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APPROXIMATION PROCESSES OF QUASI-POSITIVE
LINEAR OPERATORS

TOSHIHIKO NISHISHIRAHO

Abstract. The convergence on approximation processes of quasi
positive linear operators is discussed. The results are then applied
to obtain several Korovkin test systems.

1. INTRODUCTION

Let X be a compact Hausdorff space and let E be a normed linear
space over the scalar field II( which is either the field R of real numbers
or the field C of complex numbers. Let B(X, E) denote the normed
linear space of all E-valued bounded functions on X, endowed with
the usual pointwise addition, scalar multiplication and the supremum
norm 11·11. We shall use the same symbol 11·11 for the underlying norms.
C(X, E) denotes the closed linear subspace of B(X, E) consisting of
all E-valued continuous functions on X. In the case when E is equal to
11(, we simply write B(X) and C(X) instead of B(X, E) and C(X, E),
respectively.

For any a E E and v E B(X), the function va is defined by
(va)(z) = v(z)a for all z E X. Also, for any v E B(X) and I E
B(X, E), we define (vf)(z) = v(z)/(z) for all z E X. Plainly, va
and vi belong to B(X, E), and Ilvall = Ilvllllall and Ilv/ll :s; Ilvllll/ll. If
a E E, v E C(X) and I E C(X, E), then va and vi belong to C(X, E).
We denote by C(X) @ E the linear subspace of C(X, E) consisting of
all finite sums of functions of the form va, where v E C(X) and a E E.
Ix stands for the unit function defined by Ix (z) = 1 for all z EX.

Here motivated by the previous work of the author [11] we study
the convergence on approximation processes of quasi-positive linear
operators of C(X, E) into E or B(X, E). The results yield several
Korovkin test systems, which can be useful for applications. Actually,
we extend the results of [10] to the context of functions taking a value
in an arbitrary normed linear space.

We refer to [1] for detailed references on the several other contri
butions to the area of Korovkin-type approximation theory.
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2. AUXILIARY RESULTS

\Ve begin with the following definition:

DEFINITION 1: Let A and B be normed linear spaces. Let {Ta ,>. :

0: ED, A E A} be a family of bounded linear operators of A into
B, where D is a directed set and A is an index set, and let T be a
bounded linear operator of A into B. Then the family {Ta ,>.} is called
an approximation process with respect to T on A if for every f E A,

(1) lim IITa,>.U) - TU)II = 0
a

uniformly in A E A.

Obviously, if for a net {Ta : 0: E D} of bounded linear operators
of A into B, we take Ta ,>. = Ta for all 0: E D and all A E A, then the
convergence behavior (1) reduces to the usual one. Several other ap
proximation processes can be induced by various summability methods
due to the author [6] (cr. [7], [8]), which include the method of almost
convergence (F -summability) of Lorentz [5], as the most typical case.

LEMMA 1. Let {Ta,>. : 0: E D, A E A} and T be as in Definition 1, and
let M be a dense subset of A. H there exists an element 0:0 E D such
that

(2) sup{IITa ,>.II: 0: 2: 0:0,0: E D,A E A} < 00

and iffor all gEM,

(3) lim IITa,>.(g) - T(g)11 = 0
a

uniformly in A E A,

then {Ta ,>.} is an approximation process with respect to T on A. If,
moreover, A is a Banach space, then the converse is also true.

PROOF: The former is a standard argument on account of (2) and (3)
(cr. the theorem of Banach-Steinhaus). The latter follows from the
uniform boundedness principle.

LEMMA 2. C(X) 0 E is dense in C(X, E).

PROOF: This is an immediate consequence of [12; Theorem 1.15], since
C(X) separates the points of X.
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LEMMA 3. Let B be a normed linear space. Let {Ta,A : a E D, A E A}
be a family of bounded linear operators of C(X, E) into B such that
there exists an element ao E D for which (2) is fulfilled, and let T be
a bounded linear operator of C(X, E) into B. If for all a E E and all
v E C(X),

lim IITa,A(va) - T( va)11 = 0
a

uniformly in A E A,

then {Ta,A} is an approximation process with respect to T on C(X, E).

