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CONVERGENCE OF POSITIVE LINEAR FUNCTIONALS

Toshihiko NISHISHIRAHO

1. Introduction

Let X be a compact Hausdorff space. Let B(X) denote the

Banach lattice of all real-valued bounded functions on X,

endowed with the supremum norm and the canonical order.

C(X) denotes the closed sublattice of B(X) consisting of all

real-valued continuous functions on X. For a given point

,t E X, we denote by Ct(X) the closed sublattice of B(X)

consisting of all real-valued bounded functions on X which

are continuous at t, and by ° the point evaluation
t

functional at t, defined by 0t(f) = f(x) for all f E B(X).

Let A(X) be a linear subspace of C (X) which contains the
t

unit function IX defined by lx(y) = 1 for all y E X.
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The purpose of this paper is to establish a convergence

theorem in the context of positive linear functionals on

A(X). Furthermore, several applications can be provided and

actually, we shall obtain a generalization of the classical

Korovkin theorem (cf. [6]) for sequences of positive linear

functionals on C([a, b]), where [a, b] is a bounded closed

interval in the real line JR.

For other researches of Korovkin type convergence

theorems in various directions, see, e.g., [lJ, [2], [3],

[4], [5], [8], [10], [14], [17] and [18].

2. Convergence Theorems

Let t be any fixed point of X and let ¢ be a
t

non-negative function in A(X) such that

(1) inf{¢t(x); x E F} > 0 for every closed subset F

of X \ {d.

Let {L \; a E D, A E A} be a family of positive linear
a,A

functionals on A(X), where D is a directed set and A is an

index set. Let ~ be any fixed non-negative real number.

Theorem 1. If

(2) lim L \ (¢ ) = 0
a,A t

a
uniformly in A E A

and if there exists a function u E A(X) such that
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(3)

and

inf{u(x); x E X} > 0

(4) lim L ,(u) = ~o (u)
a~A t

a
uniformly in A E A~

then for every f E A(X)~

a
(5) lim L ,(f) = ~o (f)

a~A t
uniformly in A E A.

Proof. Let ~ be a function in A(X) with ~(t) = O~ and

let E > 0 be given. Then there exists a neighborhood Vet)

of t such that I~(x) I < E for ~ll x E Vet). Let

F = X \ V(t)~ and set

m and n = sup{I~(x) I; x E F}.

In view of (l)~ we have m > O~ and so

which~ by the positivity and linearity of L ,~yields
a~A

for all a E D~ A E A. By (3)~ there exists a constant

C > 0 such that u(x) ~ C for every x E X~ and thus

(a E D~ A E A)~

which together with (4) shows that there exists an element

a o E D such that
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(7) sup{La A(IX); a ~ a O' a E D, A E A} < 00,

Therefore, by (2), (6) and (7) we conclude

(8 ) lim L A(In
a a,

Now we take

o uniformly in A E A.

~ f - (f(t)/u(t))u

for any f E A(X). Then ~ belongs to A(X) and ~(t) O.

Hence, (8) implies

(9) lim {L 1 (f) - 0 (f/u)L 1 (u)}
a,A t a,A

a

Consequently, the equality

o uniformly in A E A.

L 1 (f) - t,;o (f)
a,A t

L 1 (f) - 0 (f/u)L 1 (u)
a,A t a,A

+ 0 (f/u){L 1 (u) - t,;o (u)}
t a,A t

establishes the desired result (5) by virtue of (4)

and (9).

Corollary 1. If (2) is fulfilled and if

uniformly in A E A,

then (5) holds for all f E A(X).
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Corollary 2. If L is a positive linear functional on

A(X) satisfying L(¢t) = O~ then L(f) = L(lX)Ot(f) for

every f E A(X).

Remark 1. Theorem l~ Corollaries 1 and 2 even hold for

arbitrary topological spaces X.

Let p be any fixed positive real number and let G be a

subset of C(X) separating the points of X. Suppose that

A(X) contains the set {Ig - g(t)lx IP ; g E G}. For each

g E G~ we define

~(p~t)(g)
a~A

(a E D~ A E A).

Theorem 2. If for all g E G~

a
(10) lim ~(p~t)(g)

a~A
a uniformly in A E A

and if there exists a function u E A(X) satisfying (3) and

(4)~ then (5) holds for every f E A(X).

Proof. Let h be an arbitrary function in A(X).

