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APPROXIMATION OF THE KOROVKIN TYPE
FOR VECTOR-VALUED FUNCTIONS

TOSHIHIKO NISHISHIRAHO

Abstract. Korovkin closures for vector-valued functions are character
ized by means of the technique of envelopes as well as the representing
operators.

1. Introduction

Let X be a compact Hausdorff space and E a Dedekind complete
normed vector lattice. Concerning the general notions and terminol
ogy needed from the theory of normed vector lattices, we refer to [17]
(d. [1], [10]). Let B(X, E) denote the normed vector lattice of all
E-valued bounded functions on X with the usual pointwise addition,
scalar multiplication, ordering and the supremum norm II . II. We
shall use the same symbol 11·11 for underlying norms. C(X, E) denotes
the closed sublattice of B(X, E) consisting of all E-valued continu
ous functions on X. In the case when E is equal to the real line IR,
we simply write B(X) and C(X) instead of B(X, E) and C(X, E),
respectively.

For any a E E and v E B(X), the function va is defined by
(va)(z) = v(z)a for all z E X. Also, for any v E B(X) and I E

B(X, E), we define (vf)( z) = v( z )/(z) for all z E X. Clearly, va
and vi belong to B(X, E), and Ilvall = Ilvllllall and Ilv/ll :::; Ilvllll/ll. If
a E E, v E C(X) and I E C(X, E), then va and vi belong to C(X, E).
C(X) 0 E stands for the linear subspace of C(X, E) consisting of all
finite sums of functions of the form va, where v E C(X) and a E E.

In this paper we suppose that E contains an element e E E such
that e > O,llell = 1 and lal :::; Iialle for all a E E. We call e the
normal order unit of E. For instance, E = IR or E = C(Y, IR), where
Y is a compact Hausdorff space always, has a normal order unit. We
define p( z) = e for all z EX. Note that p is the normal order unit of
B(X, E). Let A(X, E) be a sublattice of C(X, E) which contains p.
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The purpose of this paper is to study Korovkin closures for pos
itive linear operators of A(X, E) into B, where B is equal to E or
B(X, E). For this aim, we will make use of the technique of envelopes
as well as the representing operators. Actually, we extend the results
of Bauer [4](cr. [3], [5]) to the context of functions taking value in an
arbitrary Dedekind complete normed vector lattice which contains a
normal order unit.

We do not state the classical cases in detail. They have been
treated in many places and we globally refer to [7] on the subject and
to [2] and [15] for detailed references and summaries on the several
other contributions to the area of of Korovkin type approximation
theory, which is more recently dealt with in the structures so-called
locally convex cones in [8].

2. M-Envelopes and M-Affine Functions

Let M be a linear subspace of A(X, E) which contains p. For a
function I E A(X, E) and a point z E X, we put

M·(/,z) = {h(z): I:S h,h EM}

and
M.(/,z) = {h(z): h:S I,h EM}.

Since III :S 1I/IIp, -lillie E M.(/, z) and lillie E M·(/, z). For a
function I E A(X, E), we define

and

j*(z) = inf M·(/, z)

I.(z) = supM.(/,z)

(z EX)

(z EX),

which are called the upper and lower M-envelope of I, respectively.
These functions have the following properties:

LEMMA 1. Let I,g E A(X, E) and ~ E IR.

(i) -ll/llp:S I. :S I :S j* :S 11/11p·
(ii) If I :S g, then j* :S g. and I. :::; g•.

(iii) (/+g)·:::;/*+g·,/.+g.:::;(/+g)•.
(iv) If~ ~ 0, then (~f). = ~/* and (~f). = ~/•.
(v) If ~ < 0, then (~f). ~/.. In particular,

(-f). = -I.·
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PROOF: This follows immediately from the definition.

