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APPROXIMATION BY LINEAR SUMS OF
BOUNDED LINEAR OPERATORS"

TosHIHIKO NISHISHIRAHO

Abstract. Quantitative results for approximation by some linear
means of bounded linear operators on Banach spaces are obtained by
means of moduli of continuity under certain appropriate conditions.

1. Introduction

Let X be a Banach space with norm ||-||x and let B[X] denote the
Banach algebra of all bounded linear operators of X into itself with the
usual operator norm || - ||px]. Let w;,# =1,2,---7, be non-negative
functions on X x [0, 00), which satisfy

(1) wi(f,8) <wi(f,§) forall feX,{>62>0,

(2) Jlirilowi(f’ 5)=0 forall fe X

and there exist constants A;, B; > 0 such that
(3)  wi(£,€6) < (Ai + Bi§)wi(f,6) forall fe X, ¢£6>0.

Each function w;(f,-) is sometimes called the modulus of continuity

of f.

The purpose of this paper is to establish quantitative results for
approximation by some linear means of operators in B[X] associated
with infinite lower triangular stochastic matrices, by using the moduli
of continuity of approximating elements.

The results are applied to approximation by convolution opera-
tors, multiplier operators on Banach spaces and Cesaro-Marcinkiewicz
type means of Fourier series of several variables in Orlicz spaces. Con-
sequently, we extend the results of Firlej and Rempulska (8] (cf. [7],
[34]) to the context of arbitrary Banach spaces.
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2. Main Results

Let N denote the set of all non-negative integers. Let {L, },en be
a sequence of operators in B[X] and let T,,,n € N, denote the Cesaro
mean operators of {L,}, that is,

1 n
= L;.
& n+1)z_:0 ’

Let P = (pnj)n,jen be an infinite lower triangular stochastic matrix,
l.e., an infinite matrix of non-negative real numbers satisfying

an,- =] (n € N), Pnj =0 (7 >mn),
j=0

and we define

Wa=3) pjl; (nEN).
j=0
Let {A,}nen and {g, }nen be sequences of positive real numbers, and

let f e X.

Now we consider the following conditions:
(L) There exist constants C; > 0,7 = 1,---r, such that

1La(f) = fllx <Y Ciwi(f,An)  forall n €N.

T) There exist constants M; > 0,z =1,---,», such that
(
IT%(f) — fllx < ZMiw.‘(,f, Hin) for all n € N.
i=1

(P) A= sup{Z;:O lpy;:m € N} < o0,

where
(7 + L{pns —Puz 1) (0<j<n-1),
0 (7 > n).



It follows from (2) that if Condition (L) holds and {A,} converges

to zero, then

Tim [|La(f) ~ fllx =0,

and so

lim [IT.(f) ~ fllx = 0.

REMARK 1: We have

anlp~~|—{1 (Pnj > Pnj+1, 0 <G <m—1),
j=0 ™ 2("‘ + l)pnn -1 (pnj S Pnj+1, 0 S J S n— 1)1
and
ilp Puiin| = { Pno (Pnj 2nj+1,0 < j <n—1),
j — Pnj+1| — .
$=0 ™ ! 2Pan — Pno (Pnj SPn,H—laOSJ Sn_l)

(cf. [8; Lemmas 1 and 2]).

THEOREM 1. Let f € X. Then the following statements hold:
(a) If Condition (L) is satisfied, then

O W) Sl < 3G+ B ko
forall ne N and all e >0, wIle—re
£ = En:p,,,-,\,- (n €N).
j=0
(b) If Conditions (T) and (P) are satisfied, then
(5) IWa(f) - fllx < :M;(AA; + B;/e)wi(f, €0n)

for all n € N and all € > 0, where

On = Z |pnj | (n €N).
=0



ProoF: (a) Let § > 0. Since

(6) Wa(f) = £ = pai(Li(£) - 1),

3=0

it follows from (L) and (3) that

IWa(f) — fllx < anjll-"a'(f) — flix

<D0 i Ciwi(£,%5) <Y ) paiCi(Ai + Bid; [8)wi(f,8)

i=1;=0 i=14=0
=3 GilAs + Bita )il £,5).
i=1

Therefore putting § = €{,,, we obtain the inequality (4).
(b) By (6) and the Abel transformation, we have

Wa(f)—f= _Z(pn,- — Puj+1)R;(f) + PunRa(f),
where
Ru(f) =) (Ia() = ) =(m+ 1)(Tu(f) - f) (mEeN).
k=0

Thus we get
Wa(f) = f =Y p35(T;(£) — £),
7=0

and so (T'), (P) and (3) yield

IWa(£) = fllx <Y loa; 1T (f) - £lix
j=0

< ZZ |pnj | Miwi(f, i) < EZ |Pn; | Mi(Ai + Bip;/8)wi(f,6)

i=1;=0 1=1 5=0



< zr: M,(AA| + (B,-/&)Gn)w,-(f, 6)

Hence putting § = €6,,, we obtain the inequality (5).

