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CONVERGENCE OF POSITIVE LINEAR FUNCTIONALS
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1. Introduction

Let X be a compact Hausdorff space. Let B(X) denote the
Banach lattice of all real-valued bounded functions on X,
endowed with the supremum norm and the canonical order.

C(X) denotes the closed sublattice of B(X) consisting of all
real-valued continuous functions on X. For a given point

t ¢ X, we denote by Ct(X) the closed sublattice of B(X)
consisting of all real-valued bounded functions on X which
are continuous at t, and by 6t the point evaluation
functional at t, defined by St(f) = f(x) for all f ¢ B(X).
Let A(X) be a linear subspace of Ct(X) which contains the

unit function lX defined by lX(y) = 1 for all y ¢ X.
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The purpose of this paper is to establish a convergence
theorem in the context of positive linear functionals on
A(X). Furthermore, several applications can be provided and
actually, we shall obtain a generalization of the classical
Korovkin theorem (cf. [6]) for sequences of positive linear
functionals on C([a, b]), where [a, b] is a bounded closed
interval in the real line IR.

For other researches of Korovkin type convergence
theorems in various directions, see, e.g., [1], [2], [3],

(41, [5], [8], [10], [14], [17] and [18].

2. Convergence Theorems

Let t be any fixed point of X and let @t be a

non-negative function in A(X) such that

(1) inf{@t(x); X € F} > 0 for every closed subset F

of X \ {t}.

Let {La G D, A € A} be a family of positive linear
3
functionals on A(X), where D is a directed set and N\ is an
index set. Let & be any fixed non-negative real number.
Theorem 1. If
(2) lim L (@) =0 uniformly in A € A
o, At

and if there exists a function u ¢ A(X) such that
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(3) inf{u(x); x € X} >0

and

(4) lim La A(u) = Eét(u) uniformly in A € A,
o

’

then for every f e A(X),

m
=

(5) lim Lu A(f) = Eét(f) uniformly in A
Q ; |

Proof. Let ¥ be a function in A(X) with ¥Y(t)

0, and

let € > 0 be given., Then there exists a neighborhood V(t)
of t such that [W(x)’ < g fors-all x € V(t). Let
F =X\ V(t), and set

m = inf{@t(x); x ¢ F}  and n = sup{|¥(&x)|; x ¢ F}.
In view of (1), we have m > 0, and so
Y| < el + (n/m)@t,
which, by the positivity and linearity of Lu < yields
;<

(6) ILQ’A(W)| <el, A + @/mL (@)

for all a ¢ D, A ¢ A. By (3), there exists a constant

C > 0 such that u(x) > C for every x ¢ X, and thus

L, 2y < /oL, | @) (@ e D, A e h),

which together with (4) shows that there exists an element

ao € D such that
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(7) SuP{La,A(lX); a > oy, o€ D, A € A} < o,
Therefore, by (2), (6) and (7) we conclude

(8) 1lim Lu A(W) =0 uniformly in XA € A.
o 3

Now we take

Y =f - (f£(t)/u(t))u

for any f € A(X). Then ¥ belongs to A(X) and ¥Y(t) = 0.

Hence, (8) implies

b

(9) lim {La A(f) = ét(f/u)La,k(u)} = 0 uniformly in X € A.
Consequently, the equality

Ly 5 () = E8 () = L (F) = 8 (F/w)L, ;)

)

+ 8, (E/0IL ) - E8 (W)

)

establishes the desired result (5) by virtue of (4)

and (9).

Corollary 1. TIf (2) is fulfilled and if

l;m La,A(lX) = £ uniformly in A € A,

then (5) holds for all f ¢ A(X).
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Corollary 2. If L is a positive linear functional on
A(X) satisfying L(@t) = 0, then L(f) = L(lX)Gt(f) for

every f ¢ A(X).

Remark 1. Theorem 1, Corollaries 1 and 2 even hold for

arbitrary topological spaces X.

Let p be any fixed positive real number and let G be a
subset of C(X) separating the points of X. Suppose that
A(X) contains the set {lg - g(t)lxlp; g € G}. For each

g € G, we define

i@ =1, e - g01,]P) (@eD, Aeh).

Theorem 2. If for all g € G,
(10) lim pépit)(g) =0 uniformly in A € A
a b

and if there exists a function u e A(X) satisfying (3) and

(4), then (5) holds for every f ¢ A(X).

