The order of convergence for positive approximation processes

メタデータ	言語：
	出版者：Department of Mathematics，College of
Science，University of the Ryukyus	
	公開日：2010－02－26 キーワード（Ja）： キーワード（En）： 作成者：Nishishiraho，Toshihiko，西白保，敏彦 メールアドレス： 所属： http：／／hdl．handle．net／20．500．12000／15988

THE ORDER OF CONVERGENCE FOR POSITIVE APPROXIMATION PROCESSES *

Toshihiko Nishishiraho

Abstract

Quantitative estimates for approximation processes of positive linear operators are derived by using a modulus of continuity and by taking higher order absolute moments with respect to test systems under suitable assumptions. Furthermore, several applications are also provided.

1. Introduction

Let X be a compact Hausdorff space and let $B(X)$ denote the Banach lattice of all real-valued bounded functions on X with the supremum norm $\|\cdot\| \cdot C(X)$ denotes the closed sublattice of $B(X)$ consisting of all real-valued continuous functions on X. Let $A(X)$ be a linear subspace of $C(X)$ which contains the unit function defined by $1_{X}(y)=1$ for all $y \in X$. Let $\left\{L_{\alpha, \lambda}: \alpha \in D, \lambda \in \Lambda\right\}$ be a family of bounded linear operators of $A(X)$ into $B(X)$, where D is a directed set and Λ is an index set, and let L be a bounded linear operator of $A(X)$ into $B(X)$. Then the family $\left\{L_{\alpha, \lambda}\right\}$ is called an approximation process with respect to L on $A(X)$ if for every $f \in A(X)$,

$$
\begin{equation*}
\lim _{\alpha}\left\|L_{\alpha, \lambda}(f)-L(f)\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda . \tag{1}
\end{equation*}
$$

In particular, if $\left\{L_{\alpha, \lambda}\right\}$ is an approximation process with respect to the identity operator I on $A(X)$, then we simply say that it is an approximation process on $A(X)$ (cf. [47], [49], [55], [59]).

Let p be a positive real number and let G be a subset of $A(X)$ separating the points of X. Suppose that $A(X)$ contains the set

$$
G_{p}=\left\{\left|g-g(y) 1_{X}\right|^{p}: g \in G, y \in X\right\} .
$$

[^0]For a function $g \in G$, we define

$$
\mu^{(p)}(L ; g)(y)=L\left(\left|g-g(y) 1_{X}\right|^{p}\right)(y) \quad(y \in X)
$$

whose norm is called the p-th absolute moment for L with respect to g.

Let $\left\{L_{\alpha, \lambda}: \alpha \in D, \lambda \in \Lambda\right\}$ be a family of positive linear operators of $A(X)$ into $B(X)$ and put

$$
\mu_{\alpha, \lambda}^{(p)}(g)=\mu^{(p)}\left(L_{\alpha, \lambda} ; g\right) \quad(\alpha \in D, \lambda \in \Lambda, g \in G)
$$

In [54] we observed that usual convergence of nets of positive linear operators of $A(X)$ into $B(X)$ is valid for the convergence behavior in the sense of (1), where L can be taken to be a positive multiplication operator or a positive projection operator on $A(X)$. That is, we have the following results, which establish a generalized Korovkin-type approximation theorem (cf. [9], [18], [22], [31], [44], [63]):

Theorem A. Let U be a multiplication operator given by

$$
\begin{equation*}
U(f)=h f \quad(f \in A(X)) \tag{2}
\end{equation*}
$$

where h is an arbitrary fixed non-negative function in $B(X)$. If for every $g \in G$,

$$
\lim _{\alpha}\left\|\mu_{\alpha, \lambda}^{(p)}(g)\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda
$$

and if there exists a strictly positive function $u \in A(X)$ such that

$$
\lim _{\alpha}\left\|L_{\alpha, \lambda}(u)-U(u)\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda
$$

then $\left\{L_{\alpha, \lambda}\right\}$ is an approximation process with respect to U on $A(X)$.
Theorem B. Let T be a positive projection operator on $A(X)$ satisfying $T \neq I, T\left(1_{X}\right)=1_{X}$ and $L_{\alpha, \lambda} T=T$ for all $\alpha \in D, \lambda \in \Lambda$. If for every $g \in G, \mu^{(p)}(T ; g) \in A(X)$ and

$$
\lim _{\alpha}\left\|L_{\alpha, \lambda}\left(\mu^{(p)}(T ; g)\right)\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda
$$

then $\left\{L_{\alpha, \lambda}\right\}$ is an approximation process with respect to T on $A(X)$.
In [58] we extended Theorem A to the context of functions taking a value in an arbitrary normed linear space under the concept of quasi-positive linear operators including convexity-monotone operators introduced by Campiti [14] (cf. [59]). Moreover, further references concerning the positive approximation processes can be also found in [5] and the Korovkin-type approximation theory is extensively treated in the books of Altomare and Campiti [6], Anastassiou [8], Donner [17] and Keimel and Roth [30].

Now, in [55] we gave a quantitative version of Theorems A and B, in which we estimated the rate of convergence behavior (1) of $L_{\alpha, \lambda}(f)$ by using a suitable modulus of continuity of f under certain requirements (cf. [53], [56]) motivated by the previous works of the author $[50,51,52]$ in the setting of compact metric spaces (cf. [60]).

The purpose of this paper is to refine these results for approximation of functions having certain smoothness properties. Actually, the results of the author $[45,49]$ can be improved by means of the higher order moments. Applications will be made to various approximation processes induced by the method of A-summability due to the author [48] (cf. [49], [57]), which recovers that of Bell [10] (cf. [34], [61]) including the method of almost convergence (F-summability) of Lorentz [32], A_{B}-summability of Mazhar and Siddiqi [35] and order summability of Jurkat and Peyerimhoff [27, 28].

Consequently, we extend the results of Mohapatra [36] concerning the almost convergence for continuously differentiable functions on the bounded closed interval $[a, b]$ in the real line \mathbb{R} to the case of several variables. Concrete examples of approximating operators can be provided by the Bernstein-Lototsky-Schnabl operators ([49], cf. [18], [22], [23], [62]), the Bernstein-Schnabl operators ([1], cf. [2], [7]), the generalized Stancu-Mühlbach operators ([12], cf. [40]) and the strongly continuous semigroups of Markov operators induced by them (cf. [3], [4], [7], [13], [46], [54], [56]). For the basic theory of semigroups of operators on Banach spaces, we refer to [11], [16], [19], [25] and [43].

2. Auxiliary Results

Let d be a pseudo-metric in X. For $f \in B(X)$ and $\delta \geq 0$, we
define

$$
\omega(f, \delta)=\omega_{d}(f, \delta)=\sup \{|f(x)-f(y)|: x, y \in X, d(x, y) \leq \delta\}
$$

which is called the modulus of continuity of f with respect to d. Obviously, for each $f \in B(X), \omega(f, \cdot)$ is a monotone increasing function on $[0, \infty)$ with

$$
0 \leq \omega(f, \delta) \leq 2\|f\| \quad(\delta \geq 0)
$$

and

$$
\omega(f, \delta)=\omega(f, \delta(X)) \quad(\delta \geq \delta(X))
$$

where $\delta(X)$ denotes the diameter of X. Also,

$$
\lim _{\delta \rightarrow+0} \omega(f, \delta)=0
$$

if and only if f is uniformly continuous with respect to the topology induced by d.

Here we assume that there exist constants $C, K>0$ such that

$$
\begin{equation*}
\omega(f, \xi \delta) \leq(C+\xi K) \omega(f, \delta) \quad(f \in B(X), \xi, \delta \geq 0) \tag{3}
\end{equation*}
$$

Remark 1: (cf. [50; Lemma 3]) (a) Suppose that d is convex, i.e., if $d(x, y)=a+b, a, b>0$, then there exists a point $z \in X$ such that $d(x, z)=a$ and $d(z, y)=b$. Then (3) holds for $C=K=1$.
(b) Let X be a compact convex subset of a pseudo-metric linear space (Y, d). Assume that d is invariant, i.e., $d(x+z, y+z)=d(x, y)$ for all $x, y, z \in Y$, and that $d(\cdot, 0)$ is starshaped, i.e., $d(\beta x, 0) \leq \beta d(x, 0)$ for all $x \in Y$ and all β with $0 \leq \beta \leq 1$. Then (3) holds for $C=K=1$.
(c) If (X, d) is a compact metric space having a coefficient of convex deformation $\rho=\rho(X)$, then (3) holds for $C=1$ and $K=\rho$ ([26; Théorème 2]).

Note that if X is as in Remark 1 (b) with d being invariant and if $d(\beta x, 0)=\beta d(x, 0)$ for all $x \in Y$ and all β with $0<\beta<1$, then d is convex. In particular, if d is a pseudo-metric induced by a seminorm, then it is always convex.

Let $p>1$ and let Φ be a non-negative function in $B\left(X^{2}\right)$, where $X^{2}=X \times X$ denotes the product space of X and X, such that $\Phi(\cdot, y) \in$ $A(X)$ for each $y \in X$ and

$$
\begin{equation*}
d^{p}(x, y) \leq \Phi(x, y) \quad \text { for all }(x, y) \in X^{2} \tag{4}
\end{equation*}
$$

A function $f \in C(X)$ is said to have the property (mvp) if there exists a finite subset $\left\{f_{1}, f_{2}, \cdots, f_{r}\right\}$ of $C(X)$ and a finite subset $\left\{h_{1}, h_{2}, \cdots, h_{r}\right\}$ of G such that

$$
\begin{equation*}
f(x)-f(y)=\sum_{i=1}^{r} f_{i}\left(\xi_{i}\right)\left(h_{i}(x)-h_{i}(y)\right) \tag{5}
\end{equation*}
$$

for all $x, y \in X$, where $\left\{\xi_{1}, \xi_{2}, \cdots, \xi_{r}\right\}$ is a set of r points of X with

$$
d\left(\xi_{i}, y\right) \leq d(x, y) \quad(i=1,2, \cdots, r)
$$

In this event, we sometimes say that f has the property (mvp) associated with the system

$$
\begin{equation*}
\left\{f_{1}, f_{2}, \cdots, f_{r} ; h_{1}, h_{2}, \cdots, h_{r}\right\} \tag{6}
\end{equation*}
$$

Remark 2: Let X be a compact convex subset of the r-dimensional Euclidean space \mathbb{R}^{r} equipped with the metric

$$
\begin{equation*}
d(x, y)=\max \left\{\left|x_{i}-y_{i}\right|: i=1,2, \cdots, r\right\} \tag{7}
\end{equation*}
$$

for $x=\left(x_{1}, x_{2}, \cdots, x_{r}\right), y=\left(y_{1}, y_{2}, \cdots, y_{r}\right) \in \mathbb{R}^{r}$ and define

$$
\Phi(x, y)=\sum_{i=1}^{r}\left|x_{i}-y_{i}\right|^{p}
$$

which clearly satisfies (4). Then (3) holds for $C=K=1$ and every continuously differentiable function f on X has the property (mvp) associated with the system

$$
\left\{f_{1}, f_{2}, \cdots, f_{r} ; e_{1}, e_{2}, \cdots, e_{r}\right\}
$$

where f_{i} is the i-th partial derivative of f, i.e.,

$$
\begin{equation*}
f_{i}(x)=\frac{\partial f}{\partial x_{i}}(x) \quad\left(x=\left(x_{1}, x_{2}, \cdots, x_{r}\right) \in X\right) \tag{8}
\end{equation*}
$$

and e_{i} denotes the i-th coordinate function on X, i.e.,

$$
e_{i}(x)=x_{i} \quad\left(x=\left(x_{1}, x_{2}, \cdots, x_{r}\right) \in X\right)
$$

From now on, we suppose that $A(X)$ contains the set G_{q}, where

$$
\frac{1}{p}+\frac{1}{q}=1, \quad \text { i.e., } \quad q=\frac{p}{p-1}
$$

and that $f \in A(X)$ has the property (mvp) associated with the system (6).

