琉球大学学術リポジトリ

Approximation of the Korovkin type for vector-valued functions

メタデータ	言語:
	出版者: Department of Mathematics, College of
	Science, University of the Ryukyus
	公開日: 2010-03-02
	キーワード (Ja):
	キーワード (En):
	作成者: Nishishiraho, Toshihiko, 西白保, 敏彦
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/16027

APPROXIMATION OF THE KOROVKIN TYPE FOR VECTOR-VALUED FUNCTIONS

TOSHIHIKO NISHISHIRAHO

Abstract. Korovkin closures for vector-valued functions are characterized by means of the technique of envelopes as well as the representing operators.

1. Introduction

Let X be a compact Hausdorff space and E a Dedekind complete normed vector lattice. Concerning the general notions and terminology needed from the theory of normed vector lattices, we refer to [17] (cf. [1], [10]). Let B(X, E) denote the normed vector lattice of all E-valued bounded functions on X with the usual pointwise addition, scalar multiplication, ordering and the supremum norm $|| \cdot ||$. We shall use the same symbol $|| \cdot ||$ for underlying norms. C(X, E) denotes the closed sublattice of B(X, E) consisting of all E-valued continuous functions on X. In the case when E is equal to the real line \mathbb{R} , we simply write B(X) and C(X) instead of B(X, E) and C(X, E), respectively.

For any $a \in E$ and $v \in B(X)$, the function va is defined by (va)(x) = v(x)a for all $x \in X$. Also, for any $v \in B(X)$ and $f \in B(X, E)$, we define (vf)(x) = v(x)f(x) for all $x \in X$. Clearly, va and vf belong to B(X, E), and ||va|| = ||v||||a|| and $||vf|| \le ||v||||f||$. If $a \in E$, $v \in C(X)$ and $f \in C(X, E)$, then va and vf belong to C(X, E). $C(X) \otimes E$ stands for the linear subspace of C(X, E) consisting of all finite sums of functions of the form va, where $v \in C(X)$ and $a \in E$.

In this paper we suppose that E contains an element $e \in E$ such that e > 0, ||e|| = 1 and $|a| \leq ||a||e$ for all $a \in E$. We call e the normal order unit of E. For instance, $E = \mathbb{R}$ or $E = C(Y, \mathbb{R})$, where Y is a compact Hausdorff space always, has a normal order unit. We define $\rho(x) = e$ for all $x \in X$. Note that ρ is the normal order unit of B(X, E). Let A(X, E) be a sublattice of C(X, E) which contains ρ .

Received November 30, 1994.

The purpose of this paper is to study Korovkin closures for positive linear operators of A(X, E) into B, where B is equal to E or B(X, E). For this aim, we will make use of the technique of envelopes as well as the representing operators. Actually, we extend the results of Bauer [4](cf. [3], [5]) to the context of functions taking value in an arbitrary Dedekind complete normed vector lattice which contains a normal order unit.

We do not state the classical cases in detail. They have been treated in many places and we globally refer to [7] on the subject and to [2] and [15] for detailed references and summaries on the several other contributions to the area of of Korovkin type approximation theory, which is more recently dealt with in the structures so-called locally convex cones in [8].

2. M-Envelopes and M-Affine Functions

Let M be a linear subspace of A(X, E) which contains ρ . For a function $f \in A(X, E)$ and a point $x \in X$, we put

$$M^{oldsymbol{*}}(oldsymbol{f},oldsymbol{x}) = \{h(oldsymbol{x}): oldsymbol{f} \leq h, h \in M\}$$

and

$$M_{ullet}(f,oldsymbol{x})=\{h(oldsymbol{x}):h\leq f,h\in M\}.$$

Since $|f| \leq ||f||\rho$, $-||f||e \in M_*(f, x)$ and $||f||e \in M^*(f, x)$. For a function $f \in A(X, E)$, we define

$$f^*(\boldsymbol{x}) = \inf M^*(f, \boldsymbol{x}) \qquad (\boldsymbol{x} \in X)$$

and

$$f_*(x) = \sup M_*(f, x)$$
 $(x \in X),$

which are called the upper and lower M-envelope of f, respectively. These functions have the following properties:

LEMMA 1. Let $f, g \in A(X, E)$ and $\xi \in \mathbb{R}$.

(i)
$$-\|f\|\rho \le f_* \le f \le f^* \le \|f\|\rho.$$

- (ii) If $f \leq g$, then $f^* \leq g^*$ and $f_* \leq g_*$.
- (iii) $(f+g)^* \leq f^* + g^*, f_* + g_* \leq (f+g)_*.$
- (iv) If $\xi \ge 0$, then $(\xi f)^* = \xi f^*$ and $(\xi f)_* = \xi f_*$.
- (v) If $\xi \leq 0$, then $(\xi f)^* = \xi f_*$. In particular, $(-f)^* = -f_*$.

PROOF: This follows immediately from the definition.