Since the original topology on X is identical with the weak

topology on X induced by G~ given E > O~ we can choose a

finite subset {gl~ g2~

such that

g } of G and a constant C > a
m
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m

Ih(x) - h(t) I < E + C l: Ig. (x) - g. (t) /P
i=l 1 1

for all x E X. Thus t for any a E Dt A E A we obtain

which together with (7) and (10) gives

a
(11) lim {L ,(h) - 0 (h)L ,(lX)} = 0

atA t atA

Now t for all a E Dt A E A we have

uniformly in A E A.

L ,(f) - 0 (f)L ,(lx)atA t atA

+ 0 (f/u){o (u)L ,(lx) - L ,(u)}t t atA atA

+ 0 (f/u){L ,(u) - ~o (u)}t
t atA t

which yields the desired assertion (5) on account of (4)

and (ll).

Corollary 3. Suppose that A(X) contains the set

V = {gi; g E Gt i = 0 t 1 t 2 t ••• t p} t where p is an

arbitrary fixed even positive integer. If for all h E Vt

uniformly in A E At
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then (5) holds for any f E A(X).

Corollary 4. Let L be a positive linear functional on

o for each g E G, then

L(f) = L(lX)Ot(f) for every f E A(X). Also, under the

hypothesis of Corollary 3, if L(h) = ~o (h) for all h E V,
t

then L = ~Ot on A(X).

Let M be a linear subspace of C(X) which contains IX.

For any x E X, we denote by R (M) the set of all positive
x

linear functionals L on C(X) such that L(f) = f(x) for

all f E M and by E the restriction of 0 to C(X).
x x

Obviously, E belongs to R (M). We set
x x

{x E X; R (M) = {E }},
x x

which is called the Choquet boundary of X with respect to

M. For any f E B(X), we define

f# = inf{g; f ~ g, g E M}

and

f = sup{g; g ~ f, g E M}
#

which are called the upper and lower M-envelopes of f,

respectively. Evidently, we have
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#- (- f) (f E B (X) ) .

Moreover, f# and f# are upper and lower semi-continuous

functions in B(X), respectively. Also, we get

and

(Sf) #

Note that the set

#{f E C(X); f f

is a linear subspace of C(X) containing M. Define

Then we have

and

{x E X; f#(x)

#{x E X; f (x)

f#(x) for all f E C(X)}

f(x) for all f E C(X)}.

(cL [2]).

X if and only if C(X)

In view of these observations and Corollaries 2 and 4,

we make the following remarks.
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Remark 2. (i) Let M be a linear subspace of C(X)

containing lX and ¢t If ¢t(t) = 0, then t belongs to

(ii) Let M be a linear subspace of C(X) which contains

(iii) Let V be as in Corollary 3 and let M be a linear

subspace of C(X) containing V. Then we have dM(X) X,

and so M#(X) = C(X).

Remark 3. Suppose that M c A(X). If for all gEM,

lim L 1 (g) = ~8 (g)
a,A t

a

#then for all f E M (X) n A(X),

lim L 1 (f) = ~8 (f)
a,A t

a

uniformly in A E A,

uniformly in A E A.

Also, the statement analogous to this result can be

formulated in the context of positive linear operators of a

linear subspace of C(X) into B(X). These results extend

[2; Proposition 1.4] (cf. [3; Theorem 1]).

3. Applications

Let E
l

and E
2

be normed vector lattices with norms

II- II E and II- II E 2 , respectively. Let Y be a linear
1
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subspace of E
l

and let T be a positive linear operator of

Y into E2 . A subset S of Y is called a Korovkin test

system (or, briefly, KTS) with respect to {T, Y, E
l

, E
2

}

if for any family {T 1; a E D, A E A} of positive linear
a,A

operators of Y into E
2

, the relation

lim II T 1 (g) - T (g) II E
a a,A 2

for every g E S implies that

lim II T 1 (f) - T (f) II E
a a,A 2

o

o

uniformly in A E A

uniformly in A E A

for every fEY (cf. [10]). In particular, if E
l

= E2 or

E
2

=lli, then such a subset S is called a Korovkin test

system with respect to T in Y.

With this notion Corollary 3 claims that V is a KTS

with respect to ~6 in A(X). As an immediate consequence
t

of Theorems 1 and 2, we have the following:

Theorem 3. Let w be a function in A(X) such that

inf{w(x); x E X} > o.