Proof. Let h be an arbitrary function in A(X).
Since the original topology on X is identical with the weak
topology on X induced by G, given € > 0, we can choose a
finite subset {gl, 8yr "% gm} of G and a constant C > 0

such that
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m
[h(x) - h(e)| <e+cC I |g () - gi(t)|p

i=1

for all x € X. Thus, for any a ¢ D, A ¢ A we obtain

L, @™ - h(t)La,A(lX)] <el, @ Fe

T (p,t)
3
- E Ua,x (gi)’

i=1

which together with (7) and (10) gives

(11) lim {La X(h) - 6t(h)La,X(lX)} = 0 uniformly in A € A.

b

Now, for all o ¢ D, A ¢ N we have

(1)

La,l(f) N €6t(f) - Lu,k(f) N 6t(f)La,A X

+ 6t(f/u){6t(u)La y ) = T, x(u)}

3 b

+ ét(f/u){La L@ = &6 (w1},

b

which yields the desired assertion (5) on account of (4)

and (11).

Corollary 3. Suppose that A(X) contains the set
i . :
v={g;gecG, i=0,1, 2, +-+, p}, where p is an

arbitrary fixed even positive integer. If for all h € V,

lim L (h) = £§_(h) uniformly in A € A,
o Oy A t
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then (5) holds for any f ¢ A(X).

Corollary 4. Let L be a positive linear functional on
AX). If L(|g - g(t)lxlp) = 0 for each g ¢ G, then
L(f) = L(lX)Gt(f) for every f € A(X). Also, under the
hypothesis of Corollary 3, if L(h) = gst(h) for all h € V,

then L = E@t on A(X).

Let M be a linear subspace of C(X) which contains lX.
For any x € X, we denote by RX(M) the set of all positive
linear functionals L on C(X) such that L(f) = f(x) for
all f € M and by EX the restriction of SX to C(X).

Obviously, €. belongs to RX(M). We set
0y (X) = {x € X5 R () = {e _}J,

which is called the Choquet boundary of X with respect to

M. For any f ¢ B(X), we define

[
1]

inf{g; f £8gs 8 € M}

and

h
1]

sup{g; g < f, g ¢ M}

which are called the upper and lower M-envelopes of f,

respectively. Evidently, we have

T G=



f, £ 2 f#, £, = - -6 (f € B(X)).

# . .
Moreover, f and f, are upper and lower semi-continuous

#

functions in B(X), respectively. Also, we get

f# #

(f + g)# < + g (f, g € B(X))

and

#

@t = pr (f ¢ B(X), BeR, B>0),

Note that the set

MT(X) = {fec@); £ = £, = {fecX); £ = = £,)

is a linear subspace of C(X) containing M. Define

{x e X; f#(x)

aﬁ(x) £,(x) for all £ ¢ C(X))

{x € X3 f#(x) f(x) for all f ¢ C(X)}.

Then we have
5 (x) = at(x)
M M
and
5,(X) = X if and only if Mt (X) = c(x)
(cf. [2]).

In view of these observations and Corollaries 2 and 4,

we make the following remarks.
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Remark 2. (i) Let M be a linear subspace of C(X)
containing 1X and ®t. LE @t(t) = 0, then t belongs to
8M(X).

(ii) Let M be a linear subspace of C(X) which contains
lX and {|g - g(t)lX|p; g € G}. Then t belongs to BM(X).

(iii) Let V be as in Corollary 3 and let M be a linear
subspace of C(X) containing V. Then we have BM(X) = X,

and so M#(X) = C(X).
Remark 3. Suppose that M c A(X). If for all g ¢ M,
lim La,A(g) = €6t(g) uniformly in A € A,
then for all f ¢ M#(X) n A(X),

lim La A(f) = Edt(f) uniformly in A € A.
a b

Also, the statement analogous to this result can be
formulated in the context of positive linear operators of a
linear subspace of C(X) into B(X). These results extend

[2; Proposition 1.4] (cf. [3; Theorem 1]).

3. Applications

Let El and E2 be normed vector lattices with norms

and |

|E2, respectively. Let Y be a linear
1

ke
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subspace of E. and let T be a positive linear operator of

1

Y into EZ' A subset S of Y is called a Korovkin test

E,}

system (or, briefly, KTS) with respect to {T, Y, El’ 9

if for any family {Ta A @€ D, A € A} of positive linear
 J

operators of Y into EZ’ the relation

lim |[T (g) - T(g)|| =0 uniformly in A € A
O, A E
a 2
for every g ¢ S implies that
=0 uniformly in A € A

lim [[Ta A(f) - T(f)HE
o ’ 2

for every f ¢ Y (cf. [10]). 1In particular, if El - E2 or

E2 =1R, then such a subset S is called a Korovkin test
system with respect to T in Y.
With this notion Corollary 3 claims that V is a KTS

with respect to £6t in A(X). As an immediate consequence

of Theorems 1 and 2, we have the following:

Theorem 3. Let w be a function in A(X) such that
inf{w(x); x ¢ X} > 0.

