l

where

(43)
_(l-t a )",.. /2

Ya - 1 - (3t a

In particular, for the Bernstein operators on C(~l') we have:

COROLLARY 8. Let m,j ~ 1 be fixed. Let Za and Ya be given by (42)
and (43) with {3 = (3(m,j) = (1 - 1/m)i, respectively. Let {ka : a E

D} be a net of positive integers and A = N. Then for all f E C(l)(~l')

and all a E D,
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Pnj = 0 (j > n).

and

IIA:"(B:;';/}-B,(f)IIA s i (1+
l' ( Vi) ~~ 2 1 + 2 Ya ~W(fi'Ya),

where Ii denotes the i-th partial derivative of I given by (8).

We also note that the corresponding result of Corollary 8 holds
for the Bernstein operators on C(I,.).

Finally, we restrict ourselves to the case where P = (Pnj )n.i?l is
the arithmetic Toeplitz matrix, i.e.,

Pnj =.!. (n 2: I,} =1,2"" ,n),
n

In [46] we showed that there exists a unique strongly continuous semi
group {S(t) : t 2: O} of Markov operators on C(X) such that for
every I E C(X) and for every sequence {mn } of positive integers with
limn --+ oo mn/n = t, t 2: 0,

lim IIB:"(f) - S(t)(f)11 = 0
n--+oo

and

lim
n--+oo

1 I: B~(f) - r1

S(tu)(f) du = O.
m n + 1 i=O Jo

Let {kn : n E N} be a sequence of non-negative integers and {tn :

n E N} a sequence of non-negative real numbers. For any I E C(X),
we define

00 00

Sa,>.(f) = L a~~lS(tn)1c"(f) = L a~~lS(kntn)(f),
n=O n=O

which converges in C(X). Then we have the following.

-72-



THEOREM 6. Let {rna: a E D} be a net of positive integers. Then
for a.11 a E D,

"liS;:'" (f) - IliA ~ T a L IIH(h;) - h;1I1/2il(!i,Ta ),

i=l

where

and

"liS;:'" (f) - H(f)IIA ~ Ba L IIH(h;) - h;1I1/2il(/i, Ba ),

i=l

where

PROOF: From the proof of [46; Theorem 4], {S(t)} is of type [H; 1 
exp( -t)]. Therefore, {Sa,.\} is of type

and so the desired result follows from Corollary 4.

In particular, for the semigroup induced by the Bernstein opera
tors on C(a,,) we have:

COROLLARY 9. Let Ta,Ba and {rna} be as in Theorem 6. Then for
a.11 I E c(1)(a,,) and a.11 a E D,
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and

(
" 1/2)"

liS:" (f) - H(f)IIA :S i 1 + ~(ei - en Oa ~W(h,Oa)

<; i (1+ f) o. 'i;W(f',O.l,

where Ii denotes the i-th partial derivative of I given by (8).

THEOREM 7. Let t :2: 0 be fixed. Let {ka : a E D} be a net ofpositive
integers and A = N. Then for all a E D,

"
Ilu~" (S(t)j f) - H(f)IIA :S Za L IIH(hn - hlW/ 2 {)(h, za),

i=l

where

{
1 - exp( -t(na + 1)) }1c.. /2

Za = (1- exp( -t))(na + 1)
and

"
IIA~" (S(t)j f) - H(f)IIA :S Ya L IIH(hn - hl11 1

/
2 {)(fi, Ya),

i=l

where

(
1 - t a ) 1c .. /2

Ya = 1 - ta exp(-t)

PROOF: Since {S(tn is of type [Hj 1 - exp( -t)l, {uaAS(t)j·n and
{Aa,i(S(t)j')} are of types

[
H' 1 _ exp( -it)(1 - exp( -t(na + 1)))]

, (1 - exp( -t))(na + 1)

and

[
Hj 1 _ exp( -it)(1 - ta)] ,

1 - t a exp( -t)
respectively. Thus the desired result follows from Corollary 4.

In particular, for the semigroup induced by the Bernstein opera
tors on C(.6.,,) we have:
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COROLLARY 10. Let Z'lI Ya, {ka} and A be as in Theorem 7. Then
for all f E C(1)( Ll,,) and all a ED,

and

s i (1+ ~;}.~w(f"y.),

where Ii denotes the i-th partial derivative of f given by (8).

We take

W(t) = S(t) (t 2: 0),

where {c~ : A E A} is a family of non-negative real numbers. Let
{Ca,~: a E D,A E A} and {Ra,~: a E D,A E A} be the families of
operators defined by (30) and (31), respectively. Then we have the fol
lowing quantitative ergodic type theorem for iterations of continuous
Cesino and Abel means of the semigroup {S(t) : t 2: O}.

THEOREM 8. Let {ka : a E D} be a net of positive integers and put
c = sup{exp( -c~) : A E A}. Then for all a E D,

"
IIC~Q(f) - H(f)IIA ~ aa L IIH(hn - h~111/2[}(fi,aa),

i=l

where
_{C(l - exp( -va)) }"'Q/

2
aa -

Va
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and

,.
IIR~Q(f) - H(f)IIA ~ ba L IIH(hn - h;11 1

/
2 0(fi,ba ),

i=l

where

( )

1cQ/2
b _ CVa

a - Va + 1

PROOF: Since {S(t)} is of type [H; 1 - exp( -t)], {Ca ..d and {Ra,A}
are of types

and

[
H.l- vaexP(-cA)]

, Va + 1 '

respectively. Hence the desired result follows from Corollary 4.

In particular, for the semigroup induced by the Bernstein opera
tors on C( 6.,.) we have:

COROLLARY 11. Let {aa}, {ba} and {ka} be as in Theorem 8. Then
for all f E C(l)(6.,.) and all a E D,

and
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where Ii denotes the i-th partial derivative of I given by (8).

REMARK 6: Let A = {O} and Co = O. Thus for all I E C(X) and all
a E D, we have

1 1v
c>Ca.O = - S(t)(f) dt

Va 0

and

Ra.o(f) = Va100

exp( -vat)S(t)(f) dt.

For these operators, we have the following: For all a ED,

.,
(44) IIC~~o(f) - III ~ aa L IIH(h;) - h;1I1

/ 2il(fi,aa),
i=l

where

and

.,
(45) IIR:7o(f) - III ~ baL IIH(h;) - h;W/ 2 il(fi' ba),

i=l

where

Specially, in case of the semigroup induced by the Bernstein operators
on C(d.,), (44) and (45) reduce to
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and

ItR:7o(f) - fit s: ~ (1 + ~(e; - ell

< ~ (1+ f) ~ w(f;, b.),

,.
ba L w(fi, ba )

i=l

respectively,where Ii denotes the i-th partial derivative of I given by
(8).

REMARK 7: Applying Corollary 4, all the corresponding results ofthis
section are also obtained for the Bernstein-Schnabl operators due to
Altomare [l](cf. [2], [7]), the generalized Stancu-Miihlbach operators
of Campiti [12] (cf. [40]) and the strongly continuous semigroups of
Markov operators induced by them (cf. [3], [4], [7], [13]). We omit the
details.

We refer to [20], [21] and [64] for detailed references on the other
contributions to approximation of functions by Bernstein-type opera
tors (cf. [5], [6]).
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