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APPROXIMATION BY LINEAR SUMS OF
BOUNDED LINEAR OPERATORS·

TOSHIHIKO NISHISHIRAHO

Abstract. Quantitative results for approximation by sorne linear
mean~ of bounded linear operators on Banach spaces are obtained by
means of moduli of continuity under certain appropriate conditions.

1. Introduction

Let X be a Banach space with norm 11·llx and let B[X] denote the
Banach algebra of ail bounded linear operators of X into itself with the
usual operator norm Il . IIB[x], Let Wi, i = 1,2,'· '1', be non-negative
funetions on X x [0,00), which satisfy

(1) for ail f EX, ~ ~ 6 ~ 0,

(2) for ail f E X

and there exist constants Ai, Bi > 0 such that

(3) for ail f EX, ~,6 ~ o.

Each funetion Wi(f,·) is sometimes caIled the modulus of continuity
of f.

The purpose of this paper is to establish quantitative results for
approximation by sorne linear means of operators in B[X] associated
with infinite lower triangular stochastic matrices, by using the moduli
of continuity of approximating elements.

The results are applied to approximation by convolution opera
tors, multiplier operators on Banach spaces and Cesàro-Marcinkiewicz
type means of Fourier series of several variables in Orlicz spaces. Con
sequently, we extend the results of Firlej and Rempulska [8] (cf. [7],
[34]) to the context of arbitrary Banach spaces.
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2. Main Results

Let N denote the set of an non-negative integers. Let {Ln}nEN be
a sequence of operators in B [X] and let Tn , n E N, denote the Cesàro
mean operators of {Ln}, that is,

1 n

Tn=-LLj .
n+1

j=O

Let P = (Pnj )n,j EN be an infinite lower triangular stochastic matrix,
i.e., an infinite matrix of non-negative real numbers satisfying

00

LPnj = 1
j=O

and we define

(n EN), Pnj = 0 (j > n),

n

Wn = LPnjLj
j=O

(n EN).

Let {Àn}nEN and {/ln}nEN be sequences of positive real numbers, and
let 1 EX.

Now we consider the fol1owing conditions:

(L) There exist constants Ci > 0, i = 1,· .. .,., such that

IILn(f) - Illx :::; L CiWi(f, Àn )
i=l

for an nE N.

(T) There exist constants Mi > 0, i = 1, ... ,.,., such that

IITn(f) - Illx :::; L MiWi(f, /ln)
i=l

for an nE N.

(P) A = sup{I:7=o Ip;j 1 : n E N} < 00,

where

(j + 1)(Pnj - Pnj+d
(n + 1)Pnn

o
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It follows from (2) that if Condition (L) holds and {.~n} converges
to zero, then

lim IILn(f) - Ilix = 0,
n->oo

and so
lim IITn(f) - Ilix = o.

n->oo

REMARK 1: We have

n { 1L Ip;j 1 = 2( + 1) - 1
j=O n pnn

and

(cf. [8; Lemmas 1 and 2]).

(Pnj ~ Pnj+b 0 :s; j :s; n - 1),

(Pnj :s; PnHb 0 :s; j :s; n - 1),

(Pnj ~nHl, 0 :s; j :s; n - 1),

(Pnj :s; Pnj+l, 0 :s; j :s; n - 1)

THEOREM 1. Let 1 EX. Tnen tne following statements no1d:

(a) If Condition (L) is satisfied, tnen

(4) IIWn(f) - Ilix :s; L Ci(Ai + Bi/€)Wi(f, dsn )
i=l

for an n E N and an € > 0, wnere

n

~n = LPnj>'j
j=O

(n EN).

(b) If Conditions (T) and (P) are satisfied, tnen

l'

(5) IIWn(f) - Ilix :s; L Mi(AAi + Bi/€)Wi(f, d)n)
i=l

for all n E N and an € > 0, wnere

n

On = L Ip;j Illj
j=O

- 23-
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PROOF: (a) Let Ô > O. Since

(6)
n

Wn(f) - 1 = ~Pni(Li(f) - 1),
i=o

it follows from (L) and (3) that

n

IIWn(f) - Illx ::; ~PniIILi(f) - Illx
i=O

,. n ,. n

::; ~~PniCiWi(f,Ài)::; ~~PniCi(Ai + BiÀi/Ô)Wi(f,Ô)
i=li=O i=li=O

,.
= ~ Ci(Ai + Bi~n/Ô)Wi(f, Ô).

i=l

Therefore putting Ô = €~n, we obtain the inequality (4).

(b) By (6) and the Abel transformation, we have

n

Wn(f) - 1 = ~(Pni - Pni+dRi(f) + PnnRn(f),
i=O

where

rn

Rrn(f) = ~(L1&(f) - /) = (m + l)(Trn (f) - /)
1&=0

Thus we get
n

Wn(f) - 1 = ~P;:i(Ti(f) - /),
i=O

and so (T), (P) and (3) yield

n

IIWn(f) - Illx ::; ~ Ip;:i IIITi(f) - Ilix
i=O

(m E 1\1).

