Approximation of the Korovkin type for vector－valued functions

メタデータ	言語：
	出版者：Department of Mathematics，College of Science，University of the Ryukyus 公開日： $2010-03-02$ キーワード（Ja）： キーワード（En）： 作成者：Nishishiraho，Toshihiko，西白保，敏彦 メールアドレス： 所属： http：／／hdl．handle．net／20．500．12000／16027

APPROXIMATION OF THE KOROVKIN TYPE FOR VECTOR-VALUED FUNCTIONS

Toshihiko Nishishiraho

Abstract

Korovkin closures for vector-valued functions are characterized by means of the technique of envelopes as well as the representing operators.

1. Introduction

Let X be a compact Hausdorff space and E a Dedekind complete normed vector lattice. Concerning the general notions and terminology needed from the theory of normed vector lattices, we refer to [17] (cf. [1], [10]). Let $B(X, E)$ denote the normed vector lattice of all E-valued bounded functions on X with the usual pointwise addition, scalar multiplication, ordering and the supremum norm $\|\cdot\|$. We shall use the same symbol $\|\cdot\|$ for underlying norms. $C(X, E)$ denotes the closed sublattice of $B(X, E)$ consisting of all E-valued continuous functions on X. In the case when E is equal to the real line \mathbb{R}, we simply write $B(X)$ and $C(X)$ instead of $B(X, E)$ and $C(X, E)$, respectively.

For any $a \in E$ and $v \in B(X)$, the function $v a$ is defined by $(v a)(x)=v(x) a$ for all $x \in X$. Also, for any $v \in B(X)$ and $f \in$ $B(X, E)$, we define $(v f)(x)=v(x) f(x)$ for all $\boldsymbol{x} \in X$. Clearly, $v a$ and $v f$ belong to $B(X, E)$, and $\|v a\|=\|v\|\|a\|$ and $\|v f\| \leq\|v\|\|f\|$. If $a \in E, v \in C(X)$ and $f \in C(X, E)$, then $v a$ and $v f$ belong to $C(X, E)$. $C(X) \otimes E$ stands for the linear subspace of $C(X, E)$ consisting of all finite sums of functions of the form $v a$, where $v \in C(X)$ and $a \in E$.

In this paper we suppose that E contains an element $e \in E$ such that $e>0,\|e\|=1$ and $|a| \leq\|a\| e$ for all $a \in E$. We call e the normal order unit of E. For instance, $E=\mathbb{R}$ or $E=C(Y, \mathbb{R})$, where Y is a compact Hausdorff space always, has a normal order unit. We define $\rho(x)=e$ for all $x \in X$. Note that ρ is the normal order unit of $B(X, E)$. Let $A(X, E)$ be a sublattice of $C(X, E)$ which contains ρ.

[^0]The purpose of this paper is to study Korovkin closures for positive linear operators of $A(X, E)$ into B, where B is equal to E or $B(X, E)$. For this aim, we will make use of the technique of envelopes as well as the representing operators. Actually, we extend the results of Bauer [4](cf. [3], [5]) to the context of functions taking value in an arbitrary Dedekind complete normed vector lattice which contains a normal order unit.

We do not state the classical cases in detail. They have been treated in many places and we globally refer to [7] on the subject and to [2] and [15] for detailed references and summaries on the several other contributions to the area of of Korovkin type approximation theory, which is more recently dealt with in the structures so-called locally convex cones in [8].

2. M-Envelopes and M-Affine Functions

Let M be a linear subspace of $A(X, E)$ which contains ρ. For a function $f \in A(X, E)$ and a point $x \in X$, we put

$$
M^{*}(f, x)=\{h(x): f \leq h, h \in M\}
$$

and

$$
M_{*}(f, x)=\{h(x): h \leq f, h \in M\} .
$$

Since $|f| \leq\|f\| \rho,-\|f\| e \in M_{*}(f, x)$ and $\|f\| e \in M^{*}(f, x)$. For a function $f \in A(X, E)$, we define

$$
f^{*}(x)=\inf M^{*}(f, x) \quad(x \in X)
$$

and

$$
f_{*}(x)=\sup M_{*}(f, x) \quad(x \in X),
$$

which are called the upper and lower M-envelope of f, respectively. These functions have the following properties:

Lemma 1. Let $f, g \in A(X, E)$ and $\xi \in \mathbb{R}$.

$$
\begin{equation*}
-\|f\| \rho \leq f_{*} \leq f \leq f^{*} \leq\|f\| \rho . \tag{i}
\end{equation*}
$$

(ii) If $f \leq g$, then $f^{*} \leq g^{*}$ and $f_{*} \leq g_{*}$.
(iii) $(f+g)^{*} \leq f^{*}+g^{*}, f_{*}+g_{*} \leq(f+g)_{*}$.
(iv) If $\xi \geq 0$, then $(\xi f)^{*}=\xi f^{*}$ and $(\xi f)_{*}=\xi f_{*}$.
(v) If $\xi \leq 0$, then $(\xi f)^{*}=\xi f_{*}$. In particular, $(-f)^{*}=-f_{*}$.

