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THE VARIETIES OF SUBSPACES STABLE

UNDER A NILPOTENT TRANSFORMATION

TAKASHI MAEDA

ABSTRACT. Let I : V -+ V be a nilpotent linear transformation of a
vector space V of type V = >., i.e. the size of Jordan blocks >'1 ~

>'2 ~ ... ~ >'/. For an I-stable subspace W of V, i.e. I(W) c W,
the types of Wand VjW are those of the maps Ilw : W -+ Wand
Iv/w : VjW -+ VjW induced by I, respectively. For partitions v and
J1. we investigate the set S(>', v, J1.) = {W C V; I(W) C W, type W =
v, type VjW = J1.} and the singular locus of the Zariski closure X(>., v, J1.)
of S(>', v, J1.) in the grassmaniann of subspaces of V of dimension Ivl. We
show that S(>', v, J1.) is nonsingular and its connected components are
rational varieties (Th.A) ; generic vectors are introduced (Def.18), which
define the generic points of the irreducible components of X(>., v, J1.)
whose Plucker coordinates are fairly simple to express their defining
equations. We describe explicitly the coordinate ring of an affine openset
of X(>., (d), J1.) with the singular locus of codimension two (Prop.C).

Introduction. Let I : V --t V be a nilpotent linear transformation
of a vector space V over C of type V = A, i.e. the size of Jordan blocks
Al ~ A2 ~ ... ~ Ai· For an I-stable subspace W of V, i.e. I(W) C

W, the types of Wand VjW are those of the maps I Iw : W --t W
and Iv/w : VjW --t VjW induced by I, respectively. For an integer
o< d < n = dim V let X(A, d) be the set of I-stable subspaces of V of
dimesnion d ; X(A, d) = {W c V; dim W = d, I(W) c W }, which
is a closed set in the grassmaniann G(d, V) of d-dimensional subspaces
of V (cf.Section 1) and partitioned by the types of Wand of V jW
X(A, d) = IL,,,, S(A, v, J-L) where

S(A, v, J-L) = { W E X(A, d) ; type W = v, type VjW = J-L }

Our aim in this note is to deteremine the singular loci of the Zariski
closures X(A, v, J-L) of the locally closed sets S(A, v, J-L) in G(d, V) and
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describe their coodinate rings. Although our results are not as explicit
as one might wish, the introduction of generic vectors in Definition 18
will be useful in the description of the singularities of X(>., v, /1-).

The connected components of S(>', v, /1-) are all of the same dimension
n(>.) - n(v) - n(/1-) where n(>.) = L:i(>'i - 1) and in bijection with the
Littlewood-Richardson tableaux (LR-tableaux) of shape >'1/1- and con
tent v (Definition 1) so the number of the connected components is equal
to the Littlewood-Richardson coefficient C~'#L [Ml,p188;L,p411,p414]. We
denote by ST and XT the connected component of S(>', v, /1-) correspond
ing to an LR-tableau T and its Zariski closure, respectively. On the
analogy of the well known fact that the closure of the conjugacy class of
the nilpotent matrices of type >. consists of those of the types less than
or equal to >. in the dominance order <l of the partition [Ml,p7], we shall
show in Lemma 3 that the closure X(>., v, /1-) of S(>', v, /1-) is contained in
the union of S(>', v, jj,) for partitions both V<lV and jj<l/1-, but the equality
does not hold in general (Example 20). In the case v = (1d), i.e. I-stable
subspaces W with f(W) = 0 we observe in Lemma 9 that S(>', (1d), /1-)
happens to be a union of Schubert cells and X (>', (1d), /1-) is a Schubert
variety so it is known about the singular loci in this case (Corollary 11).
The set S(>', v, J-L) is, in general, not a homogeneous space under the ac
tion of the automorphism group A(V) = {g E GL(V) ; log = go I} of
(V, J) (Remark 8) so it is not clear that S(>', v, J-L) is nonsingular and the
singular locus of X(>., v, J-L) is a union of S(>', v, jj)'s for some v <l v and
jj <l /1- as in the case of Schubert varieties. Combining the strucure of the
automorphism group A(V) of (V, J) (Lemma 6) with the homogeneity
of S(>', (1d), J-L) with respect to A(V) (Lemma 14) we show in Section 2

Theorem A. S(>', v, /1-) are nonsingular and XT are rational varieties.