,. n ,. n

::; ~~ Ip;:i IMiWi(f, Ili) ::; L ~ Ip;:i IMi(Ai + BiJL;/Ô)Wi(f, Ô)
i=li=O i=li=O
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,.
~ L Mi(AAi + (Bi/8)On)Wi(f, 8).

i=l

Hence putting 8 = (On, we obtain the inequality (5).

REMARK 2: The part (a) is extended to the quantitative estimate
on the degree of approximation by summation processes induced by
the method of summability due to the author [23] (cf. [24]) recover
ing that of Bell [1] (cf. [18], [29]) which includes the method of aImost
convergence (F-summability) and FA-summabiliy of Lorentz [16], AB 

summability of Mazhar and Siddiqi [19] and order summability of J u-

rkat and Peyerimhoff [12,13]: Let A = {a~~l: a E D,j E N,À E A}
be a family of non-negative real numbers such that

for each a E D, À E A,

where D is a direeted set and A is an index set. For examples of
such families, see, for instance [23], [24] and [25]. If Condition (L) is
satisfied, then

: À E A} ~ t Ci (Ai + Bi/()Wi(f, (Ça)
X 1=1

for aIl a E D and aIl ( > 0, where

(a E D).

As an immediate consequence of Theorem 1 (b) and Remark 1,
we have the following.

COROLLARY 1. Let f E X and suppose that Condition (T) is satisned
with Jln = 1j(n + 1), nE N. Then the following assertions hold:

(a) If

(7) Pnj ~ Pnj+1 (n~ 1, j=O,l,··· ,n-1),

- 25-



then

l'

(8) IIWn(f) - Illx ::; L Mi(Ai + Bï!é)Wi(f, épnO)
i=1

for a11 n E N and a11 é > O.

(b) If

(9)

and if

Pni ::; Pni +1 (n~l, j=O,I,···,n-l),

(10)

then

B = sup{(n + I)Pnn : n E N} < 00,

l'

(11) IIWn(f)-/lIx::; LMd(2B-l)Ai+Bï!é}wi(f,é(2Pnn-Pno))
i=1

for a11 n E N and a11 é > O.

REMARK 3: Let 1 E X and assume that Condition (L) is fulfilled.
Then by Theorem 1 (a) we derive

l'

(12) IITn(f) - Illx ::; L Ci(Ai + Bi /é)Wi(f, é(n)
i=1

for aIl n E N and aIl é > 0, where

(n EN).

In particular, if Àn = 1/(n + 1) for aIl n E N, then

1 K
(n ::; --Cr + log(n + 2)) ::; vn+1'

n+l n+l

where 1 is Euler's constant, i.e.,

1 = lim (~~ - log n) = 0.57721566490153286060· ..
n-+oo L...J 3

i=1

- 26-



and

(13) {
i+ IOg(n+2) ~I}

K=sup ~ :nEI"'I,
yn+ 1

and so it foIlows from (1) and (12) that

l'

IITn(f) - Illx ~ L Ci(Ai + KBd~)Wi(f, ~/vn+T)
i=l

for ail n E N and ail ~ > O.

Let r E N,r ~ 1, and set

and for n = (nl' n2, ... ,n1') E N1', we put

Let Ln, n = (nl' n2, ... ,n1') E N1', be operators in B[X], and define

1
Tn = L Lie,

(nl + 1)(n2 + 1)··· (n1' + 1) leEN'
ft

which are caIled the Cesàro mean operators of {Ln}. Let p(i) =

(p~~ )Tn,j EN, i = 1,2, ... ,r, be infinite lower triangular stochastic ma
trices, and we define

Let {À~~?}mEN and {JL~~?}mEN'i = 1,2, ... ,r, be sequences of positive
real numbers and 1 E N, and we consider the foIlowing conditions:

(L)* There exist constants Ci > 0, i = 1,'" ,r, such that

l'

IILn(f) - Illx ~ L C;wi(f, À~l)
i=l

- 27-
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(T)* There exist constants Mt > 0, i = 1, ... ,1', such that

l'

IITn(f) - Illx ::; L Mtwi(f,JL~J)
i=l

(Pt Fori=1,2,"',1',

for all n = (nl, . .. ,n1') E N1' .

where

{

( . 1)( (i) (i) )
J + Pmi - Pmi+!

,,-,(i) (')
Pmi = (m + l)P~m

°

(0::; j::; m -1),

(j = m),

(j > m).

THEûREM 2. Let 1 E X. Then the following statements hold:

(a) If Condition (L)* is satisned, then

l'

(14) IIWn(f) - Illx ::; L Ct(Ai + Bi/é)Wi(f, d.t»),
i=l

for a11 n = (nl, nl,'" , n1') E N1' and a11 é > 0, where

ni

di) = ~ À~i)p(i).
'ni L....J} ni}

i=O
(i= 1,2,'" ,1').