Proof: This follows immediately from the definition.
A function $f \in A(X, E)$ is called M-affine, if f^{*} is equal to f_{*}. Obviously, f is M-affine if and only if $f^{*}=f=f_{*}$. For a point $x \in X$, we define

$$
\hat{M}_{x}=\left\{f \in A(X, E): f_{*}(x)=f^{*}(x)\right\}
$$

which is a linear subspace of $A(X, E)$ containing M. Also, we define

$$
\hat{M}=\bigcap_{x \in X} \hat{M}_{x}
$$

which is a linear subspace of $A(X, E)$ containing M. Plainly, we have

$$
\hat{M}=\left\{f \in A(X, E): f_{*}=f^{*}\right\}=\left\{f \in A(X, E): f_{*}=f=f^{*}\right\}
$$

which can be characterized in the sense of the following:
Lemma 2. Let $f \in \hat{M}$. Then for any $\epsilon>0$, there exist finite subsets $\left\{g_{1}, g_{2}, \cdots, g_{m}\right\}$ and $\left\{h_{1}, h_{2}, \cdots, h_{m}\right\}$ of M such that

$$
\begin{equation*}
\underline{g} \leq f \leq \bar{h} \quad \text { and } \quad \bar{h}-\underline{g}<\epsilon \rho \tag{1}
\end{equation*}
$$

where

$$
\underline{g}=\sup \left\{g_{1}, g_{2}, \cdots, g_{m}\right\} \quad \text { and } \quad \bar{h}=\inf \left\{h_{1}, h_{2}, \cdots, h_{m}\right\}
$$

Proof: For each $x \in X$, since $f_{*}(x)=f(x)=f^{*}(x)$, there exist functions g_{x} and $h_{x} \in M$ such that

$$
g_{x} \leq f \leq h_{x}, \quad h_{x}(x)-g_{x}(x)<(\epsilon / 2) e
$$

Therefore, since $h_{x}-g_{x}$ belongs to $C(X, E)$, there exists an open neighborhood V_{x} of x such that

$$
h_{x}(y)-g_{x}(y)<\epsilon e \text { for all } y \in V_{x}
$$

The family $\left\{V_{x}: x \in X\right\}$ is an open covering of X, and so it has a finite subcovering, say $\left\{V_{x_{i}}: i=1,2, \cdots, m\right\}$. Then the associated functions

$$
g_{i}=g_{x_{i}}, \quad h_{i}=h_{x_{i}} \quad(i=1,2, \cdots, m)
$$

have the desired properties.
Let A and B be normed vector lattices, and let L be a mapping of A into $B . L$ is said to be increasing if $f, g \in A$ and $f \geq g$, then $L(f) \geq L(g)$. Also, L is said to be positive if $f \in A$ and $f \geq 0$, then $L(f) \geq 0$. Clearly, if L is linear, then L is increasing if and only if L is positive. Furthermore, if A has a normal order unit a and if L is a positive linear operator of A into B, then L is bounded and $\|L\|=\|L(a)\|$.

From now on let D be a direct set and let Λ be an index set.
Proposition 1. Let $x \in X$. If $\left\{\mu_{\alpha, \lambda}: \alpha \in D, \lambda \in \Lambda\right\}$ is a family of increasing mappings of $A(X, E)$ into E satisfying

$$
\begin{equation*}
\lim _{\alpha}\left\|\mu_{\alpha, \lambda}(k)-k(x)\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda \tag{2}
\end{equation*}
$$

for all $k \in M$, then

$$
\begin{equation*}
\lim _{\alpha}\left\|\mu_{\alpha, \lambda}(f)-f(x)\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda \tag{3}
\end{equation*}
$$

for all $f \in \hat{M}_{x}$.
Proof: Let g and h be functions in M such that $g \leq f \leq h$. Then for every $\epsilon>0$, by (2) there exists an element $\alpha_{0} \in D$ such that

$$
\left\|\mu_{\alpha, \lambda}(g)-g(x)\right\|<\epsilon \quad \text { and } \quad\left\|\mu_{\alpha, \lambda}(h)-h(x)\right\|<\epsilon
$$

for all $\alpha \in D, \alpha \geq \alpha_{0}$ and all $\lambda \in \Lambda$. Since

$$
\left|\mu_{\alpha, \lambda}(u)-u(x)\right| \leq\left\|\mu_{\alpha, \lambda}(u)-u(x)\right\| e \quad(\alpha \in D, \lambda \in \Lambda)
$$

whenever u belongs to $A(X, E)$ and

$$
\mu_{\alpha, \lambda}(g) \leq \mu_{\alpha, \lambda}(f) \leq \mu_{\alpha, \lambda}(h) \quad(\alpha \in D, \lambda \in \Lambda)
$$

we conclude that for all $\alpha \in D, \alpha \geq \alpha_{0}$ and all $\lambda \in \Lambda$,

$$
g(x)-\epsilon e<\mu_{\alpha, \lambda}(f)<h(x)+\epsilon e
$$

which yields

$$
f_{*}(x)-\epsilon e \leq \mu_{\alpha, \lambda}(f) \leq f^{*}(x)+\epsilon e
$$

Thus we have

$$
\left|\mu_{\alpha, \lambda}(f)-f(x)\right| \leq \epsilon e \quad\left(\alpha \in D, \quad \alpha \geq \alpha_{0}, \quad \lambda \in \Lambda\right)
$$

because of $f_{*}(x)=f(x)=f^{*}(x)$. Consequently, we obtain

$$
\left\|\mu_{\alpha, \lambda}(f)-f(x)\right\| \leq \epsilon \quad\left(\alpha \in D, \quad \alpha \geq \alpha_{0}, \quad \lambda \in \Lambda\right)
$$

which implies (3).

