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APPROXIMATION PROCESSES OF QUASI-POSITIVE
LINEAR OPERATORS

TosSHIHIKO NISHISHIRAHO

Abstract. The convergence on approximation processes of quasi-
positive linear operators is discussed. The results are then applied
to obtain several Korovkin test systems.

1. INTRODUCTION

Let X be a compact Hausdorff space and let E be a normed linear
space over the scalar field KK which is either the field R of real numbers
or the field C of complex numbers. Let B(X, F) denote the normed
linear space of all F-valued bounded functions on X, endowed with
the usual pointwise addition, scalar multiplication and the supremum
norm ||-||. We shall use the same symbol || || for the underlying norms.
C(X, E) denotes the closed linear subspace of B(X, E) consisting of
all F-valued continuous functions on X. In the case when F is equal to
I, we simply write B(X) and C(X) instead of B(X, F) and C(X, E),

respectively.

For any a € E and v € B(X), the function va is defined by
(va)(z) = v(z)a for all z € X. Also, for any v € B(X) and f €
B(X, E), we define (vf)(2) = v(z)f(z) for all z € X. Plainly, va
and vf belong to B(X, E), and [jval| = [lolllal] and [[of| < [[o[[7]. Tt
a€ E,ve C(X)and f € C(X, E), then va and vf belong to C(X, E).
We denote by C(X) ® E the linear subspace of C(X, F) consisting of
all finite sums of functions of the form va, where v € C(X) and a € E.
1x stands for the unit function defined by 1x(z) =1 for all z € X.

Here motivated by the previous work of the author [11] we study
the convergence on approximation processes of quasi-positive linear
operators of C(X, E) into E or B(X, E). The results yield several
Korovkin test systems, which can be useful for applications. Actually,
we extend the results of [10] to the context of functions taking a value
in an arbitrary normed linear space.

We refer to [1] for detailed references on the several other contri-
butions to the area of Korovkin-type approximation theory.
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2. AUXILIARY RESULTS
We begin with the following definition:

DEFINITION 1: Let A and B be normed linear spaces. Let {74, :
a € D,A € A} be a family of bounded linear operators of A into
B, where D is a directed set and A is an index set, and let 7" be a
bounded linear operator of A into B. Then the family {7, )} is called
an approximation process with respect to T on A if for every f € A,

(1) Lm |Taa(f) = T(f)|| =0 uniformly in A € A.

Obviously, if for a net {T, : a € D} of bounded linear operators
of A into B, we take T, » = T, for all € D and all A € A, then the
convergence behavior (1) reduces to the usual one. Several other ap-
proximation processes can be induced by various summability methods
due to the author [6] (cf. [7], [8]), which include the method of almost

convergence (F-summability) of Lorentz [5], as the most typical case.

LEMMA 1. Let {To» : @« € D, A € A} and T be as in Definition 1, and
let M be a dense subset of A. If there exists an element ag € D such
that

(2) sup{||Taal| : @« > ag,a € D,A € A} <
and if forallge M,

(3) lim ||Te,(9) — T(g)|| =0 uniformly in A € A,

then {T, .} is an approximation process with respect to T on A. If
moreover, A is a Banach space, then the converse is also true.

ProOF: The former is a standard argument on account of (2) and (3)
(cf. the theorem of Banach-Steinhaus). The latter follows from the
uniform boundedness principle.

LEMMA 2. C(X)® E is dense in C(X, E).

ProoF: Thisisan immediate consequence of [12; Theorem 1.15], since
C(X) separates the points of X.



LEMMA 3. Let B be a normed linear space. Let {T, : a € D,A € A}
be a family of bounded linear operators of C(X, E) into B such that
there exists an element oy € D for which (2) is fulfilled, and let T be
a bounded linear operator of C(X, E) into B. If for all a € E and all
v € C(X),

lim ||Ta,r(va) — T(va)|| =0 uniformly in A € A,

then {T, 1} is an approximation process with respect toT on C(X, E).

ProoF: This follows from Lemmas 1 and 2.

DEFINITION 2: Let A be a linear subspace of B(X, F) which contains
C(X)® E. A bounded linear operator L of A into B(X, E) is said to
be quasi-positive if v,w € C(X) and |v(z)| < w(z) for all z € X, then

(4)  ||L(va)(2)|] < [|[Z(wa)(=)|| for all a € E and all z € X.