(b) If Conditions (T)* and (P)* are satisned, then

l'

(15) IIWn(f) - Illx ::; L Mt(C(i) Ai + Bi/é)Wi(f, d)~?)
i=l

for all n = (nl, n2,'" , n1') E N1' and all é > 0, where

(i = 1,2,'" ,1').

- 28-



PROOF: (a) Let 6 > O. Since

7'

(16) Wn(f) - f = L II p~)1&j (L1&(f) - n,
1&EN:' ;=1

it follows from (L)* and (3) that

7'

IIWn(f) - fllx:S; L II p~)1&j IIL1&(f) - Illx
1&EN:' ;=1

., ni

:s; L LP~!1&,C;(Ai +Bi)..~?/6)Wi(f,6)
i=1 1&,=0

7'

= L C;(Ai + (Bd6)~~?)Wi(f, 6).
i=1

Thus putting 6 = f.~~!, we obtain the inequality (14).

(b) By (16) and the Abel transformation, we conclude

7'

Wn(f) - 1 = L II P;jC'~(T1&(n - n,
1&EN:' ;=1

and so arguing as in the praof of Part (a), (T)*, (P)* and (3) establish

7'

IIWn(f) - Illx :s; L Mt( CCi)Ai + (Bd6)(j~?)Wi(f, 6)
i=1

(6) 0).

Hence putting 6 = f.(j~,>, we get the inequality (15).

From Theorem 2 (b) and Remark 1 we have the following.
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(m E N, i = 1,2,'" ,1').

COROLLARY 2. Let 1 E X and suppose that Condition (T)* is satis
fied with the case where

(i) _ 1
/LTn - m + 1

Then the following assertions hold:

(a) If

(17) (i) > (i)
PTni - PTni+1

then

(m21, j=O,"',m-1, i=l, .. ·,1'),

"
IIWn(f) - Illx ~ L Mt(Ai + Bdf)Wi(f, fp~!O)

i=l

for a11 n = (nl,n2,'" ,n,,) EN" and a11 f > O.

(b) If

(18) (i) < (i)
PTni - PTni +l

and if

(m21, j=O,''',m-1, i=l, .. ·,1'),

(19) M(i) = sup{(m + l)p~l : mEN} < 00

then

(i = 1 ... 1'), "

"
IIWn(f) - Illx ~ L Mt{(2M(i) -l)Ai + Bdf}wi(f,f(2P~lni - p~!o))

i=l

for a11 n = (nlln2"" ,n,,) EN" and a11 f > O.

REMARK 4: Let 1 E X and assume that Condition (L)* is fulfilled.
Then by Theorem 2 (a) we derive

"
(20) IITn(f) - Illx ~ L Ct(Ai + Bi/f)Wi(f, f(i?)

i=l

for aIl n = (nI, n2,'" , n,,) E N" and aIl f > 0, where

(i) = 1 ~ À~i)
ni n. + 1 L...J J

• i=O

- 30-
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In particular, if À~) = 1j(m + 1) for all mEN and for i = 1,'" ,1',
then

( ") 1 K
(ni; ::; Cr + log(ni + 2)) ::; ,

ni + 1 Vni + 1

and so it follows from (1) and (20) that

"
IITn(f) - Illx ::; L Ct(Ai + K Bd€)Wi(f, €jVni + 1)

i=l

for all n = (nl,n2"" ,n,,) E N" and all € > 0, where K is a positive
constant given by (13).

3. Linear Sums of Convolution Operators
and Multiplier Operators

Let IR denote the set of all real numbers and let {S( t) : t E IR} be a
family of operators in B[X] with S(O) = l, the identity operator, such
that for each 1 E X the mapping t f--t S(t)(f) is strongly continuous
on IR. Let <p : IR ----+ IR be a continuous funetion. If k is a funetion in
L~,," having the Fourier series expansion

00

k(t) rv

with its Fourier coefficients

L k(j)eiit

i=-oo

(t E IR)

k(j) = ~ 1"" k(t)e- iit dt
211" _,,"

(j E Z),

where Z stands for the set of all integers and if L E B[X], then we
define the convolution operators (k * L)( <Pj .) by

1 1""(k * L)(<p;f) = 211" _,," k(t)S(<p(t))(L(f))dt (f EX),

which exists as a Bochner integral (cf. [22]). Obviously, (k * L)(<p;.)
belongs to B[X] and
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where
B = sup{IIS(<p(t))IIB[X] : Itl :S 1r}.

For a given a E R, we define

for ail tER,

and put
(k * L)a(f) = (k * L)(<Pa; f) (f EX).

Let {kn}nEN be a sequence offunctions in L~1r and l' E N,1' ~ 1. The
linear combination of the convolution operators (k *1);,] = 1,'" ,1',
which is given by

(21)

plays an important role in the study of direct problems of Jackson type
on estimating the degree of the best approximation in Banach spaces
([28]). Here we restrict ourselves to the case where l' = 1 and each kn

is a non-negative function with k(O) = 1. Put Ln = ~n,l' n E N, and
thus we have

(n E N,lE X).