Corollary 1. Let $\left\{L_{\alpha, \lambda}: \alpha \in D, \lambda \in \Lambda\right\}$ be a family of increasing mappings of $A(X, E)$ into $B(X, E)$. (a) Let $x \in X$. If

$$
\lim _{\alpha}\left\|L_{\alpha, \lambda}(g)(x)-g(x)\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda
$$

for all $g \in M$, then

$$
\lim _{\alpha}\left\|L_{\alpha, \lambda}(f)(x)-f(x)\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda
$$

for all $f \in \hat{M}_{x}$. (b) If

$$
\lim _{\alpha}\left\|L_{\alpha, \lambda}(g)-g\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda
$$

for all $g \in M$, then

$$
\lim _{\alpha}\left\|L_{\alpha, \lambda}(f)(x)-f(x)\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda
$$

for all $x \in X$ and all $f \in \hat{M}$.
Proposition 2. If $\left\{L_{\alpha, \lambda}: \alpha \in D, \lambda \in \Lambda\right\}$ be a family of increasing mappings of $A(X, E)$ into $B(X, E)$ satisfying

$$
\begin{equation*}
\lim _{\alpha}\left\|L_{\alpha, \lambda}(g)-g\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda \tag{4}
\end{equation*}
$$

for all $g \in M$, then

$$
\begin{equation*}
\lim _{\alpha}\left\|L_{\alpha, \lambda}(f)-f\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda \tag{5}
\end{equation*}
$$

for all $f \in \hat{M}$.
Proof: For any $\epsilon>0$, by Lemma 2 there exist finite subsets $\left\{g_{1}, g_{2}, \cdots, g_{m}\right\}$ and $\left\{h_{1}, h_{2}, \cdots, h_{m}\right\}$ of M satisfying (1). By (4), there exists an element $\alpha_{0} \in D$ such that
(6) $\left\|L_{\alpha, \lambda}\left(g_{i}\right)-g_{i}\right\| \leq \epsilon$ and $\left\|L_{\alpha, \lambda}\left(h_{i}\right)-h_{i}\right\| \leq \epsilon \quad(i=1,2, \cdots, m)$ for all $\alpha \in D, \alpha \geq \alpha_{0}$ and all $\lambda \in \Lambda$. Since for all $x \in X$

$$
\left|L_{\alpha, \lambda}(k)(x)-k(x)\right| \leq\left\|L_{\alpha, \lambda}(k)(x)-k(x)\right\| e \quad(\alpha \in D, \lambda \in \Lambda)
$$

whenever k belongs to $A(X, E)$ and

$$
L_{\alpha, \lambda}\left(g_{i}\right) \leq L_{\alpha, \lambda}(f) \leq L_{\alpha, \lambda}\left(h_{i}\right) \quad(i=1,2, \cdots, m)
$$

for all $\alpha \in D$ and all $\lambda \in \Lambda$, by (6) we conclude that

$$
g_{i}(x)-\epsilon e<L_{\alpha, \lambda}(f)(x)<h_{i}(x)+\epsilon e \quad(i=1,2, \cdots, m)
$$

for all $\alpha \in D, \alpha \geq \alpha_{0}$ and all $\lambda \in \Lambda$. Hence, for all $x \in X$ we obtain

$$
\underline{g}(x)-\epsilon e \leq L_{\alpha, \lambda}(f)(x) \leq \bar{h}(x)+\epsilon e \quad\left(\alpha \in D, \alpha \geq \alpha_{0}, \lambda \in \Lambda\right)
$$

which together with (1) gives

$$
\left|L_{\alpha, \lambda}(f)(x)-f(x)\right|<3 \epsilon e \quad\left(\alpha \in D, \alpha \geq \alpha_{0}, \lambda \in \Lambda\right),
$$

and so

$$
\left\|L_{\alpha, \lambda}(f)(x)-f(x)\right\| \leq 3 \epsilon \quad\left(\alpha \in D, \alpha \geq \alpha_{0}, \quad \lambda \in \Lambda\right)
$$

which implies

$$
\left\|L_{\alpha, \lambda}(f)-f\right\| \leq 3 \epsilon \quad\left(\alpha \in D, \quad \alpha \geq \alpha_{0} \lambda \in \Lambda\right)
$$

Thus (5) is proved.
Remark 1: Suppose that $A(X, E)$ contains $C(X) \otimes E$. If $\hat{M}=$ $A(X, E)$, then M separates the points of X, i.e., for any $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$, there exists a function $h \in M$ such that $h\left(x_{1}\right) \neq h\left(x_{2}\right)$.

In fact, by Urysohn's lemma there exists a function $g \in C(X)$ such that $g\left(x_{1}\right)=0$ and $g\left(x_{2}\right)=1$. Let $f=g e$. Then $f \in C(X) \otimes E \subseteq$ $A(X, E)=\hat{M}$, and so there is a function $h \in M$ satisfying $h \leq f$ and $f\left(x_{2}\right)-e<h\left(x_{2}\right)$. Therefore we have $f\left(x_{1}\right)=0<h\left(x_{2}\right)$ and $h\left(x_{1}\right) \leq f\left(x_{1}\right)$. Hence $h\left(x_{1}\right)<h\left(x_{2}\right)$.