Lemma 1. Let φ be a positive linear functional on $A(X)$ and let $y \in X$. Then for all $\delta>0$,

$$
\begin{align*}
\mid \varphi(f) & -f(y) \varphi\left(1_{X}\right)\left|\leq \sum_{i=1}^{r}\right| f_{i}(y)| | \varphi\left(h_{i}-h_{i}(y) 1_{X}\right) \mid \tag{9}\\
+ & \left\{C\left(\varphi\left(1_{X}\right)\right)^{1 / p}+\delta^{-1} K(\varphi(\Phi(\cdot, y)))^{1 / p}\right\} \\
& \times \sum_{i=1}^{r}\left(\varphi\left(\left|h_{i}-h_{i}(y) 1_{X}\right|^{q}\right)\right)^{1 / q} \omega\left(f_{i}, \delta\right) .
\end{align*}
$$

In particular, if $\varphi\left(1_{\boldsymbol{X}}\right)=1$, then (9) reduces to

$$
\begin{gathered}
|\varphi(f)-f(y)| \leq \sum_{i=1}^{r}\left|f_{i}(y) \| \varphi\left(h_{i}\right)-h_{i}(y)\right| \\
+\quad\left\{C+\delta^{-1} K(\varphi(\Phi(\cdot, y)))^{1 / p}\right\} \sum_{i=1}^{r}\left(\varphi\left(\left|h_{i}-h_{i}(y) 1_{X}\right|^{q}\right)\right)^{1 / q} \omega\left(f_{i}, \delta\right) .
\end{gathered}
$$

Proof: For all $x \in X$, we define

$$
F(x)=f(x)-f(y)-\sum_{i=1}^{r} f_{i}(y)\left(h_{i}(x)-h_{i}(y)\right) .
$$

Then we have

$$
\begin{equation*}
\left|\varphi(f)-f(y) \varphi\left(1_{X}\right)\right| \leq \sum_{i=1}^{r}\left|f_{i}(y)\right|\left|\varphi\left(h_{i}-h_{i}(y) 1_{X}\right)\right|+|\varphi(F)| . \tag{10}
\end{equation*}
$$

Now we extend φ to a positive linear functional on the whole space $C(X)$ and denote this functional by the same φ. Since by (3), (4) and (5)

$$
\begin{aligned}
& |F(x)| \leq \sum_{i=1}^{r}\left|f_{i}\left(\xi_{i}\right)-f_{i}(y)\right|\left|h_{i}(x)-h_{i}(y)\right| \\
\leq & \sum_{i=1}^{r}\left(C+\delta^{-1} K d\left(\xi_{i}, y\right)\right) \omega\left(f_{i}, \delta\right)\left|h_{i}(x)-h_{i}(y)\right|
\end{aligned}
$$

$$
\begin{gathered}
\leq \sum_{i=1}^{r}\left(C+\delta^{-1} K d(x, y)\right) \omega\left(f_{i}, \delta\right)\left|h_{i}(x)-h_{i}(y)\right| \\
\leq \sum_{i=1}^{r}\left(C+\delta^{-1} K(\Phi(x, y))^{1 / p}\right) \omega\left(f_{i}, \delta\right)\left|h_{i}(x)-h_{i}(y)\right| \\
=\sum_{i=1}^{r}\left(C\left|h_{i}(x)-h_{i}(y)\right|+\delta^{-1} K(\Phi(x, y))^{1 / p}\left|h_{i}(x)-h_{i}(y)\right|\right) \omega\left(f_{i}, \delta\right),
\end{gathered}
$$

applying φ to both sides of this inequality with respect to the variable x and using Hölder's inequality, we get

$$
\begin{gathered}
|\varphi(F)| \leq \sum_{i=1}^{r}\left\{C\left(\varphi\left(1_{X}\right)\right)^{1 / p}\left(\varphi\left(\left|h_{i}-h_{i}(y) 1_{X}\right|^{q}\right)\right)^{1 / q}\right. \\
\left.+\quad \delta^{-1} K(\varphi(\Phi(\cdot, y)))^{1 / p}\left(\varphi\left(\left|h_{i}-h_{i}(y) 1_{X}\right|^{q}\right)\right)^{1 / q}\right\} \omega\left(f_{i}, \delta\right) \\
=\sum_{i=1}^{r}\left(C\left(\varphi\left(1_{X}\right)\right)^{1 / p}+\delta^{-1} K(\varphi(\Phi(\cdot, y)))^{1 / p}\right) \\
\times\left(\varphi\left(\left|h_{i}-h_{i}(y) 1_{X}\right|^{q}\right)\right)^{1 / q} \omega\left(f_{i}, \delta\right),
\end{gathered}
$$

which together with (10) implies the desired inequality (9).
As an immediate consequence of Lemma 1, we have the following:
Proposition 1. Let L be a positive linear operator of $A(X)$ into $B(X)$. Then for all $y \in X$ and all $\delta>0$,

$$
\begin{align*}
\mid L(f)(y)- & f(y) L\left(1_{X}\right)(y)\left|\leq \sum_{i=1}^{r}\right| f_{i}(y)| | L\left(h_{i}-h_{i}(y) 1_{X}\right)(y) \mid \tag{11}\\
+\quad\{ & \left\{\left(L\left(1_{X}\right)(y)\right)^{1 / p}+\delta^{-1} K(m(L ; \Phi)(y))^{1 / p}\right\} \\
& \times \sum_{i=1}^{r}\left(\mu^{(q)}\left(L ; h_{i}\right)(y)\right)^{1 / q} \omega\left(f_{i}, \delta\right),
\end{align*}
$$

where

$$
\begin{equation*}
m(L ; \Phi)(y)=L(\Phi(\cdot, y))(y) \tag{12}
\end{equation*}
$$

In particular, if $L\left(1_{X}\right)=1_{X}$, then (11) reduces to

$$
\begin{align*}
& \quad|L(f)(y)-f(y)| \leq \sum_{i=1}^{r}\left|f_{i}(y) \| L\left(h_{i}\right)(y)-h_{i}(y)\right| \tag{13}\\
& +\quad\left\{C+\delta^{-1} K(m(L ; \Phi)(y))^{1 / p}\right\} \sum_{i=1}^{\Gamma}\left(\mu^{(q)}\left(L ; h_{i}\right)(y)\right)^{1 / q} \omega\left(f_{i}, \delta\right) .
\end{align*}
$$

Lemma 2. Let φ be a positive linear functional on $A(X)$. Let L be a positive linear operator of $A(X)$ into itself such that

$$
\begin{equation*}
m(L ; \Phi),\left|L\left(h_{i}\right)-h_{i}\right|, \mu^{(q)}\left(L ; h_{\mathbf{i}}\right) \in A(X) \quad(i=1,2, \cdots, r), \tag{14}
\end{equation*}
$$

where $m(L ; \Phi)$ is the function defined by (12). Then for all $\delta>0$,

$$
\begin{align*}
& |\varphi(L(f))-\varphi(f)| \leq \sum_{i=1}^{r}\left\|f_{i}\right\| \varphi\left(\left|L\left(h_{i}\right)-h_{i}\right|\right) \tag{15}\\
& +\quad\left\{C\left(\varphi\left(1_{X}\right)\right)^{1 / p}+\delta^{-1} K(\varphi(m(L ; \Phi)))^{1 / p}\right\} \\
& \times \quad \sum_{i=1}^{r}\left(\varphi\left(\mu^{(q)}\left(L ; h_{i}\right)\right)\right)^{1 / q} \omega\left(f_{i}, \delta\right) .
\end{align*}
$$

In particular, if $\varphi\left(1_{X}\right)=1$, then (15) reduces to

$$
\begin{gathered}
|\varphi(L(f))-\varphi(f)| \leq \sum_{i=1}^{\gamma}\left\|f_{i}\right\| \varphi\left(\left|L\left(h_{i}\right)-h_{i}\right|\right) \\
+\quad\left\{C+\delta^{-1} K(\varphi(m(L ; \Phi)))^{1 / p}\right\} \sum_{i=1}^{r}\left(\varphi\left(\mu^{(q)}\left(L ; h_{i}\right)\right)\right)^{1 / q} \omega\left(f_{i}, \delta\right) .
\end{gathered}
$$

Proof: We extend φ to a positive linear functional on the whole space $C(X)$ and denote this functional by the same φ. Then applying φ to both sides of (13) and using Hölder's inequality, we establish the desired estimate (15).

From Lemma 2, we derive the following:

Proposition 2. Let S and L be positive linear operators of $A(X)$ into itself. Suppose that $L\left(1_{X}\right)=1_{X}$ and (14) is satisfied. Then for all $y \in X$ and all $\delta>0$,

$$
\begin{align*}
& |S(L(f))(y)-S(f)(y)| \leq \sum_{i=1}^{r}\left\|f_{i}\right\| S\left(\left|L\left(h_{i}\right)-h_{i}\right|\right)(y) \tag{16}\\
& +\quad\left\{C\left(S\left(1_{X}\right)(y)\right)^{1 / p}+\delta^{-1} K(S(m(L ; \Phi))(y))^{1 / p}\right\} \\
& \quad \times \quad \sum_{i=1}^{r}\left(S\left(\mu^{(q)}\left(L ; h_{i}\right)\right)(y)\right)^{1 / q} \omega\left(f_{i}, \delta\right) .
\end{align*}
$$

In particular, if $S L=L$, then (16) reduces to

$$
\begin{gathered}
|L(f)(y)-S(f)(y)| \leq \sum_{i=1}^{\gamma}\left\|f_{i}\right\| S\left(\left|L\left(h_{i}\right)-h_{i}\right|\right)(y) \\
+\left\{C+\delta^{-1} K(S(m(L ; \Phi))(y))^{1 / p}\right\} \sum_{i=1}^{r}\left(S\left(\mu^{(q)}\left(L ; h_{i}\right)\right)(y)\right)^{1 / q} \omega\left(f_{i}, \delta\right) .
\end{gathered}
$$

3. Main Results

Here we assume that $A(X)$ contains G_{p} for each $p>1$. If $f \in$ $B(X), \delta \geq 0$ and if $\left\{g_{1}, g_{2}, \cdots, g_{m}\right\}$ is a finite subset of G, then we define

$$
\omega\left(f ; g_{1}, \cdots, g_{m}, \delta\right)=\sup \{|f(x)-f(y)|: x, y \in X, d(x, y) \leq \delta\}
$$

where

$$
\begin{equation*}
d(x, y)=\max \left\{\left|g_{i}(x)-g_{i}(y)\right|: i=1,2, \cdots, m\right\} \tag{17}
\end{equation*}
$$

which is a pseudo-metric in X. This quantity is called the modulus of continuity of f with respect to $g_{1}, g_{2}, \cdots, g_{m}$ ([53], cf. [45], [49]).

In order to achieve our purpose it is always supposed that there exist constants $C, K>0$ such that

$$
\begin{equation*}
\omega\left(f ; g_{1}, \cdots, g_{m}, \xi \delta\right) \leq(C+K \xi) \omega\left(f ; g_{1}, \cdots, g_{m}, \delta\right) \tag{18}
\end{equation*}
$$

for all $f \in B(X), \xi, \delta \geq 0$ and for all finite subsets $\left\{g_{1}, g_{2}, \cdots, g_{m}\right\}$ of G.

A function $f \in C(X)$ is said to have the property (MVP) if there exists a finite subset $\left\{f_{1}, f_{2}, \cdots, f_{r}\right\}$ of $C(X)$ and a finite subset $\left\{h_{1}, h_{2}, \cdots, h_{r}\right\}$ of G satisfying (5), where $\left\{\xi_{1}, \xi_{2}, \cdots, \xi_{r}\right\}$ is a set of r points of X with

$$
\begin{equation*}
\left|g\left(\xi_{i}\right)-g(y)\right| \leq|g(x)-g(y)| \tag{19}
\end{equation*}
$$

for all $g \in G$ and for $i=1,2, \cdots, r$. In this event, we sometimes say that f has the property (MVP) associated with the system (6).

Let $\left\{L_{\alpha, \lambda}: \alpha \in D, \lambda \in \Lambda\right\}$ be a family of positive linear operators of $A(X)$ into $B(X)$ with

$$
\begin{equation*}
\eta_{\alpha}=\sup \left\{\left\|L_{\alpha, \lambda}\left(1_{\boldsymbol{X}}\right)\right\|: \lambda \in \Lambda\right\}<\infty \tag{20}
\end{equation*}
$$

for each $\alpha \in D$. If L is a positive linear operator of $A(X)$ into $B(X)$ and $f \in C(X)$, then we define

$$
\left\|L_{\alpha}(f)-L(f)\right\|_{\Lambda}=\sup \left\{\left\|L_{\alpha, \lambda}(f)-L(f)\right\|: \lambda \in \Lambda\right\}
$$

and

$$
\left\|L_{\alpha}(f)-f L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda}=\sup \left\{\left\|L_{\alpha, \lambda}(f)-f L_{\alpha, \lambda}\left(1_{X}\right)\right\|: \lambda \in \Lambda\right\}
$$

which are finite by virtue of (20). Obviously, $\left\{L_{\alpha, \lambda}\right\}$ is an approximation process with respect to L on $A(X)$ if and only if

$$
\lim _{\alpha}\left\|L_{\alpha}(f)-L(f)\right\|_{\Lambda}=0 \quad \text { for every } f \in A(X) .
$$

If $\left\{g_{1}, g_{2}, \cdots, g_{m}\right\}$ is a finite subset of G and $s>1$, then we define

$$
\mu_{\alpha}^{(o)}\left(g_{1}, \cdots, g_{m}\right)=\left(\sup \left\{\left\|\sum_{i=1}^{m} \mu_{\alpha, \lambda}^{(o)}\left(g_{i}\right)\right\|: \lambda \in \Lambda\right\}\right)^{1 / \rho}
$$

Furthermore, for $f \in B(X)$ and $g \in G$, we define

$$
\begin{gathered}
\omega_{\alpha}(f, g)=\inf \left\{C_{\alpha}(p, \epsilon) \mu_{\alpha}^{(p /(p-1))}(g) \omega\left(f ; g_{1}, \cdots, g_{m}, \epsilon \mu_{\alpha}^{(p)}\left(g_{1}, \cdots, g_{m}\right)\right):\right. \\
\left.p>1, \epsilon>0, g_{1}, \cdots, g_{m} \in G, \mu_{\alpha}^{(p)}\left(g_{1}, \cdots, g_{m}\right)>0, m=1,2, \cdots\right\},
\end{gathered}
$$

where

$$
C_{\alpha}(p, \epsilon)=\sup \left\{\left\|C\left(L_{\alpha, \lambda}\left(1_{X}\right)\right)^{1 / p}+\epsilon^{-1} K 1_{X}\right\|: \lambda \in \Lambda\right\} .
$$

We are now in a position to recast Theorem \mathbf{A} in a quantitative form with the rate of convergence for functions having the property (MVP). Let f be a function in $A(X)$, which has the property (MVP) associated system (6) and let U be as in (2).