A function I E A(X, E) is called M-affine, if j* is equal to I•.
abviously, I is M -affine if and only if j* = I = I•. For a point z EX,
we define

Mill = {I E A(X, E) : I.(z) = j*(z)},

which is a linear subspace of A(X, E) containing M. Also, we define

which is a linear subspace of A(X, E) containing M. Plainly, we have

M = {I E A(X, E): I. = !*} = {I E A(X, E): I. = I = !*},

which can be characterized in the sense of the following:

LEMMA 2. Let I E M. Then for any € > 0, there exist finite subsets
{gl,g2"" ,gm} and {h1 ,h2,'" ,hm} of M such that

(1)

where

!l. :S I :S hand h - !l. < €p,

PROOF: For each z E X, since I.(z) = I(z) = j*(z), there exist
functions gill and hill E M such that

Therefore, since hill - gill belongs to C(X, E), there exists an open
neighborhood Vill of z such that

The family {Vill : z E X} is an open covering of X, and so it has a
finite subcovering, say {VilI; : i = 1,2,'" ,m}. Then the associated
functions

(i = 1 2 ... m)" ,
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have the desired properties.

Let A and B be normed vector lattices, and let L be a mapping
of A into B. L is said to be increasing if I, g E A and I ~ g, then
L(f) ~ L(g). Also, L is said to be positive if I E A and I ~ 0,
then L(f) ~ O. Clearly, if L is linear, then L is increasing if and only
if L is positive. Furthermore, if A has a normal order unit a and if
L is a positive linear operator of A into B, then L is bounded and
IILII = IIL(a)ll·

From now on let D be a direct set and let A be an index set.

PROPOSITION 1. Let z E X. If{JLa,~ : a ED,>' E A} is a family of
increasing mappings of A(X, E) into E satisfying

(2) lim IIJLa,~(k) - k(z)11 = 0 uniformly in >. E A
a

for all k E M, then

(3) lim IIJLa,~(f) - l(z)11 = 0
a

uniformly in >. E A

for all I E Mill'

PROOF: Let g and h be functions in M such that g ~ I ~ h. Then
for every e > 0, by (2) there exists an element ao E D such that

IIJLa,~(g) - g(z)11 < e and IIJLa,~(h) - h(z)11 < e
for all a ED, a ~ ao and all >. E A. Since

IJLa,~(u) - u(z)1 ~ IIJLa,~(u) - u(z)lIe (a E D, >. E A)
whenever '1£ belongs to A(X, E) and

JLa,~(g) ~ JLa,~(f) ~ JLa,~(h) (a E D, >. E A),
we conclude that for all a E D, a 2: ao and all >. E A,

g(z) - ee < JLa,~(f) < h(z) + ee,
which yields

Thus we have

IJLa,~(f)-/(z)l~ee (aED, a2:ao, >'EA)

because of I.(z) = I(z) = I*(z). Consequently, we obtain

IIJLa,~(f) - l(z)1I ~ e (a E D, a 2: ao, >. E A),

which implies (3).
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COROLLARY 1. Let {La'A : a ED, A E A} be a family of increasing
mappings of A(X, E) into B(X, E). (a) Let z EX. If

lim IILa,A(g)(z) - g(z)11 = 0 uniformly in A E A
a

for all gEM, then

lim IILa,A(f)(z) - l(z)11 = 0
a

for all I E if;IJ' (b) If

uniformly in A E A

lim IILa'A(g) - gil = 0 uniformly in A E A
a

for all gEM, then

lim IILa'A(f)(z) - l(z)11 = 0 uniformly in A E A
a

for all z E X and all I E M.

PROPOSITION 2. H {La'A : a E D, A E A} be a family of increasing
mappings of A(X, E) into B(X, E) satisfying

(4) lim IILa,A(g) - gil = 0
a

uniformly in A E A

for all 9 E M,then

(5) lim IILa,A(f) - III = 0
a

uniformly in A E A

for all I E M.