3. Choquet Boundaries

For a given point $x \in X$, a positive linear operator μ of $A(X, E)$ into E is called an M-representing operator for x if $\mu(g)=g(x)$ for every $g \in M$. For each $x \in X$, we define $\delta_{x}(f)=f(x)$ for every
$f \in A(X, E)$. This operator δ_{x} is called the evaluation operator at x. Evidently, $\delta_{x}(\rho)=e,\left\|\delta_{x}\right\|=1$ and δ_{x} is always the M-representing operator for \boldsymbol{x}. Let $\mathcal{R}_{x}(M)$ denote the set of all M-representing operators for \boldsymbol{x}. For example, let $X=[0,1]$ be the closed unit interval in $\mathbb{R}, 0 \leq t<1 / 2$ and let M be a linear subspace of $A(X, E)$ spanned by $\left\{\rho, \rho_{1}\right\}$, where $\rho_{1}(x)=x e$ for every $x \in X$. Then $\mu=1 / 2\left(\delta_{t}+\delta_{(1-t)}\right)$ belongs to $\mathcal{R}_{1 / 2}(M)$ and $\mu \neq \delta_{1 / 2}$.

For $x \in X$ and $f \in A(X, E)$, we denote by $\left[f_{*}(x), f^{*}(x)\right]$ the order interval in E, i.e.,

$$
\left[f_{*}(\boldsymbol{x}), f^{*}(\boldsymbol{x})\right]=\left\{a \in E: f_{*}(\boldsymbol{x}) \leq a \leq f^{*}(\boldsymbol{x})\right\}
$$

Then the following lemma give the close connection between the M envelopes and the M-representing operators.

Lemma 3. Let $x \in X$ and let $f \in A(X, E)$. Then

$$
\left[f_{*}(x), f^{*}(x)\right]=\left\{\mu(f): \mu \in \mathcal{R}_{\boldsymbol{x}}(M)\right\}
$$

Proof: If $f=0$, then we have

$$
\left[f_{*}(x), f^{*}(x)\right]=\{0\}=\left\{\mu(f): \mu \in \mathcal{R}_{x}(m)\right\}
$$

Now let $f \neq 0$. Let $\mu \in \mathcal{R}_{x}(M)$, and let g and h be functions in M such that $g \leq f \leq h$. Then

$$
g(x)=\mu(g) \leq \mu(f) \leq \mu(h)=h(x)
$$

which yields

$$
f_{*}(x) \leq \mu(f) \leq f^{*}(x)
$$

Conversely, let a be an arbitrary element in $\left[f_{*}(x), f^{*}(x)\right]$, and let V be the linear subspace of $A(X, E)$ spanned by f. We define

$$
p(g)=g^{*}(x) \quad \text { for every } g \in A(X, E)
$$

and

$$
\mu_{0}(\xi f)=\xi a \quad \text { for every } \xi \in \mathbb{R}
$$

Then by Lemma 1 , the mapping $p: A(X, E) \rightarrow E$ is sublinear and μ_{0} is a linear operator of V into E satisfying $\mu_{0}(g) \leq p(g)$ for all $g \in V$.

Therefore, by the vector-valued Hahn-Banach theorem ([1; Theorem 2.1]. cf [10 ; Theorem 1.5.4]) there exists a linear operator μ of $A(X, E)$ into E such that $\mu(g) \leq p(g)$ for all $g \in A(X, E)$ and $\mu(h)=\mu_{0}(h)$ for all $h \in V$. If $g \in A(X, E)$ and $g \leq 0$, then Lemma 1 (ii) gives

$$
\mu(g) \leq p(g)=g^{*}(x) \leq 0^{*}(x)=0,
$$

which implies that μ is positive. Furthermore, for every $h \in M$ we have

$$
\mu(h) \leq p(h)=h^{*}(x)=h_{*}(x)=h(x)
$$

and

$$
-\mu(h)=\mu(-h) \leq p(-h)=(-h)^{*}(x)=-h(x),
$$

and so $\mu(h)=h(x)$. Thus μ belongs to $\mathcal{R}_{x}(M)$ and $\mu(f)=\mu_{0}(f)=a$. The proof of the lemma is complete.

Lemma 4. Let $f \in A(X, E)$.
(i) Let $x \in X$. Then f belongs to \hat{M}_{x} if and only if $\mu(f)=$ $\delta_{x}(f)$ for all $\mu \in \mathcal{R}_{x}(M)$.
(ii) f belongs to \hat{M} if and only if $\mu(f)=\delta_{\boldsymbol{x}}(f)$ for all $x \in X$ and all $\mu \in \mathcal{R}_{x}(M)$.

Proof: This follows immediately from Lemma 3.
We define

$$
\partial_{M}(X)=\left\{x \in X: \mathcal{R}_{w}(M)=\left\{\delta_{x}\right\}\right\},
$$

which is called the Choquet boundary of X with respect to M. This can be characterized as follows:

Lemma 5. A point $x \in X$ belongs to $\partial_{M}(X)$ if and only if $f_{*}(x)=$ $f^{*}(x)$ for all $f \in A(X, E)$, i.e., $\hat{M}_{x}=A(X, E)$.

Proof: This is an immediate consequence of Lemma 4 (i).
Proposition 3. $\hat{M}=A(X, E)$ if and only if $\partial_{M}(X)=X$.
Proof: This follows from Lemma 4 (ii) and Lemma 5.

4. Korovkin Closures and Korovkin Spaces

Let A and B be normed vector lattices. Let V be a linear subspace of A and T a positive linear operator of A into B. Then we define $\operatorname{Kor}(V, T)$ to be the set of all $f \in A$ such that if $\left\{T_{\alpha, \lambda}: \alpha \in D, \lambda \in \Lambda\right\}$ is a family of positive linear operators of A into B satisfying

$$
\lim _{\alpha}\left\|T_{\alpha, \lambda}(g)-g\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda
$$

for all $g \in V$, then

$$
\lim _{\alpha} \| T_{\alpha, \lambda}(f)-f \mid=0 \quad \text { uniformly in } \lambda \in \Lambda .
$$

$\operatorname{Kor}(V, T)$ is called a Korovkin closure of V with respect to $T . V$ is called a Korovkin space with respect to T if $\operatorname{Kor}(V, T)$ is identical with $A(X, E)$. If V is spanned by a subset S of A and $\operatorname{Kor}(V, T)=A(X, E)$, then S is also called a Korovkin set with respect to T. Obviously, $\operatorname{Kor}(V, T)$ is a linear subspace of A.