Theorem 1. Let u be a strictly positive function in $A(X)$ having the property (MVP) associated the system $\left\{u_{1}, u_{2}, \cdots, u_{s} ; v_{1}, v_{2}, \cdots, v_{s}\right\}$. Then for all $\alpha \in D$,

$$
\begin{gathered}
\left\|L_{\alpha}(f)-U(f)\right\|_{\Lambda} \leq\|f / u\|\left\|L_{\alpha}(u)-U(u)\right\|_{\Lambda} \\
+\|f / u\|\left\{\sum_{i=1}^{\dot{m}}\left\|u_{i}\right\|\left\|L_{\alpha}\left(v_{i}\right)-v_{i} L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda}+\sum_{i=1}^{\dot{s}} \omega_{\alpha}\left(u_{i}, v_{i}\right)\right\} \\
+\sum_{i=1}^{r}\left\|f_{i}\right\|\left\|L_{\alpha}\left(h_{i}\right)-h_{i} L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda}+\sum_{i=1}^{r} \omega_{\alpha}\left(f_{i}, h_{i}\right) .
\end{gathered}
$$

Proof: For all $\alpha \in D$, we have

$$
\begin{gather*}
\left\|L_{\alpha}(f)-U(f)\right\|_{\Lambda} \leq\|f / u\|\left\|L_{\alpha}(u)-U(u)\right\|_{\Lambda} \tag{21}\\
+\|f / u\|\left\|L_{\alpha}(u)-u L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda}+\left\|L_{\alpha}(f)-f L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda} .
\end{gather*}
$$

Let $p>1, \delta>0$ and let $\left\{g_{1}, g_{2}, \cdots, g_{m}\right\}$ be a finite subset of G. We define

$$
\begin{equation*}
\Phi(x, y)=\sum_{i=1}^{m}\left|g_{i}(x)-g_{i}(y)\right|^{p} \tag{22}
\end{equation*}
$$

for all $(x, y) \in X^{2}$. Then with the pseudo-metric d in X given by (17), inequalities (3) and (4) hold because of (18) and (22). Furthermore f has the property (mvp) associated with the system (6) by virtue of (19). Therefore, taking $L=L_{\alpha, \lambda}$ in Proposition 1, we arrive at

$$
\begin{gathered}
\left|L_{\alpha, \lambda}(f)(y)-f(y) L_{\alpha, \lambda}\left(1_{X}\right)(y)\right| \leq \sum_{i=1}^{\Gamma}\left\|f_{i}\right\|\left\|L_{\alpha, \lambda}\left(h_{\boldsymbol{i}}\right)-h_{\boldsymbol{i}} L_{\alpha, \lambda}\left(1_{\boldsymbol{X}}\right)\right\| \\
+\left\{C\left(L_{\alpha, \lambda}\left(1_{X}\right)(y)\right)^{1 / p}+\delta^{-1} K\left(\sum_{i=1}^{m} L_{\alpha, \lambda}\left(\left|g_{i}-g_{i}(y) 1_{\boldsymbol{X}}\right|^{p}\right)(y)\right)^{1 / p}\right\} \\
\quad \times \sum_{i=1}^{r}\left(\mu_{\alpha, \lambda}^{(p /(p-1))}\left(h_{i}\right)(y)\right)^{1-1 / p} \omega\left(f_{i} ; g_{1}, \cdots, g_{m}, \delta\right)
\end{gathered}
$$

$$
\begin{gathered}
\leq \sum_{i=1}^{r}\left\|f_{i}\right\|\left\|L_{\alpha}\left(h_{i}\right)-h_{i} L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda} \\
+\quad\left\{C\left(L_{\alpha, \lambda}\left(1_{X}\right)(y)\right)^{1 / p}+\delta^{-1} K\left\|\sum_{i=1}^{m} \mu_{\alpha, \lambda}^{(p)}\left(g_{i}\right)\right\|^{1 / p}\right\} \\
\times \sum_{i=1}^{r}\left\|\mu_{\alpha, \lambda}^{(p /(p-1))}\left(h_{i}\right)\right\|^{1-1 / p} \omega\left(f_{i} ; g_{1}, \cdots, g_{m}, \delta\right) \\
+\quad\left\{C\left(L_{\alpha, \lambda}\left(1_{X}\right)(y)\right)^{1 / p}+\delta^{-1} K \mu_{\alpha}^{(p)}\left(g_{1}, \cdots, g_{m}\right)\right\} \\
\times \sum_{i=1}^{r} \mu_{\alpha}^{(p /(p-1))}\left(h_{i}\right) \omega\left(f_{i} ; g_{1}, \cdots, g_{m}, \delta\right)
\end{gathered}
$$

Now putting $\delta=\epsilon \mu_{\alpha}^{(p)}\left(g_{1}, \cdots, g_{m}\right)>0$ and taking the supremum over all $y \in X$, we get

$$
\begin{gathered}
\left\|L_{\alpha, \lambda}(f)-f L_{\alpha, \lambda}\left(1_{X}\right)\right\| \leq \sum_{i=1}^{r}\left\|f_{i}\right\|\left\|L_{\alpha}\left(h_{i}\right)-h_{i} L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda} \\
\quad+\left\|C\left(L_{\alpha, \lambda}\left(1_{X}\right)\right)^{1 / p}+\epsilon^{-1} K 1_{X}\right\| \\
\times \quad \sum_{i=1}^{r} \mu_{\alpha}^{(p /(p-1))}\left(h_{i}\right) \omega\left(f_{i} ; g_{1}, \cdots, g_{m}, \epsilon \mu_{\alpha}^{(p)}\left(g_{1}, \cdots, g_{m}\right)\right),
\end{gathered}
$$

and so

$$
\begin{gathered}
\left\|L_{\alpha}(f)-f L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda} \leq \sum_{i=1}^{r}\left\|f_{i}\right\|\left\|L_{\alpha}\left(h_{i}\right)-h_{i} L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda} \\
+ \\
C_{\alpha}(p, \epsilon) \sum_{i=1}^{r} \mu_{\alpha}^{(p /(p-1))}\left(h_{i}\right) \omega\left(f_{i} ; g_{1}, \cdots, g_{m}, \epsilon \mu_{\alpha}^{(p)}\left(g_{1}, \cdots, g_{m}\right)\right),
\end{gathered}
$$

which yields

$$
\begin{align*}
& \left\|L_{\alpha}(f)-f L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda} \leq \sum_{i=1}^{r} \omega_{\alpha}\left(f_{i}, h_{i}\right) \tag{23}\\
& +\quad \sum_{i=1}^{r}\left\|f_{i}\right\|\left\|L_{\alpha}\left(h_{i}\right)-h_{i} L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda}
\end{align*}
$$

Similarly, we have

$$
\left\|L_{\alpha}(u)-u L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda} \leq \sum_{i=1}^{\dot{1}}\left\|u_{i}\right\|\left\|L_{\alpha}\left(v_{i}\right)-v_{i} L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda}+\sum_{i=1}^{\dot{f}} \omega_{\alpha}\left(u_{i}, v_{i}\right),
$$

which together with (23) and (21) implies the desired result.
Corollary 1. Let u be as in Theorem 1. Then for all $\alpha \in D$,

$$
\begin{gathered}
\left\|L_{\alpha}(f)-f\right\|_{\Lambda} \leq\|f / u\|\left\|L_{\alpha}(u)-u\right\|_{\Lambda} \\
+\|f / u\|\left\{\sum_{i=1}^{\dot{m}}\left\|u_{i}\right\|\left\|L_{\alpha}\left(v_{i}\right)-v_{i} L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda}+\sum_{i=1}^{\dot{m}} \omega_{\alpha}\left(u_{i}, v_{i}\right)\right\} \\
+\sum_{i=1}^{r}\left\|f_{i}\right\|\left\|L_{\alpha}\left(h_{i}\right)-h_{i} L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda}+\sum_{i=1}^{r} \omega_{\alpha}\left(f_{i}, h_{i}\right) .
\end{gathered}
$$

Corollary 2. For all $\alpha \in D$,

$$
\begin{gathered}
\left\|L_{\alpha}(f)-f\right\|_{\Lambda} \leq\|f\|\left\|L_{\alpha}\left(1_{X}\right)-1_{X}\right\|_{\Lambda} \\
+\quad \sum_{i=1}^{r}\left\|f_{i}\right\|\left\|L_{\alpha}\left(h_{i}\right)-h_{i} L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda}+\sum_{i=1}^{r} \omega_{\alpha}\left(f_{i}, h_{i}\right) .
\end{gathered}
$$

Remark 3: Let $g \in G$. Then the following estimates hold for all $\alpha \in D:$

$$
\begin{array}{cc}
\left\|L_{\alpha}(g)-g L_{\alpha}\left(1_{X}\right)\right\|_{\Lambda} \leq \mu_{\alpha}^{(p)}(g) \eta_{\alpha}^{1-1 / p} & (p>1) ; \\
\mu_{\alpha}^{(p /(p-1))}(g) \leq \mu_{\alpha}^{(p)}(g) \eta_{\alpha}^{(p-2) / p} & (p \geq 2) .
\end{array}
$$

Suppose that $A(X)$ contains the set

$$
F_{k}(G)=\left\{g^{i}: g \in G, i=0,1,2, \cdots, k\right\}
$$

for an even positive integer k. Let $\left\{g_{1}, g_{2}, \cdots, g_{m}\right\}$ be a finite subset of G. Then for all $\alpha \in D$,

$$
\begin{equation*}
\mu_{\alpha}^{(k)}\left(g_{1}, \cdots, g_{m}\right) \leq\left(\sum_{i=1}^{m} \sum_{j=0}^{k}\binom{k}{j}\left\|g_{i}\right\|^{k-j}\left\|L_{\alpha}\left(g_{i}^{j}\right)-U\left(g_{i}^{j}\right)\right\|_{\Lambda}\right)^{1 / k} . \tag{24}
\end{equation*}
$$

In particular, if $h=1_{X}$, i.e., $U=I$ and if $L_{\alpha, \lambda}\left(g^{j}\right)=g^{j}$ for all $\alpha \in D, \lambda \in \Lambda, g \in G$ and for $j=0,1, \cdots, k-1$, then (24) reduces to

$$
\mu_{\alpha}^{(k)}\left(g_{1}, \cdots, g_{m}\right)=\left(\sup \left\{\left\|\sum_{i=1}^{m}\left(L_{\alpha, \lambda}\left(g_{i}^{k}\right)-g_{i}^{k}\right)\right\|: \lambda \in \Lambda\right\}\right)^{1 / k} .
$$

Thus Corollary 2 yields the estimate for $\left\|L_{\alpha}(f)-f\right\|_{\Lambda}$ in terms of the corresponding quantities for the test system $G^{k}=\left\{g^{k}: g \in G\right\}$.

Let T as in Theorem B and suppose that

$$
\left|T\left(h_{\boldsymbol{i}}\right)-h_{\boldsymbol{i}}\right| \in A(X) \quad(i=1,2, \cdots, r)
$$

and

$$
\mu^{(s)}(T ; g) \in A(X) \quad(s>1, g \in G) .
$$

For $\alpha \in D$ and for $i=1,2, \cdots, r$, we define

$$
\left\|L_{\alpha}\left(\left|T\left(h_{\boldsymbol{i}}\right)-h_{\boldsymbol{i}}\right|\right)\right\|_{\Lambda}=\sup \left\{\left\|L_{\alpha, \lambda}\left(\left|T\left(h_{\boldsymbol{i}}\right)-h_{\boldsymbol{i}}\right|\right)\right\|: \lambda \in \Lambda\right\} .
$$

If $\left\{g_{1}, g_{2}, \cdots, g_{m}\right\}$ is a finite subset of G and $s>1$, then we define

$$
\mu_{\alpha}^{(\varepsilon)}\left(T ; g_{1}, \cdots, g_{m}\right)=\left(\sup \left\{\left\|\sum_{i=1}^{m} L_{\alpha, \lambda}\left(\mu^{(\rho)}\left(T ; g_{i}\right)\right)\right\|: \lambda \in \Lambda\right\}\right)^{1 / \iota} .
$$

Furthermore, for $f \in B(X)$ and $g \in G$, we define

$$
\begin{gathered}
\omega_{\alpha}(T ; f, g)=\inf \left\{\left(C+\epsilon^{-1} K\right) \mu_{\alpha}^{(p /(p-1))}(T ; g)\right. \\
\times \omega\left(f ; g_{1}, \cdots, g_{m}, \epsilon \mu_{\alpha}^{(p)}\left(T ; g_{1}, \cdots, g_{m}\right)\right): \\
\left.p>1, \epsilon>0, g_{1}, \cdots, g_{m} \in G, \mu_{\alpha}^{(p)}\left(T ; g_{1}, \cdots, g_{m}\right)>0, m=1,2, \cdots\right\} .
\end{gathered}
$$

Now concerning the degree of convergence in Theorem B we have the following:

Theorem 2. For all $\alpha \in D$,

$$
\left\|L_{\alpha}(f)-T(f)\right\|_{\Lambda} \leq \sum_{i=1}^{\gamma}\left\|f_{i} \mid\right\|\left\|L_{\alpha}\left(\left|T\left(h_{i}\right)-h_{i}\right|\right)\right\|_{\Lambda}+\sum_{i=1}^{\gamma} \omega_{\alpha}\left(T ; f_{i}, h_{i}\right) .
$$

Proof: Let $p>1, \delta>0$ and let $\left\{g_{1}, g_{2}, \cdots, g_{m}\right\}$ be a finite subset of G. Let Φ be the function given by (22). Then taking $S=L_{\alpha, \lambda}$ and $L=T$ in Proposition 2, we have

$$
\begin{aligned}
& \left|L_{\alpha, \lambda}(f)(y)-T(f)(y)\right| \leq \sum_{i=1}^{r}\left\|f_{i}\right\| L_{\alpha, \lambda}\left(\left|L\left(h_{i}\right)-h_{i}\right|\right)(y) \\
& \quad+\quad\left\{C+\delta^{-1} K\left(\sum_{i=1}^{m} L_{\alpha, \lambda}\left(\mu^{(p)}\left(T ; g_{i}\right)\right)(y)\right)^{1 / p}\right\} \\
& \times \quad \sum_{i=1}^{r}\left(L_{\alpha, \lambda}\left(\mu^{(p /(p-1))}\left(T ; h_{i}\right)\right)(y)\right)^{1-1 / p} \omega\left(f_{i} ; g_{1}, \cdots, g_{m}, \delta\right),
\end{aligned}
$$

which gives

$$
\begin{aligned}
& \left\|L_{\alpha}(f)-T(f)\right\|_{\Lambda} \leq \sum_{i=1}^{r}\left\|f_{i}\right\|\left\|L_{\alpha}\left(\left|T\left(h_{i}\right)-h_{i}\right|\right)\right\|_{\Lambda} \\
& \quad+\quad\left\{C+\delta^{-1} K \mu_{\alpha}^{(p)}\left(T ; g_{1}, g_{2}, \cdots, g_{m}\right)\right\} \\
& \times \quad \sum_{i=1}^{r} \mu_{\alpha}^{(p /(p-1))}\left(T ; h_{i}\right) \omega\left(f_{i} ; g_{1}, g_{2}, \cdots, g_{m}, \delta\right)
\end{aligned}
$$

Therefore, Putting $\delta=\epsilon \mu_{\alpha}^{(p)}\left(T ; g_{1}, \cdots, g_{m}\right)>0$ and taking the infimum over all $p>1, \epsilon>0, g_{1}, \cdots, g_{m} \in G, \mu_{\alpha}^{(p)}\left(T ; g_{1}, \cdots, g_{m}\right)>0$ and $m=1,2, \cdots$, we obtain the desired result.