If 1 E X and h ~ 0, then we define

wU, h) = w(X; l, h) = sup{IIS(t)(f) - Illx : Itl :S h},

which is cailed the modulus of continuity of 1 with respect to the
family {S(t)} (cf. [22; Def. 3]). Let Wl = w. Clearly, Wl satisfies (1)
and (2) for l' = 1. Suppose that

(22) IIS(t)(f) - S(u)(f)llx :S CIIS(t - u)(f) - Illx

for ail t,u E R and ail 1 EX. Note that if {S(t): tER} is a
uniformly bounded strongly continuous group of operators in B[X],
then (22) holds with

(23) C = sup{IIS(t)IIB[X] : tER} < 00.
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For further properties of semigroups of operators on Banach spaces,
we refer to [3], [5], [6], [9] and [10]. By [22; Lemma 2 (ü)], Wl satisfies
(3) with Al = 1 and B l = C.

For a given p > 0, we define

which is caued the p-th moment of kn . Set

(nEN, p~l).

Let f E X and T> O. Then by [27; Theorem 3], we have

(24)

for ail n E N, where

Therefore, Condition (L) holds for

r = 1, Cl = C(p, T), Àn = TÀn,p.

In particular, if each kn is even, then it fouows from [27; Corouary 3]
that

for ail n E N, where

and

Since

(n EN).

(n EN),
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we have

for aIl n E N, where

( )

l/p

/Ln,p = n : 1t 'xj,p
)=0

Therefore, Condition (T) holds for

(n EN).

r = 1, Ml = C(p, T), /Ln = T/Ln,p'

In partieular, if eaeh kn is even, then

where

( )

1/2

ln = _l_~v~
n+1L-- )

i=O

(n EN).

Renee by Theorem 1 we obtain the following.

THEOREM 3. Let 1 EX. Then the following statements hold:

(a) For a11 n E N and a11 <: > 0,

(25) IIWn(f) - Illx ::; C(p, T)(l + C j<:)w(f, €an,p),

where
n

an,p = T LPni'xi,p
i=O

(n EN).

In particular, if each k n is even, then (25) reduces to

where
n

bn = T LViPni
i=O

- 34-
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(b) If Condition (P) is satisfied, then

for a11 n E N and a11 ( > 0, where

n

zn,p = TL Ip;j IJLj,p
j=O

(n EN).

In particular, if each kn is even, then (26) reduces to

where
n

Yn = TL Ip;jh'j
j=O

(n EN).

COROLLARY 3. Let 1 E X and suppose that kn is even and JLn
Ij(n + 1) for every nE N. Then the following assertions hold:

(a) If P satisfies (7), then

IIWn(f) - Illx ~ (1 + C1l"jV2)(1 + Cj()w(f,(PnO)

for a11 n E N and a11 ( > O.

(b) If P satisfies (9) and (10), then

IIWn(f) - Illx ~ (1 + C1l"jV2)(2B -1 + Cj()w(f,((2pnn - PnO))

for ail n E N and a11 ( > O.

REMARK 5: In view of Remark 2, Theorem 3 (a) holds for the methods
of A-summability.

Let {Pj liEZ be a sequence of projection operators in B[X] satis
fying the foilowing conditions:

(P - 1) The projections Pj,j E 71., are mutuaily orthogonal, i.e.,
Pj Pn = 6j,nPn for ail j, n E 71., where 6j ,n denotes Kro
necker's symbol.

(P - 2) {Pj liEZ is fundamental, i.e., the linear span of the set
UjEZPj(X) is dense in X.

(P - 3) {Pj liEZ is total, i.e., if 1 E X and Pj(f) = 0 for ail
j E 71., then 1 = o.

- 35-



For any 1 EX, we associate its (formaI) Fourier series expansion
(with respect to {Pj })

00

(27) l '" L Pj(f).
j=-oo

An operator L E B[X) is caIled a multiplier operator on X if there
exists a sequence {aj liEZ of scalars such that for every 1 E X,

00

L(f) '" L ajPj(f),
j=-oo

and the foIlowing notation is used:

00

(28)

(cf. [4], [22], [23], [35]).

L
j=-oo

a'P') )

REMARK 6: The expansion (27) is a generalization of the concept of
Fourier series in a Banach space X with respect to a fundamental,
total, biorthogonal system {l;, I j* li E7l.' Here {I; liE7l and {/j* liE7l are
sequences of X and X* (the dual space of X), respectively such that
the linear span of {I; : j E Z} is dense in X (fundamental), Ij*(f) = 0
for ail j E Z implies 1 = 0 (total), and Ij*(fn) = 8j,n for ail j, nEZ
(biorthogonal). Then (27) reads

00

(cf. [2], [20], [32]).

l '" L Ij*(f)lj
j=-oo

Let M[X) denote the set of ail multiplier operators on X, which
is a commutative closed subalgebra of B[X) containing the identity
operator J. Let {S(t) : t E IR} be a family of operators in M[X)
satisfying (23) and having the expansions

00

(29) S(t) '" L exp(!3jt)Pj
j=-oo

- 36-
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where {,Bj hE/l is a sequence of scalars. Then {S(t) : tER} becomes a
strongly continuous group of operators in B[X] with its infinitesimal
generator G with domain D(G) and there holds

00

G1'(f) ~ L ,Bi Pj(f)
j=-oo

(f E D(G), i = 1,2, ... )

(cf. [22; Proposition 2], [26; Proposition 3]).