A function $f \in A(X, E)$ is called *M*-affine, if f^* is equal to f_* . Obviously, f is *M*-affine if and only if $f^* = f = f_*$. For a point $x \in X$, we define

$$\hat{M}_{x} = \{ f \in A(X, E) : f_{*}(x) = f^{*}(x) \},\$$

which is a linear subspace of A(X, E) containing M. Also, we define

$$\hat{M} = \bigcap_{oldsymbol{x} \in oldsymbol{X}} \hat{M}_{oldsymbol{x}},$$

which is a linear subspace of A(X, E) containing M. Plainly, we have

$$\hat{M} = \{f \in A(X, E) : f_* = f^*\} = \{f \in A(X, E) : f_* = f = f^*\},\$$

which can be characterized in the sense of the following:

LEMMA 2. Let $f \in \hat{M}$. Then for any $\epsilon > 0$, there exist finite subsets $\{g_1, g_2, \dots, g_m\}$ and $\{h_1, h_2, \dots, h_m\}$ of M such that

(1)
$$\underline{g} \leq f \leq \overline{h} \quad and \quad \overline{h} - \underline{g} < \epsilon \rho,$$

where

$$g = \sup\{g_1, g_2, \cdots, g_m\}$$
 and $\overline{h} = \inf\{h_1, h_2, \cdots, h_m\}.$

PROOF: For each $x \in X$, since $f_*(x) = f(x) = f^*(x)$, there exist functions g_x and $h_x \in M$ such that

$$g_{oldsymbol{x}} \leq f \leq h_{oldsymbol{x}}, \quad h_{oldsymbol{x}}(oldsymbol{x}) - g_{oldsymbol{x}}(oldsymbol{x}) < (\epsilon/2)e.$$

Therefore, since $h_x - g_x$ belongs to C(X, E), there exists an open neighborhood V_x of x such that

$$h_{x}(y) - g_{x}(y) < \epsilon e \quad ext{for all } y \in V_{x}.$$

The family $\{V_x : x \in X\}$ is an open covering of X, and so it has a finite subcovering, say $\{V_{x_i} : i = 1, 2, \dots, m\}$. Then the associated functions

$$g_i = g_{x_i}, \quad h_i = h_{x_i} \qquad (i = 1, 2, \cdots, m)$$

- 67 -

have the desired properties.

Let A and B be normed vector lattices, and let L be a mapping of A into B. L is said to be increasing if $f, g \in A$ and $f \geq g$, then $L(f) \geq L(g)$. Also, L is said to be positive if $f \in A$ and $f \geq 0$, then $L(f) \geq 0$. Clearly, if L is linear, then L is increasing if and only if L is positive. Furthermore, if A has a normal order unit a and if L is a positive linear operator of A into B, then L is bounded and ||L|| = ||L(a)||.

From now on let D be a direct set and let Λ be an index set.

PROPOSITION 1. Let $x \in X$. If $\{\mu_{\alpha,\lambda} : \alpha \in D, \lambda \in \Lambda\}$ is a family of increasing mappings of A(X, E) into E satisfying

(2) $\lim ||\mu_{\alpha,\lambda}(k) - k(x)|| = 0$ uniformly in $\lambda \in \Lambda$

for all $k \in M$, then

(3)
$$\lim_{\alpha} ||\mu_{\alpha,\lambda}(f) - f(x)|| = 0$$
 uniformly in $\lambda \in \Lambda$

for all $f \in \hat{M}_{x}$.

PROOF: Let g and h be functions in M such that $g \leq f \leq h$. Then for every $\epsilon > 0$, by (2) there exists an element $\alpha_0 \in D$ such that

 $\|\mu_{\alpha,\lambda}(g) - g(x)\| < \epsilon \text{ and } \|\mu_{\alpha,\lambda}(h) - h(x)\| < \epsilon$

for all $\alpha \in D, \alpha \geq \alpha_0$ and all $\lambda \in \Lambda$. Since

 $ert \mu_{lpha,\lambda}(u) - u(oldsymbol{x}) ert \leq ert \mu_{lpha,\lambda}(u) - u(oldsymbol{x}) ert e \qquad (lpha \in D, \ \lambda \in \Lambda)$

whenever u belongs to A(X, E) and

$$\mu_{lpha,\lambda}(g) \leq \mu_{lpha,\lambda}(f) \leq \mu_{lpha,\lambda}(h) \qquad (lpha \in D, \ \lambda \in \Lambda),$$

we conclude that for all $\alpha \in D, \alpha \geq \alpha_0$ and all $\lambda \in \Lambda$,

$$g(x) - \epsilon e < \mu_{lpha,\lambda}(f) < h(x) + \epsilon e,$$

which yields

$$f_*(x) - \epsilon e \leq \mu_{lpha,\lambda}(f) \leq f^*(x) + \epsilon e.$$

Thus we have

 $|\mu_{lpha,\lambda}(f)-f(x)|\leq\epsilon e \qquad (lpha\in D, \ lpha\geq lpha_0, \ \lambda\in\Lambda)$ because of $f_*(x)=f(x)=f^*(x)$. Consequently, we obtain

 $\|\mu_{lpha,\lambda}(f)-f(x)\|\leq\epsilon \qquad (lpha\in D, \ lpha\geq lpha_0, \ \lambda\in\Lambda),$ which implies (3).