(i) Suppose that @t(t) = 0. Then {w, ¢t} is a KTS
with respect to Eﬁt in A(X). 1In particular, {lX, @t} is: a
KTS with respect to €6t in A(X).

(ii) {w} u {]g - g(t)lx|p; g ¢ G} is a KIS with

respect to Edt in A(X). In particular,
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{lX} v {|g - g(t)lX|p; g € G} is a KTS with respect to Edt

in A(X).

Corollary 5. Let {f, , f e+« f } be a finite subset
1 m

2’
of A(X) and let

m

? (x) = z ai(t)fi(X) (x € X),
i=1

where each ai(t) is a real number, such that @t is a

non-negative function in B(X) satisfying (1) and @t(t) = 0.

Let w be as in Theorem 3. Then {w, f £

10 £oo LI fm} is a

KTS with respect to €6t in A(X). 1In particular,

cee fm} is a KTS with respect to Eét in A(X).

We shall now mention some examples of @t e C(X)
satisfying 0 = @t(t) < @t(x) for each x ¢ X, x # t, and

so (1) is always satisfied:

(1°) Let {gl, Byr "t gr} be a finite subset of C(X)
such that for every x € X, x # t, there exists an integer
j e {1, 2, «++, r} for which gj(x) # gj(t). Assume that

A(X) contains the set

2 2 2
Gl = {IX’ g15 gZ’ Sy gr’ gl’ g29 Y gr}'

Then with the help of the function @t given by
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(g, - g, (D17,

i=1

it follows from Corollary 5 that the set

2

_ 2 2
By = oy Bs By “vts By By F &, =gl

is a KTS with respect to gdt in A(X). Note that G1 is
also a KTS with respect to Eét in A(X). Furthermore, if
{gl, By *°s gr} separates the points of X and if M is a
linear subspace of C(X) containing Gl’ then we have
9y (X) = 4 (X) = X and M (%) = c(0).

For example, we take X = Xr a compact subset of R and

let us denote by e, (i =1, 2, +«++, r) the i-th coordinate

function on Xr. Suppose that A(Xr) contains the set

2 2
Kl = {lx, €15 €55 "ty €, €1, €y, ttr, er}.
Then Kl and
2 2 2
R; = {lX’ €15 €5y "ty €, e Fep e er}

are Korovkin test systems with respect to Eét in A(Xr)'
T . .
Next, let X = T be the r-dimensional torus and for

i=1, 2, *«++, r, we define

Ci(xl’XZ’ ---,xr) = cos x, ((Xl’XZ’ °'-,xr) e X)

and
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Si(xl’XZ’ ---,xr) = sirlxi ((Xl’x2’ "-,xr) e X).
Assume that A(HI) contains the set

M, = {lX, Cis Cyr **%5 €5 Sys Sy Sr}'

Then Mr is a KTS with respect to Eét in A(ﬂx).

In particular, the sets

2
{lX, el el} and {lX, o sl}

are Korovkin test systems with respect to Eét in A(Xl)
and.in A(ﬂl), respectively. Concerning the usual
convergence, for the special case £ = 1 this is the
classical result due to Korovkin (cf. [6]). For further
generalizations of the Korovkin theorem from other

approaches, one may consult [1], [2], [3], [4], [5],

[8], [10], [14], [17] and [18].
(2°) Let (X, d) be a compact metric space. Let
¢ (x) = 2(d(x, t)) (x £ X),

where ® is a strictly increasing continuous function on
[0, ©) with #(0) = 0. For instance, the case where ¢ is

given by 0(y) = yq, q > 0, may be useful (cf. (3°), (4°)).
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(3°) Let X be a compact subset of a normed linear

space with norm | |. Let

o ) = |lx-¢l|%, q>o0, (x € X).

(4°) Let (H, <+, *>) be a real pre-Hilbert space

and let X be a compact subset of H. Let
@t(x) =<x - t, x - t> (x € X).
For any x ¢ X, we define
h(x) = <x, x> and ht(x) = <x, t>.
Then we have the following:

Theorem 4. If h and ht belong to A(X), then

{1, h, ht} is a KTS with respect to Eét in A(X).

X’
Proof. This follows from Corollary 1

(cf. Theorem 3 (i)).

i .
For example, one takes H =R with the usual inner

product

<X, y> = XY Sn X,¥, AR -

r
for X = (Xl, XZ’ '.', Xr)’ y = (yl’ yz’ .'.’ yr) € IR o

Then we have
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If A(X) contains Kl and if for i =1, 2, «++, 1,

lim La,x(ei) = Eét(ei) uniformly in A e A,
then

l;m La,k(ht) = £6t(ht) uniformly in A € A.