PROOF: This follows from Lemmas 1 and 2.

DEFINITION 2: Let A be a linear subspace of B(X, E) which contains
C(X) 0 E. A bounded linear operator L of A into B(X, E) is said to
be quasi-positive ifv,w E C(X) and Iv(z)l::; w(z) for all z E X, then

(4) IIL(va)(z)11 ::; IIL(wa)(z)11 for all a E E and all z EX.

A bounded linear operator L of A into E is said to be quasi-positive
ifv,w E C(X) and Iv(z)l::; w(z) for all z E X, then

(5) IIL(va)11 ::; IIL(wa)11 for all a E E.

REMARK 1: Let E = K. Then (4) and (5) are equivalent to

and

IL(v)(z)1 ::; IL(w)(z)1 for all z EX

IL(v)1 ::; IL(w)I,

respectively. Furthermore, the positivity of L implies the quasl
positivity of it, but not conversely in general.

3. CONVERGENCE THEOREMS

Let {La,A : a E D, A E A} be a family of quasi-positive linear
operators of C(X, E) into E such that there exists an element f30 E D
for which

(6) sup{IILa,AII : a 2: f3o,a E D,A E A} < 00.
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For any function lP" E C(X) and for any element a E E, we define

(0: E D, A E A).

Let t be an arbitrary fixed point of X and let <Pt be a non-negative
function in C(X, R) such that

(7) inf{<Pt(z): z E F} > 0 for every closed subset F of X \ {t}.

REMARK 2: If there exists a non-negative function h E C(X, R) such
that 0 < h(z) :::; <P t ( z) for all z E X with z =1= t, then (7) always holds.
In particular, if <P t is a non-negative function in C(X, R) satisfying
<P t ( z) > 0 for all z E X with z =1= t, then (7) is automatically fulfilled.

PROPOSITION 1. Let a E E. If

(8) uniformly in A E A,

then for every function lP" E C(X) satisfying lP"(t) = 0,

(9) uniformly in A E A.

PROOF: Let c > 0 be given. Then there exists an open neighborhood
Vi oft such that 1lP"(z)1 < c for all z E Vi. Let F = X \ Vi, and put

and
M = sup{IlP"(z)1 : z E F}.

Then by Condition (7), m > 0, and so we obtain

for all z EX. Therefore it follows that

IILa,A(lP"a)11 :::; cIILa,A(1xa)1I + (Mjm)IILa,A(<Pta)11

:::; cllallllLa,AII + (Mjm)Pa,A(<Pt,a),

which together with (6) and (8) yields (9).
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Let ~ be any fixed number in IK, and we define

(10) L(f) = L((,t)(f) = ~f(t) for every f E C(X, E).

Evidently, L is a quasi-positive linear operator of C(X, E) into E and

IILII = I~I·

THEOREM 1. If (8) holds for all a E E and if there exists a function
u E C(X) such that u(t) =1= 0 and

(11) lim IILa,,\(ua) - L(ua)1I = 0
a

uniformly in A E A

for every a E E, then {La ,,\} is an approximation process with respect
to L on C(X, E).

PROOF: Let v E C(X) and we define

1Ji = v - (v(t)ju(t))u.

Then 1Ji belongs to C(X) and 1Ji(t) = O. Therefore, by Proposition 1,
(9) implies

(12) lim IILa,,\(va) - (v(t)ju(t))La,,\(ua)11 = 0 uniformly in A E A
a

whenever a belongs to E. Since

IILa,,\(va) - L(va)11 ::; IILa,,\(va) - (v(t)ju(t))La,,\(ua)11

+ Iv(t)ju(t)IIILa,,\(ua) - L(ua)ll,

by virtue of (11) and (12), we conclude that

lim IILa,,\(va) - L(va)11 = 0
a

uniformly in A E A

for all v E C(X) and all a E: E. Thus, Lemma 3 gives the desired
result.
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COROLLARY 1. If(8) and (11) with u = Ix hold for any a E E, then
{La,>.} is an approximation process with respect to L on C(X, E).