PROOF: For any £ > 0, by Lemma 2 there exist finite subsets
{gl,g2,'" ,gm} and {h 1 ,h2,'" ,hm} of M satisfying (1). By (4),
there exists an element ao E D such that

for all a ED, a ~ ao and all A E A. Since for all z E X

ILa,A(k)(z) - k(z)1 ::; IILa,A(k)(z) - k(z)lle
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whenever k belongs to A(X, E) and

(i = 1 2 ... m)" ,

for all a E D and all A E A, by (6) we conclude that

(i=1,2,· .. ,m)

for all a E D, a ~ ao and all A E A. Hence, for all z E X we obtain

(a E D, a ~ ao, A E A),

which together with (1) gives

(a E D, a ~ ao, A E A),

and so

(a ED, a ~ ao, A E A),

which implies

(a ED, a ~ ao A E A).

Thus (5) is proved.

REMARK 1: Suppose that A(X, E) contains C(X) 0 E. If M
A(X,E), then M separates the points of X, i.e., for any Zl,Z2 EX
with Zl =1= Z2, there exists a function hEM such that h( Zl) =1= h( Z2)'

In fact, by Urysohn's lemma there exists a function g E C(X) such
that g(Zl) = 0 and g(Z2) = 1. Let f = ge. Then f E C(X) 0 E ~

A(X, E) = M, and so there is a function hEM satisfying h ::; f
and f(Z2) - e < h(Z2)' Therefore we have f(zt} = 0 < h(Z2) and
h(zt} ::; f(zt}. Hence h(zt} < h(Z2)'

3. Choquet Boundaries

For a given point z E X, a positive linear operator JL of A(X, E)
into E is called an M-representing operator for z if JL(g) = g(z) for
every gEM. For each z E X, we define DIl'(f) = f(z) for every
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1 E A(X, E). This operator 6", is called the evaluation operator at z.
Evidently, 6",(p) = e,116",11 = 1 and 6", is always the M-representing
operator for z. Let R",(M) denote the set of all M-representing oper
ators for z. For example, let X = [0,1] be the closed unit interval in
IR, 0 :S t < 1/2 and let M be a linear subspace of A(X, E) spanned by
{p,pt}, where P1(Z) = ze for every z EX. Then JL = 1/2(6t + 6(1-t))
belongs to R 1/ 2(M) and JL =1= 61/ 2 •

For z E X and 1 E A(X, E), we denote by [/.(z), r(z)] the order
interval in E, i.e.,

[/.(z), r(z)] = {a E E : I.(z) :S a :s r(z)}.

Then the following lemma give the close connection between the M
envelopes and the M-representing operators.

LEMMA 3. Let z E X and let 1 E A(X, E). Then

[/.(z), I*(z)] = {JL(f) : JL E R",(M)}.

PROOF: If 1 = 0, then we have

[/.(z), 1*(z)] = {O} = {JL(f) : JL E R",(m)}.

Now let 1 =1= O. Let JL E R",(M), and let 9 and h be functions in M
such that 9 :S 1 :S h. Then

g(z) = JL(g) :S JL(f) :S JL(h) = h(z),

which yields

1.(z) :S JL(f) :S 1*(z).

Conversely, let a be an arbitrary element in [I.(z), r(z)], and let V
be the linear subspace of A(X, E) spanned by I. We define

and

p(g) = g·(z)

JLo(~f) = ~a

for every 9 E A(X, E)

for every ~ E IR.

Then by Lemma 1, the mapping p : A(X, E) - E is sublinear and JLo
is a linear operator of V into E satisfying JLo(g) :S p(g) for all 9 E V.
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Therefore, by the vector-valued Hahn-Banach theorem ([1; Theorem
2.1]. cf [10; Theorem 1.5.4]) there exists a linear operator JL of A(X, E)
into E such that JL(g) ~ p(g) for all g E A(X, E) and JL(h) = JLo(h) for
all h E V. If g E A(X, E) and g ~ 0, then Lemma 1 (ii) gives

JL(g) ~ p(g) = g*(a!) ~ O*(a!) = 0,

which implies that JL is positive. Furthermore, for every hEM we
have

JL(h) ~ p(h) = h*(a!) = h*(a!) = h(a!)

and
-JL(h) = JL(-h) ~ p(-h) = (-h)*(a!) = -h(a!),

and so JL(h) = h(a!). Thus JL belongs to n",(M) and JL(I) = JLo(/) = a.
The proof of the lemma is complete.