Consequently, K2 becomes again a KTS with respect to £6t

in A(X).

Corollaries 3 and 4, Remark 2 (ii), (iii) and Theorem 3

(ii) can be applied in the following situation (cf. [14]):

(5°) Let X be a compact subset of a real locally
convex Hausdorff vector space E with its dual space E*

and G = {1|,; T ¢ E*}, where T ¢ denotes the restriction

X

of T to X.

For instance, taking E =]Rr, K, becomes again a KTS

1

with respect to Edt in AX).

Let IN denote the set of all non-negative integers. Let

B = {béxi ; & €D, A € A\, ne IN} be a family of non-negative
b
real numbers with I b(A) = 1 for each o € D, A € A.
n=0 a,n

For examples of such families, see, e.g., [12] (cf. [9],
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[10]). Let {Ln; n ¢ IN} be a sequence of positive

linear functionals on A(X). For any f ¢ A(X), we define
NN
(12) La,k(f) = nEoba’nLn(f) (o e D, X € M),

which converges inIR. Plainly, each Lu is a positive

5 A

linear functional on A(X), and consequently our general

results can be applicable to the family {La A}'
]

For this it is convenient to make the following

definition: Let (El,||-||El) and (Ez,’|- HEZ) be normed

vector lattices. Let Y be a linear subspace of El and T a

positive linear operator of Y into EZ’ A subset S of Y is
called a B-Korovkin test system (or, briefly, B-KTS) with

respect to {T, Y, E EZ} if for any sequence {Tn; ne IN}

l’
of positive linear operators of Y into E2, the relation
oo (}\
lim || Z b ) T (g) - T(g)|| =0 uniformly in A ¢ A
o, n E

o n=0 2

for every g ¢ S implies that

lim || Z b o () - T(f)||. = 0 uniformly in X € A
o n=0®" ° £

for every f € Y, where it is assumed that the above series

converge for each o, A, g and f. 1In particular, if

El = E2 or E1 =1R, then such a subset S is called a B-KTS

with respect to T in Y.
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With this concept we are able to derive various
B-Korovkin test systems. For instance, concerning the
almost convergence (F-summability) introduced by

Lorentz [7], which is the case where

D=\ {0}, A =N,

bo(:‘31=1/a h<n<a+d)
and

B = g (a< %, o+ X< o),

o, =

(12) reduces to

o+A-1
La,k(f) = (1/a) % Ln(f).
n=X\
In this case,
lim La X(f) = €6t(f) uniformly in A ¢ IN

oo

if and only if each Banach limit of the sequence {Ln(f)} is
equal to E@t(f) (cf. [7; Theorem 1]).
We give now the concrete examples: Let Ir be the unit

r—ciitbe, i.e.,

I ={x= (Xl’XZ’ ---,xr) e R'; 0 tx, € 134=0,2;0; 1}

I 1

and let Bt(Ir) denote the linear subspace of Ct(Ir)
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consisting of all real-valued bounded integrable functions
on Ir which are continuous at t = (y, y, ***, y), where y

is an arbitrary fixed point of I,. Let {kn; ne IN} be a

1

sequence of non-negative functions in C(Il). For each

n € IN, we define the functional Ln by

T
Ln(f) = fI .H kn(ei(x))f(x)dx
r i=1
for all f ¢ B. (I ). Put
t T
(i) _ .1 1 i
v, = fO x kn(x)dx (neWN, i =0, 1, 2)

Then {Véi)} converges to yi for i = 0, 1, 2 if and only if
{Ln(f)} converges to dt(f) for every f « Bt(Ir)' Also,

if {v§0)} converges to one and if {vsi)} is almost
convergent to yi for i = 1, 2, then {Ln(f)} is almost
convergent to 6t(f) for all f e Bt(Ir>'

For example, if we take
k (x) = (a+1)x" (nelN, 0<x<1)

and t = (1, 1, <++, 1), then for every f € Bt(Ir)’
{Ln(f)} converges to Gt(f) and it is also almost convergent

to St(f). Next, if we take

k() =200 -x)Yp (el 0<x <),

T



where

o =7 }(1 - x%)%dx = T(1/2)T(n + 1)/T(n + 3/2)

n -

= 220 P L v o + 1y,

and t = (0, 0, -+, 0), then for all f € B (I ), {Ln(f)}

is almost convergent to St(f).

Finally, it should be remarked that under certain
appropriate conditions, Theorems 1 and 2 can be recast in
a quantitative form in which we are able to estimate the
rate of convergence of {Lu,x(f)} by using a modulus of
continuity of f (cf. [10], [11], [12], [13], [15], [16]).

We omit the details.
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