If k E L~1I" and if L is an operator in M[X] having the expansion
(28), then (k * L)(cpj') belongs to M[X] and

00

(30) L Cj(cpj k)Pj (·),

j=-oo

where
1 111"Cj (cpj k) = - k(t) exp(,Bj cp(t)) dt

211" -11"
U E 7L)

([28; Lemma 2], cf. [26; Proposition 4]). For each n E N,a E R, we set

Ifn,a = {k E L~1I" : Cj(CPaj k) = 0 whenever Iii> n},

which is a closed linear subspace of L~1I"'

For each mEN and tER, we define

Ll;n = (S(t) - I)m = f) _l)m- j (~) SUt) (m 2 1),
j=O )

which stands for the m-th iteration of S(t) - J. Clearly, Ll;n belongs
to B[X] and

where
Km = min{(C + l)m, 2mC}.

If f E X,m E N and 620, then we define
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(n EN),

which is called the m-th modulus of continuity of 1 with respect to
the family {S(t)}. In particular, w(l)(f, 15) is the modulus of continuity
w(f,15).

Let mEN and 1 EX. Assume that

(31) Pm = ,up{~ (m: 1) À~j l'(k.;j) : nE N} < 00.

Then it follows from [28; Lemma 1(c), Lemma 3] that

(32) II4>n,Tn+l(f) - Illx ~ CPTnw(Tn+l)(f, .\n) ~ CPTn K Tn w(1)(f, .\n)

for aIl n E N.

REMARK 7: If m = 0, then (32) hecomes

II4>n,l(f) - Illx ~ Csup{l + p.(ki ; l)j.\i : i E N}w(1)(f,.\n),

and so for r > 0, taking .\i = rp.( ki ; 1) for aIl j E 7L we have

II4>n,l(f) - Illx ~ C(l + r-l)w(l)(f, rp.(kn;1)),

which should he compared with the estimate (24) for p = 1.

Now let

Wl = w(l), Ln = 4>n,Tn+l (n EN).

Then (32) implies that Condition (L) holds for

r = 1, Cl = CPTnKTn'

Suppose that

{
ln Tn+l (m + 1) . }

15Tn = sup n + 1 ?= ?= . p.;:) p.(ki;j) : n E N < 00.

,=0 )=1 :J

Then since

Tn = ~(_1)i+l(m:1) ((n:1 tki) *1)
)=1 :J ,=0 i

it follows again from [28 j Lemma 1 (c), Lemma 3] that

(33) IITn(f) - Illx ~ C15Tn w(Tn+l)(f,p.n) ~ C15Tn K Tn W l(f,P.n)

for aIl n E N, and so Condition (T) holds for

r = 1, Ml = C15Tn KTn .

Thus Theorem 1 gives:
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THEO REM 4. Let mEN and f EX. Tnen tne following statements
no1d:

(a) For a11 nE "land a11 f. > 0,

(b) For a11 nE "land a11 f. > 0,

COROLLARY 4. Let mEN and f E X. Suppose tnat JLn = 1j(n + 1)
for a11 n E N. Tnen tne following assertions no1d:

(a) If P satisfies (7), tnen

for a11 n E N and a11 f. > O.

(b) If P satisfies (9) and (10), tnen

for a11 n E N and a11 f. > O.

Here we consider the generalized Jackson kernel given by

J (t) = c {sin((n + 1)tj2) }2.
n,. n,. sin(tj2) (n, BEN, B :::: 1),

where the normalizing constant Cn,. > 0 is taken in such a way that

A Il''"Jn,.(O) = - Jn,.(t) dt = 1
1(" 0

(cf. [17]). Note that
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is the Fejér kernel, and so

Jn,,(t) = cn,,(n + 1)' F;(t)

is a non-negative, even trigonometric polynomial of degree ns with
in,,(O) = 1. AIso, we have

3 {sin((n + l)t/2)}4
Jn,2(t) = Jn(t) = (n + 1)(2(n + 1)2 + 1) sin(t/2) ,

which is the Jackson kernel (cf. [11], [21]).

Now let mEN and

[
m + 1]s(m) = 2 '

where [ç] denotes the largest integer not exceeding ç ::: O. Then we
have the following.

THEO REM 5. Let kn = Jn,,(m), n E N and f EX. Then the following
statements hold:

(a) For a11 n E N and a11 € > 0,

where

and

(b) If

n

t ~ Pni
Ion = L -:-:+1

i=O J
(n EN).
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then
IIWn(f) - Illx ~ C8tn ,.(tn)Ktn (1 + C/€)w(f,dJn)

[or ail n E N and ail € > O.