REMARK 2: The part (a) is extended to the quantitative estimate
on the degree of approximation by summation processes induced by
the method of summability due to the author [23] (cf. [24]) recover-
ing that of Bell [1] (cf. [18], [29]) which includes the method of almost
convergence ( F-summability) and F4-summabiliy of Lorentz [16], Ap-
summability of Mazhar and Siddiqi [19] and order summability of Ju-

rkat and Peyerimhoff [12, 13]: Let A = {af;\d) ta € D,jeN,A €A}
be a family of non-negative real numbers such that

za(k) =1 for each a € D, X €A,

where D is a directed set and A is an index set. For examples of
such families, see, for instance (23], [24] and [25]. If Condition (L) is
satisfied, then

sup{ S aONLi () = H| A€M < Cildi + Bife)wil £, eba)

71=0 X i=1

for all @ € D and all € > 0, where

o = Sup Za(A)A tAEA ) <oo (x € D).

As an immediate consequence of Theorem 1 (b) and Remark 1,
we have the following.

CoROLLARY 1. Let f € X and suppose that Condition (T') is satisfied
with p, =1/(n+ 1),n € N. Then the following assertions hold:

(a) If

(7) panpnj-i-l (nzl, .7':0’1""’”_1)1



then

(8) IWa(f) = fllx <D Mi(A; + Bi/€)wi(f, puo)

i=1

for all n € N and all e > 0.

(b) If
(9) Pai SPujy1 (21, j=0,1,--+ ,n—1),
and if
(10) B = sup{(n + 1)pnn : m € N} < 00,
then

(11) [Wa(f)—fllx <D Mi{(2B—1)4; + Bi/€}wi(f, €(2Pnn —Pno))

i=1
for all n € N and all € > 0.

REMARK 3: Let f € X and assume that Condition (L) is fulfilled.
Then by Theorem 1 (a) we derive

(12) IT(£) = fllx <Y Ci(Ai + Bife)wi(f, eCn)
i=1
for all n € N and all € > 0, where
=Y @eN)
n= 2N n A
3 =0
In particular, if A, = 1/(n + 1) for all n € N, then
1 K
n & — < )
C _n+1(7+10g(n+2))_\/ﬁ

where v i1s Euler’s constant, 1.e.,

n—00 .
j=1

. |
¥ = lim (Z ; — log n) = 0.57721566490153286060 - - -



and

v + log(n + 2) }
13 K= ineNt,
(13) S“P{ Vors

and so it follows from (1) and (12) that

ITa(f) — fllx <D Ci(Ai + KBi/e)wi(f,e/vn+1)
i=1
for all » € N and all € > 0.
Let » € N,» > 1, and set
N™ = {n = (n1,n2,-- ,n,) :m; EN,7=1,2,--- ,7}
and for n = (nq,n2,---,n,) € N", we put
NI = {k = (k1,ka, - k) :0<kj <mj,57=1,2,---,7}.

Let L,,n = (nq,n2, -+ ,n,) € N, be operators in B[X], and define

1
T, = L,
(n1 + 1)(ny + 1)+ (n, + 1) h;, .

which are called the Cesiro mean operators of {L,}. Let P() =

(pg;z Jm,jen,i = 1,2,--- 7, be infinite lower triangular stochastic ma-
trices, and we define

W = :E: Iljéileh (n::(nl’nz...’1“) EINT)

kENT j=1
Let {’\S:;)}mEN and {;LS,‘;)},,,EN,i =1,2,---,7, be sequences of positive

real numbers and f € N, and we consider the following conditions:

(L)* There exist constants C > 0,i =1,--- , 7, such that

ILn(f) — fllx < ZC:“’:'(JC, AS:.-)) for all » = (n4,---,n,) €N".
=1



(T)* There exist constants M > 0, =1,--- ,r, such that
ITa(f) = fllx <> M7 wi(£,p8))  forall n=(ny, - ,n,) EN".

i=1

(P)* Fori=1,2,--

¢t —sup{le )l mEN} < 00,

j=0
where
G+ -2 (0<i<m—1),
~(i) _ ;
Pmj =\ (m+1)pin (7 =m),
0 (4 > m).

THEOREM 2. Let f € X. Then the following statements hold:

(a) If Condition (L)* is satisfied, then
(14) IWa(£) — fllx <D Cf(Ai + Bife)wi(f, €)),
i=1

for all n = (nq,n4, -+ ,n,) €N and all € > 0, where
()_Z’\()pn.z (i=1,2,--,7).

(b) If Conditions (T)* and (P)* are satisfied, then
(1) IWalf) = flix < DM (CP4i + Bife)wi(f, b))
i=1

for all n = (ny,n2, -+ ,n,) € N" and all € > 0, where

6() = Zu;)|p:f; (i=1,2,--,7).



Proo¥F: (a) Let § > 0. Since

(16) wa(f)—f=3 T[#%, (Ea(f) - 5),

keENT j=1

it follows from (L)* and (3) that

IWa(f) - fllx < ¥ pr,’,’,. 1Z(#) — Filx

keENT j=1

E HP(J) ZC’L&,(]‘, /\( ))

keENT j=1

< z Z P Ci (4i + BAY) [6)wi(£,6)

Z (B: /‘S)E(i Jwi(£,6).