COROLLARY 2. IfT is a quasi-positive linear operator ofC(X, E) into
E which satisfies T(~ta) = 0 and T(l x a) = L(lx a) for all a E E, then
T=L.

Let p be any fixed positive real number and let G be a subset of
C(X) which separates the points of X. For each g E G, we define

qi't(g) = qi't(p,g) = Ig - g(t)l x IP.

PROPOSITION 2. Let a E E. If for every g E G,

(13) uniformly in A E A,

then (9) holds for every function qi' E C(X) satisfying qi'(t) = O.

PROOF: Since the original topology on X is identical with the weak
topology on X induced by G, there exists a finite subset {gl"" ,gn}
of G and a constant 7J > 0 such that

n

1qi'(z)1 ~ € + 7J L Igi(z) - gi(t)IP

i=l

for all z EX. Therefore we obtain

n

IILa,>.(qi'a)11 ~ €IIL a,>.(1x a )11 + 7J L IILa,>.(qi'~gj)a)11
i=l

which together with (6) and (13) proves (9).

THEOREM 2. If (13) holds for all a E E and all g E G and if there
exists a function u E C(X) satisfying u(t) =f: 0 and (11) for all a E E,
then {La,>.} is an approximation process with respect to Lon C(X, E).

PROOF: With the aid of Proposition 2, the proof is exactly the same
as that given for Theorem 1.

-70-



COROLLARY 3. If (13) and (11) with 'U = Ix hold for all a E E and
all 9 E G, then {La,;d is an approximation process with respect to L
on C(X, E).

COROLLARY 4. IfT is a quasi-positive linear operator ofC(X, E) into

E which satisfies T(q;~g)a) = 0 and T(l x a) = L(l x a) for all a E E
and all 9 E G, then T = L.

REMARK 3: In view of Remark 1, in the special case E = IR, the
positivity of functionals required in [10] can be weakened by the quasi
positivity of them.

4. KOROVKIN TEST SYSTEMS

In this section we give several applications of the results obtained
in the previous section. For this in view of the classical Korovkin
theory (cf. [4]) on the convergence of sequences of positive linear
functionals on C([a, b], R), we make the following definition:

DEFINITION 3: Let T be a quasi-positive linear operator of C(X, E)
into E. A subset S of C(X, E) is called a Korovkin test system (or,
briefly,KTS) with respect to T in C(X, E) if for any family {L a ,'\ :

a E D, ~ E A} of quasi-positive linear operators of C(X, E) into E
such that there exists an element /30 E D satisfying (6), the relation

lim IILa,,\(g) - T(g)11 = 0
a

for every 9 E S implies that

lim IILa,,\(f) - T(f)11 = 0
a

for every f E C(X, E).

uniformly in ~ E A

uniformly in ~ E A

The similar concept is defined in the setting of quasi-positive lin
ear operators of C(X, E) into B(X, E) (d. [11]). For a given subset
V of C(X), we define

VE = {va: v E V,a E E}.

If B = E or B = B(X, E), then it follows from Lemma 3 that the set
C(X)E is a KTS with respect to T in C(X, E).

Let L be a quasi-positive linear operator of C(X, E) into E defined
by (10).
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THEOREM 3. Let w be a function in C(X) with w(t) =f. O. Then
the following statements hold: (10) Suppose that cPt(t) = O. Then
{w, cPt}E is a KTS with respect to L in C(X, E). In particular,
{lx,cPt}E is a KTS with respect to L in C(X, E). (2°) Let G be
a subset of C(X) separating the points of X, and let p be a positive
real number. Then ({w} U {)Jit(p,g) : 9 E G})E is a KTS with respect

to L in C(X, E). In particular, ({Ix} U {)Ji}P,g) : 9 E G})E is a KTS
with respect to L in C(X, E).

PROOF: (10) and (2°) immediately follow from Theorems 1 and 2,
respectively.