PROOF: This follows from [28; Lemma 6] and Theorem 4.

REMARK 8: For m = 0, we have

7r3.Ji
PO,2 = sup{l + (n + l)p(Jn;1) : nE N} ~ 2V2

and

80 ,2 = sup {_1_ t(l + p(Jij1)/Pn): n E N}
n + 1 i=O

{
7r3.Ji 1 ~ i + 1 }

~ sup 1 + fil -- L....t -- : n E N
2y 2 n + 1 i =0 Pn

(cf. [28j Lemma 6]). In particular, if we take

(0 < lX < 1, n EN),

then

{
7r3.Ji 1 + log(n + 2) }

802 < sup 1 + fil ( )1 : n EN., - 2y2 n + 1 -a

For each n E N, we set

n

Mn [X] = EB Pj(X),
j=-n

which stands for the direct sum of {Pj(X) : Iii ~ n}. Note that Mn [X]
is a closed linear subspace of X. For a given 1 EX, we define

which is called the best approximation of degree n to 1 with respect
to Mn[X]. Obviously,
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and Condition (P - 2) implies that

for every f E X.

In [28] we related the rapidity with which En(f) approaches zero to
certain smoothness properties of f, which can be described in terms
ofits moduli ofcontinuity w(-m)(f,.),m E N,m 2:: 1.

For each n E N, we denote by IIn the set of aIl trigonometric
polynomials of degree at most n. Suppose that

ex>

(34) for each n E N.

REMARK 9: Let {BjhEN = {-ij}jEN. Then we have:

(a) For every n E N,

lIn ç n IInj ,
jE71\{O}

and so (34) always holds.

(b) If <p = <Pq, q E 7L \ {O}, then (27) reduces to

ex>

L h(jq)ajPj ,
j=-ex>

and in particular if k ElIn, then

(k * L)q L h(jq)ajPj .
Ijl~[n/lqlJ

(35)

Let {Un}nEN be a sequence of operators in B[X] satisfying

a = sup{llUn IIB[X] : n E N} < 00

and Un(g) = 9 for every 9 E Mn [X]. Let Ln = Un+1,n E N,m E N,
m 2:: 1 and f E X. Then it follows from [28; Lemma 1 (c), Theorem
4] that

- 42-



for aIl n E N, where 1Jm is a positive constant depending only on m,
and so Condition (L) holds for

Since
(3 = sup{IITn IIB[x) : n E N} ::; a < 00,

if Tn(g) = 9 for aIl 9 E Mn [X], then we have also

IITn(f) - Illx ::; C({3 + l)1Jm w(m+l(f,l/(n + 1))

::; C({3 + 1)1JmKmj1}(f,l/(n + 1)),

and so Condition (T) holds for

Rence Theorem 1 yields the foIlowing.

THEûREM 6. Let 1 EX. Tnen tne [ol1owing statements no1d:

(a) For all n E N and a11 ( > 0,

wnere
n

ç = L .Pni
1i=o) +

(n EN).

(b) Suppose tnat Tn(g) = 9 [or a11 9 E Mn [X]. Tnen [or a11 nE N
and all ( > 0,

wnere
n

()m = L IPni - Pni+ll
i=O
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In particular, if P satisfies (7), tnen (36) reduces to

and if P satisfies (9) and (10), tnen (36) reduces to

Let {Sn}nEN be the sequence of the n-th partial surn operators
associated the Fourier series (27), that is,

n

Sn = 2: Pi
i=-n

(n EN),

and let Un, nE N, be the n-th Cesàro rnean operators, that is,

1 n n ( Iii)
Un =n + 1 ?= Si =.2: 1 - n + 1 Pi'

1=0 1=-n

Then for each n E N, we define

which is called the de la Vallée-Poussin operator.

COROLLARY 5. Let f EX. Tnen tne following assertions nold:

(a) Let Un = Sn,n EN. If (35) isfulfilled, tnen tnestaternent
(a) in Tneorern 6 nolds.

(b) Let Un = Vn,n EN. If

U = sup{llunIIB[x] : n E N} < 00,

tnen tne staternen t (a) in Tneorern 6 nolds for a = 3u.

In the rest of this section we restrict ourselves to the case where
X is a hornogeneous Banach space, i.e.,

(H - 1) X is a Banach space with norrn 11·llx.
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(H - 2) X is continuously embedded in L~,,", i.e., there exists a
constant Co > 0 such that 11/111 :::; Coll/li x for ail 1 E X.

(H - 3) The translation operator S(t) defined by

S(t)(f)(·) = 1(, - t) (f EX),

(1 :::; p < 00).

is isometric on X for each t E IR.
(H - 4) For each 1 E X, the mapping t f-t S(t)(f) is strongly

continuous on R.
Typical examples of homogeneous Banach spaces are C2,,", the

Banach space of ail 21r-periodic, continuous functions 1 defined on IR
with the norm

11/1100 = max{l/(t)1 : Itl :::; 1r}

and L~,,", the Banach space of ail 21r-periodic, p-th power Lebesgue
integrable functions 1 defined on R with the norm

11/11, = {Lt I/(t)l' dt} 1/'

For other examples see [22] (cf. [14], [31]).