Thus putting § = ef( ") we obtain the inequality (14).
(b) By (16) and the Abel transformation, we conclude

Walf)—F= Y Hp,.(”( Tu(f) - £),

keNT j=1

and so arguing as in the proof of Part (a), (T')*, (P)* and (3) establish

IWa(f) — fllx <Y M (COA; + (Bi/8)0)wi(£,8) (6> 0).

=1

Hence putting § = 695:'..), we get the inequality (15).

From Theorem 2 (b) and Remark 1 we have the following.



COROLLARY 2. Let f € X and suppose that Condition (T')* is satis-
fied with the case where

#s")_;l-r_l_ (meN, i=1,2,---,7).

Then the following assertions hold:

(a) If
) P >pP . (m>1, =0, m—1, i=1,,7),
then

[Wa(f) — flix < ZM' (Ai + Bi/e)wi(f, eps)o)

for all n = (ny,nz,-+- ,n,) EN" and all e > 0.

(b) If
(18) P <pl . (m>1, j=0,,m—1, i=1,,7),
and if
(19) MO =sup{(m+1)p{), :mEN} <o (i=1,--,7),

then

IWa(f) = fllx <3 M{(2MD —1)4; + B /eywi(f,e(2p8),, — Py))
$=1

for all n = (nq,ns, -+ ,n,) € N" and all € > 0.

REMARK 4: Let f € X and assume that Condition (L)* is fulfilled.
Then by Theorem 2 (a) we derive

(20) ITa(f) = fllx < Y C(Ai + Bi/e)wi(f, ()
$=1
for all n = (nq,n3,---,n,) € N" and all € > 0, where
=1 $™ A0 (i=1,2,---,7).
ng n; + 1 = J )



In particular, if A6 — 1/(m+1) forall m € Nand fori =1,---,r,
then

(i) < 1 < =9)) <
9 < —(r+loglni +2)) < ———,

and so it follows from (1) and (20) that

ITn(f) — fllx < Y Cf(Ai + KBi/e)wi(f,e/v/ni + 1)

3=1

for all n = (nq,n3,--- ,n,) € N” and all € > 0, where K is a positive
constant given by (13).

3. Linear Sums of Convolution Operators
and Multiplier Operators

Let R denote the set of all real numbers and let {S(¢) : t € R} be a
family of operators in B[X] with S(0) = I, the identity operator, such
that for each f € X the mapping t — S(t)(f) is strongly continuous
on R. Let ¢ : R — R be a continuous function. If k is a function in
L}, having the Fourier series expansion

k()€ (t€R)

M8

k(t) ~

j (o)

with its Fourier coefficients
k(j) = 1 /, k(t)e tdt  (j€1)
27 J_, !

where Z stands for the set of all integers and if L € B[X], then we
define the convolution operators (k * L)(¢;-) by

(b Dif) = 5= [ BOSONEENE (7€ X),

—

which exists as a Bochner integral (cf. [22]). Obviously, (k * L)(¢;-)
belongs to B[X]| and

(- * L)(¢; *)llsix) < Bllkl1| Ll 3 1x),



where
B = sup{||S(¢(t))llsx] : It| < =}

For a given a € R, we define
ea(t) = at for all t € R,

and put
(k* L)a(f) = (k* L)(pa; f)  (f € X).

Let {k,}nen be a sequence of functions in L} and » € N,» > 1. The
linear combination of the convolution operators (k*I);,j =1, -+ ,7,
which 1s given by

(21) $,, = Z;(-l)f+1 C) (ky * I);

plays an important role in the study of direct problems of Jackson type
on estimating the degree of the best approximation in Banach spaces
([28]). Here we restrict ourselves to the case where » =1 and each k,

is a non-negative function with I;(O) =1. Put L, =¥,1,n €N, and
thus we have

Ln(f) = 5 / Th(OSEHd (neNf € X).

If fe X and 6§ > 0, then we define

w(f,8) = w(X; f,8) = sup{|IS(t)(f) — fllx : [t| < 8},

which is called the modulus of continuity of f with respect to the
family {S(t)} (cf. [22; Def. 3]). Let wy = w. Clearly, w; satisfies (1)
and (2) for » = 1. Suppose that

(22) 15@)(f) — S(»)(Hllx < ClSE —)(f) - flIx
for all t,» € R and all f € X. Note that if {S(t) : t € R} is a
uniformly bounded strongly continuous group of operators in B[X],

then (22) holds with

(23) C = sup{||S(t)llsx] : t € R} < 0.



For further properties of semigroups of operators on Banach spaces,
we refer to [3], [5], [6], [9] and [10]. By [22; Lemma 2 (ii)], w; satisfies
(3) with A1 =1 and B1 = C.

For a given p > 0, we define

p(kn;p) = % /_: [t[Pka(t) dt,
which is called the p-th moment of k,,. Set
Anp=plkn:p)'?  (mEN, p>1).
Let f € X and 7 > 0. Then by [27; Theorem 3|, we have
(24) 1Ln(f) — fllx < C(p, T)wr(f,7An,p)
for all n € N, where
C(p,7) =1+ Cmin{r~?, 77 '}.

Therefore, Condition (L) holds for

r=1, Ci1=0C(p,7), An=TAnp.