COROLLARY 5. (10) Let {Ul,U2"" ,urn} be a finite subset ofC(X),
and let

(14)

where each ak(t) is a number in II< such that

and (7) is satisfied. Let Uo E C(X) and uo(t) =f. O. Then

is a KTS with respect to L in C(X, E). In particular,

is a KTS with respect to L in C(X, E). (2°) Let p be an even positive
integer. IfG is a subset ofC(X,R) which separates the points of X,
then

{gk : 9 E G, k = 0,1,2,,,, ,p}E,

where gO = lx, is a KTS with respect to L in C(X, E). If G is a
subset ofC(X, C) which separates the points of X, then
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is a KTS with respect to L in C(X, E), where

G = {g: g E G} and IGI 2 = {lgl 2
: g E G}.

COROLLARY 6. Let'U be a strictly positive function in C(X, IR). Then
the following statements hold: (10) Let {'U1,'U2,'" ,'Um } be a finite
subset of C(X, IR) such that for every Z E X with z =F t, there exists
an integer j E {1,2,··· ,m} for which 'Uj(z) =F 'Uj(t). Then

is a KTS with respect to L in C(X,E). (2°) Let {VI,V2"" ,vm } be
a finite subset of C(X, C) such that for every z E X with z =F t, there
exists an integer j E {1,2,··· ,m} for which Vj(z) =F Vj(t). Then

is a KTS with respect to L in C(X, E).

Here we restrict ourselves to the case where X is a compact subset
of IKm and for each k = 1,2",' , m, Pic denotes the k-th coordinate
function defined by

Then by Corollary 5 (2°) and Corollary 6 we have the following some
Korovkin test systems:

(10) Let IK = IR. Then

and
I { ""m 2}51 = l x ,P1,P2,'" ,Pm, L..,..1c=1 Pic E

are Korovkin test systems with respect to L in C(X, E).

(2°) Let IK = C. Then
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and
5; = {l X ,Pl,··· ,Ptn,Pl,··· ,Ptn, 2::=1IpnI2}E

are Korovkin test systems with respect to L in C(X, E).

(3°) Let X be the m-dimensional torus lrtn , i.e.,

Then
53 = {Ix ,Pl , . .. , Ptn , Pl, . .. ,Ptn}E

is a KTS with respect to L in C(T tn , E).

(4°) Let K = C and for each k = 1,2,··· ,m, we define

for every Z = (Zl,Z2'··· ,Ztn) E X, where Re(zk) and Im(zk) stand
for the real part of Zit and the imaginary part of Zk, respectively. Then

and
I { ~tn (2 2)}54 = 1X ,ql,··· ,qtn,1'l,··· ,1'tn'L...,.n=l qn +1'n E

are Korovkin test systems with respect to L in C(X, E).

(5°) Let X = Ttn , and let qk and 1'k (k = 1,2,··· ,m) be as in
(4°). Then

is a KTS with respect to L in C(X, E).

(6°) Let C2,," (Rtn , E) denote the normed linear space of all E
valued continuous functions I on Rtn which are periodic with period
21t" in each variable with the norm

11/11 = sup{ll/( Z)11 : Z E Rtn }.

Then C(lrtn , E) is isometrically isomorphic to C2 ,," (Rtn , E). For each
k = l,2,···,m we define
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U(g) = ~g(y)

where ~ is a fixed number in II< and y is a fixed point of IRm
. Then U

is a quasi-positive linear operator of C21l"(lRm
, E) into E and

S6 = {Iii"" Cl, ... ,Cm, 81,' .. ,1'm}E

is a KTS with respect to U in C21l"(lRm
, E).

THEOREM 4. Let X be a compact subset of an inner product space
(H, <, » over 11<, and we denne

h(z)=<z,z> and ht(z)=<z,t> for every z E X.

Then the following statements hold: (10) If'K. = IR, then {lx, h,ht}E
is a KTS with respect to L in C(X, E). (2°) If II< = L, then
{lx,h,ht,htlE is a KTS with respect to L in C(X,E).

PROOF: Let

4'>t(z) =< z -t,z -t >

If II< = IR, then

for all z EX.