Now we define

Pj(f)(.) = Î(j)e ijo (f EX),

which satisfies Conditions (P-1), (P - 2) and (P - 3) just as in Section
3 (cf. [14], [22]). Note that S(t) has the expansion (26) with f3j = -ij,
and so for cp = CP-rnl m E lL, the expansion (27) reduces to

L k(jm)ajPj ,
j=-oo

and

Mn [X] = lIn ç n lIn,j
jH\{O}

for each n E N (cf. Remark 7). Furthermore, for 1 E X and t E IR we
have

J1~(f) = 1, J1~(f)(.) = f) _1)-rn- j (~) 1(· - jt)
j=O )

(m2: 1).

Consequently, in the above setting the results obtained in this
section hold with C = 1.
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4. Linear SUIllS of Cesàro-Marcinkiewicz
Type Operators

Let Rd denote the d-dimensional Euclidean space with the usual
inner produet

z . y = ZlY1 + Z2Y2 + ... + ZdYd

for Z = (Zl,Z2,'" ,Zd),Y = (Y1,Y2,'" ,Yd) E Rd. Let T d be the cube
given by

Let rp be a non-decreasing, continuous convex funetion on [0,00) sat
isfying

rp(O) = 0, rp(t) > 0 (t > 0), lim rp(t) = 0, lim rp(t) = 00.
t-+O t t-+oo t

The funetion rp is said to satisfy Condition (Â 2 ) ifthere exist constants
c > 0 and t o 2: 0 such that

rp( 2t) ~ crp(t) for ail t 2: t o

(cf. [15], [30]).

Let L'I"(Td
) be the set of ail measurable funetions 1 on Rd having

period 211" in each variable such that

r rp(l/(z)l)dz<oo,JTd

and L;(Td
) denotes the set of ail measurable funetions 1 on Rd such

that al E L'I"(Td
) for some a > O. Let 'I/J he the complementary

funetion to rp in the sense of Young, i.e.,

1/J(u) = sup{tu -rp(t) : t 2: O} (u2:0),

and so evidently, the pair (rp, 'I/J) satisfies Young's inequality:

tu ~ rp(t)+'I/J(u) for ail t,u 2: O.
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For each 1 E L~(Td), we den.ne

1I/IIcp = sup {(2~)d i41/(z)g(z)1 dz : e(g,,,p) ~ 1},

where

e(g,,,p) = (2~)d i4 "p(lg(z)l)dz,

which is called the Orlicz norm of 1 with respect to cp. Then L~(Td)

becomes a Banach space with the norm Il'llcp, which can be equivalent
to the Luxemburg's norm den.ned by

. { 1 r (1/(z)l) }1I/11(cp) = mf À > 0 : (21r)d lT
4

cp -À- dz ~ 1

(cf. [15], [30]). Let 7L d be the set of aIl lattice points in Rd, i.e.,

7Ld = {m = (ml,'" ,md): mj E 7L,j = 1,'" ,dl.

For a given 1 E L~(Td), we den.ne the Fourier coefficient of 1 by

AIl .I(m) = -()d l(z)e- am
':18 dz

21r Toi

and then the Fourier series of 1 is den.ned by

(37) I(z) '" L Î(m)eim.;e
mE1l 4

For a point n = (nI, n2,'" , nd) ENd, we denote the n-th partial sum
of the Fourier series (37) of 1 by

and let Un be the n-th Cesàro mean operator of {Sn}, i.e.,

- 47-



For each mEN, we define

1 m

O"~ = m + 1 L SU,j,··· ,n,
j=O

which is cailed the m-th Sesàro-Marcinkiewicz mean operator, and let
V~ be the m-th de la Vailée-Poussin-Marcinkiewicz operator, that is,

1 2m+l
V~ = m + 1 L SU,j,··· ,n = 20";m+l - o"~.

j=m+l

For a point n = (nl, n2,··· , nd) ENd, we denote by lI: the set of
ail d-dimensional trigonometric polynomials of degree n, i.e., ail func
tions g( Zl, Z2, ... , Zd) which are trigonometric polynomials of degree
nj with respect to Zj, j = 1,2,·'· ,d. For a given 1 E L~(l-d), we
define

En(<pj f) = inf{111 - gll'P : 9 E lI:},

which is cailed the best approximation of degree n to 1 with respect
to lI: (cf. [17], [33)). If 1 E L~(Td) and Ô ~ 0, then we define

Wj(l, Ô) = Wj(<pj l,ô) = sup{ll..1 t ,j(f)II'P : Itl ::; Ô} (j = 1,··· ,d),

where

The quantities Wj (l,ô), j = 1,2, ... ,d, are cailed the j-th partial mod
uli of continuity of l, and (1), (2) and (3) hold for A j = B j = 1 (cf.
[17], [33)).