COROLLARY 1. Let $\{L_{\alpha,\lambda} : \alpha \in D, \lambda \in \Lambda\}$ be a family of increasing mappings of A(X, E) into B(X, E). (a) Let $x \in X$. If

$$\lim_{\boldsymbol{\alpha}} \|L_{{\boldsymbol{\alpha}},{\boldsymbol{\lambda}}}(g)({\boldsymbol{x}}) - g({\boldsymbol{x}})\| = 0 \quad ext{uniformly in } {\boldsymbol{\lambda}} \in \Lambda$$

for all $g \in M$, then

$$\lim_{lpha} \|L_{lpha,\lambda}(f)(oldsymbol{x}) - f(oldsymbol{x})\| = 0 \qquad ext{uniformly in } \lambda \in \Lambda$$

for all $f \in \hat{M}_{x}$. (b) If

$$\lim_lpha \|L_{lpha,\lambda}(g)-g\|=0 \hspace{1em} ext{uniformly in} \hspace{1em} \lambda \in \Lambda$$

for all $g \in M$, then

$$\lim_{\alpha} \|L_{lpha,\lambda}(f)(x) - f(x)\| = 0 \quad ext{uniformly in } \lambda \in \Lambda$$

for all $x \in X$ and all $f \in \hat{M}$.

PROPOSITION 2. If $\{L_{\alpha,\lambda} : \alpha \in D, \lambda \in \Lambda\}$ be a family of increasing mappings of A(X, E) into B(X, E) satisfying

(4)
$$\lim_{\alpha,\lambda} ||L_{\alpha,\lambda}(g) - g|| = 0$$
 uniformly in $\lambda \in \Lambda$

for all $g \in M$, then

(5)
$$\lim_{\alpha} \|L_{\alpha,\lambda}(f) - f\| = 0 \quad \text{uniformly in } \lambda \in \Lambda$$

for all $f \in \hat{M}$.

PROOF: For any $\epsilon > 0$, by Lemma 2 there exist finite subsets $\{g_1, g_2, \dots, g_m\}$ and $\{h_1, h_2, \dots, h_m\}$ of M satisfying (1). By (4), there exists an element $\alpha_0 \in D$ such that

(6)
$$\|L_{\alpha,\lambda}(g_i) - g_i\| \leq \epsilon$$
 and $\|L_{\alpha,\lambda}(h_i) - h_i\| \leq \epsilon$ $(i = 1, 2, \cdots, m)$

for all $\alpha \in D, \alpha \geq \alpha_0$ and all $\lambda \in \Lambda$. Since for all $x \in X$

$$|L_{lpha,\lambda}(k)(m{x})-k(m{x})|\leq \|L_{lpha,\lambda}(k)(m{x})-k(m{x})\|e\qquad (lpha\in D, \ \lambda\in\Lambda)$$

whenever k belongs to A(X, E) and

$$L_{lpha,\lambda}(g_i) \leq L_{lpha,\lambda}(f) \leq L_{lpha,\lambda}(h_i) \qquad (i=1,2,\cdots,m)$$

for all $\alpha \in D$ and all $\lambda \in \Lambda$, by (6) we conclude that

$$g_{i}(\boldsymbol{x}) - \epsilon e < L_{lpha, \lambda}(f)(\boldsymbol{x}) < h_{i}(\boldsymbol{x}) + \epsilon e \qquad (i = 1, 2, \cdots, m)$$

for all $\alpha \in D, \alpha \geq \alpha_0$ and all $\lambda \in \Lambda$. Hence, for all $x \in X$ we obtain

$$\underline{g}({m x})-\epsilon e\leq L_{lpha,\lambda}(f)({m x})\leq \overline{h}({m x})+\epsilon e\qquad (lpha\in D, \ lpha\geq lpha_0, \ \lambda\in\Lambda),$$

which together with (1) gives

$$|L_{lpha,\lambda}(f)(\pmb{x})-f(\pmb{x})|<3\epsilon e\qquad (lpha\in D, \ lpha\geq lpha_{f 0}, \ \lambda\in\Lambda),$$

and so

$$\|L_{lpha,\lambda}(f)(oldsymbol{x})-f(oldsymbol{x})\|\leq 3\epsilon \qquad (lpha\in D, \ lpha\geq lpha_0, \ \lambda\in\Lambda),$$

which implies

$$\|L_{lpha,\lambda}(f)-f\|\leq 3\epsilon \qquad (lpha\in D, \ lpha\geq lpha_0 \ \lambda\in \Lambda).$$

Thus (5) is proved.

REMARK 1: Suppose that A(X, E) contains $C(X) \otimes E$. If $\hat{M} = A(X, E)$, then M separates the points of X, *i.e.*, for any $x_1, x_2 \in X$ with $x_1 \neq x_2$, there exists a function $h \in M$ such that $h(x_1) \neq h(x_2)$.

In fact, by Urysohn's lemma there exists a function $g \in C(X)$ such that $g(x_1) = 0$ and $g(x_2) = 1$. Let f = ge. Then $f \in C(X) \otimes E \subseteq A(X, E) = \hat{M}$, and so there is a function $h \in M$ satisfying $h \leq f$ and $f(x_2) - e < h(x_2)$. Therefore we have $f(x_1) = 0 < h(x_2)$ and $h(x_1) \leq f(x_1)$. Hence $h(x_1) < h(x_2)$.