In particular, if each k, is even, then it follows from [27; Corollary 3|
that

1 La(f) — fllx < C(r)wi(f,7vn)
for all n € N, where

cr

C(‘r):l+\/§

min{r’zw/\/g, 1}

and

v = (1- 1;,,(1))1/2 - {1 _ %/0' kn(t)costdt}l/z (n €N).

Since
1 n
()] e
= 1




we have

IT0(f) = fllx < C(p, 7)wr(f, Thn,p)
for all » € N, where

n+1j:0

1/p
1 n
I‘anp = ( Af,p (n E N)'
Therefore, Condition (T') holds for
r= 1, Ml = C(P, T): HPn = THn p-
In particular, if each k, is even, then

ITa(f) — fllx < C(r)wi(f,7vm),

where
1/2

n
1 2
v

(n € N).
J
n+1j:0

Tn =

Hence by Theorem 1 we obtain the following.

THEOREM 3. Let f € X. Then the following statements hold:
(a) For alln € N and all € > 0,

(25) IWa(f) — flix < C(p,7)(1 + C/e)w(f,€an ),
where

n
An,p = szni)‘i,p (n €N).
j=0
In particular, if each k, is even, then (25) reduces to

IWa(f) = flix < C(r)(1+ C/e)w(f,ebn),
where

bn:TZVjpnj (n € N).
i=0



(b) If Condition (P) is satisfied, then

(26) IWa(f) — fllx < C(p, 7)(A+ C/e)w(f, ezn,p)
for all n € N and all € > 0, where

n
2ap =73 |PNiluip  (n€N).
j=0

In particular, if each k,, is even, then (26) reduces to

IWa(f) — fllx < C(7)(A + C/e)w(f, eyn),

where

n
W=7 Ip5il (mEN).
1 =0

CorOLLARY 3. Let f € X and suppose that k, is even and u, =
1/(n + 1) for every n € N. Then the following assertions hold:

(a) If P satisfies (7), then

IWa(f) = flix < (1+ Cx/V2)(1 + C/e)w(f, epno)
for all n € N and all € > 0.
(b) If P satisfies (9) and (10), then

IWa(f) - fllx < (1+Cx/vV2)(2B — 1+ C/e)w(f, €(2Pnn — Pno))
for all » € N and all ¢ > 0.

REMARK 5: In view of Remark 2, Theorem 3 (a) holds for the methods
of A-summability.

Let {P;};cz be a sequence of projection operators in B[X] satis-

fying the following conditions:

(P —1) The projections P;,j € Z, are mutually orthogonal, i.e.,
P;P, = 6; , P, for all j,n € Z, where §;, denotes Kro-
necker’s symbol.

(P —2) {P;}jez is fundamental, i.e., the linear span of the set
Uj;ez Pj(X) is dense in X.

(P—3) {P;j}jez is total, ie, if f € X and P;(f) = 0 for all
j €1, then f =0.



For any f € X, we associate its (formal) Fourier series expansion
(with respect to {P;})

oo

(27) f o~ > P

j=—o00

An operator L € B[X] is called a multiplier operator on X if there
exists a sequence {a; };¢cz of scalars such that for every f € X

oo

L(f) ~ Y aP(f),

i=—oo

and the following notation is used:

(28) L ~ Y a;P

j=—oc0

(cf. [4], [22], [23], [35]).

REMARK 6: The expansion (27) is a generalization of the concept of
Fourier series in a Banach space X with respect to a fundamental,
total, biorthogonal system {f;, f };cz. Here {f;};cz and {f]};cz are
sequences of X and X* (the dual space of X), respectively such that
the linear span of {f; : j € Z} is dense in X (fundamental), f}(f) =0
for all j € Z implies f = 0 (total), and f](fn) = ;. for all j,n € Z
(biorthogonal). Then (27) reads

fo~ ) 05

j=—o0

(cf. [2], [20], [32]).

Let M[X] denote the set of all multiplier operators on X, which
is a commutative closed subalgebra of B[X] containing the identity
operator I. Let {S(t) : t € R} be a family of operators in M[X]
satisfying (23) and having the expansions

M8

(29) S(t) ~ exp(Bit)P;  (t €R),

j=—o0



where {f3;};¢z is a sequence of scalars. Then {S(t) : t € R} becomes a
strongly continuous group of operators in B[X] with its infinitesimal
generator G with domain D(G) and there holds

G'(f) ~ D BP(f) (feD@G), i=12,-)

j=—o00

(cf. [22; Proposition 2], [26; Proposition 3]).

If k€ L} and if L is an operator in M[X] having the expansion
(28), then (k * L)(p;-) belongs to M[X] and

oo

(30) (kxL)(g;:) ~ Y. ci(pik)Pi(),

where
eilpnk)= — / Kt exp(Bp(t) &t (€ 1)

27 J_,

([28; Lemma 2], cf. [26; Proposition 4]). For each n € N,a € R, we set
I,,={k €L} :cj(pa;k) =0 whenever |j| > n},

which is a closed linear subspace of L}, .