(i) Suppose that ¢ (t) = O.
t

Then {w, ¢ } is a KTS
t

with respect to ~6t in A(X). In particular, {lX' ¢t} is a

KTS with respect to ~6 in A(X).
t

(ii) {w} u {Ig - g(t)lxI P ; g E C} is a KTS with

respect to ~6t in A(X). In particular,
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{lX} u {Ig - g(t)lX IP ; g E G} is a KTS with respect to ~Ot

in A(X).

Corollary 5. Let {f
l

, f
2

,

of A(X) and let

f } be a finite subset
m

<P (x)
t

m
L a. (t)f. (x)

i=l 1 1
(x EX),

where each a.(t) is a real number, such that <P
1 t

is a

non-negative function in B(X) satisfying (1) and

Let w be as in Theorem 3. Then {w, f
l

, f
2

, "',

KTS with respect to ~o in A(X). In particular,
t

<P (t) = O.
t

f } is a
m

{lX' f l' f 2' f } is a KTS with respect to ~o in A(X).
m t

We shall now mention some examples of <P E C(X)
t

satisfying a = <P (t) < <P (x) for each x E X, x # t, and
t t

so (1) is always satisfied:

(1°) Let {gl' g2' "', gr} be a finite subset of C(X)

such that for every x E X, x # t, there exists an integer

j E {l, 2, '.', r} for which g. (x) # g. (t). Assume that
J J

A(X) contains the set

... 2
g }.

r

Then with the help of the function <P
t

given by
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¢
t

r
L: (g.

i=l 1

it follows from Corollary 5 that the set

is a KTS with respect to ~Ot in A(X). Note that G
l

is

also a KTS with respect to ~o in A(X). Furthermore, if
t

{gl' g2' "', gr} separates the points of X and if M is a

linear subspace of C(X) containing G
l

, then we have

aM(X) = a:(x) = X and M#(X) = C(X).

r
For example, we take X = X a compact subset ofm and

r

let us denote bye. (i = 1, 2, "', r) the i-th coordinate
1

function on X
r

Suppose that A(X ) contains the set
r

Then K
l

and

2
e }.

r

e ,
r

2 2 e2}e
l

+ e
2

+ ... + r

are Korovkin test systems with respect to ~o in A(X ).
t r

Next, let X = ~r be the r-dimensional torus and for

i = 1, 2, "', r, we define

cos X.
1

and
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sin x.
1

Assume that A(TIr ) contains the set

M
r

s }.
r

Then M
r

is a KTS with respect to ;Ot in A(TIr ).

In particular, the sets

and

are Korovkin test systems with respect to ;Ot in A(Xl )

and in A(TI
l

) , respectively. Concerning the usual

convergence, for the special case; = 1 this is the

classical result due to Korovkin (cf. [6]). For further

generalizations of the Korovkin theorem from other

approaches, one may consult [1], [2], [3], [4], [5J,

[8], [10], [14], [17] and [18].

(2°) Let (X, d) be a compact metric space. Let

~t(x) = ~(d(x, t» (x E X),

where ~ is a strictly increasing continuous function on

[0, 00) with ~(O) = O. For instance, the case where ~ is

given by ~(y) = yq, q > 0, may be useful (cf. (30), (4°».
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(3°) Let X be a compact subset of a normed linear

space with norm II . II Let

(x E X).

(4°) Let (H, <., • » be a real pre-Hilbert space

and let X be a compact subset of H. Let

<Pt(x) <x - t, x - t> (x EX).

For any x E X, we define

hex) < x, x > and <x,t>.

Then we have the following:

Theorem 4. If hand h belong to A(X), then
t

{lx' h, h t } is a KTS with respect to ~8t in A(X).

Proof. This follows from Corollary I

(cf. Theorem 3 (i».

For example, one takes H =mr with the usual inner

product

< x, Y >

Then we have

x ), y
r
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h
r 2
L: e.

i==l 1

and
r
2: e.(t)e ..

i==l 1 1

If A(X) contains K
l

and if for i 1, 2, r,

a

then

lim L 1 (e.)
a,/\ 1

~o (e.)
t 1

uniformly in A E A,

lim L 1 (h ) == ~o (h )
a,/\ t t t

a
uniformly in A E A.

Consequently, K2 becomes again a KTS with respect to ~Ot

in A(X).