3. Choquet Boundaries

For a given point $x \in X$, a positive linear operator μ of A(X, E)into E is called an *M*-representing operator for x if $\mu(g) = g(x)$ for every $g \in M$. For each $x \in X$, we define $\delta_x(f) = f(x)$ for every $f \in A(X, E)$. This operator δ_x is called the evaluation operator at x. Evidently, $\delta_x(\rho) = e$, $||\delta_x|| = 1$ and δ_x is always the *M*-representing operator for x. Let $\mathcal{R}_x(M)$ denote the set of all *M*-representing operators for x. For example, let X = [0, 1] be the closed unit interval in $\mathbb{R}, 0 \leq t < 1/2$ and let *M* be a linear subspace of A(X, E) spanned by $\{\rho, \rho_1\}$, where $\rho_1(x) = xe$ for every $x \in X$. Then $\mu = 1/2(\delta_t + \delta_{(1-t)})$ belongs to $\mathcal{R}_{1/2}(M)$ and $\mu \neq \delta_{1/2}$.

For $x \in X$ and $f \in A(X, E)$, we denote by $[f_*(x), f^*(x)]$ the order interval in E, i.e.,

$$[f_*(x), f^*(x)] = \{a \in E : f_*(x) \le a \le f^*(x)\}.$$

Then the following lemma give the close connection between the M-envelopes and the M-representing operators.

LEMMA 3. Let $x \in X$ and let $f \in A(X, E)$. Then

$$[f_{oldsymbol{s}}(oldsymbol{x}),f^{oldsymbol{s}}(oldsymbol{x})]=\{\mu(f):\mu\in\mathcal{R}_{oldsymbol{x}}(M)\}.$$

PROOF: If f = 0, then we have

$$[f_*(x), f^*(x)] = \{0\} = \{\mu(f) : \mu \in \mathcal{R}_x(m)\}.$$

Now let $f \neq 0$. Let $\mu \in \mathcal{R}_{x}(M)$, and let g and h be functions in M such that $g \leq f \leq h$. Then

$$g(x)=\mu(g)\leq \mu(f)\leq \mu(h)=h(x),$$

which yields

$$f_*(x) \leq \mu(f) \leq f^*(x).$$

Conversely, let a be an arbitrary element in $[f_*(x), f^*(x)]$, and let V be the linear subspace of A(X, E) spanned by f. We define

 $p(g) = g^*(x)$ for every $g \in A(X, E)$

and

$$\mu_0(\xi f) = \xi a$$
 for every $\xi \in \mathbb{R}$

Then by Lemma 1, the mapping $p: A(X, E) \to E$ is sublinear and μ_0 is a linear operator of V into E satisfying $\mu_0(g) \leq p(g)$ for all $g \in V$.

Therefore, by the vector-valued Hahn-Banach theorem ([1; Theorem 2.1]. cf [10; Theorem 1.5.4]) there exists a linear operator μ of A(X, E) into E such that $\mu(g) \leq p(g)$ for all $g \in A(X, E)$ and $\mu(h) = \mu_0(h)$ for all $h \in V$. If $g \in A(X, E)$ and $g \leq 0$, then Lemma 1 (ii) gives

$$\mu(g)\leq p(g)=g^{st}(oldsymbol{x})\leq 0^{st}(oldsymbol{x})=0,$$

which implies that μ is positive. Furthermore, for every $h \in M$ we have

$$\mu(h) \leq p(h) = h^*(\boldsymbol{x}) = h_*(\boldsymbol{x}) = h(\boldsymbol{x})$$

and

$$-\mu(h) = \mu(-h) \le p(-h) = (-h)^*(x) = -h(x),$$

and so $\mu(h) = h(x)$. Thus μ belongs to $\mathcal{R}_x(M)$ and $\mu(f) = \mu_0(f) = a$. The proof of the lemma is complete.

LEMMA 4. Let $f \in A(X, E)$.

- (i) Let $x \in X$. Then f belongs to \hat{M}_x if and only if $\mu(f) = \delta_x(f)$ for all $\mu \in \mathcal{R}_x(M)$.
- (ii) f belongs to \hat{M} if and only if $\mu(f) = \delta_x(f)$ for all $x \in X$ and all $\mu \in \mathcal{R}_x(M)$.

PROOF: This follows immediately from Lemma 3.

We define

$$\partial_M(X) = \{ oldsymbol{x} \in X : \mathcal{R}_{oldsymbol{x}}(M) = \{ \delta_{oldsymbol{x}} \} \},$$

which is called the Choquet boundary of X with respect to M. This can be characterized as follows:

LEMMA 5. A point $x \in X$ belongs to $\partial_M(X)$ if and only if $f_*(x) = f^*(x)$ for all $f \in A(X, E)$, i.e., $\hat{M}_x = A(X, E)$.

PROOF: This is an immediate consequence of Lemma 4 (i).