Theorem 1. Let $\boldsymbol{x} \in X$. Then \boldsymbol{x} belongs to $\partial_{M}(X)$ if and only if M is a Korovkin space with respect to δ_{x}, i.e., $\operatorname{Kor}\left(M, \delta_{x}\right)=A(X, E)$.

Proof: Suppose that $x \in \partial_{M}(X)$. Then by Lemma 5 we have $\hat{M}_{x}=A(X, E)$. Also, Proposition 1 implies $\hat{M}_{x} \subseteq \operatorname{Kor}\left(M, \delta_{x}\right)$. Therefore $\operatorname{Kor}\left(M, \delta_{x}\right)$ is equal to $A(X, E)$. Conversely, we assume that $\operatorname{Kor}\left(M, \delta_{\boldsymbol{x}}\right)=A(X, E)$ and let μ be an arbitrary element in $\mathcal{R}_{\boldsymbol{x}}(M)$. Now for all $\alpha \in D$ and all $\lambda \in \Lambda$, we define $\mu_{\alpha, \lambda}=\mu$, which is a positive linear operator of $A(X, E)$ into E satisfying

$$
\lim _{\alpha}\left\|\mu_{\alpha, \lambda}(g)-\delta_{x}(g)\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda .
$$

Thus for every $f \in A(X, E)$,

$$
\lim _{\alpha}\left\|\mu_{\alpha, \lambda}(f)-\delta_{x}(f)\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda,
$$

which yields $\mu=\delta_{\boldsymbol{x}}$. Hence \boldsymbol{x} belongs to $\partial_{M}(X)$.

Theorem 2. If $\partial_{M}(X)$ is identical with X, then M is a Korovkin space with respect to I, i.e., $\operatorname{Kor}(M, I)=A(X, E)$, where I denotes the identity operator on $A(X, E)$

Proof: By Propositions 2 and 3, we have

$$
A(X, E)=\hat{M} \subseteq K o r(M, I) \subseteq A(X, E)
$$

and so $\operatorname{Kor}(M, I)=A(X, E)$.
In order to show the converse statement in Theorem 2, we assume that X is a first countable, compact Hausdorff space and that D is the set \mathbb{N} of all natural numbers in the following arguments.

Proposition 4. $\operatorname{Kor}(M, I)$ coincides with \hat{M}.
Proof: By Proposition 2 we have $\hat{M} \subseteq \operatorname{Kor}(M, I)$. To show the converse inclusion, let f be an arbitrary function in $\operatorname{Kor}(M, I)$. Let $x \in X$ and $\mu \in \mathcal{R}_{x}(M)$. Since X satisfies the first axiom of countability, there is a fundamental system $\left\{V_{n}: n \in \mathbb{N}\right\}$ of open neighborhoods of \boldsymbol{x} such that

$$
V_{1} \supseteq V_{2} \supseteq \cdots \supseteq V_{n} \supseteq V_{n+1} \supseteq \cdots
$$

For each $n \in \mathbb{N}$, by Urysohn's lemma there exists a function $f_{n} \in C(X)$ such that

$$
0 \leq f_{n}(t) \leq 1(t \in X), \quad f_{n}(x)=1, \text { and } f_{n}(t)=0\left(t \in X \backslash V_{n}\right)
$$

For each $n \in \mathbb{N}$ and $\lambda \in \Lambda$, we define

$$
T_{n, \lambda}(g)=f_{n} \mu(g)+\left(1-f_{n}\right) g \quad(g \in A(X, E))
$$

Then $\left\{T_{n, \lambda}: n \in \mathbb{N}, \lambda \in \Lambda\right\}$ is a family of positive linear operators of $A(X, E)$ into $B(X, E)$ satisfying

$$
\lim _{n \rightarrow \infty}\left\|T_{n, \lambda}(h)-h\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda
$$

for every $h \in M$. Therefore we have

$$
\lim _{n \rightarrow \infty}\left\|T_{n, \lambda}(f)-f\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda
$$

In particular, there holds

$$
\lim _{n \rightarrow \infty}\left\|T_{n, \lambda}(f)(x)-f(x)\right\|=0 \quad \text { uniformly in } \lambda \in \Lambda
$$

which gives $\mu(f)=\delta_{x}(f)$, since $T_{n, \lambda}(f)(x)=\mu(f)$ for all $n \in \mathbb{N}$ and all $\lambda \in \Lambda$. Hence, by Lemma 4 (ii) f belongs to \hat{M}, and so we have $\hat{M} \supseteq \operatorname{Kor}(M, I)$.

Theorem 3. The following statements are equivalent:
$\partial_{M}(X)=X$.
(ii) $\operatorname{Kor}(M, I)=A(X, E)$.
(iii) $\hat{M}=A(X, E)$.

Proof: By Theorem 2, (i) implies (ii). By Proposition 3, (ii) implies (iii). Also, by Proposition 2 (iii) implies (i).

5. Korovkin Sets in $C(X, E)$

Here we consider the case of $A(X, E)=C(X, E)$, and let M be a linear subspace of $C(X, E)$ which contains $1_{X} a$ for for all $a \in E$, where 1_{X} denote the normal order unit in $C(X)$ defined by $1_{X}(x)=1$ for all $\boldsymbol{x} \in X$.