For each m € N and t € R, we define

=1, Ay =(s@-1" = 30" (7)) (m2),

j=0

which stands for the m-th iteration of S(t) — I. Clearly, A}* belongs
to B[X] and
”A:n“B[X] < Krn’

where

K, =min{(C+1)™, 2™C}.
If fe X,meNand § >0, then we define

w™(f,6) = w™(X; £,6) = sup{l| A7 ()l|x : l¢] < 6},



which is called the m-th modulus of continuity of f with respect to
the family {S(t)}. In particular, w(})(£, 6) is the modulus of continuity

w(f,6).
Let m € N and f € X. Assume that

m+1 m+ 1 )
(31)  pm =sup Z( i ),\;’p(kn;j):neN < 0,

i=0
Then it follows from [28; Lemma 1 (¢), Lemma 3| that
(32) [|Pnm+1(f) — fllx < Cpm“’(m-i-l)(-f, An) < CPme“’(l)(f’ An)
for all » € N.

REMARK T: If m = 0, then (32) becomes

[80,1(f) = fllx < Csup{l+ p(ki; 1)/ A : i € N} (£, 2,),
and so for 7 > 0, taking A\; = ru(k;;1) for all j € Z we have

1€2,1(f) = fllx < C(1+ 771w (f, 7a(ka; 1)),

which should be compared with the estimate (24) for p = 1.

Now let

wi=wV, L= Pomi1 (nEN).
Then (32) implies that Condition (L) holds for
r= 1, Cl = Cmem

Suppose that

1 n m+l 1 )
6m:sup{n— (m:— )p;’p(k;;j):nel\l}<oo.

Then since

m+1 n
T, = Z(—])i+l(m;rl) ((nilz;ki) *1). (n €N),

i=1

it follows again from [28; Lemma 1 (c), Lemma 3] that

(33)  ITa(£) = fllx < Comw™ (£, pn) < Cbn Knwr(f, i)
for all n € N, and so Condition (7T') holds for

’I':l, M1=C6me.
Thus Theorem 1 gives:



THEOREM 4. Let m € N and f € X. Then the following statements
hold:

(a) For all n € N and all € > 0,
IWa(f) — flix £ CopmEm(l+ Cle)w(f,ebm).

(b) For all n € N and all e > 0,

[Wa(f) = fllx < ConKm(1+ C/e)w(f,ebn).

COROLLARY 4. Let m € N and f € X. Suppose that u, =1/(n+1)
for all n € N. Then the following assertions hold:

(a) If P satisfies (7), then

IWa(f) — fllx < CépnKm(1+ C/e)w(f, epno)

for all n € N and all € > 0.
(b) If P satisfies (9) and (10), then

”Wn(f) - f”X S C5me(2B —~1 + C/f)w(f) 6(2pnn - pnO))
for all n € N and all € > 0.

Here we consider the generalized Jackson kernel given by

Tt = cus {sin(i;(-i;/lz))t/z)} (n,8 €N, s> 1),

where the normalizing constant ¢, , > 0 is taken in such a way that

Jn,s(0) = l/0 Tn.(t)dt =1

T

(cf. [17]). Note that



is the Fejér kernel, and so
Jns(t) =cns(n+ 1) Fr(t)

is a non-negative, even trigonometric polynomial of degree ns with

Jn.s(0) = 1. Also, we have

) ) 3 sin((n + 1)t/2) ) *
Jn,2(t) = Ja(t) = (n+1)(2(n+1)2+1) { sin(t/2) } ’

which is the Jackson kernel (cf. [11], [21]).
Now let m € N and

s(m) = [’"“],

where [£] denotes the largest integer not exceeding £ > 0. Then we
have the following.

THEOREM 5. Let k, = J,, ,(m),» € N and f € X. Then the following
statements hold:

(a) For all n € N and all e > 0,

”Wn(f) - .f”X < Cpm,a(m)KM(l 2 C/e)w(f’ Eén)a

where
m+1
m+1
pm,a(m):sup{z ( J )(n+1)J ( n,n(m)a]) nEN}
j=0
and .
. Dnj
£n—.:0———j+1 (n €N).
(b) If
n m+l
m+1
O il su . B Jiatom <. DO,
a(m) = Em“;;,zo( )u O MENE)



then
IWa(f) — flix < Cép s(m)Em(1+ C/e)w(f,ebn)

for all n € N and all € > 0.

ProoF: This follows from [28; Lemma 6] and Theorem 4.

REMARK 8: For m = 0, we have

3/
2v2

po,2 = sup{l+(n+ 1)pu(Jp;1) :n € N} <
and

n+1

3=

80,2 = sup {LZ(I + p(Ji;1) /pn) :n € N}

3 n .
w3/ 1 z+1:n€|\l
V2 nt+ 1l pa

(cf. [28; Lemma 6]). In particular, if we take

Ssup{l+

1 (o4
”"_<n+1) (0<a<l,n€eN),

then

73/ v+ log(n + 2) :nGN}.