PROPOSITION 3. $\hat{M} = A(X, E)$ if and only if $\partial_M(X) = X$.

PROOF: This follows from Lemma 4 (ii) and Lemma 5.

4. Korovkin Closures and Korovkin Spaces

Let A and B be normed vector lattices. Let V be a linear subspace of A and T a positive linear operator of A into B. Then we define Kor(V,T) to be the set of all $f \in A$ such that if $\{T_{\alpha,\lambda} : \alpha \in D, \lambda \in \Lambda\}$ is a family of positive linear operators of A into B satisfying

$$\lim_lpha \|T_{lpha,\lambda}(g)-g\|=0 \qquad ext{uniformly in } \lambda \in \Lambda$$

for all $g \in V$, then

$$\lim_{lpha} ||T_{lpha,\lambda}(f) - f| = 0 \qquad ext{uniformly in } \lambda \in \Lambda.$$

Kor(V,T) is called a Korovkin closure of V with respect to T. V is called a Korovkin space with respect to T if Kor(V,T) is identical with A(X,E). If V is spanned by a subset S of A and Kor(V,T) = A(X,E), then S is also called a Korovkin set with respect to T. Obviously, Kor(V,T) is a linear subspace of A.

THEOREM 1. Let $x \in X$. Then x belongs to $\partial_M(X)$ if and only if M is a Korovkin space with respect to δ_x , i.e., $Kor(M, \delta_x) = A(X, E)$.

PROOF: Suppose that $x \in \partial_M(X)$. Then by Lemma 5 we have $\hat{M}_x = A(X, E)$. Also, Proposition 1 implies $\hat{M}_x \subseteq Kor(M, \delta_x)$. Therefore $Kor(M, \delta_x)$ is equal to A(X, E). Conversely, we assume that $Kor(M, \delta_x) = A(X, E)$ and let μ be an arbitrary element in $\mathcal{R}_x(M)$. Now for all $\alpha \in D$ and all $\lambda \in \Lambda$, we define $\mu_{\alpha,\lambda} = \mu$, which is a positive linear operator of A(X, E) into E satisfying

$$\lim_{n \to \infty} \|\mu_{lpha,\lambda}(g) - \delta_{oldsymbol{x}}(g)\| = 0 \qquad ext{uniformly in } \lambda \in \Lambda.$$

Thus for every $f \in A(X, E)$,

$$\lim_{lpha} \|\mu_{lpha,\lambda}(f) - \delta_{oldsymbol{s}}(f)\| = 0 \qquad ext{uniformly in } \lambda \in \Lambda,$$

which yields $\mu = \delta_x$. Hence x belongs to $\partial_M(X)$.

THEOREM 2. If $\partial_M(X)$ is identical with X, then M is a Korovkin space with respect to I, i.e., Kor(M, I) = A(X, E), where I denotes the identity operator on A(X, E)

PROOF: By Propositions 2 and 3, we have

$$A(X, E) = \hat{M} \subseteq Kor(M, I) \subseteq A(X, E),$$

and so Kor(M, I) = A(X, E).

In order to show the converse statement in Theorem 2, we assume that X is a first countable, compact Hausdorff space and that D is the set \mathbb{N} of all natural numbers in the following arguments.

PROPOSITION 4. Kor(M, I) coincides with M.

PROOF: By Proposition 2 we have $\hat{M} \subseteq Kor(M, I)$. To show the converse inclusion, let f be an arbitrary function in Kor(M, I). Let $x \in X$ and $\mu \in \mathcal{R}_x(M)$. Since X satisfies the first axiom of countability, there is a fundamental system $\{V_n : n \in \mathbb{N}\}$ of open neighborhoods of x such that

$$V_1 \supseteq V_2 \supseteq \cdots \supseteq V_n \supseteq V_{n+1} \supseteq \cdots$$
.

For each $n \in \mathbb{N}$, by Urysohn's lemma there exists a function $f_n \in C(X)$ such that

 $0 \leq f_n(t) \leq 1 \ (t \in X), \ f_n(x) = 1, \ ext{and} \ f_n(t) = 0 \ (t \in X \setminus V_n).$

For each $n \in \mathbb{N}$ and $\lambda \in \Lambda$, we define

$$T_{n,\lambda}(g) = f_n \mu(g) + (1 - f_n)g \qquad (g \in A(X, E)).$$

Then $\{T_{n,\lambda} : n \in \mathbb{N}, \lambda \in \Lambda\}$ is a family of positive linear operators of A(X, E) into B(X, E) satisfying

$$\lim_{n o \infty} \|T_{n,\lambda}(h) - h\| = 0$$
 uniformly in $\lambda \in \Lambda$

for every $h \in M$. Therefore we have

$$\lim_{n o\infty}\|T_{n,\lambda}(f)-f\|=0$$
 uniformly in $\lambda\in\Lambda.$

In particular, there holds

$$\lim_{n \to \infty} \|T_{n,\lambda}(f)(x) - f(x)\| = 0$$
 uniformly in $\lambda \in \Lambda$,

which gives $\mu(f) = \delta_x(f)$, since $T_{n,\lambda}(f)(x) = \mu(f)$ for all $n \in \mathbb{N}$ and all $\lambda \in \Lambda$. Hence, by Lemma 4 (ii) f belongs to \hat{M} , and so we have $\hat{M} \supseteq Kor(M, I)$.