Lemma 6. $C(X) \otimes E$ is dense in $C(X, E)$.
Proof: This is an immediate consequence of [16 ; Theorem 1.15], since $C(X)$ separates of points of X.

Lemma 7. Let $x \in X$. If there exists a function $g_{x} \in C(X)$ such that

$$
\begin{equation*}
g_{x} \geq 0, g_{x}(x)=0 \text { and } g_{x}(t)>0 \quad \text { for all } t \in X \text { with } t \neq x \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{x} a \in M \quad \text { for all } a \in E, \tag{8}
\end{equation*}
$$

then \boldsymbol{x} belongs to $\partial_{M}(X)$.
Proof: Let $\mu \in \mathcal{R}_{x}(M)$. Let $\epsilon>0$ be given and let v be an arbitrary function in $C(X)$ satisfying $v(x)=0$. Then there exists an open neighborhood V_{x} of x such that $|v(t)| \leq \epsilon$ for all $t \in V_{x}$. Let $F=X \backslash V_{x}$, and put

$$
c=\min \{g(t): t \in F\}
$$

and

$$
C=\max \{|v(t)|: t \in F\} .
$$

Then we have

$$
\begin{equation*}
|v(t)| \leq \epsilon+(C / c) g(t) \tag{9}
\end{equation*}
$$

for all $t \in X$. Let $a \in E$. Let a^{+}and a^{-}denote the positive part and the negative part of a, respectively. Then it follows from (9) that

$$
\left|v a^{+}\right| \leq \epsilon 1_{X} a^{+}+(C / c) g a^{+}
$$

and so

$$
\begin{aligned}
& \left|\mu\left(v a^{+}\right)\right| \leq \epsilon \mu\left(1_{X} a^{+}\right)+(C / c) \mu\left(g a^{+}\right) \\
& =\epsilon 1_{X}(x) a^{+}+(C / c) g(x) a^{+}=\epsilon a^{+}
\end{aligned}
$$

Similarly, we have

$$
\left|\mu\left(v a^{-}\right)\right| \leq \epsilon a^{-}
$$

Therefore, we get

$$
\begin{gathered}
|\mu(v a)|=\left|\mu\left(v\left(a^{+}-a^{-}\right)\right)\right|=\left|\mu\left(v a^{+}\right)-\mu\left(v a^{-}\right)\right| \\
\quad \leq\left|\mu\left(v a^{+}\right)\right|+\left|\mu\left(v a^{-}\right)\right| \leq \epsilon\left(a^{+}+a^{-}\right)=\epsilon|a|
\end{gathered}
$$

which implies

$$
\|\mu(v a)\| \leq \epsilon\|a\| .
$$

Consequently, we have $\mu(v a)=0$ for all $a \in E$ and all $v \in C(X)$ satisfying $v(x)=0$, since ϵ is an arbitrary positive real number. Now let $w \in C(X)$ and take $v=w-w(x) 1_{X}$. Then v belongs to $C(X)$ and $v(x)=0$, and so

$$
\mu\left(\left(w-w(x) 1_{X}\right) a\right)=0 \quad(a \in E)
$$

which gives $\mu(w a)=\delta_{x}(w a)$. Thus we conclude that $\mu(h)=\delta_{x}(h)$ for all $h \in C(X) \otimes E$, and hence Lemma 6 establishes that $\mu(f)=\delta_{x}(f)$ for every $f \in C(X, E)$, i.e., $\mu=\delta_{x}$. Therefore, x belongs to $\partial_{M}(X)$.

As an immediate of consequence of Lemma 7, Theorems 1 and 2, we have the following.

Corollary 2. (a) Let x be a fixed point of X. If there exists a function $g_{x} \in C(X)$ satisfying (7) and (8), then M is a Korovkin space with respect to δ_{x}. (b) If for each point $x \in X$, there exists a function $g_{x} \in C(X)$ satisfying (7) and (8), then M is a Korovkin space with respect to I.

For a given subset S of $C(X)$, we define

$$
S E=\{v a: v \in S, a \in E\}
$$

Remark 2: Let $x \in X$ and let g_{x} be a function in $C(X)$ which satisfies (7) and (8). Then $\left\{1_{X}, g_{x}\right\} E$ is a Korovkin set with respect to δ_{x}. In fact, this follows immediately from Corollary 2 (a).

Theorem 4. Let $\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}$ be a finite subset of $C(X)$ and let

$$
U=\left\{1_{X}, u_{1}, u_{2}, \cdots, u_{m}\right\} E
$$

Then the following assertions hold: (a) Let \boldsymbol{x} be a fixed point of X. If there exists a finite subset $\left\{a_{1}(\boldsymbol{x}), a_{2}(\boldsymbol{x}), \cdots, a_{m}(\boldsymbol{x})\right\}$ of \mathbb{R} such that

$$
\begin{equation*}
g_{x}=\sum_{i=1}^{m} a_{i}(x) u_{i} \tag{10}
\end{equation*}
$$

satisfies (7), then U is a Korovkin space with respect to δ_{x}. (b) If for each point $x \in X$, there exists a finite subset $\left\{a_{1}(x), a_{2}(x), \cdots, a_{m}(x)\right\}$ of \mathbb{R} such that the function g_{x} defined by (10) satisfies (7), then U is a Korovkin set with respect to I.