From now on we suppose that L~(Td) is refiexive, which can be
equivalent to that <p and 1/J satisfy Condition (d2) (cf. [15], [30)).
Furthermore, for simplicity, we consider the case d = 2; The case
where d> 3 is similar.

Hereafter, let Mj(<p)(j = 1,2,'·' ,4) denote the suitable positive
constants depending only on <p. Then the foilowing results are obtained
by Firlej [7]: Let 1 E L~(T2) and n = (nl, n2) E N2.
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(39)

(41)

It foilows from (35) and (36) that

IISn(f) - Illep ~ M1 (<p)M2 (<p)

X {W1(f, 1/(n1 + 1)) + w2(f, 1/(n2 + 1))}

for ail n = (n1' n2) E N2
, and there holds

for ail mEN ([8; Theorem 1]). Now we take

1
Lm = S(m m), >'m = JLm = --. m+1

(m EN).

Then in view of (41) and (42), applying Theorem 1 we have the fol
lowing.

THEOREM 7. Let 1 E L~(T2). Then the following statements hold:

(a) For a11 mEN and all € > 0,

where
m

é '"" Pmj
Iom = L . + 1

;=0 )
(m EN).

(b) If Condition (P) is satisfied, then

for a11 mEN and a11 € > 0, where

m-1

(Jm = Pmm + L IPmj - Pmj +11
j=O
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COROLLARY 6. Let 1 E L~cr2). Then the fonowing assertions hold:

(a) If(P) satisfies (7), then

for an mEN and an € > O.

(b) IfP satisfies (9) and (10), then

for an mEN and an € > O.

REMARK 10: If one take € = 1, then (43) reduces to

AIso, by seleeting € = 1/2, (44) reduces to

IIWTn(f) - IIIIP ~ (2B + 1)M4 (<p)

x {WI (f, (2pTnTn - PTno)/2) + W2(f, (2pTnTn - PTno)/2)}

~ (2B + 1)M4 (<p){WI(f,PTnTn) + W2(f,PTnTn)}.

Thus, this result yields [8; Theorern 2].

Next take

L = S (n = (nI n2) E 1\>.1
2) \ (i) = /I(i) = 1 (m E 1\>.1 J" - 1 2)n n ,I~ ,"'Tn rTn m + 1 I~, - , •

Then in view of (40) and (41), applying Theorern 2 we derive the
following.

THEO REM 8. Let 1 E L~(T2). Then the fonowing statements hold:

(a) For an n = (nI, n2) E N2 and an € > 0,
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wnere

(j = 1,2).

(b) If Condition (P)* is satisfied, tnen

x {(C(l) + f- l )Wl (f, dJ~ll)) + (C(2) + f- l )W2(f, dJ~2})}

for a11 n = (nl' n2) E N2 and a11 f > 0, wnere

(j = 1,2).

COROLLARY 7. Let f E L~(T2). Tnen tne following assertions noId:

(a) If(17) noIds for r = 2, tnen

(45) IIWn(f) - fll'P ~ M3 (<p)(1 + f-l){Wl(f,fp~l!O) + w2(f,fp~2:0)}

for a11 n = (nl' n2) E N2 and a11 f > O.

(b) 1f(18) and (19) noId for r = 2, tnen

(46)

X ((2M(l) - 1 + f- l )Wl(f, f(2p~l;nl - p~l!o))

+ (2M(2) - 1 + f-
l )W2(f, f(2p~2}n:l - p~2:o))}

for a11 n = (nl' n2) E N2 and a11 f > O.

REMARK 11: If one take f = 1, then (45) reduces to

AIso, by choosing f = 1/2, (46) reduces to
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X {(2M(I) + l)WIU, (2p~l;nl - p~I/0)/2)

+ (2M(2) + 1)w2U, (2p~21n:l - p~2;0)/2)}

:S M3 ( cp ){(2M(I) + l)Wl(f, p~l;nl) + (2M(2) + 1)w2U, P~~n:l)}'

Thus, this result yields [8; Theorem 3].

REMARK 12: Let C(Td
) be the Banach space of ail continuous func

tions 1 on Rd which have period 211" in each variable, with the norm

1111100 = sup{ll(z)1 : z E T d
}.

Let 1 E C(Td
), mEN and define

EmU) = inf{111 - glloo : 9 E II(m+l .... .m+l)}·

Then we have

(cf. [28; Theorem 4]), and so [17; Chap. 6, Theorem 6] (cf. [33; Sec.
5.3]) establishes

d

IIVr:U) - 11100 :S CLwjU,l/(m + 1)),
j=1

where C is a positive constant independent of 1 and m, and Wj(f,'),
j = 1,2, ... ,d, denote the jth partial moduli of continuity of 1 with
respect to the norm Il . 1100' Let Lm = V~, mEN. Then applying
Theorem 1 (a), we obtain

d

IIWm U) - 11100 :S C(l + (-1) L Wj (f, (Çm)
j=1

for ail mEN and ail ( > 0, where

m
è ~ Pmj
'om = LJ~

j=O)

(cf. Coroilary 5 (b)).
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