4'>t(z) = h(z) - 2ht(z) + h(t).

If II< = L, then

4'>t(z) = h(z) - ht(z) - ht(z) + h(t).

Therefore 4'>t is represented in the form (14), and so the desired
results follow from Corollary 5 (10).

For example, if we take H = IRm with the usual inner product

< z,y >= ZlY1 + Z2Y2 + ... + ZmYm

m m

and ht = LPk(t)Pk.
10=1
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Also, if we take H = em with the inner product

m m

and ht = LP1c(t)p1c.
1c=1

Consequently, 5~ and 5~ again become Korovkin test systems with
respect to L in C(X, E).

REMARK 4: The results obtained in Sections 3 and 4 can also be
applied to the case where

G = {g IX : 9 E F*},

where X is a compact subset of a locally convex Hausdorff vector space
F over IK with its dual space F* and 9 Ix denotes the restriction of 9
to X (d. [2]' [3], [7], [9], [13]).

REMARK 5: In view of [11; Remarks 1 and 2], the sets 51,S~,S2'S;,

53, S4, 5~, 55 and 56 are also Korovkin test systems with respect to a
multiplication operator T given by

T(f) = 1£1 for every 1 E C(X, E),

where 1£ is an arbitrary fixed function in B(X), in the setting of quasi
positive linear operators of C(X, E) into B(X, E).

Finally, we give the concrete examples of approximation processes
of the integral operators: Suppose that E is a Banach space and

Let {ka,A: a E D, A E A} be a family of non-negative functions
in C( [a, b], R) and for each a E D and A E A, we define the operator
La,A by
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for every f E C(X, E). Then each La,>. is a quasi-positive linear
operator of C(X, E) into E and the the following assertion is true: If

lim l b

ka,>.(Y) dy = 1/0 uniformly in A E A,
a a

li~lb

Yka,>.(Y) dy = 1/1 uniformly in A E A,

lim l b

y2 ka,>, (y) dy = 1/2 uniformly in A E A
a a

and 1/01/2 = 1/~, then

(15) uniformly in A E A

for all f E C(X, E), where L(e,t) is the operator defined by (10) with

and

Let {kn : n E N} be a sequence of non-negative functions in
C([a, b], ~), where N denotes the set of all positive integers. In view
of the concept of the almost convergence (F-summability) introduced
by Lorentz [4], we define

and

(n,1'EN)

(n E N, j = 0,1,2).

Then it follows from the above observation that if for each j = 0, 1

and 2, {v~j) : n E N} is almost convergent to 1/i with 1/01/2 = 1/~,
then (15) holds for every f E C(X, E), where

and D = A = N.

For instance, we take [a, b] = [0,1]. If
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then for every f E C(X, E),

(16) uniformly in r E 1\1

with ~ = 1 and t = (1,1,'" ,1). Also, if

(n E 1\1, a:::; y :::; b),

where

pn =11
1(1 - y2 t dy = r(I/2)r(n + l)r(n + 3/2)

2(2n +l)(n!)2

(2n + I)! '

then for every f E C(X, E), (16) holds with ~ = 1 and t = (0,0, ... ,0).

In the light of the above arguments, we close with the following
remark:

REMARK 6: Recall that X is a compact Hausdorff space and E is
a normed linear space over IK. Let {Ta •A : a E D, A E A} be a
family of bounded linear operators of C(X, E) into E and {Wa,A : a E

D, A EE A} a family of bounded linear functionals on C(X). Let T be
a bounded linear operator of C(X, E) into E and W a bounded linear
functional on C(X). Suppose that there exists an element ao E D
satisfying (2) and that

Ta,A(va) = Wa,A(v)a and T(va) = W(v)a

for all a E D, A E A, v E C(X) and all a E E. Then {Ta,A} is
an approximation process with respect to T on C(X, E) if and only
if {Wa •A } is an approximation process with respect to W on C(X).
The similar claim also remains valid in the setting of bounded linear
operators of C(X, E) into B(X, E) and bounded linear operators of
C(X) into B(X) (d. [11]).
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