A bounded linear operator L of A into F 1s said to be quasi-positive
if v,w € C(X) and |v(z)| < w(z) for all z € X, then

(5) |L(va)|| < ||L(wa)|| for all a € E.

REMARK 1: Let £ = K. Then (4) and (5) are equivalent to
|L(v)(2)| < |L(w)(=)| forall z € X

and

|L(v)| < |L(w)],

respectively. Furthermore, the positivity of L implies the quasi-
positivity of it, but not conversely in general.

3. CONVERGENCE THEOREMS

Let {Lax : @« € D,XA € A} be a family of quasi-positive linear
operators of C(X, E) into E such that there exists an element 3y € D
for which

(6) sup{| Lol : & > o, € D, A € A} < 0.



For any function ¥ € C(X) and for any element a € E, we define

par(P,a) = Lar(Pa)| (a€D, X€A).

Let t be an arbitrary fixed point of X and let ¢, be a non-negative
function in C(X,R) such that

(7) inf{P:(z):z € F} >0 f{or every closed subset F of X \ {t}.

REMARK 2: If there exists a non-negative function h € C(X,R) such
that 0 < h(z) < &¢(z) for all z € X with z # ¢, then (7) always holds.
In particular, if #; is a non-negative function in C(X,R) satisfying
®:(z) > 0 for all z € X with = # ¢, then (7) is automatically fulfilled.
ProrosiTION 1. Leta € E. If

(8) lign Par(Pe,a) =0 uniformly in A € A,

then for every function ¥ € C(X) satisfying ¥(t) = 0,

(9) liCI'n par(¥,a) =0 uniformly in A € A.

ProoOF: Let € > 0 be given. Then there exists an open neighborhood

Vi of t such that |¥(z)| < e for all z € V;. Let F = X \ V;, and put
m = inf{S(z) : 2 € F}

and

M = sup{|¥(z)|: z € F}.
Then by Condition (7), m > 0, and so we obtain

¥ (2)| < e+ (M/m)d(z)
for all z € X. Therefore it follows that
| Zaa(Pa)|| < €l|Laa(1xa)ll + (M/m)|| Lo,r(Ssa)|]

< ellallllLaall + (M/m)pa (e, a),
which together with (6) and (8) yields (9).



Let £ be any fixed number in K, and we define
(10)  L(f) = Z&N(f) = ¢f(t)  for every f € C(X, E).

Evidently, L is a quasi-positive linear operator of C(X, E) into E and
L[| = [¢].

THEOREM 1. If (8) holds for all a € E and if there exists a function
u € C(X) such that u(t) # 0 and

(11) lim || Lo, 2 (ua) — L(ua)|| =0 uniformly in A € A

for every a € E, then {L4,)} is an approximation process with respect

to L on C(X, E).
ProoF: Let v € C(X) and we define
U =v— (v(t)/u(t))u.

Then ¥ belongs to C(X) and ¥(t) = 0. Therefore, by Proposition 1,
(9) implies

(12) li;n | Laa(va) — (v(t)/u(t))La,a(ua)|| =0 uniformly in A € A
whenever a belongs to E. Since
[ Zax(va) — L(va)|| < [[La,x(va) = (v(t)/u(t)) La,x(ua)

+ [v(®)/u(®)l|La,r(ua) — L(ua)]l,

by virtue of (11) and (12), we conclude that

lim || Ly a(va) — L(va)|| = 0 uniformly in A € A

for all v € C(X) and all @ € E. Thus, Lemma 3 gives the desired
result.



CoroLLARY 1. If(8) and (11) with v = 1x hold for any a € E, then
{Lq4,2} is an approximation process with respect to L on C(X, E).

COROLLARY 2. IfT is a quasi-positive linear operator of C(X, E) into
E which satisfies T($1a) = 0 and T(1xa) = L(1xa) for alla € E, then
T=L.

Let p be any fixed positive real number and let G be a subset of
C(X) which separates the points of X. For each g € G, we define

) = g% = g - g(t)1x .
ProrosiTION 2. Let a € E. If for every g € G,
(13) li;npa'A(ng),a) =0  uniformlyin X € A,
then (9) holds for every function ¥ € C(X) satisfying ¥(t) = 0.