LEMMA 4. Let f E A(X, E).

(i) Let a! EX. Then f belongs to M", if and only ifJL(I) =

6",(1) for all JL E n",(M).
(ii) f belongs to M if and only ifJL(I) = 6",(/) for all a! E X

and all JL E n.,,(M).

PROOF: This follows immediately from Lemma 3.

We define

which is called the Choquet boundary of X with respect to M. This
can be characterized as follows:

LEMMA 5. A point a! E X belongs to 8M (X) if and only if f*( a!) =

/*(a!) for all f E A(X, E), i.e., M", = A(X, E).

PROOF: This is an immediate consequence of Lemma 4 (i).

PROPOSITION 3. M = A(X, E) if and only if 8M (X) = X.

PROOF: This follows from Lemma 4 (ii) and Lemma 5.
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4. Korovkin Closures and Korovkin Spaces

Let A and B be normed vector lattices. Let V be a linear subspace
of A and T a positive linear operator of A into B. Then we define
K 01'(V, T) to be the set of all / E A such that if {Ta,A : a ED, >.. E A}
is a family of positive linear operators of A into B satisfying

lim IITa,A(g) - gil = 0
a

for all g E V, then

lim IITa,AU) - /1 = 0
a

uniformly in >.. E A

uniformly in >.. E A.

K 01'(V, T) is called a Korovkin closure of V with respect to T. V is
called a Korovkin space with respect to T if K 01'(V, T) is identical with
A(X, E). IfV is spanned by a subset S of A and K 01'(V, T) = A(X, E),
then S is also called a Korovkin set with respect to T. Obviously,
K 01'(V, T) is a linear subspace of A.

THEOREM 1. Let z E X. Then z belongs to 8M (X) if and only if M
is a Korovkin space with respect to b;,,, i.e., KOl'(M,b:zJ) = A(X,E).

PROOF: Suppose that z E 8M (X). Then by Lemma 5 we have
M:zJ = A(X, E). Also, Proposition 1 implies M:zJ ~ K ol'(M, b:zJ)' There
fore KOl'(M,b:zJ) is equal to A(X,E). Conversely, we assume that
KOl'(M,b:zJ) = A(X, E) and let JL be an arbitrary element in R:zJ(M).
Now for all a E D and all >.. E A, we define JLa,A = JL, which is a
positive linear operator of A(X, E) into E satisfying

lim IIJLa,A(g) - b:zJ(g)11 = 0
a

Thus for every / E A(X, E),

uniformly in >.. E A.

uniformly in >.. E A,

which yields JL = b:zJ. Hence z belongs to 8M (X).
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THEOREM 2. If 8M (X) is identical with X, then M is a Korovkin
space with respect to I, i.e., K01'(M,1) = A(X, E), where I denotes
the identity operator on A(X, E)

PROOF: By Propositions 2 and 3, we have

A(X, E) = £I ~ K o1'(M,I) ~ A(X, E),

and so K01'(M, I) = A(X, E).

In order to show the converse statement in Theorem 2, we assume
that X is a first countable, compact Hausdorff space and that D is the
set N of all natural numbers in the following arguments.

PROPOSITION 4. K01'(M,I) coincides with M.

PROOF: By Proposition 2 we have £I ~ K01'(M, I). To show the
converse inclusion, let I be an arbitrary function in K01'(M,I). Let
z E X and JL E Rz(M). Since X satisfies the first axiom of countabil
ity, there is a fundamental system {Vn : n E N} of open neighborhoods
of z such that

VI ;2 V2 ;2 ... ;2 Vn ;2 Vn +l ;2 ....

For each n E N, by Urysohn's lemma there exists a function In E C(X)
such that

o :S In(t) :S 1 (t EX), In(z) = 1, and In(t) = 0 (t E X \ Vn).

For each n E Nand ,\ E A, we define

(g E A(X, E)).