Corollary 3. If $T(g)=g$ for all $g \in G$, then

$$
\left\|L_{\alpha}(f)-T(f)\right\|_{\Lambda} \leq \sum_{i=1}^{\gamma} \omega_{\alpha}\left(T ; f_{i}, h_{i}\right)
$$

for all $\alpha \in D$.

Remark 4: For all $\alpha \in D$, we have:

$$
\begin{gathered}
\left\|L_{\alpha}\left(\left|T\left(h_{i}\right)-h_{i}\right|\right)\right\|_{\Lambda} \leq \mu_{\alpha}^{(p)}\left(T ; h_{i}\right) \quad(p>1, i=1,2, \cdots, r) \\
\mu_{\alpha}^{(p /(p-1))}(T ; g) \leq \mu_{\alpha}^{(p)}(T ; g) \quad(p \geq 2, g \in G)
\end{gathered}
$$

If $A(X)$ contains $F_{k}(G)$ for an even positive integer k and

$$
\begin{equation*}
T\left(g^{i}\right)=g^{i} \quad(g \in G, i=0,1,2, \cdots, k-1) \tag{25}
\end{equation*}
$$

then we have

$$
\mu_{\alpha}^{(k)}\left(T ; g_{1}, \cdots, g_{m}\right) \leq\left(\sum_{i=1}^{m}\left\|L_{\alpha}\left(g_{i}^{k}\right)-T\left(g_{i}^{k}\right)\right\|_{\Lambda}\right)^{1 / k}
$$

and so Corollary 3 gives an estimate for $\left\|L_{\alpha}(f)-T(f)\right\|_{\Lambda}$ in terms of the corresponding quantities for the test system G^{k}.

In the rest of this section it is assumed that $A(X)$ contains $F_{k}(G)$ for an even positive integer k. Let T be a positive projection operator on $A(X)$ with $T \neq I$, which satisfies (25) and $L_{\alpha, \lambda} T=T$ for all $\alpha \in D, \lambda \in \Lambda$. In addition, we suppose that each $L_{\alpha, \lambda}$ maps $A(X)$ into itself and

$$
L_{\alpha, \lambda}\left(g^{k}\right)=g^{k}+\xi_{\alpha, \lambda}\left(T\left(g^{k}\right)-g^{k}\right)
$$

for all $\alpha \in D, \lambda \in \Lambda$ and all $g \in G$, where $\left\{\xi_{\alpha, \lambda}: \alpha \in D, \lambda \in \Lambda\right\}$ is a family of real numbers with $0<\xi_{\alpha, \lambda}<1$.

For $f \in B(X)$ and $\delta>0$, we define

$$
\begin{gathered}
\Gamma(f, \delta)=\inf \left\{(C+K / \epsilon) \omega\left(f ; g_{1}, \cdots, g_{m}, \delta \epsilon\left\|\sum_{i=1}^{m}\left(T\left(g_{i}^{k}\right)-g_{i}^{k}\right)\right\|^{1 / k}\right):\right. \\
\left.\epsilon>0, g_{1}, \cdots, g_{m} \in G,\left\|\sum_{i=1}^{m}\left(T\left(g_{i}^{k}\right)-g_{i}^{k}\right)\right\|>0, m=1,2, \cdots\right\}
\end{gathered}
$$

Using this quantity, we have the following result which is more convenient for later applications.

Corollary 4. Let $\left\{n_{\alpha}: \alpha \in D\right\}$ be a net of positive integers and let $U_{\alpha, \lambda}=L_{\alpha, \lambda}^{n_{\alpha}}$ be the n_{α}-iteration of $L_{\alpha, \lambda}$ for each $\alpha \in D, \lambda \in \Lambda$. Then for all $\alpha \in D$, we have:

$$
\begin{align*}
& \left\|U_{\alpha}(f)-f\right\|_{\Lambda} \leq \sum_{i=1}^{r} \mu_{\alpha}^{(k /(k-1))}\left(h_{i}\right) \Gamma\left(f_{i}, \zeta_{\alpha}\right) \tag{26}\\
& \leq \sum_{i=1}^{r} \mu_{\alpha}^{(k /(k-1))}\left(h_{i}\right) \Gamma\left(f_{i},\left(n_{\alpha} \xi_{\alpha}\right)^{1 / k}\right)
\end{align*}
$$

where

$$
\begin{gathered}
\mu_{\alpha}^{(k /(k-1))}\left(h_{i}\right)=\left(\sup \left\{\left\|\mu^{(k /(k-1))}\left(U_{\alpha, \lambda} ; h_{i}\right)\right\|: \lambda \in \Lambda\right\}\right)^{1-1 / k}, \\
\zeta_{\alpha}=\left(\sup \left\{1-\left(1-\xi_{\alpha, \lambda}\right)^{n_{\alpha}}: \lambda \in \Lambda\right\}\right)^{1 / k}
\end{gathered}
$$

and

$$
\begin{equation*}
\left\|U_{\alpha}(f)-T(f)\right\|_{\Lambda} \leq \sum_{i=1}^{r} \mu_{\alpha}^{(k /(k-1))}\left(T ; h_{i}\right) \Gamma\left(f_{i}, \gamma_{\alpha}\right), \tag{27}
\end{equation*}
$$

where

$$
\mu_{\alpha}^{(k /(k-1))}\left(T ; h_{\mathbf{i}}\right)=\left(\sup \left\{\left\|U_{\alpha, \lambda}\left(\mu^{(k /(k-1))}\left(T ; h_{\mathbf{i}}\right)\right)\right\|: \lambda \in \Lambda\right\}\right)^{1-1 / \boldsymbol{k}}
$$

and

$$
\gamma_{\alpha}=\left(\sup \left\{1-\xi_{\alpha, \lambda}: \lambda \in \Lambda\right\}\right)^{n_{\alpha} / k}
$$

Indeed, by induction on the degree of iteration, it can be verified that

$$
U_{\alpha, \lambda} T=T \quad(\alpha \in D, \lambda \in \Lambda)
$$

and

$$
U_{\alpha, \lambda}\left(g^{k}\right)=T\left(g^{k}\right)+\left(1-\xi_{\alpha, \lambda}\right)^{n_{\alpha}}\left(g^{k}-T\left(g^{k}\right)\right) \quad(\alpha \in D, \lambda \in \Lambda, g \in G) .
$$

Thus (26) and (27) follow from Corollaries 2 and 3, respectively.

4. Applications

Let $A(X)$ be a closed linear subspace of $C(X)$ which contains 1_{X}. A mapping L of $A(X)$ into itself is called a Markov operator on $A(X)$ if it is a positive linear operator with $L\left(1_{X}\right)=1_{\boldsymbol{X}}$. Let \mathbb{N} denote the set of all non-negative integers. Let $\left\{a_{\alpha, n}^{(\lambda)}: \alpha \in D, \lambda \in \Lambda, n \in \mathbb{N}\right\}$ be a family of non-negative real numbers with

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)}=1 \quad \text { for each } \quad \alpha \in D, \lambda \in \Lambda . \tag{28}
\end{equation*}
$$

For examples of such families, see, for instance, [48], [49], [50], [52] and [57]. Let $\left\{j_{n}: n \in \mathbb{N}\right\}$ be a sequence of positive integers and $\left\{k_{n}: n \in \mathbb{N}\right\}$ a sequence of non-negative integers. Let $\left\{L_{n}: n \geq 1\right\}$ be a sequence of Markov operators on $A(X)$. For any $f \in A(X)$, we define

$$
\begin{equation*}
T_{\alpha, \lambda}(f)=\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)} L_{j_{n}}^{k_{n}}(f) \quad(\alpha \in D, \lambda \in \Lambda), \tag{29}
\end{equation*}
$$

which converges in $A(X)$ because of (28). Let $\{W(t): t \geq 0\}$ be a family of Markov operators on $A(X)$ such that for each $f \in A(X)$, the map $t \mapsto W(t)(f)$ is strongly continuous on $[0, \infty),\left\{\Phi_{\lambda}: \lambda \in \Lambda\right\}$ a family of non-negative continuous functions on $[0, \infty)$ and $\left\{v_{\alpha}: \alpha \in\right.$ $D\}$ a net of positive real numbers with $\lim _{\alpha} v_{\alpha}=0$ or $\lim _{\alpha} v_{\alpha}=+\infty$. For any $f \in A(X)$, we define

$$
\begin{equation*}
C_{\alpha, \lambda}(f)=\frac{1}{v_{\alpha}} \int_{0}^{v_{\alpha}} W\left(\Phi_{\lambda}(t)\right)(f) d t \quad(\alpha \in D, \lambda \in \Lambda) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\alpha, \lambda}(f)=v_{\alpha} \int_{0}^{\infty} \exp \left(-v_{\alpha} t\right) W\left(\Phi_{\lambda}(t)\right)(f) d t \quad(\alpha \in D, \lambda \in \Lambda) \tag{31}
\end{equation*}
$$

which exist in $A(X)$.
All the operators given above are Markov operators on $A(X)$ and our general results obtained in the preceding section are applicable to them. As illustrations of these general results we restrict ourselves to the following setting:

Let X be a compact convex subset of a real locally convex Hausdorff vector space E and let $G=G(X)$ be the space of all real-valued continuous affine functions on X. Note that (18) holds for $C=K=1$ (see, [45; Lemma 1]). Also, it is assumed that each point ξ_{i} in (5) is an internal point of the segment joining x and y (cf. [45; Definition 2]). Therefore, (19) is automatically fulfilled. Let T be a positive projection operator of $C(X)$ onto a closed linear subspace containing 1_{X} and G (which is the case where $A(X)=C(X)$ and $k=2$).

For applications of Corollary 4 it is convenient to make the following definition: Let $\left\{P_{\gamma}: \gamma \in \Gamma\right\}$ be a family of Markov operators on $C(X)$ and $\left\{x_{\gamma}: \gamma \in \Gamma\right\}$ a family of non-negative real numbers. We say that $\left\{P_{\gamma}\right\}$ is of type $\left[T ; \boldsymbol{x}_{\gamma}\right]$ if

$$
P_{\gamma} T=T \quad \text { and } \quad P_{\gamma}\left(g^{2}\right)=g^{2}+x_{\gamma}\left(T\left(g^{2}\right)-g^{2}\right)
$$

for all $\gamma \in \Gamma$ and all $g \in G$.
Now we first consider the case where $E=\mathbb{R}^{\top}$, in which the metric $d(x, y)$ is given by (7). Then we have

$$
\omega\left(f ; e_{1}, \cdots, e_{r}, \delta\right)=\omega(f, \delta) \quad(f \in B(X), \delta \geq 0)
$$

Let $\left\{L_{\alpha, \lambda}: \alpha \in D, \lambda \in \Lambda\right\}$ be a family of positive linear operators of $C(X)$ into $B(X)$. If $\mu_{\alpha}^{(2)}\left(e_{1}, \cdots, e_{r}\right)=0$ for all $\alpha \in D$, then $L_{\alpha, \lambda}(f)=$ $f L_{\alpha, \lambda}\left(1_{X}\right)$ for all $f \in C(X), \alpha \in D$ and all $\lambda \in \Lambda$ ([cf. [45; Lemma 2], [50; Lemma 1]). Thus we always consider the case where

$$
\mu_{\alpha}^{(2)}\left(e_{1}, \cdots, e_{r}\right)>0 \quad(\alpha \in D)
$$

Then for all $f \in B(X), \alpha \in D$ and for $i=1,2, \cdots, r$, we have

$$
\omega_{\alpha}\left(f, e_{i}\right) \leq \inf \left\{C_{\alpha}(\epsilon) \mu_{\alpha}^{(2)}\left(e_{i}\right) \omega\left(f, \epsilon \mu_{\alpha}^{(2)}\left(e_{1}, \cdots, e_{r}\right)\right): \epsilon>0\right\},
$$

where

$$
C_{\alpha}(\epsilon)=\sup \left\{\left\|\left(L_{\alpha, \lambda}\left(1_{X}\right)\right)^{1 / 2}+\epsilon^{-1} 1_{X}\right\|: \lambda \in \Lambda\right\} .
$$

Therefore, in view of Remark 2, we extend the results of Mohapatra [36] (cf. [15], [38], [39], [65]) and give a quantitative version of the

Korovkin type convergence theorem due to Karlin and Ziegler [29; Theorem 1 and Remark 2] for all functions in $C^{(1)}(X)$, which denotes the space of all continuously differentiable functions on X.