80,2 < 1
o s {1+ TR

For each n € N, we set

n

M. [X] = @ Pi(X),

ji=—-n

which stands for the direct sum of {P;(X) : |j| < n}. Note that M, [X]

is a closed linear subspace of X. For a given f € X, we define

E.(f) = Bo(X; f) =inf{||f — gllx : g € M,[X]},

which is called the best approximation of degree n to f with respect
to M,[X]. Obviously,

Eo(f) 2 Bs(f) 2 -+ 2 En(f) 2 Enya(f) 2 -+ 20,



and Condition (P — 2) implies that

lim E,(f)=0 for every f € X.

In [28] we related the rapidity with which E,(f) approaches zero to
certain smoothness properties of f, which can be described in terms
of its moduli of continuity w(m)(fa ),m € Nym > 1.

For each n € N, we denote by I, the set of all trigonometric
polynomials of degree at most n. Suppose that

N

ﬂ My ; for each n € N.

§=1

(34) I,

REMARK 9: Let {3;};en = {—ij};jen. Then we have:
(a) For every n € N,

Hn (_: m Hnja
jez\{o}
and so (34) always holds.
(b) If ¢ = pq,q € Z\ {0}, then (27) reduces to

(kxL), ~ Zieyqa, P

and in particular if k € IT,,, then

(kxL)g = k(jg)a; P;
lil<(n/lal]
Let {U,}nen be a sequence of operators in B[X] satisfying
(35) a = sup{||Un||p(x): m € N} < o0

and U,(g) = g for every g € M,[X]. Let L, = Upy1,mn € Nym € N,
m > 1 and f € X. Then it follows from [28; Lemma 1 (c¢), Theorem
4] that

IZa(£) = fllx < Ca+ Dmmw™ ¥ (£,1/(n + 1))



< Ca + 1) Kmw(f,1/(n + 1))

for all n» € N, where 7,, is a positive constant depending only on m,

and so Condition (L) holds for

1

r=1, w; =M, C: =C(a+1)pnKm, /\":n+1'

Since
B = sup{||Tu||px] : » € N} < a < oo,

if T,,(g) = g for all g € M,[X], then we have also
ITa(£) = fllx < C(B + Dnme™+(£,1/(n + 1))
< C(B + 1)1 KmwD(£,1/(n + 1)),
and so Condition (T") holds for

1
r= 11 w1 = w(l)) Ml = C(IB =+ l)anm’ Hn = 'Il—+1

Hence Theorem 1 yields the following.

THEOREM 6. Let f € X. Then the following statements hold:
(a) For all m € N and all e > 0,

IWa(f) = fllx < Cla+ 1) Km(1+ C/e)w(f, €€n),

where
n

pnj
= B S (n € N).
j:(]'7 +1

(b) Suppose that T,(g) = g for all g € M, [X]. Then for alln € N
and all e > 0,

(36) [Wa(f) — fllx < C(B+1)nmKm(1+ C/e)(f, €by),
where

Om =) |pnj —Pajs1l  mEN).
ji=0



In particular, if P satisfies (7), then (36) reduces to

”Wn(f) - f”x < C(:B + l)anm(l iy C/e)w(f, epnﬁ)a

and if P satisfies (9) and (10), then (36) reduces to

IWa(f) = fllx < CB+ 1) Km(1 + C/e)w(f,€(2pnn — Pno))-

Let {S,}nen be the sequence of the n-th partial sum operators
associated the Fourier series (27), that is,

Sp = 'Z P;  (nEN),

J=—n

and let o,,n € N, be the n-th Cesaro mean operators, that is,
e LSS (1l
Tontlgg nt+1) "7

j=-n
Then for each n € N, we define

|
Vo = n+1 j—X;-I = Al =i

which is called the de la Vallée-Poussin operator.

COROLLARY 5. Let f € X. Then the following assertions hold:

(a) Let Un = Sn,n € N. If (35) is fulfilled, then the statement
(a) in Theorem 6 holds.

(b) Let U, = Va,n € N. If
o= sup{||an||B[X] :n € N} < oo,
then the statement (a) in Theorem 6 holds for a = 3o.

In the rest of this section we restrict ourselves to the case where
X 1s a homogeneous Banach space, i.e.,

(H —1) X is a Banach space with norm || - ||x.



(H —2) X is continuously embedded in L},, i.e., there exists a
constant Cy > 0 such that ||f||; < Col|f||x forall f € X.
(H —3) The translation operator S(t) defined by

SN =1(-1)  (feX),

is isometric on X for each t € R.
(H —4) For each f € X, the mapping t — S(t)(f) is strongly
continuous on R.

Typical examples of homogeneous Banach spaces are Cy., the
Banach space of all 2x-periodic, continuous functions f defined on R
with the norm

[1flleo = max{|f(¢)] : [t| < =}
and L}_, the Banach space of all 27x-periodic, p-th power Lebesgue
integrable functions f defined on R with the norm

i = (o [ 1sora}” a<p<oo

For other examples see [22] (cf. [14], [31]).
Now we define
B0 = FG)e (f e X),
which satisfies Conditions (P—1),(P—2) and (P—3) just as in Section

3 (cf. [14], [22]). Note that S(t) has the expansion (26) with 8; = —ij,
and so for ¢ = @,,,,m € Z, the expansion (27) reduces to

(k*L)m ~ Y k(jm)a;P;,
j=—o
and
MJ[X] = I, C (| I,
jez\{o}
for each n € N (cf. Remark 7). Furthermore, for f € X and t € R we
have

85 =1, AP0 = Y (-1 (’;’) i) lwzi)

Consequently, in the above setting the results obtained in this
section hold with C = 1.