ProoF: Since the original topology on X is identical with the weak
topology on X induced by G, there exists a finite subset {g1, - , 9.}
of G and a constant 7 > 0 such that

#(2)| < e+m) lgi(z) — g;(t)P

j=1

for all z € X. Therefore we obtain

IZar(Fa)]| < el Lapn(xa)| + 7Y [1La (T a))|

j=1

< ellall|Zapll + 7> pan(#?, a),

§=1

which together with (6) and (13) proves (9).

THEOREM 2. If (13) holds for all a € E and all g € G and if there
exists a function u € C(X) satisfying u(t) # 0 and (11) for all a € E,
then {L,,} is an approximation process with respect to L on C(X, E).

Proor: With the aid of Proposition 2, the proof is exactly the same
as that given for Theorem 1.



CoroLLARY 3. If (13) and (11) with w = 1x hold for all a € E and
all g € G, then {L,,} is an approximation process with respect to L
on C(X, E).

COROLLARY 4. IfT is a quasi-positive linear operator of C(X, E) into
E which satisfies T(!Pt(g)a) = 0 and T(1xa) = L(1xa) for alla € E
and all g € G, then T = L.

REMARK 3: In view of Remark 1, in the special case £ = R, the
positivity of functionals required in [10] can be weakened by the quasi-
positivity of them.

4. KoroVKIN TEST SYSTEMS

In this section we give several applications of the results obtained
in the previous section. For this in view of the classical Korovkin
theory (cf. [4]) on the convergence of sequences of positive linear
functionals on C([a,b],R), we make the following definition:

DEFINITION 3: Let T be a quasi-positive linear operator of C(X, E)
into E. A subset S of C(X, E) is called a Korovkin test system (or,
briefly, KTS) with respect to T in C(X, E) if for any family {L, :
a € D,X € A} of quasi-positive linear operators of C(X, F) into E
such that there exists an element 8y € D satisfying (6), the relation

Lim || La,a(9) — T(g)|| =0 uniformly in A € A

for every g € S implies that
Lm ||Laa(f) = T(f)|| =0 uniformly in A € A

for every f € C(X, E).

The similar concept is defined in the setting of quasi-positive lin-
ear operators of C(X, E) into B(X, E) (cf. [11]). For a given subset
V of C(X), we define

VE ={va:veV,a€E}.

If B=F or B= B(X,E), then it follows from Lemma 3 that the set
C(X)E is a KTS with respect to T in C(X, E).

Let L be a quasi-positive linear operator of C(X, E) into F defined
by (10).



THEOREM 3. Let w be a function in C(X) with w(t) # 0. Then
the following statements hold: (1°) Suppose that ®,(t) = 0. Then
{w,®:}E is a KTS with respect to L in C(X,FE). In particular,
{1x,9:}F is a KTS with respect to L in C(X,E). (2°) Let G be
a subset of C(X) separating the points of X, and let p be a positive
real number. Then ({w} U {Wt(p’g) : g € G}E is a KTS with respect

to L in C(X, E). In particular, ({1x} U {Wt(p’g) :9g € G})E is a KTS
with respect to L in C(X, E).

ProoF: (1°) and (2°) immediately follow from Theorems 1 and 2,
respectively.

CoROLLARY 5. (1°) Let {u1,u3, - ,un,} be a finite subset of C(X),
and let

(14) $ = iak(t)uh,
k=1
where each ay(t) is a number in K such that
$(t)=0, S(z)>0 forall ze X
and (7) is satisfied. Let ug € C(X) and uo(t) # 0. Then
{wo,u1, "+ ,um}E

is a KTS with respect to L in C(X, E). In particular,

{IXauh"' )um}E

is a KT'S with respect to L in C(X, E). (2°) Let p be an even positive
integer. If G is a subset of C(X,R) which separates the points of X,
then

{gk :QEGak=0)112)"' ,p}Ea

where g° = 1x, is a KTS with respect to L in C(X,E). If G is a
subset of C(X,C) which separates the points of X, then

{1x}UGUGUI|G*E



is a KTS with respect to L in C(X, E), where

G={g:9g€G} and |G]’={lg|’:9€G}.