Proof: (a) and (b) follows from Corollary 2 (a) and (b), respectively.
From now on let p be any fixed even positive integer.
Corollary 3. Let $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a finite subset of $C(X)$ separating the points of X and let

$$
V=\left\{1_{X}, v_{1}, \cdots, v_{n}, v_{1}^{2}, \cdots, v_{n}^{2}, \cdots, v_{1}^{p-1}, \cdots, v_{n}^{p-1}, \sum_{i=1}^{n} v_{i}^{p}\right\}
$$

Then for a fixed point $x \in X, V E$ is a Korovkin set with respect to δ_{x} and $V E$ is also a Korovkin set with respect to I.

Indeed, with the help the function

$$
g_{x}=\sum_{i=1}^{n}\left(v_{i}-v_{i}(x)\right)^{p}
$$

this result follows from Theorem 4.
Theorem 5. Let G be a subset of $C(X)$ separating the points of X and let

$$
W=\left\{g^{i}: g \in G, i=0,1,2, \cdots, p\right\}
$$

where $g^{0}=1_{X}$. Then $W E$ is a Korovkin set with respect to I.

Proof: In view of Theorem 2, it will suffice to prove that $\partial_{H}(X)=X$, where H denotes the linear subspace of $C(X, E)$ spanned by $W E$. Let \boldsymbol{x} be an arbitrary point of X and let μ be any element of $\mathcal{R}_{x}(H)$. Let $\epsilon>0$ be given and let $v \in C(X)$. Since the original topology on X is identical with the weak topology on X induced by G, there exists a finite subset $\left\{g_{1}, g_{2}, \cdots, g_{r}\right\}$ of G and a constant $C>0$ such that

$$
|v(t)-v(x)| \leq \epsilon+C \sum_{i=1}^{\gamma}\left(g_{i}(t)-g_{i}(x)\right)^{p}
$$

for all $t \in X$. Let $a=a^{+}-a^{-} \in E$. Then we have

$$
\left|v a^{+}-v(x) 1_{X} a^{+}\right| \leq \epsilon 1_{X} a^{+}+C \sum_{i=1}^{r}\left(g_{i}-g_{i}(x) 1_{X}\right)^{p} a^{+}
$$

and so

$$
\left|\mu\left(v a^{+}\right)-v(x) \mu\left(1_{X} a^{+}\right)\right| \leq \epsilon \mu\left(1_{X} a^{+}\right)+C \sum_{i=1}^{r} \mu\left(\left(g_{i}-g_{i}(x) 1_{X}\right)^{p} a^{+}\right)
$$

which gives

$$
\left|\mu\left(v a^{+}\right)-\delta_{x}\left(v a^{+}\right)\right| \leq \epsilon a^{+}
$$

Similarly, we have

$$
\left|\mu\left(v a^{-}\right)-\delta_{x}\left(v a^{-}\right)\right| \leq \epsilon a^{-}
$$

Thus we get

$$
\left|\mu(v a)-\delta_{x}(v a)\right| \leq \epsilon|a|
$$

which implies

$$
\left\|\mu(v a)-\delta_{x}(v a)\right\| \leq \epsilon\|a\|
$$

Consequently, we conclude that $\mu(v a)=\delta_{x}(v a)$ for all $v \in C(X)$ and all $a \in X$, since ϵ is an arbitrary positive real number. Therefore Lemma 6 yields that $\mu=\delta_{x}$, and thus x belongs to $\partial_{H}(X)$. This proves $\partial_{H}(X)=X$.

Remark 3: If $E=\mathbb{R}$, then Theorem 5 reduces to [12; Corollary 1 (a) for $A=C(X)$ and $\left.h=1_{X}\right]$ for the usual convergence behavior.

Corollary 4. Let K be a compact subset of a real locally convex Hausdorff vector space F with its dual space F^{*} and let

$$
H=\left\{\left(\left.f\right|_{K}\right)^{i}: f \in F^{*}, i=0,1, \cdots, p\right\}
$$

where $\left.f\right|_{K}$ denotes the restriction of f to K and $\left(\left.f\right|_{K}\right)^{0}=1_{\boldsymbol{X}}$. Then $H E$ is a Korovkin set with respect to I.

Finally, we restrict ourselves to the case where X is a compact subset of the n-dimensional Euclidean space \mathbb{R}^{n} or the n-dimensional Unitary space \mathbb{C}^{n} and $p=2$. For each $k=1,2, \cdots, n, p_{k}$ denotes the n-th coordinate function defined by

$$
p_{k}(x)=x_{k} \quad \text { for every } x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in X .
$$

Then by Corollary 3 and Theorem 5 we have the following several Korovkin sets which can be the classical ones in the case of $E=\mathbb{R}$ (cf. [9], [11], [13], [14], [18]).
$\left(1^{\circ}\right)$ Let X be a compact subset of R^{n}. Then

$$
\left\{1_{X}, p_{1}, p_{2}, \cdots, p_{n}, \sum_{i=1}^{n} p_{i}^{2}\right\} E
$$

and

$$
\left\{1_{X}, p_{1}, p_{2}, \cdots, p_{n}, p_{1}^{2}, p_{2}^{2}, \cdots, p_{n}^{2}\right\} E
$$

are Korovkin sets with respect to I.
$\left(2^{\circ}\right)$ Let X be a compact subset \mathbb{C}^{n} and for each $k=1,2, \cdots, n$, we define

$$
q_{k}(x)=\operatorname{Re}\left(x_{k}\right) \quad \text { and } \quad r_{k}(x)=\operatorname{Im}\left(x_{k}\right)
$$