Then {Tn •A : n E N,'\ E A} is a family of positive linear operators of
A(X, E) into B(X, E) satisfying

lim IITn.A(h) - hll = 0 uniformly in ,\ E A
n--+ (X)

for every hEM. Therefore we have

lim IITn.A(f) - III = 0
n--+ (X)

In particular, there holds

lim IITn.A(f)(z) - l(z)11 = 0
n--+(X)

uniformly in ,\ E A.

uniformly in ,\ E A,

which gives JL(f) = bz(f), since Tn.A(f)(z) = JL(f) for all n E Nand

all ,\ E A. Hence, by Lemma 4 (ii) I belongs to £I, and so we have
£I ;2 K01'(M,I).
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THEOREM 3. The following statements are equivalent:

(i) lJM(X) = X.
(ii) K01'(M,I)=A(X,E).

(iii) M = A(X, E).

PROOF: By Theorem 2, (i) implies (ii). By Proposition 3, (ii) implies
(iii). Also, by Proposition 2 (iii) implies (i).

5. Korovkin Sets in C(X, E)

Here we consider the case of A(X, E) = C(X, E), and let M be
a linear subspace of C(X, E) which contains l x a for for all a E E,
where Ix denote the normal order unit in C(X) defined by Ix (z) = 1
for all z E X.

LEMMA 6. C(X) 0 E is dense in C(X, E).

PROOF: This is an immediate consequence of [16; Theorem 1.15], since
C(X) separates of points of X.

LEMMA 7. Let z EX. Hthere exists a function g~ E C(X) such that

(7) gz 2:: 0, g~(z) = 0 and g~(t) > 0 for all t E X with t f- z

and

(8) g~ a E M for all a E E,

then z belongs to lJM(X).

PROOF: Let JL E n~(M). Let f > 0 be given and let v be an arbitrary
function in C(X) satisfying v( z) = O. Then there exists an open
neighborhood V~ ofz such that Iv(t)1 ::; f for all t E V~. Let F = X\Vz ,
and put

c = min{g(t) : t E F}

and
C = max{Jv(t)1 : t E F}.

Then we have

(9) Jv(t)1 ::; f + (Cjc)g(t)
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for all t EX. Let a E E. Let a+ and a- denote the positive part and
the negative part of a, respectively. Then it follows from (9) that

Iva+1 ~ dxa+ + (Cjc)ga+,
and so

IJL(va+)1 ~ €JL(1x a+) + (Cjc)JL(ga+)
= dx(z)a+ + (Cjc)g(z)a+ = m+.

Similarly, we have

Therefore, we get

IJL(va)1 = IJL(v(a+ - a-))I = IJL(va+) - JL(va-)1

~ IJL(va+)1 + IJL(va-)1 ~ €(a+ + a-) = €Ial,
which implies

IIJL( va)11 ~ €llall·
Consequently, we have JL(va) = 0 for all a E E and all v E C(X)
satisfying v(z) = 0, since € is an arbitrary positive real number. Now
let w E C(X) and take v = W - w( z )lx. Then v belongs to C(X) and
v(z) = 0, and so

JL((w - w(z)lx )a) = 0 (a E E),

which gives JL(wa) = 8;1l(wa). Thus we conclude that JL(h) = 8;1l(h) for
all h E C(X) 0 E, and hence Lemma 6 establishes that JLU) = 8;1l(f)
for every f E C(X, E), i.e., JL = 8;1l' Therefore, z belongs to 8M (X).

As an immediate of consequence of Lemma 7, Theorems 1 and 2,
we have the following.

COROLLARY 2. (a) Let z be a fixed point of X. If there exists a
function g;ll E C(X) satisfying (7) and (8), then M is a Korovkin
space with respect to 8;1l' (b) If for each point z EX, there exists
a function g;ll E C(X) satisfying (7) and (8), then M is a Korovkin
space with respect to I.

For a given subset S of C(X), we define

SE = {va: v E S,a E E}.