COROLLARY 6. Let u be a strictly positive function in C(X,R). Then
the following statements hold: (1°) Let {uq,us, -+ ,um} be a finite
subset of C(X,R) such that for every # € X with z # t, there exists
an integer j € {1,2,--- ,m} for which u;(z) # u;(t). Then

{u,uuy, wug, -+ , vy, v thl ul}E
is a KTS with respect to L in C(X, E). (2°) Let {v1,v3, - ,vm} be

a finite subset of C(X,C) such that for every # € X with z # t, there
exists an integer j € {1,2,--- ,m} for which v;(z) # v;(t). Then

ey oo — = 2
{u, uvy, uvy, -+, UV, UVL, UV, -+, UV, U Zk:l |ve|“}E
is a KTS with respect to L in C(X, E).
Here we restrict ourselves to the case where X is a compact subset
of K™ and for each k = 1,2,--- ,m, p; denotes the k-th coordinate
function defined by

pu(z) = z4 for every z = (21,22, " ,2m) € X.

Then by Corollary 5 (2°) and Corollary 6 we have the following some
Korovkin test systems:

(1°) Let K = R. Then

S1={lx,p1, " ’prmpi"" aP12n}E

and

Si = {1X,P1,p2, *°t )y Pmy Ek:l pi}E
are Korovkin test systems with respect to L in C(X, E).
(2°) Let K =C. Then

Sy = {]-Xapl"" yPmyP1y° " yPm, Ipllza"' ,|pm|2}E



and m
Sy ={lx,p1, P, P1 -+ Py ) [Pal’}E
are Korovkin test systems with respect to L in C(X, E).
(3°) Let X be the m-dimensional torus T™, i.e.,

Tm:{Z:(ZI,Zz’--.’zm)ecmzlzk|=1’k=1’2,...,m}.
Then
Ss = {lx,Ph"' yPmyP1,° " ,m}E

is a KTS with respect to L in C(T™, E).
(4°) Let K = C and for each k =1,2,--- /m, we define

qr(z) = Re(zi) and 74(z) = Im(zs)

for every 2 = (21,22, ,2m) € X, where Re(z;) and Im(z;) stand
for the real part of z; and the imaginary part of z,, respectively. Then

. 2 2 2 2
S4 —{1X)q19"' 1dmyT1y " sy Pmsy Qs v Ay Ty ,’I'm}E

and m
S-'i = {lx,th, yqmy Tyt Pmy 2:7121(@,2l + T:)}E
are Korovkin test systems with respect to L in C(X, E).

(5°) Let X = T™, and let g4 and », (k = 1,2,--- ,m) be as in
(4°). Then
SS = {lx’ql,"' 1ydm,yT1,y " " a?m}E

is a KTS with respect to L in C(X, E).

(6°) Let Cyx(R™, E) denote the normed linear space of all E-
valued continuous functions f on R™ which are periodic with period
27 in each variable with the norm

1£]l = sup{l| f()]| : = € R™}.

Then C(T™, E) is isometrically isomorphic to C3,(R™, E). For each
k=1,2,---,m we define

ck(z) = coszy, 8i(z) =sinz,



for all z = (21,22, ,2m) € R™ and
U(g) =¢€g(y)  for every g € Cox(R™, E),

where ¢ is a fixed number in K and vy is a fixed point of R™. Then U
is a quasi-positive linear operator of Cax(R™, E) into E and

Se = {1gm™,c1," " yCm, 81, "+ y*m} E
is a KTS with respect to U in Cp,(R™, E).

THEOREM 4. Let X be a compact subset of an inner product space
(H,<,>) over K, and we define

h(z) =< z,z > and hi(z)=<z2,t> for every z € X.

Then the following statements hold: (1°) If K = R, then {1x,h,h;}E
is a KTS with respect to L in C(X,FE). (2°) If K = C, then
{1x,h,hi,hi } E is a KTS with respect to L in C(X, E).

ProoF: Let
Pi(z)=<z—-tiz—t> for all z € X.

If K =R, then
®:(z) = h(z) — 2hi(z) + A(2).

If K =C, then
&,(z) = h(z) — he(z) — he(2) + h(2).

Therefore @, is represented in the form (14), and so the desired
results follow from Corollary 5 (1°).