4. Linear Sums of Cesaro-Marcinkiewicz
Type Operators

Let R? denote the d-dimensional Euclidean space with the usual
inner product

z-y=21y1 +22y2 + -+ 2ivYa

for z = (21,22, ,2a), ¥y = (¥1,92," " ,¥a) € R?. Let T¢ be the cube
given by

Td:{c:(zl,-.. ,zd)eRd:—ﬂ'SQj <7(,j:1’...,d}'

Let ¢ be a non-decreasing, continuous convex function on [0, c0) sat-
isfying

p(0)=0, ¢(t) >0 (t >0), tli_irtl)—(’ﬂzm lim M:oo

t t—ooo ¢

The function ¢ is said to satisfy Condition (A;) if there exist constants
¢ > 0 and tg > 0 such that

p(2t) < cp(t) forall t >t

(cf. [15], [30]).

Let L,(T?) be the set of all measurable functions f on R? having
period 27 in each variable such that

/ o(1f(2)])dz < oo,
Td

and L’;(Td) denotes the set of all measurable functions f on R* such

that af € L,(T?) for some a > 0. Let 9 be the complementary
function to ¢ in the sense of Young, i.e.,

P(u) = sup{tu —p(t) : t 2 0} (u2>0),
and so evidently, the pair (¢, ) satisfies Young’s inequality:

tu < p(t) + ¢(u) forall t,u>0.



For each f € L;(Td), we define

£l = sup { sz [, 11(@)ote) de s o) <1},

where

1
o) = oz | Wla(e)) dz,

which is called the Orlicz norm of f with respect to ¢. Then L;(Td)
becomes a Banach space with the norm || -||,, which can be equivalent
to the Luxemburg’s norm defined by

il =int {3502 5k [ o (L)) o 1)

(cf. [15], [30]). Let Z% be the set of all lattice points in R?, i.e

7 = {m = (mq, - yg) iy €l f =155+ ;d}
For a given f € L;(Td), we define the Fourier coefficient of f by

] 1 —im-2 d
fim) = e [ f@eT ™ (e,
and then the Fourier series of f is defined by

(37) flz) ~ ) fm)e™  (zeRY).

meze

For a point n = (nq,n3,- -+ ,ng) € N? we denote the n-th partial sum

of the Fourier series (37) of f by

Sa(f)(2) = >, f(m)e™=,

|m1|5"1v131,' ,d
and let o, be the n-th Cesaro mean operator of {5, }, i.e.,

1

(ne+1)(ng+1)---(ng+1 hXN:d D

Op =




For each m € N, we define

. 1 &
am = m + 1 ZS(J.,J',‘”,].)’
ji=0

which is called the m-th Cesaro-Marcinkiewicz mean operator, and let
V> be the m-th de la Vallée-Poussin-Marcinkiewicz operator, that is,

1 2m+1
V= e Y S d) = 20841 — O
j=m+1
For a point n = (ny,ng,-++,nq) € N¢ we denote by IT¢ the set of
all d-dimensional trigonometric polynomials of degree n, i.e., all func-
tions g(21, 232, -+ ,#4) which are trigonometric polynomials of degree

n; with respect to z;,5 = 1,2,--- ,d. For a given f € L;(Td), we
define

Ea(p; f) = inf{||f — gll, : g € I3},
which is called the best approximation of degree n to f with respect

to IT¢ (of. [17], [33]). If f € L3,(T%) and & > 0, then we define

w;(f,6) = wj(p; f,8) = sup{[|A¢; (F)llp : t] <8} (G =1,---,d),

where

At,]'(f)(zl"" )zd)zf(zli"' 7zj_t7"' ,zd)_f(zl"" 1&gyttt 1zd)‘

The quantities w;(f,68),7 = 1,2,--+ ,d, are called the j-th partial mod-
uli of continuity of f, and (1), (2) and (3) hold for 4; = B; =1 (cf.
[17], [33]).

From now on we suppose that L;(Td) is reflexive, which can be
equivalent to that ¢ and ¢ satisfy Condition (Aj;) (cf. [15], [30]).

Furthermore, for simplicity, we consider the case d = 2; The case
where d > 3 is similar.

Hereafter, let M;(¢)(j =1,2,---,4) denote the suitable positive
constants depending only on . Then the following results are obtained

by Firlej [7]: Let f € L;(Tz) and n = (nq,n3) € N2,

(38)  En(e; f) < Mu(p){wi(f,1/(n1 +1)) + w2(f,1/(n2 + 1)) };



(39) 15a(f) = fllo < M2(9)En(yp; f);

(40) llon(f) = fllo < Ms(p){wi(f,1/(n1 +1)) + wa(f,1/(n2 + 1)) }.
It follows from (35) and (36) that
(41) 150 (£) = flle < Mi(p)Ma(ep)
x  A{wi(f,1/(n1 + 1)) + w2(f,1/(n2 + 1))}
fon allll o= (317, 3] & N2, il bhvere fuoldls
(42) lom(f) = fllp < Ma(p){w1(1,1/(m + 1)) + w2(f,1/(m + 1))}
for all m € N ([8; Theorem 1]). Now we take

1

— N).
— (m € N)

Lm = S(m,m)) Am = Um —

Then in view of (41) and (42), applying Theorem 1 we have the fol-
lowing.