REMARK 2: Let z E X and let g;ll be a function in C(X) which satisfies
(7) and (8). Then {lx,g;ll}E is a Korovkin set with respect to 8;1l' In
fact, this follows immediately from Corollary 2 (a).
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THEOREM 4. Let {Ul,U2,'" ,u7n } be a finite subset ofC(X) and let

Then the following assertions hold: (a) Let z be a fixed point of X.
If there exists a finite subset {al (z ), a2 (z), ... ,a7n (z)} of R such that

(10) ggJ = L ai (z )Ui

i=l

satisfies (7), then U is a Korovkin space with respect to hgJ' (b) If for
each point z EX, there exists a finite subset {al(z),a2(z),··· ,a7n (z)}
of R such that the function ggJ defined by (10) satisfies (7), then U is
a Korovkin set with respect to I.

PROOF: (a) and (b) follows from Corollary 2 (a) and (b), respectively.

From now on let p be any fixed even positive integer.

COROLLARY 3. Let {VllV2,'" ,vn } be a finite subset ofC(X) sepa
rating the points of X and let

n

V - {Ix Vl ... V v2 ••• v2 •.• ~p-l... vp - l ~P}- " ,n, l' 'n' ,vi , 'n' L....J Vi .
i=l

Then for a fixed point z EX, V E is a Korovkin set with respect to
hOD and V E is also a Korovkin set with respect to I.

Indeed, with the help the function

n

ggJ = L(Vi - Vi(Z))P,
i=l

this result follows from Theorem 4.

THEOREM 5. Let G be a subset of C(X) separating the points of X
and let

W = {gi : 9 E G, i = 0, 1, 2, ... ,p},

where gO = Ix. Then WE is a Korovkin set with respect to I.
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PROOF: In view of Theorem 2, it will suffice to prove that 8H (X) = X,
where H denotes the linear subspace of C(X, E) spanned by WE. Let
z be an arbitrary point of X and let JL be any element of n",(H). Let
c > 0 be given and let v E C(X). Since the original topology on X
is identical with the weak topology on X induced by G, there exists a
finite subset {91' 92, ... ,91'} of G and a constant C > 0 such that

l'

Iv(t) - v(z)1 ::; c + C2:)9i(t) - 9i(Z))P
i=l

for all t E X. Let a = a+ - a- E E. Then we have

l'

Iva+ - v(z)l x a+1 ::; c1x a+ + CI)9i - 9i(z)lx )Pa+,
i=l

and so

l'

IJL(va+) - v(z)JL(1x a+)1 ::; cJL{1x a+) + CLJL((9i - 9i(z)lx )Pa+),
i=l

which gives

Similarly, we have

Thus we get

which implies

Consequently, we conclude that JL(va) = 6",(va) for all v E C(X) and
all a E X, since c is an arbitrary positive real number. Therefore
Lemma 6 yields that JL = 6"" and thus z belongs to 8H (X). This
proves 8H (X) = X.

REMARK 3: If E = R, then Theorem 5 reduces to [12 ; Corollary 1
(a) for A = C(X) and h = Ix] for the usual convergence behavior.
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COROLLARY 4. Let K be a compact subset of a real locally convex
Hausdorff vector space F with its dual space F* and let

H = {(lIK)i: I E F*,i = 0,1,··· ,p},

where 11K denotes the restriction of I to K and (lIK)O = Ix. Then
HE is a Korovkin set with respect to I.

Finally, we restrict ourselves to the case where X is a compact
subset of the n-dimensional Euclidean space Rn or the n-dimensional
Unitary space en and p = 2. For each k = 1,2,·· . , n, p,. denotes the
n-th coordinate function defined by

for every z = (Zl, Z2,··· , Zn) EX.

Then by Corollary 3 and Theorem 5 we have the following several
Korovkin sets which can be the classical ones in the case of E = R (d.
[9], [11], [13], [14], [18]).

(10) Let X be a compact subset of Rn
. Then

n

{I X ,PllP2,··· ,Pn, LPnE
i=l

and

are Korovkin sets with respect to I.

(2°) Let X be a compact subset en and for each k = 1,2,··· ,n,
we define

q,.(Z) = Re(z,.) and l',.(z) = Im(z,.)

for every z = (Zll Z2,··· , zn) E X, where Re(z,.) and Im(z,.) stand
for the real part and the imaginary part of z,., respectively. Then

n

{lx,ql,··· ,qn,l'll··· ,1'n, L(q~ +l'~)}E
m=l

and
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are Korovkin sets with respect to I.