For example, if we take H = R™ with the usual inner product
<zyy>=zZ1y1 t 22y + -+ TmYm

for z = (zlazh"' ’zm)’y = (yl’y%"' ’ym) = Rma then

m

h = sz and h; = Zpk(t)pk.
k=1

k=1



Also, if we take H = C™ with the inner product
<z y>=z1h + 2202 + -+ TmYm
for z = (31,227"' azm)ay = (ylayb"' aym) € C™, then
h = Z lpa|> and k= Zﬁ(t)pk.
k=1 k=1

Consequently, S] and S; again become Korovkin test systems with
respect to L in C(X, E).

REMARK 4: The results obtained in Sections 3 and 4 can also be
applied to the case where

G={gl|x:g9€F}

where X is a compact subset of a locally convex Hausdorff vector space

F over K with its dual space F* and g |x denotes the restriction of g
to X (ef. [2], [3], [7], [9], [13])-

REMARK 5: In view of [11; Remarks 1 and 2], the sets 51,57, 52,55,

Ss, S4,5%,Ss and Sg are also Korovkin test systems with respect to a
multiplication operator T' given by

T(F) =uf for every f € C(X, E),

where u is an arbitrary fixed function in B(X), in the setting of quasi-
positive linear operators of C(X, F) into B(X, E).

Finally, we give the concrete examples of approximation processes
of the integral operators: Suppose that F is a Banach space and

X:{z:(zl’..- ’zm)GRm:aganb,n:l,... ’m}‘

Let {kq,x : @« € D,A € A} be a family of non-negative functions
in C([a,b],R) and for each « € D and A € A, we define the operator
La,A by

b b
La,A(f):/ / kar(21) kar(2m)f(21, ,2m)dey - dem,



for every f € C(X,E). Then each L, is a quasi-positive linear
operator of C(X, E) into E and the the following assertion is true: If

b
lim/ ko x(y)dy = o uniformly in A € A,

b
lim/ vkaa(y)dy =m uniformly in A € A,

b
lim/ Y2koa(y)dy = 72 uniformly in A € A
and 79m2 = 7%, then

(15)  lim||Laa(f) — L&) =0 uniformly in A € A

for all f € C(X, E), where L&) is the operator defined by (10) with

E=m  and  t=(n1/7m,M/M0, " ,M/M0)

Let {k, : n € N} be a sequence of non-negative functions in
C([a,b],R), where N denotes the set of all positive integers. In view

of the concept of the almost convergence (F-summability) introduced
by Lorentz [4], we define

n+r—1

i
kn,r:; qz:; kq (n’ TGN)
and ,
V7(Lj)’—‘—‘/ ¥ ko (y) dy (neN, 7=0,1,2).

Then it follows from the above observation that if for each 7 = 0, 1

and 2, {V,(,j) : n € N} is almost convergent to m; with non, = 7},
then (15) holds for every f € C(X, E), where

kopr=kn, and D=A=N.

For instance, we take [a,b] = [0,1]. If

ka(y) = (n+ 13" (neN, a<y<b),



then for every f € C(X, E),
(16) lim ||Ln,(f) — L&D =0  uniformlyin » €N
with (¢ =1and ¢t =(1,1,---,1). Also, if

ka(y) =2(1—9*)"/pn  (mEN, a<y<b),

where
po= [ 1=y dy =TI+ DI +3/2)

2(2n+1)(n!)2
(2n+1)! "’

then for every f € C(X, E), (16) holds with { = 1and ¢t = (0,0,---,0).

In the light of the above arguments, we close with the folltl)wing
remark:

REMARK 6: Recall that X is a compact Hausdorff space and F is
a normed linear space over K. Let {T, : « € D,A € A} be a
family of bounded linear operators of C(X, E) into F and {W, : @ €
D, X €€ A} a family of bounded linear functionals on C(X). Let T be
a bounded linear operator of C(X, E) into E and W a bounded linear
functional on C(X). Suppose that there exists an element oy € D
satisfying (2) and that

Tar(va) = War(v)a and T(va) = W(v)a

for all @ € D,A € A,v € C(X) and all a € E. Then {T,,} is
an approximation process with respect to T' on C(X, E) if and only
if {Wy,2} is an approximation process with respect to W on C(X).
The similar claim also remains valid in the setting of bounded linear
operators of C(X, FE) into B(X, FE) and bounded linear operators of
C(X) into B(X) (cf. [11]).
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