THEOREM 3. The following statements are equivalent:

(i) $\partial_M(X) = X.$ (ii) Kor(M, I) = A(X, E).(iii) $\hat{M} = A(X, E).$

PROOF: By Theorem 2, (i) implies (ii). By Proposition 3, (ii) implies (iii). Also, by Proposition 2 (iii) implies (i).

5. Korovkin Sets in C(X, E)

Here we consider the case of A(X, E) = C(X, E), and let M be a linear subspace of C(X, E) which contains $1_X a$ for for all $a \in E$, where 1_X denote the normal order unit in C(X) defined by $1_X(x) = 1$ for all $x \in X$.

LEMMA 6. $C(X) \otimes E$ is dense in C(X, E).

PROOF: This is an immediate consequence of [16; Theorem 1.15], since C(X) separates of points of X.

LEMMA 7. Let $x \in X$. If there exists a function $g_x \in C(X)$ such that

(7) $g_x \geq 0, \ g_x(x) = 0 \ \text{and} \ g_x(t) > 0 \ \text{for all } t \in X \ \text{with} \ t \neq x$

and

(8)
$$g_x a \in M$$
 for all $a \in E$,

then x belongs to $\partial_M(X)$.

PROOF: Let $\mu \in \mathcal{R}_x(M)$. Let $\epsilon > 0$ be given and let v be an arbitrary function in C(X) satisfying v(x) = 0. Then there exists an open neighborhood V_x of x such that $|v(t)| \le \epsilon$ for all $t \in V_x$. Let $F = X \setminus V_x$, and put

$$c = \min\{g(t) : t \in F\}$$

and

$$C = \max\{|v(t)|: t \in F\}.$$

Then we have

$$(9) |v(t)| \le \epsilon + (C/c)g(t)$$

- 75 -

for all $t \in X$. Let $a \in E$. Let a^+ and a^- denote the positive part and the negative part of a, respectively. Then it follows from (9) that

 $|va^+| \leq \epsilon \mathbf{1}_X a^+ + (C/c)ga^+,$

and so

$$egin{aligned} |\mu(va^+)| &\leq \epsilon \mu(1_Xa^+) + (C/c)\mu(ga^+) \ &= \epsilon 1_X(x)a^+ + (C/c)g(x)a^+ = \epsilon a^+. \end{aligned}$$

Similarly, we have

$$|\mu(va^-)| \leq \epsilon a^-.$$

Therefore, we get

$$egin{aligned} \mu(va)| &= |\mu(v(a^+ - a^-))| = |\mu(va^+) - \mu(va^-)| \ &\leq |\mu(va^+)| + |\mu(va^-)| \leq \epsilon(a^+ + a^-) = \epsilon |a|, \end{aligned}$$

which implies

 $\|\mu(va)\| \leq \epsilon \|a\|.$

Consequently, we have $\mu(va) = 0$ for all $a \in E$ and all $v \in C(X)$ satisfying v(x) = 0, since ϵ is an arbitrary positive real number. Now let $w \in C(X)$ and take $v = w - w(x)1_X$. Then v belongs to C(X) and v(x) = 0, and so

$$\mu((w-w(x)1_X)a)=0 \qquad (a\in E),$$

which gives $\mu(wa) = \delta_x(wa)$. Thus we conclude that $\mu(h) = \delta_x(h)$ for all $h \in C(X) \otimes E$, and hence Lemma 6 establishes that $\mu(f) = \delta_x(f)$ for every $f \in C(X, E)$, i.e., $\mu = \delta_x$. Therefore, x belongs to $\partial_M(X)$.

As an immediate of consequence of Lemma 7, Theorems 1 and 2, we have the following.

COROLLARY 2. (a) Let x be a fixed point of X. If there exists a function $g_x \in C(X)$ satisfying (7) and (8), then M is a Korovkin space with respect to δ_x . (b) If for each point $x \in X$, there exists a function $g_x \in C(X)$ satisfying (7) and (8), then M is a Korovkin space with respect to I.

For a given subset S of C(X), we define

$$SE = \{va : v \in S, a \in E\}.$$

REMARK 2: Let $x \in X$ and let g_x be a function in C(X) which satisfies (7) and (8). Then $\{1_X, g_x\}E$ is a Korovkin set with respect to δ_x . In fact, this follows immediately from Corollary 2 (a).

THEOREM 4. Let $\{u_1, u_2, \dots, u_m\}$ be a finite subset of C(X) and let

$$U=\{1_{\boldsymbol{X}},u_1,u_2,\cdots,u_m\}E.$$

Then the following assertions hold: (a) Let x be a fixed point of X. If there exists a finite subset $\{a_1(x), a_2(x), \dots, a_m(x)\}$ of \mathbb{R} such that

(10)
$$g_{\boldsymbol{x}} = \sum_{i=1}^{m} a_i(\boldsymbol{x}) u_i$$

satisfies (7), then U is a Korovkin space with respect to δ_x . (b) If for each point $x \in X$, there exists a finite subset $\{a_1(x), a_2(x), \dots, a_m(x)\}$ of \mathbb{R} such that the function g_x defined by (10) satisfies (7), then U is a Korovkin set with respect to I.