(3°) Let X be the n-dimensional torus Tn, i.e.,

and qk and 1'1t (k = 1,2,··· ,n) be as in (2°). Then

is a Korovkin set with respect to I.

(4°) Let C21r (Rn, E) denote the normed vector lattice of all E
valued continuous functions / on Rn which are periodic with period
211" in each variable with the norm

II/II = sup{II/(z)11 : z ERn}.

Then C(Tn, E) is isometrically isomorphic to C(Rn, E). For each k =
1,2, ... ,n, we define

is a Korovkin set with respect to the identity operator in C21l"(Rn, E).

References

1. c. D. Aliprantis and O. Burkinshaw, "Positive Operators," Academic Press,
New York, 1985.

2. F. Altomare and M. Campiti, "A bibliography on the K orovkin type ap
pro:nmation theory (1952-1987), in Functional Analysis and Approximation,"
Pitagora Editrice, Bologna, 1989, 34-79.

3. H. Bauer, Theorem' of Korovkin type for adapted 'pace" Ann. Inst. Fourier,
23 (1973), 245-260.

4. H. Bauer, Appro:nmation and ab,tract boundarie', Amer. Math. Monthly, 85
(1978),632-647.

- 80-



5. H. Berens and G. G. Lorentz, "Theoreml of K orovkin type for pOlitive lin
ear operatorl in Banach lattice in Approximation Theory (Proc. Int. Symp.
Austin 1973; ed. by G. G. Lorentz)," Academic Press, New York, 1973, 1-30.

6. G. Choquet, "Lectures on Analysis, Vol. II (Representing Theory)," Ben
jamin, New York-Amsterdam, 1969.

7. K. Donner, "Extensions of Positive Operators and Korovkin Theorems, Lec
ture Notes in Math. Vol. 904," Springer Verlag, Berlin-Heidelberg-New York,
1982.

8. K. Keimel and W. Roth, "Ordered Cones and Approximation, Lecture Notes
in Math. Vol. 1517," Springer Verlag, Berlin-Heidelberg-New York, 1992.

9. P. P. Korovkin, "Linear Operators and Approximation Theory," Hindustan
Pub\. Corp., Delhi, 1960.

10. P. Meyer-Nieberg, "Banach Lattices," Springer Verlag, Berlin-Heidelberg
New York, 1991.

11. E. N. Morozov, Convergence of a lequence of pOlitive linear operatorl in the
Ipace of continuo'UI 27f'.periodic functionl of two variablel (Rullian), Kalinin.
Gos. Red. Inst. UC. Zap., 26 (1958), 129-142.

12. T. Nishishiraho, The convergence and laturation of iterationl of pOlitive lin
ear operatorl, Math. Z., 194 (1987), 397-404.

13. T. Nishishiraho, Convergence of quali,politive linear operatorl, Atti Sem.
Mat. Fis. Univ. Modena, 29 (1991), 367-374.

14. T. Nishishiraho, Approzimation procellel of qUali,politive linear operatorl,
Ryukyu Math. J., 5 (1992), 65-79.

15. M. Pannenberg, Topicl in qualitative Korovkin approzimation, Conf. Sem.
Mat. Univ. Bari, 226 (1988), 1-31.

16. J. B. Prolla, "Approximation by Vector-Valued Functions," North-Holland
Publ. Co., Amsterdam-New York.Oxford, 1977.

17. H. H. Schaefer, "Banach Lattices and Positive Operators," Springer Verlag,
Berlin-Heidelberg-New York, 1974.

18. V. I. Volkov, On the convergence of lequencel of linear pOlitive operatorl in
the Ipace of continuoul functionl of two variablel (Rullian), Dokl. Acad.
Nauk SSSR(N. S.), 115 (1957), 17-19.

Department of Mathematics
College of Science
University of the Ryukyus
Nishihara, Okinawa 903-01
JAPAN

- 81 -