Take $X=I_{r}$, the unit r-cube, i.e.,

$$
\mathbf{I}_{r}=\left\{x=\left(x_{1}, x_{2}, \cdots, x_{r}\right) \in \mathbb{R}^{r}: 0 \leq x_{i} \leq 1, i=1,2, \cdots, r\right\}
$$

and let F be the closed linear subspace of $C\left(\boldsymbol{I}_{r}\right)$ spanned by the set

$$
\left\{e_{1}^{m_{1}} e_{2}^{m_{2}} \cdots e_{r}^{m_{r}}: m_{i} \in\{0,1\}, i=1,2, \cdots, r\right\} .
$$

Let $\left\{B_{n}: n \geq 1\right\}$ be the sequence of the Bernstein operators on $C\left(\|_{r}\right)$ given by
$B_{n}(f)(x)=\sum_{m_{1}=0}^{n} \cdots \sum_{m_{r}=0}^{n} f\left(m_{1} / n, \cdots, m_{r} / n\right) \prod_{i=1}^{r}\binom{n}{m_{i}} x_{i}^{m_{i}}\left(1-x_{i}\right)^{n-m_{i}}$
for $f \in C\left(\mathbb{I}_{r}\right)$ and $x=\left(x_{1}, x_{2}, \cdots, x_{r}\right) \in \mathbb{I}_{r}$ (see, e.g., [33]). It can be verified that B_{1} is a positive projection operator of $C\left(\mathrm{I}_{r}\right)$ onto F and that $\left\{B_{n}\right\}$ is of type $\left[B_{1} ; 1 / n\right]$. Consequently, if $L_{n}=B_{n}, n \geq 1$, then $\left\{T_{\alpha, \lambda}\right\}$ is of type $\left[B_{1} ; 1-x_{\alpha, \lambda}\right]$, where

$$
x_{\alpha, \lambda}=\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)}\left(1-\frac{1}{j_{n}}\right)^{k_{n}} \quad(\alpha \in D, \lambda \in \Lambda),
$$

and so Corollary 4 can be applied to these operators. In particular, concerning the degree of approximation by iterations of the Bernstein operators, we have the following estimates: For all $f \in C^{(1)}\left(\|_{r}\right)$ and all $n \in \mathbb{N}$,

$$
\begin{align*}
& \left\|B_{j_{n}}^{k_{n}}(f)-f\right\| \leq \frac{r}{2}\left(1-\left(1-1 / j_{n}\right)^{k_{n}}\right)^{1 / 2} \sum_{i=1}^{r} \inf \left\{\left(1+\epsilon^{-1}\right)\right. \tag{32}\\
& \left.\quad \times \omega\left(f_{i},\left(1-\left(1-1 / j_{n}\right)^{k_{n}}\right)^{1 / 2} \epsilon \frac{\sqrt{r}}{2}\right): \epsilon>0\right\} \\
& \leq \frac{r}{2} \sqrt{\frac{k_{n}}{j_{n}}} \sum_{i=1}^{r} \inf \left\{\left(1+\epsilon^{-1}\right) \omega\left(f_{i}, \epsilon \sqrt{\frac{k_{n}}{j_{n}}} \frac{\sqrt{r}}{2}\right): \epsilon>0\right\}
\end{align*}
$$

and

$$
\begin{align*}
& \left\|B_{j_{n}}^{k_{n}}(f)-B_{1}(f)\right\| \leq \frac{r}{2}\left(1-\frac{1}{j_{n}}\right)^{k_{n} / 2} \sum_{i=1}^{r} \inf \left\{\left(1+\epsilon^{-1}\right)\right. \tag{33}\\
& \left.\quad \times \quad \omega\left(f_{i},\left(1-1 / j_{n}\right)^{k_{n} / 2} \epsilon \frac{\sqrt{r}}{2}\right): \epsilon>0\right\},
\end{align*}
$$

where f_{i} stands for the i-th partial derivative of f given by (8).
Taking $\epsilon=2 / \sqrt{r}$, (32) and (33) yield

$$
\begin{gather*}
\left\|B_{j_{n}}^{k_{n}}(f)-f\right\| \leq \frac{r}{2}\left(1+\frac{\sqrt{r}}{2}\right)\left(1-\left(1-1 / j_{n}\right)^{k_{n}}\right)^{1 / 2} \tag{34}\\
\quad \times \quad \sum_{i=1}^{r} \omega\left(f_{i},\left(1-\left(1-1 / j_{n}\right)^{k_{n}}\right)^{1 / 2}\right) \\
\quad \leq \frac{r}{2}\left(1+\frac{\sqrt{r}}{2}\right) \sqrt{\frac{k_{n}}{j_{n}}} \sum_{i=1}^{r} \omega\left(f_{i}, \sqrt{\frac{k_{n}}{j_{n}}}\right)
\end{gather*}
$$

and

$$
\begin{align*}
\| B_{j_{n}}^{k_{n}}(f) & -B_{1}(f) \| \leq \frac{r}{2}\left(1+\frac{\sqrt{r}}{2}\right)\left(1-\frac{1}{j_{n}}\right)^{k_{n} / 2} \tag{35}\\
& \times \sum_{i=1}^{r} \omega\left(f_{i},\left(1-1 / j_{n}\right)^{k_{n} / 2}\right)
\end{align*}
$$

respectively. In particular, if $r=1$, then (34) and (35) reduce to

$$
\begin{aligned}
\left\|B_{j_{n}}^{k_{n}}(f)-f\right\| \leq \frac{3}{4}(1- & \left.\left(1-\frac{1}{j_{n}}\right)^{k_{n}}\right)^{1 / 2} \omega\left(f^{\prime},\left(1-\left(1-1 / j_{n}\right)^{k_{n}}\right)^{1 / 2}\right) \\
& \leq \frac{3}{4} \sqrt{\frac{k_{n}}{j_{n}}} \omega\left(f^{\prime}, \sqrt{\frac{k_{n}}{j_{n}}}\right)
\end{aligned}
$$

which is given in [33; Theorem 1.6.2] for $\left\{k_{n}\right\}=\{1\}$ and $\left\{j_{n}\right\}=\{n\}$ and

$$
\left\|B_{j_{n}}^{k_{n}}(f)-B_{1}(f)\right\| \leq \frac{3}{4}\left(1-\frac{1}{j_{n}}\right)^{k_{n} / 2} \omega\left(f^{\prime},\left(1-1 / j_{n}\right)^{k_{n} / 2}\right),
$$

respectively (cf. [39], [41], [42]).
Statements analogous to the above-mentioned results may be derived for the case where $B_{n}, n \geq 1$, are the Bernstein operators on $C\left(\Delta_{r}\right)$ with the standard r-simplex

$$
\Delta_{r}=\left\{x=\left(x_{1}, \cdots, x_{r}\right) \in \mathbb{R}^{r}: x_{i} \geq 0, i=1, \cdots, r, x_{1}+\cdots+x_{r} \leq 1\right\},
$$

given by

$$
\begin{gathered}
B_{n}(f)(x)=\sum_{m_{i} \geq 0, m_{1}+\cdots+m_{r} \leq n} f\left(m_{1} / n, \cdots, m_{r} / n\right) \\
\times \frac{n!}{m_{1}!m_{2}!\cdots m_{r}!\left(n-m_{1}-m_{2}-\cdots-m_{r}\right)!} \\
\times \quad x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{r}^{m_{r}}\left(1-x_{1}-x_{2} \cdots-x_{r}\right)^{n-m_{1}-m_{2}-\cdots-m_{r}}
\end{gathered}
$$

for $f \in C\left(\Delta_{r}\right)$ and $x=\left(x_{1}, x_{2}, \cdots, x_{r}\right) \in \Delta_{r}$ (see, e.g., [33]). These can be obtained in the following very general setting.

Recall that X is a compact convex subset of a real locally convex Hausdorff vector space E and let $G=G(X)$. If L is a Markov operator on $C(X)$, then for point $x \in X$, a Radon probability measure ν_{x} on X is called an $L(G)$-representing measure for \boldsymbol{x} if

$$
L(f)(x)=\int_{X} f d \nu_{x} \quad \text { for every } f \in G
$$

(cf. [24], [37]). Let $\mathrm{M}=\left\{M_{n}: n \geq 1\right\}$ be a sequence of Markov operators on $C(X), \nu^{(M)}=\left\{\nu_{x, n}: x \in X, n \geq 1\right\}$ a family of Radon probability measures on X such that $\nu_{x, n}$ is an $M_{n}(G)$-representing measure for $\boldsymbol{x}, \mathbb{P}=\left(p_{n j}\right)_{n, j \geq 1}$ an infinite lower triangular stochastic matrix, $\mathrm{Y}=\left\{y_{x}: x \in X\right\}$ a family of points of X, and $\rho=\left\{\rho_{n}: n \geq 1\right\}$ a sequence of functions of X into $[0,1]$. Then we define

$$
\nu_{x, n, \rho}^{(\mathbb{M}, \mathbf{Y})}=\rho_{n}(x) \nu_{x, n}+\left(1-\rho_{n}(x)\right) \epsilon_{y_{\mathbf{e}}} \circ M_{n},
$$

where ϵ_{t} denotes the Dirac measure at t, and also define the mapping

$$
\pi_{n, \mathbb{P}}: X^{n} \rightarrow X \quad \text { by } \quad\left(x_{1}, x_{2}, \cdots, x_{r}\right) \mapsto \sum_{j=1}^{n} p_{n j} x_{j} .
$$

For a given $f \in C(X)$, we define

$$
B_{n}(f)(x)=B_{n, \mathbb{P}, \rho}^{\left(\nu^{(\mathbb{N})}, Y\right)}(f)(x)=\int_{X^{n}} f \circ \pi_{n, \mathbb{P}} d \bigotimes_{1 \leq j \leq n} \nu_{x, j, \rho}^{(\mathbb{M}, Y)}(x \in X)
$$

which is called the n-th Bernstein Lototsky-Schnabl function of f on X with respect to ν^{M}, \mathbb{P}, Y and $\rho([49]$, cf. [18], [22], [23], [62]).

For any $f \in C(X)$, we define

$$
H_{n}(f)(x)=\nu_{x, n}(f) \quad(x \in X, n \geq 1)
$$

Obviously, H_{n} is a positive linear operator of $C(X)$ into $B(X)$ with $H_{n}\left(1_{X}\right)=1_{X}$. If $\left\{g_{1}, g_{2}, \cdots, g_{m}\right\}$ is a finite subset of G and $\alpha \in D$, then we define

$$
\mu_{\alpha}\left(g_{1}, \cdots, g_{m}\right)=\left(\sup _{\lambda \in \Lambda}\left\|\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)} \sum_{k \geq 1} p_{j_{n} k}^{2} \rho_{k} \sum_{i=1}^{m}\left(H_{k}\left(g_{i}^{2}\right)-g_{i}^{2}\right)\right\|\right)^{1 / 2}
$$

Hereafter, let f be a function in $C(X)$ having the property (MVP) associated with the system (6). Now take

$$
k_{n}=1 \quad(n=0,1,2, \cdots), \quad L_{n}=B_{n} \quad(n=1,2, \cdots)
$$

and define the operators $T_{\alpha, \lambda}$ by (29). Then we have the following.
Theorem 3. Suppose that $M_{n}(g)=g$ for all $n \geq 1$ and all $g \in G$. Then the following statements hold:
(a) If $y_{x}=x$ for every $x \in X$, then for all $\alpha \in D$,

$$
\begin{equation*}
\left\|T_{\alpha}(f)-f\right\|_{\Lambda} \leq \sum_{i=1}^{r} \Psi_{\alpha}\left(f_{i}, h_{i}\right) \tag{36}
\end{equation*}
$$

where

$$
\begin{gathered}
\Psi_{\alpha}\left(f_{i}, h_{i}\right)=\inf \left\{\left(1+\epsilon^{-1}\right) \mu_{\alpha}\left(h_{i}\right) \omega\left(f_{i} ; g_{1}, \cdots, g_{m}, \epsilon \mu_{\alpha}\left(g_{1}, \cdots, g_{m}\right)\right):\right. \\
\left.\epsilon>0, g_{1}, \cdots, g_{m} \in G, \mu_{\alpha}\left(g_{1}, \cdots, g_{m}\right)>0, m=1,2, \cdots\right\}
\end{gathered}
$$

(b) If $\rho_{n}=1_{X}$ for all $n \geq 1$, then (36) holds with

$$
\mu_{\alpha}\left(h_{i}\right)=\left(\sup _{\lambda \in \Lambda}\left\|\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)} \sum_{k \geq 1} p_{j_{n} k}^{2}\left(H_{k}\left(h_{i}^{2}\right)-h_{i}^{2}\right)\right\|\right)^{1 / 2}
$$

and

$$
\mu_{\alpha}\left(g_{1}, \cdots, g_{m}\right)=\left(\sup _{\lambda \in \Lambda}\left\|\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)} \sum_{k \geq 1} p_{j_{n} k}^{2} \sum_{i=1}^{m}\left(H_{k}\left(g_{i}^{2}\right)-g_{i}^{2}\right)\right\|\right)^{1 / 2}
$$

Proof: Assume that $y_{\boldsymbol{x}}=\boldsymbol{x}$ for all $\boldsymbol{x} \in X$. Then, by [49; Lemma 4], it can be seen that $T_{\alpha, \lambda}(g)=g$ and

$$
\mu^{(2)}\left(T_{\alpha, \lambda}, g\right)=T_{\alpha, \lambda}\left(g^{2}\right)-g^{2}=\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)} \sum_{k \geq 1} p_{j_{n} h}^{2} \rho_{k}\left(H_{k}\left(g^{2}\right)-g^{2}\right)
$$

for all $\alpha \in D, \lambda \in \Lambda$ and all $g \in G$. Therefore, the desired estimate (36) follows from Corollary 2. The proof of Part (b) is similar.