THEOREM 7. Let f € L;(Tz). Then the following statements hold:
(a) For all m € N and all € > 0,

W (f) = fllo < Mi(p)Ma(p)(1 + € Nwi(f, €bm) + w2(f, ém)},

where
m

DPmj
m = e €N).
=3 T (meN)

(b) If Condition (P) is satisfied, then

Wi (£) — fllp < Ma(p)(A+ € ) {wi(f, bm) + wa(f, €01m)}

for all m € N and all ¢ > 0, where

m—1

Om = Pmm + Z Ipmi _pmi+1l (m € N)
j=0



COROLLARY 6. Let f € L’;(Tz). Then the following assertions hold:
(a) If (P) satisfies (7), then

(43) [Wm(f) — flly < Ma()(1 + € " H{wi(f, ePmo) + w2(f, €Pmo)}

for all m € N and all € > 0.
(b) If P satisfies (9) and (10), then

(44) [Wen(f) = fllo < Ma(9)(2B —1+€77)

X {wl(f, €(2pmm - pmﬂ)) + wz(f, €(2pmm - pmﬂ))}
for all m € N and all € > 0.

REMARK 10: If one take e = 1, then (43) reduces to
W (f) — Fllo < 2Ma(p){w1(f, Pmo) + w2(f, Pmo)};
Also, by selecting € = 1/2, (44) reduces to
W (£) — fllo < (2B + 1) Mu(yp)

X {""l(fa(2pmm _Pmo)/z) +w2(f)(2pmm —pmﬂ)/z)}
S (2B + 1)M4($0){“"1(f1 pmM) + “’Z(f’ Pmm)}'

Thus, this result yields [8; Theorem 2].
Next take

T, =8, (5={mns) ND), A0 = 49} = % (meN,j=1,2).
m

m

Then in view of (40) and (41), applying Theorem 2 we derive the
following.

THEOREM 8. Let f € L%(T?). Then the following statements hold:
(a) For all n = (nq,n;) € N? and all € > 0,

IWo(£) = fllp < Mi(p)Ma2(p)(1 + € ){wi(f, e€l?)) + wa(f, €2},



where
n; (J )

¢v) —Z :::1 (F= 1,8}
(b) If Condition (P)* is satisfied, then
Wa(f) = flly < Ms(p)
x {(CW + e Mwr(f,€65) + (CP + e wa(f, €652)}

for all n = (nq,n3) € N? and all € > 0, where

e |P:,~1.l

) =1,2).
:0k+1 (J ’)

oU) =

CoROLLARY 7. Let f € L (T ). Then the following assertions hold:
(a) If (17) holds for r = 2, then

(45) [IWalf) = fllo < Ms(p)(1 + € ){wi(f, ) + walF, epio)}

for all n = (nq,n;) € N? and all € > 0.
(b) If (18) and (19) hold for » = 2, then

(46) IWa(£) = fll, < Ms(9)
x {@M® — 14 e Vwi(f, (20, — %))

+ (@M@ — 1+ e Nw(f, (202, — 00))}
forallnz(nl,n-_))EN2 and all € > 0.

REMARK 11: If one take e = 1, then (45) reduces to

|Wa(f) — flle < 2M8(‘P){‘-"1(fapnlo) + Wz(f,Pn,o)}

Also, by choosing € = 1/2, (46) reduces to

Wa(f) = flle < Ms(p)



x {@MD + Dw (£, (260, — 25%)/2)
+ (2MD 4 Dus(f, (282, — 20)/2)}

< My(@){(2MD + Dwr(£,p,,) + 2MP + Dws(f, 50,
Thus, this result yields [8; Theorem 3].

REMARK 12: Let C(T?) be the Banach space of all continuous func-
tions f on R? which have period 2= in each variable, with the norm

[£lles = sup{|f(2)| : = € T*}.
Let f € C(T?), m € N and define

Em(f) = lnf{“f - g“°° ‘g € II(dm+1,---,m+1)}'

Then we have

V() = flleo < (IVimllprecrey + D Em(f) < 4Em(f)

(cf. [28; Theorem 4]), and so [17; Chap. 6, Theorem 6] (cf. [33; Sec.
5.3]) establishes

V() = fllo < C D wi(£,1/(m +1)),

=

where C is a positive constant independent of f and m, and w;(f,-),
j=1,2,.---,d, denote the jth partial moduli of continuity of f with
respect to the norm || - ||o. Let L,, = V.»,m € N. Then applying
Theorem 1 (a), we obtain

d
IWn(£) = flloo < C(1+ €)Y w5(frebm)
j=1

for all m € N and all € > 0, where

m

Pmj
fm=) ——= (meN)
i=0 J + 1

(cf. Corollary 5 (b)).
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