Corollaries 3 and 4, Remark 2 (ii), (iii) and Theorem 3

(ii) can be applied in the following situation (cf. [14]):

(5°) Let X be a compact subset of a real locally

convex Hausdorff vector space E with its dual space E*

and G == {T!X; T E E*}, where Tl x denotes the restriction

of T to X.

For instance, taking E ==lli
r

, K
l

becomes again a KTS

with respect to ~o in A(X).
t

Let ill denote the set of all non-negative integers. Let

B == {b(A) ; a E D, A E A, n E ill} be a family of non-negative
a,n

real numbers with 2:
00

ab(A) == 1 for each a E D, A E A.
n== a,n

For examples of such families, see, e.g., [12] (cL [9],
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[10]) . Let {L ; n E m} be a sequence of positive
n

linear functionals on A(X). For any f E A(X), we define

(12)

00

L ,(f) == L: b (A) L (f)
a,/\ n==O a,n n

(a E D, A E A),

which converges inffi. Plainly, each L , is a positive
a,/\

linear functional on A(X), and consequently our general

results can be applicable to the family {L ,}.
a,/\

For this it is convenient to make the following

definition: Let (El,II·II E ) and (E 2,11·IIE ) be normed
1 2

vector lattices. Let Y be a linear subspace of E
l

and T a

positive linear operator of Y into E
2

• A subset S of Y is

called a B-Korovkin test system (or, briefly, B-KTS) with

respect to {T, Y, E
l

, E
2

} if for any sequence {Tn; n E m}

of positive linear operators of Y into E
2

, the relation

lim
a

00

II L: b (::\) T (g) - T (g) II E
n==O a, n n 2

o uniformly in A E A

for every g E S implies that

00

lim" L: b (::\) T (f) - T(f) II E == 0
a n==O a,n n 2

uniformly in A E A

for every fEY, where it is assumed that the above series

converge for each a, A, g and f. In particular, if

E
l

== E2 or E
l

==ffi, then such a subset S is called a B-KTS

with respect to T in Y.
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With this concept we are able to derive various

B-Korovkin test systems. For instance, concerning the

almost convergence (F-summability) introduced by

Lorentz [7], which is the case where

and

(12) reduces to

D=JN\{O},

l/a

o

II = IN,

(:\ < n < a + :\)

(n < :\, a + A~ n),

In this case,

L "I (f)a,/\

a +A -1
(l/a) l: L (f).

n=A n

lim L "I (f) = ~o (f)
a /\ t

a +00 '

uniformly in :\ E IN

if and only if each Banach limit of the sequence {L (f)} is
n

equal to ~Ot(f) (cL [7; Theorem 1».

We give now the concrete examples:

r-cube, i.e.,

Let I be the unit
r

I
r

and let B (I ) denote the linear subspace of C (I )
t r t r
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consisting of all real-valued bounded integrable functions

on I which are continuous at t = (y, y, "', y), where y
r

is an arbitrary fixed point of II' Let {k ; n E :IN} be a
n

sequence of non-negative functions in C(Il)' For each

n E:IN, we define the functional L by
n

L (f)
n

for all fEB (I ).
t r

r
II II k (e.(x))f(x)dx

r i=l n 1

Put

(i)
\I

n
(n E lN, i 0,1,2).

Then {\I(i)} converges to yi for i = 0, 1, 2 if and only if
n

{Lnef)} converges to 0t(f) for every f E B (I ). Also,
t r

if {\I(O)} converges to one and if {\I (i)} is almost
n n

convergent to if' = 1, 2, then {L (f)} is almosty or 1
n

convergent to 0t(f) for all fEB (I ).
t r

For example, if we take

k (x)
n

n
(n + 1) x (n E lN, 0 < x < 1)

and t = (1, 1, "', 1), then for every fEB (I ),
t r

{L
n
(f)} converges to 0t (f) and it is also almost convergent

to 0t(f). Next, if we take

k (x)
n
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where

1 2 nJ (1 - x ) dx
-1 f(1/2)f(n + l)/f(n + 3/2)

2n +1 2
2 (n!) /(2n + l)!,

and t = (0, 0, ••• , 0), then for all fEB (I ), {L (f)}
t r n

is almost convergent to 0t(f).

Finally, it should be remarked that under certain

appropriate conditions, Theorems 1 and 2 can be recast in

a quantitative form in which we are able to estimate the

rate of convergence of {La,A (f)} by using a modulus of

continuity of f (d. [10], [11], 112],113], [15],116]).

We omit the details.
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