If $\left\{g_{1}, g_{2}, \cdots, g_{m}\right\}$ is a finite subset of G, then we define

$$
\theta_{n}\left(g_{1}, \cdots, g_{m}\right)=\left\|\sum_{j \geq 1} p_{n j}^{2} \rho_{j} \sum_{i=1}^{m}\left(H_{j}\left(g_{i}^{2}\right)-g_{i}^{2}\right)\right\|^{1 / 2}
$$

Corollary 5. Let M be as in Theorem 3. Then the following assertions hold:
(a) If $y_{x}=x$ for every $x \in X$, then for all $n \geq 1$,

$$
\begin{equation*}
\left\|B_{n}(f)-f\right\| \leq \sum_{i=1}^{r} \psi_{n}\left(f_{i}, h_{i}\right) \tag{37}
\end{equation*}
$$

where

$$
\psi_{n}\left(f_{i}, h_{i}\right)=\inf \left\{\left(1+\epsilon^{-1}\right) \theta_{n}\left(h_{i}\right) \omega\left(f_{i} ; g_{1}, \cdots, g_{m}, \epsilon \theta_{n}\left(g_{1}, \cdots, g_{m}\right)\right):\right.
$$

$$
\left.\epsilon>0, g_{1}, \cdots, g_{m} \in G, \theta_{n}\left(g_{1}, \cdots, g_{m}\right)>0, m=1,2, \cdots\right\} .
$$

(b) If $\rho_{n}=1_{X}$ for all $n \geq 1$, then (37) holds with

$$
\theta_{n}\left(h_{i}\right)=\left\|\sum_{j \geq 1} p_{n j}^{2}\left(H_{j}\left(h_{i}^{2}\right)-h_{i}^{2}\right)\right\|^{1 / 2}
$$

and

$$
\theta_{n}\left(g_{1}, \cdots, g_{m}\right)=\left\|\sum_{j \geq 1} p_{n j}^{2} \sum_{i=1}^{m}\left(H_{j}\left(g_{i}^{2}\right)-g_{i}^{2}\right)\right\|^{1 / 2} .
$$

From now on we suppose that

$$
\begin{gathered}
M_{n}=I \quad(n \geq 1), \quad y_{x}=x \quad(x \in X), \\
\rho_{n}=1_{X} \quad(n \geq 1), \quad \nu_{x, n}=\nu_{x} \quad(x \in X, n \geq 1),
\end{gathered}
$$

where ν_{x} is a representing measure for x (i.e., an $I(G)$-representing measure for \boldsymbol{x}) such that the mapping

$$
x \mapsto H(f)(x)=\nu_{x}(f)=\int_{X} f d \nu_{x}
$$

belongs to G for every $f \in C(X)$. Consequently, each B_{n} maps $C(X)$ into itself and $B_{1}=H$ is a positive projection operator of $C(X)$ onto G (cf. [23; Proposition], [49; Remark 7]).

For any $f \in B(X)$ and $\delta>0$, we define

$$
\begin{aligned}
& \Omega(f, \delta)=\inf \left\{\left(1+\epsilon^{-1}\right) \omega\left(f ; g_{1}, \cdots, g_{m}, \delta \epsilon\left\|\sum_{i=1}^{m}\left(H\left(g_{i}^{2}\right)-g_{i}^{2}\right)\right\|^{1 / 2}\right):\right. \\
& \left.\quad \epsilon>0, g_{1}, \cdots, g_{m} \in G,\left\|\sum_{i=1}^{r}\left(H\left(g_{i}^{2}\right)-g_{i}^{2}\right)\right\|>0, m=1,2, \cdots\right\} .
\end{aligned}
$$

Let $\left\{m_{\alpha}: \alpha \in D\right\}$ be a net of positive integers. If $\left\{L_{\alpha, \lambda}: \alpha \in D, \lambda \in\right.$ $\Lambda\}$ is a family of Markov operators on $C(X)$ and if L is a Markov operator on $C(X)$, then we define

$$
\left\|L_{\alpha}^{m_{\alpha}}(f)-L(f)\right\|_{\Lambda}=\sup \left\{\left\|L_{\alpha, \lambda}^{m_{\alpha}}(f)-L(f)\right\|: \lambda \in \Lambda\right\}
$$

Now take

$$
L_{n}=B_{n} \quad(n=1,2, \cdots),
$$

and defines the operators $T_{\alpha, \lambda}$ by (29). Then we have the following.

Theorem 4. Let $\left\{m_{\alpha}: \alpha \in D\right\}$ be a net of positive integers. Then for all $\alpha \in D$,

$$
\begin{equation*}
\left\|T_{\alpha}^{m_{\alpha}}(f)-f\right\|_{\Lambda} \leq \tau_{\alpha} \sum_{i=1}^{r}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i}, \tau_{\alpha}\right) \tag{38}
\end{equation*}
$$

where

$$
\tau_{\alpha}=\left(\sup \left\{1-\left(\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)}\left(1-\sum_{i \geq 1} p_{j_{n} i}^{2}\right)^{k_{n}}\right)^{m_{\alpha}}: \lambda \in \Lambda\right\}\right)^{1 / 2}
$$

and

$$
\begin{equation*}
\left\|T_{\alpha}^{m_{\alpha}}(f)-H(f)\right\|_{\Lambda} \leq v_{\alpha} \sum_{i=1}^{r}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i}, \theta_{\alpha}\right) \tag{39}
\end{equation*}
$$

where

$$
\theta_{\alpha}=\left(\sup \left\{\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)}\left(1-\sum_{i \geq 1} p_{j_{n} i}^{2}\right)^{k_{n}}: \lambda \in \Lambda\right\}\right)^{m_{\alpha} / 2}
$$

Proof: By the induction on the degree k of iteration of B_{n}, it can be verified that $\left\{B_{n}^{k}\right\}$ is of type

$$
\left[H ; 1-\left(1-\sum_{j \geq 1} p_{n j}^{2}\right)^{k}\right] \quad(n, k=1,2, \cdots) .
$$

Therefore, $\left\{T_{\alpha, \lambda}\right\}$ is of type

$$
\left[H ; 1-\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)}\left(1-\sum_{i \geq 1} p_{j_{n} i}^{2}\right)^{k_{n}}\right] \quad(\alpha \in D, \lambda \in \Lambda),
$$

and so the desired result follows from Corollary 4.

Corollary 6. For all $n \in \mathbb{N}$,

$$
\begin{gathered}
\left\|B_{j_{n}}^{k_{n}}(f)-f\right\| \leq \epsilon_{n} \sum_{i=1}^{r}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i}, \epsilon_{n}\right) \\
\leq\left(k_{n} \sum_{i \geq 1} p_{j_{n} i}^{2}\right)^{1 / 2} \sum_{i=1}^{r}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i},\left(k_{n} \sum_{i \geq 1} p_{j_{n} i}^{2}\right)^{1 / 2}\right),
\end{gathered}
$$

where

$$
\epsilon_{n}=\left(1-\left(1-\sum_{i \geq 1} p_{j_{n} i}^{2}\right)^{k_{n}}\right)^{1 / 2}
$$

and

$$
\left\|B_{j_{n}}^{k_{n}}(f)-H(f)\right\| \leq \delta_{n} \sum_{i=1}^{T}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i}, \delta_{n}\right)
$$

where

$$
\delta_{n}=\left(1-\sum_{i \geq 1} p_{j_{n} i}^{2}\right)^{k_{n} / 2}
$$

Corollary 7. Let $D=\mathbb{N} \backslash\{0\}, \Lambda=\mathbb{N}$ and we define

$$
T_{\alpha, \lambda}=\frac{1}{\alpha} \sum_{n=\lambda}^{\alpha+\lambda-1} B_{j_{n}}^{k_{n}} \quad(\alpha \in D, \lambda \in \Lambda)
$$

Then for all $\alpha \in D$, (38) and (39) hold with
(40) $\tau_{\alpha}=\left(\sup \left\{1-\left(\frac{1}{\alpha} \sum_{n=\lambda}^{\alpha+\lambda-1}\left(1-\sum_{i \geq 1} p_{j_{n} i}^{2}\right)^{k_{n}}\right)^{m_{\alpha}}: \lambda \in \Lambda\right\}\right)^{1 / 2}$
and

$$
\begin{equation*}
\theta_{\alpha}=\left(\sup \left\{\frac{1}{\alpha} \sum_{n=\lambda}^{\alpha+\lambda-1}\left(1-\sum_{i \geq 1} p_{j_{n} i}^{2}\right)^{k_{n}}: \lambda \in \Lambda\right\}\right)^{m_{\alpha} / 2} \tag{41}
\end{equation*}
$$

respectively.
Remark 5: In particular, if $\left\{m_{\alpha}\right\}=\{1\}$, then (40) and (41) reduce to

$$
\tau_{\alpha}=\left(\sup \left\{\frac{1}{\alpha} \sum_{n=\lambda}^{\alpha+\lambda-1}\left(1-\left(1-\sum_{i \geq 1} p_{j_{n} i}^{2}\right)^{k_{n}}\right): \lambda \in \Lambda\right\}\right)^{1 / 2}
$$

and

$$
\theta_{\alpha}=\left(\sup \left\{\frac{1}{\alpha} \sum_{n=\lambda}^{\alpha+\lambda-1}\left(1-\sum_{i \geq 1} p_{j_{n} i}^{2}\right)^{k_{n}}: \lambda \in \Lambda\right\}\right)^{1 / 2}
$$

respectively and Corollary 7 gives the estimate on the degree of almost convergence (F-summability) (in the sense of Lorentz [32]) of $\left\{B_{j_{n}}^{k_{n}}\right.$: $n \in \mathbb{N}\}$.

Let $\left\{n_{\alpha}: \alpha \in D\right\}$ be a net of non-negative integers and $\left\{t_{\alpha}: \alpha \in\right.$ $D\}$ a net of numbers in the unit open interval $(0,1)$. If L is a Markov operator on $C(X)$, then for any $f \in C(X)$ we define

$$
\sigma_{\alpha, i}(L ; f)=\frac{1}{n_{\alpha}+1} \sum_{j=0}^{n_{\alpha}} L^{i+j}(f) \quad(\alpha \in D, i \in \mathbb{N})
$$

and

$$
A_{\alpha, i}(L ; f)=\left(1-t_{\alpha}\right) \sum_{j=0}^{\infty} t_{\alpha}^{j} L^{i+j}(f) \quad(\alpha \in D, i \in \mathbb{N})
$$

Note that if $\{L\}$ is of type $[T ; x]$, then $\left\{\sigma_{\alpha, i}(L ; \cdot)\right\}$ and $\left\{A_{\alpha, i}(L ; \cdot)\right\}$ are of types

$$
\left[H ; 1-\frac{(1-x)^{i}\left(1-(1-x)^{n_{\alpha}+1}\right)}{x\left(n_{\alpha}+1\right)}\right]
$$

and

$$
\left[H ; 1-\frac{\left(1-t_{\alpha}\right)(1-x)^{i}}{1-t_{\alpha}(1-x)}\right]
$$

respectively. Therefore, in view of this fact, making use of Corollary 4 we have the following quantitative ergodic type theorem for iterations of the discrete Cesàro and Abel means of the Bernstein-LototskySchnabl operators.

Theorem 5. Let $m, j \geq 1$ be fixed, and set

$$
\beta=\beta(m, j)=\left(1-\sum_{i \geq 1} p_{m i}^{2}\right)^{j}
$$

Let $\left\{k_{\alpha}: \alpha \in D\right\}$ be a net of positive integers and $\Lambda=\mathbb{N}$. Then the following statements hold:
(a) For all $\alpha \in D$,

$$
\left\|\sigma_{\alpha}^{k_{\alpha}}\left(B_{m}^{j} ; f\right)-H(f)\right\|_{\Lambda} \leq x_{\alpha} \sum_{i=1}^{r}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i}, x_{\alpha}\right)
$$

where

$$
\begin{equation*}
x_{\alpha}=\left(\frac{1-\beta^{n_{\alpha}+1}}{(1-\beta)\left(n_{\alpha}+1\right)}\right)^{k_{\alpha} / 2} \tag{42}
\end{equation*}
$$

(b) For all $\alpha \in D$,

$$
\left\|A_{\alpha}^{k_{\alpha}}\left(B_{m}^{j} ; f\right)-H(f)\right\|_{\Lambda} \leq y_{\alpha} \sum_{i=1}^{r}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i}, y_{\alpha}\right)
$$

where

$$
\begin{equation*}
y_{\alpha}=\left(\frac{1-t_{\alpha}}{1-\beta t_{\alpha}}\right)^{k_{\alpha} / 2} \tag{43}
\end{equation*}
$$

In particular, for the Bernstein operators on $C\left(\Delta_{r}\right)$ we have:
Corollary 8. Let $m, j \geq 1$ be fixed. Let x_{α} and y_{α} be given by (42) and (43) with $\beta=\beta(m, j)=(1-1 / m)^{j}$, respectively. Let $\left\{k_{\alpha}: \alpha \in\right.$ $D\}$ be a net of positive integers and $\Lambda=\mathbb{N}$. Then for all $f \in C^{(1)}\left(\Delta_{r}\right)$ and all $\alpha \in D$,
$\left\|\sigma_{\alpha}^{k_{\alpha}}\left(B_{m}^{j} ; f\right)-B_{1}(f)\right\|_{\Lambda} \leq \frac{r}{2}\left(1+\left\|\sum_{i=1}^{r}\left(e_{i}-e_{i}^{2}\right)\right\|^{1 / 2}\right) x_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, x_{\alpha}\right)$

$$
\leq \frac{r}{2}\left(1+\frac{\sqrt{r}}{2}\right) x_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, x_{\alpha}\right)
$$

and

$$
\begin{gathered}
\left\|A_{\alpha}^{k_{\alpha}}\left(B_{m}^{j} ; f\right)-B_{1}(f)\right\|_{\Lambda} \leq \frac{r}{2}\left(1+\left\|\sum_{i=1}^{r}\left(e_{i}-e_{i}^{2}\right)\right\|^{1 / 2}\right) y_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, y_{\alpha}\right) \\
\leq \frac{r}{2}\left(1+\frac{\sqrt{r}}{2}\right) y_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, y_{\alpha}\right)
\end{gathered}
$$

where f_{i} denotes the i-th partial derivative of f given by (8).
We also note that the corresponding result of Corollary 8 holds for the Bernstein operators on $C\left(\boldsymbol{l}_{r}\right)$.