PROOF: (a) and (b) follows from Corollary 2 (a) and (b), respectively.

From now on let p be any fixed even positive integer.

COROLLARY 3. Let $\{v_1, v_2, \dots, v_n\}$ be a finite subset of C(X) separating the points of X and let

$$V = \{1_X, v_1, \cdots, v_n, v_1^2, \cdots, v_n^2, \cdots, v_1^{p-1}, \cdots, v_n^{p-1}, \sum_{i=1}^n v_i^p\}.$$

Then for a fixed point $x \in X$, VE is a Korovkin set with respect to δ_x and VE is also a Korovkin set with respect to I.

Indeed, with the help the function

$$g_{\boldsymbol{x}} = \sum_{i=1}^{n} (v_i - v_i(\boldsymbol{x}))^p,$$

this result follows from Theorem 4.

THEOREM 5. Let G be a subset of C(X) separating the points of X and let

$$W=\{g^{m i}:g\in G,m i=0,1,2,\cdots,p\},$$

where $g^0 = 1_X$. Then WE is a Korovkin set with respect to I.

- 77 -

PROOF: In view of Theorem 2, it will suffice to prove that $\partial_H(X) = X$, where H denotes the linear subspace of C(X, E) spanned by WE. Let x be an arbitrary point of X and let μ be any element of $\mathcal{R}_x(H)$. Let $\epsilon > 0$ be given and let $v \in C(X)$. Since the original topology on X is identical with the weak topology on X induced by G, there exists a finite subset $\{g_1, g_2, \dots, g_r\}$ of G and a constant C > 0 such that

$$|v(t) - v(x)| \leq \epsilon + C \sum_{i=1}^{r} (g_i(t) - g_i(x))^p$$

for all $t \in X$. Let $a = a^+ - a^- \in E$. Then we have

$$|va^+ - v(\boldsymbol{x})\mathbf{1}_{\boldsymbol{X}}a^+| \leq \epsilon \mathbf{1}_{\boldsymbol{X}}a^+ + C\sum_{i=1}^r (g_i - g_i(\boldsymbol{x})\mathbf{1}_{\boldsymbol{X}})^p a^+,$$

and so

$$|\mu(va^+) - v(x)\mu(1_Xa^+)| \le \epsilon \mu(1_Xa^+) + C\sum_{i=1}^r \mu((g_i - g_i(x)1_X)^pa^+),$$

which gives

$$|\mu(va^+) - \delta_x(va^+)| \le \epsilon a^+.$$

Similarly, we have

$$|\mu(va^-)-\delta_{\boldsymbol{x}}(va^-)|\leq\epsilon a^-.$$

Thus we get

$$|\mu(va) - \delta_{x}(va)| \leq \epsilon |a|,$$

which implies

$$\|\mu(va)-\delta_{x}(va)\|\leq\epsilon\|a\|.$$

Consequently, we conclude that $\mu(va) = \delta_x(va)$ for all $v \in C(X)$ and all $a \in X$, since ϵ is an arbitrary positive real number. Therefore Lemma 6 yields that $\mu = \delta_x$, and thus x belongs to $\partial_H(X)$. This proves $\partial_H(X) = X$.

REMARK 3: If $E = \mathbb{R}$, then Theorem 5 reduces to [12; Corollary 1 (a) for A = C(X) and $h = 1_X$] for the usual convergence behavior.

COROLLARY 4. Let K be a compact subset of a real locally convex Hausdorff vector space F with its dual space F^* and let

$$H = \{(f|_K)^i : f \in F^*, i = 0, 1, \cdots, p\},$$

where $f|_K$ denotes the restriction of f to K and $(f|_K)^0 = 1_X$. Then HE is a Korovkin set with respect to I.

Finally, we restrict ourselves to the case where X is a compact subset of the *n*-dimensional Euclidean space \mathbb{R}^n or the *n*-dimensional Unitary space \mathbb{C}^n and p = 2. For each $k = 1, 2, \dots, n, p_k$ denotes the *n*-th coordinate function defined by

$$p_k(x) = x_k$$
 for every $x = (x_1, x_2, \cdots, x_n) \in X$.

Then by Corollary 3 and Theorem 5 we have the following several Korovkin sets which can be the classical ones in the case of $E = \mathbb{R}$ (cf. [9], [11], [13], [14], [18]).

(1°) Let X be a compact subset of \mathbb{R}^n . Then

$$\{1_X, p_1, p_2, \cdots, p_n, \sum_{i=1}^n p_i^2\}E$$

and

$$\{1_X, p_1, p_2, \cdots, p_n, p_1^2, p_2^2, \cdots, p_n^2\}E$$

are Korovkin sets with respect to I.