for every $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in X$, where $\operatorname{Re}\left(x_{k}\right)$ and $\operatorname{Im}\left(x_{k}\right)$ stand for the real part and the imaginary part of x_{k}, respectively. Then

$$
\left\{1_{X}, q_{1}, \cdots, q_{n}, r_{1}, \cdots, r_{n}, \sum_{m=1}^{n}\left(q_{m}^{2}+r_{m}^{2}\right)\right\} E
$$

and

$$
\left\{1_{X}, q_{1}, \cdots, q_{n}, r_{1}, \cdots, r_{n}, q_{1}^{2}, \cdots, q_{n}^{2}, r_{1}^{2}, \cdots, r_{n}^{2}\right\} E
$$

are Korovkin sets with respect to I.
$\left(3^{\circ}\right)$ Let X be the n-dimensional torus \mathbb{T}^{n}, i.e.,

$$
\mathbb{T}^{n}=\left\{\boldsymbol{x}=\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n}\right) \in \mathbb{C}^{n}:\left|\boldsymbol{x}_{k}\right|=1, k=1,2, \cdots, n\right\},
$$

and q_{k} and $r_{k}(k=1,2, \cdots, n)$ be as in $\left(2^{\circ}\right)$. Then

$$
\left\{1_{X}, q_{1}, \cdots, q_{n}, r_{1}, \cdots, r_{n}\right\} E
$$

is a Korovkin set with respect to I.
$\left(4^{\circ}\right)$ Let $C_{2 \pi}\left(\mathbb{R}^{n}, E\right)$ denote the normed vector lattice of all E valued continuous functions f on \mathbb{R}^{n} which are periodic with period 2π in each variable with the norm

$$
\|f\|=\sup \left\{\|f(x)\|: x \in \mathbb{R}^{n}\right\} .
$$

Then $C\left(\mathbb{T}^{n}, E\right)$ is isometrically isomorphic to $C\left(\mathbb{R}^{n}, E\right)$. For each $k=$ $1,2, \cdots, n$, we define

$$
c_{k}(x)=\cos x_{k} \quad \text { and } \quad s_{k}(x)=\sin x_{k}
$$

for all $\boldsymbol{x}=\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n}\right) \in \mathbb{R}^{n}$. Then

$$
\left\{1_{\mathbb{R}^{n}}, c_{1}, \cdots, c_{n}, s_{1}, \cdots, s_{n}\right\} E
$$

is a Korovkin set with respect to the identity operator in $C_{2 \pi}\left(\mathbb{R}^{n}, E\right)$.

References

1. C. D. Aliprantis and O. Burkinshaw, "Positive Operators," Academic Press, New York, 1985.
2. F. Altomare and M. Campiti, "A bibliography on the Korovkin type approximation theory (1952-1987), in Functional Analysis and Approximation," Pitagora Editrice, Bologna, 1989, 34-79.
3. H. Bauer, Theorems of Korovkin type for adapted spaces, Ann. Inst. Fourier, 23 (1973), 245-260.
4. H. Bauer, Approximation and abstract boundaries, Amer. Math. Monthly, 85 (1978), 632-647.
5. H. Berens and G. G. Lorentz, "Theorems of Korovkin type for positive linear operators in Banach lattice in Approximation Theory (Proc. Int. Symp. Austin 1973; ed. by G. G. Lorentz)," Academic Press, New York, 1973, 1-30.
6. G. Choquet, "Lectures on Analysis, Vol. II (Representing Theory)," Benjamin, New York-Amsterdam, 1969.
7. K. Donner, "Extensions of Positive Operators and Korovkin Theorems, Lecture Notes in Math. Vol. 904," Springer Verlag, Berlin-Heidelberg-New York, 1982.
8. K. Keimel and W. Roth, "Ordered Cones and Approximation, Lecture Notes in Math. Vol. 1517," Springer Verlag, Berlin-Heidelberg-New York, 1992.
9. P. P. Korovkin, "Linear Operators and Approximation Theory," Hindustan Publ. Corp., Delhi, 1960.
10. P. Meyer-Nieberg, "Banach Lattices," Springer Verlag, Berlin-HeidelbergNew York, 1991.
11. E. N. Morozov, Convergence of a sequence of positive linear operators in the space of continuous 2π-periodic functions of two variables (Russian), Kalinin. Gos. Red. Inst. Uč. Zap., 26 (1958), 129-142.
12. T. Nishishiraho, The convergence and saturation of iterations of positive linear operators, Math. Z., 194 (1987), 397-404.
13. T. Nishishiraho, Convergence of quasi-positive linear operators, Atti Sem. Mat. Fis. Univ. Modena, 29 (1991), 367-374.
14. T. Nishishiraho, Approximation processes of quasi-positive linear operators, Ryukyu Math. J., 5 (1992), 65-79.
15. M. Pannenberg, Topics in qualitative Korovkin approximation, Conf. Sem. Mat. Univ. Bari, 226 (1988), 1-31.
16. J. B. Prolla, "Approximation by Vector-Valued Functions," North-Holland Publ. Co., Amsterdam-New York-Oxford, 1977.
17. H. H. Schaefer, "Banach Lattices and Positive Operators," Springer Verlag, Berlin-Heidelberg-New York, 1974.
18. V. I. Volkov, On the convergence of sequences of linear positive operators in the space of continuous functions of two variables (Russian), Dokl. Acad. Nauk SSSR(N. S.), 115 (1957), 17-19.

Department of Mathematics
College of Science
University of the Ryukyus
Nishihara, Okinawa 903-01
JAPAN

[^0]: Received November 30, 1994.