Finally, we restrict ourselves to the case where $\mathbb{P}=\left(p_{n j}\right)_{n, j \geq 1}$ is the arithmetic Toeplitz matrix, i.e.,

$$
p_{n j}=\frac{1}{n} \quad(n \geq 1, j=1,2, \cdots, n), \quad p_{n j}=0 \quad(j>n) .
$$

In [46] we showed that there exists a unique strongly continuous semigroup $\{S(t): t \geq 0\}$ of Markov operators on $C(X)$ such that for every $f \in C(X)$ and for every sequence $\left\{m_{n}\right\}$ of positive integers with $\lim _{n \rightarrow \infty} m_{n} / n=t, t \geq 0$,

$$
\lim _{n \rightarrow \infty}\left\|B_{n}^{m_{n}}(f)-S(t)(f)\right\|=0
$$

and

$$
\lim _{n \rightarrow \infty}\left\|\frac{1}{m_{n}+1} \sum_{i=0}^{m_{n}} B_{n}^{i}(f)-\int_{0}^{1} S(t u)(f) d u\right\|=0
$$

Let $\left\{k_{n}: n \in \mathbb{N}\right\}$ be a sequence of non-negative integers and $\left\{t_{n}\right.$: $n \in \mathbb{N}\}$ a sequence of non-negative real numbers. For any $f \in C(X)$, we define

$$
S_{\alpha, \lambda}(f)=\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)} S\left(t_{n}\right)^{k_{n}}(f)=\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)} S\left(k_{n} t_{n}\right)(f)
$$

which converges in $C(X)$. Then we have the following.

Theorem 6. Let $\left\{m_{\alpha}: \alpha \in D\right\}$ be a net of positive integers. Then for all $\alpha \in D$,

$$
\left\|S_{\alpha}^{m_{\alpha}}(f)-f\right\|_{\Lambda} \leq \tau_{\alpha} \sum_{i=1}^{r}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i}, \tau_{\alpha}\right)
$$

where

$$
\tau_{\alpha}=\left(\sup \left\{1-\left(\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)} \exp \left(-k_{n} t_{n}\right)\right)^{m_{\alpha}}: \lambda \in \Lambda\right\}\right)^{1 / 2}
$$

and

$$
\left\|S_{\alpha}^{m_{\alpha}}(f)-H(f)\right\|_{\Lambda} \leq \theta_{\alpha} \sum_{i=1}^{r}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i}, \theta_{\alpha}\right)
$$

where

$$
\theta_{\alpha}=\left(\sup \left\{\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)} \exp \left(-k_{n} t_{n}\right): \lambda \in \Lambda\right\}\right)^{m_{\alpha} / 2}
$$

Proof: From the proof of [46; Theorem 4], $\{S(t)\}$ is of type $[H ; 1-$ $\exp (-t)]$. Therefore, $\left\{S_{\alpha, \lambda}\right\}$ is of type

$$
\left[H ; 1-\sum_{n=0}^{\infty} a_{\alpha, n}^{(\lambda)} \exp \left(-k_{n} t_{n}\right)\right],
$$

and so the desired result follows from Corollary 4.
In particular, for the semigroup induced by the Bernstein operators on $C\left(\Delta_{r}\right)$ we have:

Corollary 9. Let $\tau_{\alpha}, \theta_{\alpha}$ and $\left\{m_{\alpha}\right\}$ be as in Theorem 6. Then for all $f \in C^{(1)}\left(\Delta_{r}\right)$ and all $\alpha \in D$,

$$
\left\|S_{\alpha}^{m_{\alpha}}(f)-f\right\|_{\Lambda} \leq \frac{r}{2}\left(1+\left\|\sum_{i=1}^{r}\left(e_{i}-e_{i}^{2}\right)\right\|^{1 / 2}\right) \tau_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, \tau_{\alpha}\right)
$$

$$
\leq \frac{r}{2}\left(1+\frac{\sqrt{r}}{2}\right) \tau_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, \tau_{\alpha}\right)
$$

and

$$
\begin{aligned}
\left\|S_{\alpha}^{m_{\alpha}}(f)-H(f)\right\|_{\Lambda} & \leq \frac{r}{2}\left(1+\left\|\sum_{i=1}^{r}\left(e_{i}-e_{i}^{2}\right)\right\|^{1 / 2}\right) \theta_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, \theta_{\alpha}\right) \\
& \leq \frac{r}{2}\left(1+\frac{\sqrt{r}}{2}\right) \theta_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, \theta_{\alpha}\right)
\end{aligned}
$$

where f_{i} denotes the i-th partial derivative of f given by (8).
Theorem 7. Let $t \geq 0$ be fixed. Let $\left\{k_{\alpha}: \alpha \in D\right\}$ be a net of positive integers and $\Lambda=\mathbb{N}$. Then for all $\alpha \in D$,

$$
\left\|\sigma_{\alpha}^{k_{\alpha}}(S(t) ; f)-H(f)\right\|_{\Lambda} \leq x_{\alpha} \sum_{i=1}^{r}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i}, x_{\alpha}\right),
$$

where

$$
x_{\alpha}=\left\{\frac{1-\exp \left(-t\left(n_{\alpha}+1\right)\right)}{(1-\exp (-t))\left(n_{\alpha}+1\right)}\right\}^{k_{\alpha} / 2}
$$

and

$$
\left\|A_{\alpha}^{h_{\alpha}}(S(t) ; f)-H(f)\right\|_{\Lambda} \leq y_{\alpha} \sum_{i=1}^{r}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i}, y_{\alpha}\right)
$$

where

$$
y_{\alpha}=\left(\frac{1-t_{\alpha}}{1-t_{\alpha} \exp (-t)}\right)^{k_{\alpha} / 2}
$$

Proof: Since $\{S(t)\}$ is of type $[H ; 1-\exp (-t)],\left\{\sigma_{\alpha, i}(S(t) ; \cdot)\right\}$ and $\left\{A_{\alpha, i}(S(t) ; \cdot)\right\}$ are of types

$$
\left[H ; 1-\frac{\exp (-i t)\left(1-\exp \left(-t\left(n_{\alpha}+1\right)\right)\right)}{(1-\exp (-t))\left(n_{\alpha}+1\right)}\right]
$$

and

$$
\left[H ; 1-\frac{\exp (-i t)\left(1-t_{\alpha}\right)}{1-t_{\alpha} \exp (-t)}\right]
$$

respectively. Thus the desired result follows from Corollary 4.
In particular, for the semigroup induced by the Bernstein operators on $C\left(\Delta_{r}\right)$ we have:

Corollary 10. Let $x_{\alpha}, y_{\alpha},\left\{k_{\alpha}\right\}$ and Λ be as in Theorem 7. Then for all $f \in C^{(1)}\left(\Delta_{r}\right)$ and all $\alpha \in D$,

$$
\begin{gathered}
\left\|\sigma_{\alpha}^{k_{\alpha}}(S(t) ; f)-B_{1}(f)\right\|_{\Lambda} \leq \frac{r}{2}\left(1+\left\|\sum_{i=1}^{r}\left(e_{i}-e_{i}^{2}\right)\right\|^{1 / 2}\right) x_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, x_{\alpha}\right) \\
\leq \frac{r}{2}\left(1+\frac{\sqrt{r}}{2}\right) x_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, x_{\alpha}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
&\left\|A_{\alpha}^{k_{\alpha}}(S(t) ; f)-B_{1}(f)\right\|_{\Lambda} \leq \frac{r}{2}\left(1+\left\|\sum_{i=1}^{r}\left(e_{i}-e_{i}^{2}\right)\right\|^{1 / 2}\right) y_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, y_{\alpha}\right) \\
& \leq \frac{r}{2}\left(1+\frac{\sqrt{r}}{2}\right) y_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, y_{\alpha}\right)
\end{aligned}
$$

where f_{i} denotes the i-th partial derivative of f given by (8).
We take

$$
W(t)=S(t) \quad(t \geq 0), \quad \Phi_{\lambda}(t)=t+c_{\lambda} \quad(t \geq 0, \lambda \in \Lambda),
$$

where $\left\{c_{\lambda}: \lambda \in \Lambda\right\}$ is a family of non-negative real numbers. Let $\left\{C_{\alpha, \lambda}: \alpha \in D, \lambda \in \Lambda\right\}$ and $\left\{R_{\alpha, \lambda}: \alpha \in D, \lambda \in \Lambda\right\}$ be the families of operators defined by (30) and (31), respectively. Then we have the following quantitative ergodic type theorem for iterations of continuous Cesàro and Abel means of the semigroup $\{S(t): t \geq 0\}$.

Theorem 8. Let $\left\{k_{\alpha}: \alpha \in D\right\}$ be a net of positive integers and put $c=\sup \left\{\exp \left(-c_{\lambda}\right): \lambda \in \Lambda\right\}$. Then for all $\alpha \in D$,

$$
\left\|C_{\alpha}^{k_{\alpha}}(f)-H(f)\right\|_{\Lambda} \leq a_{\alpha} \sum_{i=1}^{\gamma}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i}, a_{\alpha}\right)
$$

where

$$
a_{\alpha}=\left\{\frac{c\left(1-\exp \left(-v_{\alpha}\right)\right)}{v_{\alpha}}\right\}^{k_{\alpha} / 2}
$$

and

$$
\left\|R_{\alpha}^{k_{\alpha}}(f)-H(f)\right\|_{\Lambda} \leq b_{\alpha} \sum_{i=1}^{\Gamma}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i}, b_{\alpha}\right)
$$

where

$$
b_{\alpha}=\left(\frac{c v_{\alpha}}{v_{\alpha}+1}\right)^{k_{\alpha} / 2}
$$

Proof: Since $\{S(t)\}$ is of type $[H ; 1-\exp (-t)],\left\{C_{\alpha, \lambda}\right\}$ and $\left\{R_{\alpha, \lambda}\right\}$ are of types

$$
\left[H ; 1-\frac{\exp \left(-c_{\lambda}\right)\left(1-\exp \left(-v_{\alpha}\right)\right)}{v_{\alpha}}\right]
$$

and

$$
\left[H ; 1-\frac{v_{\alpha} \exp \left(-c_{\lambda}\right)}{v_{\alpha}+1}\right]
$$

respectively. Hence the desired result follows from Corollary 4.
In particular, for the semigroup induced by the Bernstein operators on $C\left(\Delta_{r}\right)$ we have:

Corollary 11. Let $\left\{a_{\alpha}\right\},\left\{b_{\alpha}\right\}$ and $\left\{k_{\alpha}\right\}$ be as in Theorem 8. Then for all $f \in C^{(1)}\left(\Delta_{r}\right)$ and all $\alpha \in D$,

$$
\begin{aligned}
\left\|C_{\alpha}^{k_{\alpha}}(f)-B_{1}(f)\right\|_{\Lambda} & \leq \frac{r}{2}\left(1+\left\|\sum_{i=1}^{r}\left(e_{i}-e_{i}^{2}\right)\right\|^{1 / 2}\right) a_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, a_{\alpha}\right) \\
& \leq \frac{r}{2}\left(1+\frac{\sqrt{r}}{2}\right) a_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, a_{\alpha}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|R_{\alpha}^{k_{\alpha}}(f)-B_{1}(f)\right\|_{\Lambda} & \leq \frac{r}{2}\left(1+\left\|\sum_{i=1}^{r}\left(e_{i}-e_{i}^{2}\right)\right\|^{1 / 2}\right) b_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, b_{\alpha}\right) \\
\leq & \frac{r}{2}\left(1+\frac{\sqrt{r}}{2}\right) b_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, b_{\alpha}\right)
\end{aligned}
$$

where f_{i} denotes the i-th partial derivative of f given by (8).
Remark 6: Let $\Lambda=\{0\}$ and $c_{0}=0$. Thus for all $f \in C(X)$ and all $\alpha \in D$, we have

$$
C_{\alpha, 0}=\frac{1}{v_{\alpha}} \int_{0}^{v_{\alpha}} S(t)(f) d t
$$

and

$$
R_{\alpha, 0}(f)=v_{\alpha} \int_{0}^{\infty} \exp \left(-v_{\alpha} t\right) S(t)(f) d t .
$$