(2°) Let X be a compact subset \mathbb{C}^n and for each $k = 1, 2, \cdots, n$, we define

$$q_k(x) = \operatorname{Re}(x_k)$$
 and $r_k(x) = \operatorname{Im}(x_k)$

for every $x = (x_1, x_2, \dots, x_n) \in X$, where $\operatorname{Re}(x_k)$ and $\operatorname{Im}(x_k)$ stand for the real part and the imaginary part of x_k , respectively. Then

$$\{1_X, q_1, \cdots, q_n, r_1, \cdots, r_n, \sum_{m=1}^n (q_m^2 + r_m^2)\}E$$

and

$$\{1_X, q_1, \cdots, q_n, r_1, \cdots, r_n, q_1^2, \cdots, q_n^2, r_1^2, \cdots, r_n^2\}E$$

are Korovkin sets with respect to I.

(3°) Let X be the n-dimensional torus \mathbb{T}^n , i.e.,

$$\mathbb{T}^n = \{ \boldsymbol{x} = (\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_n) \in \mathbb{C}^n : |\boldsymbol{x}_k| = 1, k = 1, 2, \cdots, n \},\$$

and q_k and r_k $(k = 1, 2, \dots, n)$ be as in (2°) . Then

$$\{\mathbf{1}_X, q_1, \cdots, q_n, r_1, \cdots, r_n\}E$$

is a Korovkin set with respect to I.

(4°) Let $C_{2\pi}(\mathbb{R}^n, E)$ denote the normed vector lattice of all *E*-valued continuous functions f on \mathbb{R}^n which are periodic with period 2π in each variable with the norm

$$\|f\| = \sup\{\|f(x)\| : x \in \mathbb{R}^n\}.$$

Then $C(\mathbb{T}^n, E)$ is isometrically isomorphic to $C(\mathbb{R}^n, E)$. For each $k = 1, 2, \dots, n$, we define

$$c_k(x) = \cos x_k$$
 and $s_k(x) = \sin x_k$

for all $\boldsymbol{x} = (\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_n) \in \mathbb{R}^n$. Then

$$\{1_{\mathbb{R}^n}, c_1, \cdots, c_n, s_1, \cdots, s_n\}E$$

is a Korovkin set with respect to the identity operator in $C_{2\pi}(\mathbb{R}^n, E)$.

References

- C. D. Aliprantis and O. Burkinshaw, "Positive Operators," Academic Press, New York, 1985.
- 2. F. Altomare and M. Campiti, "A bibliography on the Korovkin type approximation theory (1952-1987), in Functional Analysis and Approximation," Pitagora Editrice, Bologna, 1989, 34-79.
- 3. H. Bauer, Theorems of Korovkin type for adapted spaces, Ann. Inst. Fourier, 23 (1973), 245-260.
- 4. H. Bauer, Approximation and abstract boundaries, Amer. Math. Monthly, 85 (1978), 632-647.

- 5. H. Berens and G. G. Lorentz, "Theorems of Korovkin type for positive linear operators in Banach lattice in Approximation Theory (Proc. Int. Symp. Austin 1973; ed. by G. G. Lorentz)," Academic Press, New York, 1973, 1-30.
- 6. G. Choquet, "Lectures on Analysis, Vol. II (Representing Theory)," Benjamin, New York-Amsterdam, 1969.
- K. Donner, "Extensions of Positive Operators and Korovkin Theorems, Lecture Notes in Math. Vol. 904," Springer Verlag, Berlin-Heidelberg-New York, 1982.
- 8. K. Keimel and W. Roth, "Ordered Cones and Approximation, Lecture Notes in Math. Vol. 1517," Springer Verlag, Berlin-Heidelberg-New York, 1992.
- 9. P. P. Korovkin, "Linear Operators and Approximation Theory," Hindustan Publ. Corp., Delhi, 1960.
- P. Meyer-Nieberg, "Banach Lattices," Springer Verlag, Berlin-Heidelberg-New York, 1991.
- E. N. Morozov, Convergence of a sequence of positive linear operators in the space of continuous 2π-periodic functions of two variables (Russian), Kalinin. Gos. Red. Inst. Uč. Zap., 26 (1958), 129-142.
- 12. T. Nishishiraho, The convergence and saturation of iterations of positive linear operators, Math. Z., 194 (1987), 397-404.
- T. Nishishiraho, Convergence of quasi-positive linear operators, Atti Sem. Mat. Fis. Univ. Modena, 29 (1991), 367-374.
- 14. T. Nishishiraho, Approximation processes of quasi-positive linear operators, Ryukyu Math. J., 5 (1992), 65-79.
- M. Pannenberg, Topics in qualitative Korovkin approximation, Conf. Sem. Mat. Univ. Bari, 226 (1988), 1-31.
- 16. J. B. Prolla, "Approximation by Vector-Valued Functions," North-Holland Publ. Co., Amsterdam-New York-Oxford, 1977.
- H. H. Schaefer, "Banach Lattices and Positive Operators," Springer Verlag, Berlin-Heidelberg-New York, 1974.
- V. I. Volkov, On the convergence of sequences of linear positive operators in the space of continuous functions of two variables (Russian), Dokl. Acad. Nauk SSSR(N. S.), 115 (1957), 17-19.

Department of Mathematics College of Science University of the Ryukyus Nishihara, Okinawa 903-01 JAPAN