For these operators, we have the following: For all $\alpha \in D$,

$$
\begin{equation*}
\left\|C_{\alpha, 0}^{h_{\alpha}}(f)-f\right\| \leq a_{\alpha} \sum_{i=1}^{\gamma}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i}, a_{\alpha}\right), \tag{44}
\end{equation*}
$$

where

$$
a_{\alpha}=\left(1-\left(\frac{1-\exp \left(-v_{\alpha}\right)}{v_{\alpha}}\right)^{k_{\alpha}}\right)^{1 / 2}
$$

and

$$
\begin{equation*}
\left\|R_{\alpha, 0}^{k_{\alpha}}(f)-f\right\| \leq b_{\alpha} \sum_{i=1}^{r}\left\|H\left(h_{i}^{2}\right)-h_{i}^{2}\right\|^{1 / 2} \Omega\left(f_{i}, b_{\alpha}\right), \tag{45}
\end{equation*}
$$

where

$$
b_{\alpha}=\left(1-\left(1-\frac{1}{v_{\alpha}+1}\right)^{k_{\alpha}}\right)^{1 / 2} .
$$

Specially, in case of the semigroup induced by the Bernstein operators on $C\left(\Delta_{r}\right),(44)$ and (45) reduce to

$$
\begin{aligned}
\left\|C_{\alpha, 0}^{k_{\alpha}}(f)-f\right\| & \leq \frac{r}{2}\left(1+\left\|\sum_{i=1}^{r}\left(e_{i}-e_{i}^{2}\right)\right\|^{1 / 2}\right) a_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, a_{\alpha}\right) \\
& \leq \frac{r}{2}\left(1+\frac{\sqrt{r}}{2}\right) a_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, a_{\alpha}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|R_{\alpha, 0}^{k_{\alpha}}(f)-f\right\| & \leq \frac{r}{2}\left(1+\left\|\sum_{i=1}^{r}\left(e_{i}-e_{i}^{2}\right)\right\|^{1 / 2}\right) b_{\alpha} \sum_{i=1}^{r} \omega\left(f_{i}, b_{\alpha}\right) \\
& \leq \frac{r}{2}\left(1+\frac{\sqrt{r}}{2}\right) \sum_{i=1}^{r} \omega\left(f_{i}, b_{\alpha}\right)
\end{aligned}
$$

respectively, where f_{i} denotes the i-th partial derivative of f given by (8).

Remark 7: Applying Corollary 4, all the corresponding results of this section are also obtained for the Bernstein-Schnabl operators due to Altomare [1](cf. [2], [7]), the generalized Stancu-Mühlbach operators of Campiti [12] (cf. [40]) and the strongly continuous semigroups of Markov operators induced by them (cf. [3], [4], [7], [13]). We omit the details.

We refer to [20], [21] and [64] for detailed references on the other contributions to approximation of functions by Bernstein-type operators (cf. [5], [6]).

References

1. F. Altomare, Limit semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Sc. Norm. Sup. Pisa Cl. Sci., 16 (1989), 259-279.
2. F. Altomare, "On a sequence of Bernstein-Schnabl operators on a cylinder, in Approximation Theory VI (Proc. Internat. Sympo., College Station, 1989; ed. by C. K. Chui, L. L. Schumaker and J. D. Ward)," Academic Press, New York-London-Toronto, 1989, 5-8.
3. F. Altomare, Positive projections, approximation processes and degenerate diffusion equations, Conf. Sem. Mat. Univ. Bari., 241 (1991), 43-68.
4. F. Altomare, "Lototsky-Schnabl operators on the unit interval and degenerate diffusion equations, in Progress in Functional Analysis (Proc. Internat. Conf., Peniscola, 1990; ed. by K. D. Bierstedt, J. Bonet, J. Horvath and M. Maestre)," North-Holland, Amsterdam, 1992, 259-277.
5. F.Altomare and M. Campiti, "A bibliography on the Korovkin-type approximation theory (1952-1987), in Functional Analysis and Approximation (Proc. Internat. Conf., Bagni di Lucca, 1988; ed. by P. L. Papini)," Pitagora Editrice, Bologna, 1989, 34-79.
6. F. Altomare and M. Campiti, "Korovkin-type Approximation Theory and its Applications," Walter de Gruyter, Berlin-New York, 1994.
7. F. Altomare and S. Romanelli, On some classes of Lototsky-Schnabl operators, Note Mat., 12 (1992), 1-13.
8. G. A. Anastassiou, "Moments in Probability and Approximation Theory," Longman, Harlow, 1993.
9. H. Bauer, Theorems of Korovkin type for adapted spaces, Ann. Inst. Fourier, 23 (1973), 245-260.
10. H. Bell, Order summability and almost convergence, Proc. Amer. Math. Soc., 38 (1973), 548-552.
11. P. L. Butzer and H. Berens, "Semi-Groups of Operators and Approximation," Springer Verlag, Berlin-Heidelberg-New York, 1967.
12. M. Campiti, A generalization of Stancu-Mühlbach operators, Constr. Approx. 7 (1991), 1-18.
13. M. Campiti, Limit semigroups of Stancu-Mühlbach operators associated with positive projections, Ann. Sc. Norm. Sup. Pisa Cl. Sci., 19 (1992), 51-67.
14. M. Campiti, Convexity-monotone operators in Korovkin theory, Suppl. Rend. Circ. Mat. Palermo, 33 (1993), 229-238.
15. E. Censor, Quantitative results for positive linear approximation operators, J. Approx. Theory 4 (1971), 442-450.
16. E. B. Davies, "One-Parameter Semigroups," Academic Press, LondonNew York-San Francisco, 1980.
17. K. Donner, "Extension of Positive Operators and Korovkin Theorems, Lecture Notes in Math. Vol. 904," Springer Verlag, Berlin-Heidelberg-New York, 1982.
18. G. Felbecker and W. Schempp, A generalization of Bohman-Korovkin's theorem, Math. Z., 122 (1971), 63-70.
19. J. A. Goldstein, "Semigroups of Linear Operators and Applications," Oxford Univ. Press, New York, 1985.
20. H. H. Gonska and J. Meier, "A bibliography on approximation of functions by Bernstein type operators (1955-1982), in Approximation Theory IV (Proc. Internat. Sympo., College Station, 1983; ed. by C. K. Chui, L. L. Schumaker and J. D. Ward)," Academic Press, New York-London-Toronto, 1983, 739-785.
21. H. H. Gonska and J. Meier-Gonska, "A bibliography on approximation of functions by Bernstein-type operators (Supplement 1986), in Approximation Theory V (Proc. Internat. Sympo., College Station, 1986; ed. by C. K. Chui, L. L. Schumaker and J. D. Ward)," Academic Press, New York-London-Toronto, 1986, 621-654.
22. M. W. Grossman, Note on a generalized Bohman-Korovkin theorem, J. Math. Anal. Appl., 45 (1974), 43-46.
23. M. W. Grossman, Lototsky-Schnabl functions on compact convex sets, J. Math. Anal. Appl., 55 (1976), 525-530.
24. M. W. Grossman, Korovkin theorems for adapted spaces with respect to a positive operator, Math. Ann., 220 (1976), 253-262.
25. E. Hille and R. S. Phillips, "Functional Analysis and Semi-Groups," Amer. Math. Soc. Colloq. Publ., Vol. 31, Providence, R.I., 1957.
26. M. A. Jiménez Pozo, Déformation de la convexité et théorèmes du type Korovkin, C. R. Acad. Sci. Paris, Ser. A., 290 (1980), 213-215.
27. W. B. Jurkat and A. Peyerimhoff, Fourier effectiveness and order summability, J. Approx. Theory 4 (1971), 231-244.
28. W. B. Jurkat and A. Peyerimhoff, Inclusion theorems and order summability, J. Approx. Theory 4 (1971), 245-262.
29. S. Karlin and Z. Ziegler, Iteration of positive approximation operators, J. Approx. Theory 3 (1970), 310-339.
30. K. Keimel and W. Roth, "Ordered Cones and Approximation, Lecture Notes in Math. Vol. 1517," Springer Verlag, Berlin-Heidelberg-New York, 1992.
31. P. P. Korovkin, "Linear Operators and Approximation Theory," Hindustan Publ. Corp., Delhi, 1960.
32. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167-190.
33. G. G. Lorentz, "Bernstein Polynomials," Univ. of Toronto Press, Toronto, 1953.
34. I. J. Maddox, On strong almost convergence, Math. Proc. Camb. Phil. Soc., 85 (1979), 345-350.
35. S. M. Mazhar and A. H. Siddiqi, On F_{A}-summability and A_{B}-summability of a trigonometric sequence, Indian J. Math., 9 (1967), 461-466.
36. R. N. Mohapatra, Quantitative results on almost convergence of a sequence of positive linear operators, J. Approx. Theory 20 (1977), 239-250.
37. C. A. Micchelli, Convergence of positive linear operators on $C(X)$, J. Approx. Theory 13 (1975), 305-315.
38. B. Mond, On the degree of approximation by linear positive operators, J. Approx. Theory 18 (1976), 304-306.
39. B. Mond and R. Vasudevan, On approximation by linear positive operators, J. Approx. Theory 30 (1980), 334-336.
40. G. Mühlbach, Verallgemeinerung der Bernstein-und der Lagrangepolynome, Rev. Roumaine Math. Pures Appl. 15 (1970), 1235-1252.
41. J. Nagel, "Sätze Korovkinschen Typs für die Approximation linearer positiver Operatoren," Dissertation, Universität Essen, 1978.
42. J. Nagel, Asymptotic properties of powers of Bernstein operators, J. Approx. Theory 29 (1980), 323-335.
43. R. Nagel (Ed.), "One-Parameter Semigroups of Positive Operators, Lecture Notes in Math. Vol. 1184," Springer Verlag, Berlin-Heidelberg-New York, 1986.
44. T. Nishishiraho, Saturation of positive linear operators, Tôhoku Math. J., 28 (1976), 239-243.
45. T. Nishishiraho, The degree of convergence of positive linear operators, Tôhoku Math. J., 29 (1977), 81-89.
46. T. Nishishiraho, Saturation of bounded linear operators, Tôhoko Math. J., 30 (1979), 69-81.
47. T. Nishishiraho, Quantitative theorems on linear approximation processes of convolution operators in Banach spaces, Tôhoku Math. J., 33 (1981), 109-126.
48. T. Nishishiraho, Saturation of multiplier operators in Banach spaces, Tôhoku Math. J., 34 (1982), 23-42.
49. T. Nishishiraho, "Quantitative theorems on approximation processes of positive linear operators, in Multivariate Approximation Theory II (Proc. Internat. Conf. Math. Res. Inst., Oberwolfach, 1982; ed. by W. Schempp and K. Zeller), ISNM. Vol. 61," Birkhäuser Verlag, Basel-Boston-Stuttgart, 1982, 297-311.
50. T. Nishishiraho, Convergence of positive linear approximation processes, Tôhoko Math. J., 35 (1983), 441-458.
51. T. Nishishiraho, "The rate of convergence of positive linear approximation processes, in Approximation Theory IV (Proc. Internat. Sympo., College Station, 1983; ed. by C. K. Chui, L. L. Schumaker and J. D. Ward)," Academic Press, New York-London-Toronto, 1983, 635-641.
52. T. Nishishiraho, The degree of approximation by positive linear approximation processes, Bull. Coll. Educ., Univ. Ryukyus, 28 (1985), 7-36.
53. T. Nishishiraho, "The degree of approximation by iterations of positive linear operators, in Approximation Theory V (Proc. Internat. Sympo., College Station, 1986; ed. by C. K. Chui, L. L. Schumaker and J. D. Ward)," Academic Press, New York-London-Toronto, 1986, 507-510.
54. T. Nishishiraho, The convergence and saturation of iterations of positive linear operators, Math. Z., 194 (1987), 397-404.
55. T. Nishishiraho, Quantitative estimates for approximation by positive linear operators, Bull. Coll. Sci., Univ. Ryukyus, 45 (1987), 1-18.
56. T. Nishishiraho, The order of approximation by positive linear operators, Tôhoku Math. J., 40 (1988), 617-632.
57. T. Nishishiraho, Saturation of iterations for approximation processes on Banach spaces, Ryukyu Math. J., 2 (1989), 49-81.
58. T. Nishishiraho, Convergence of quasi-positive linear operators, Atti Sem. Mat. Fis. Univ. Modena, 29 (1991), 367-374.
59. T. Nishishiraho, Approximation processes of quasi-positive linear operators, Ryukyu Math. J., 5 (1992), 65-79.
60. T. Nishishiraho, Approximation processes with respect to positive multiplication operators, Comput. Math. Appl., 30 (1995), 389-408.
61. G. M. Petersen, Almost convergence and uniformly distributed sequences, Quart. J. Math., 7 (1956), 188-191.
62. W. Schempp, Zur Lototsky-Transformation über kompakten Räumen von Wahrscheinlichkeitsmassen, Manuscripta Math., 5 (1971), 199-211.
63. W. Schempp, A note on Korovkin test families, Arch. Math., 23 (1972), 521-524.
64. E. L. Stark, "Bernstein-Polynome, 1912-1955, in Functional Analysis and Approximation (Proc. Internat. Conf. Math. Res. Inst., Oberwolfach, 1980; ed. by P. L. Butzer, B. Sz.-Nagy and E. Görlich), ISNM. Vol. 60," Birkhäuser Verlag, Basel-Boston-Stuttgart, 1981, pp. 443-461.
65. J. J. Swetits, On summability and positive linear operators, J. Approx. Theory 25 (1979), 186-188.

Department of Mathematics
College of Science
University of the Ryukyus
Nishihara, Okinawa 903-01
JAPAN

[^0]: Received November 30, 1995.

 * This research was partially supported by the Grant-in-Aid for Scientific Research (No. 07640232), The Ministry of Education, Science and Culture, Japan.