Section 3 is the main section of this note where we define the generic
vectors for an LR-tableau T together with their algorithms (Definition
18). The generic vector corresponds to each cell t ofT filled with the least
letter, contains algebraically independent parameters in the coefficients
of the parameter cells of the cell t (Definition 17) and has the coefficient
1 in the cell vector of t (Notation(2)). The sum of the numbers of the
parameter cells over all of the cells of T is equal to the dimension of
X T so we obtain a map from the affine space of dimension N = dim X T

to X T which associates a subspace of V to its Plucker coordinate; rp :
AN -+ X T . Denote by T~k the LR-tableau deleting from T the cells of
T filled with the letters less than k. We shall show in Section 3
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Theorem B. (i) The f -stable subspace generated by the generic vectors
for T has a basis consisting of the generic vectors for T, T>2' ... ,T>Vl'

(ii) The map <p : AN -+ X T is a birationl morphism, i.e~ the f-stable
subspace in (i) defines a generic point of X T .

The image of <p intersects with Sf' C X T iff the shape of t is the same
as that of T, in particular the image of the origin of AN is the subspace
Wo generated by the cell vectors of all the cells of T, which is a point of
STo where To is the least LR-tableau among those of shape T. Theorem
B implies that it is fairly easy to deteremine the singular locus of X T

contained in the principal openset UWo = {l\dWO =1= O} because the affine
coordinates of UWo coming from the coefficients of the generic vectors for
T, T>2," . ,T>Vl are so simple as to express the defining equations of X T

in UWo = Aden-d). However it requires another device to examine the
locus of XT where the shape is strictly less than that of T (Example 19).
While there is a dual isomorphism between X(A, v, /1) and X(A, /1, v)
(Remark 9) it seems that if both the shape and the content of tare
strictly less than those of T then X T is always singular along Xf'. We
give two simple examples of generic vectors to show

(i) the shape (resp. the content) of t is the same as (resp. less than)
that of T but Xf' is not contained in XT (Example 20),

(ii) the singular locus of XT is not equal to the union of Sf"S for some
LR-tableaux t (Example 21).

The simplest example of the codimension two singularity is the variety
X((22), (2), (2)) which is isomorphic to the cone over a conic the vertex
of which corresponds to the point X((22), (11), (11)). We generalize this
example as follows. Let A = (A1 2: ... 2: Ar ) with A1 > Ar 2: 2 and let
3 ~ d ~ A1. Let T be the LR-tableau of content (d) (so the shape is
a horizontal strip) and assume that the length of the last row is k 2: 2.
The LR-tableau t is ofcontent (d-1, 1) replacing the letter i in the cell
of T by i-I for all 2 ~ i ~ d, deleting the leftmost cell in the last row
of T and adjoining the cell in the next-to last row and in the next-to left
column of T, filled with the letter 1, e.g. if A = (86553) and

T=

I 7 1 8 1

6 I ,

4 5

1 2 3

then T=

161 7 1

5 I

1 3 4

1 2

We see that the codimensions of Xf' in X T is equal to two. We shall
show in Section 4
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Proposition C. XT is singular along Xi' and the coordinate ring of an
affine openset of X T is isomorphic to the hypersurface C[Xij] 0 C[Yo, Yl,

... ,Yk]!(J) with f = YO(YI + Y2Yk + Y3Y~ + Y4Y~ + ... + Yk_lyZ- 2) + Y~'
Here Xi' is defined by Yo = Yl = Yk = O.

The paper is organized as follows. After the notations are intro
duced, the defining equations of X(A, v, 1-£) and the automorphism group
of (V, 1) are investigated in Section 1. It is proved the nonsingualrity
and the rationality of S(A, v, 1-£) (Th.A) in Section 2. Generic vectors
for an LR-tableau are defined in Section 3. Proposition C is proved in
Section 4. The author would like to thank Professor Takeuchi for many
useful discussions.

Notations. (1) Partitions and diagrams. We identify a partition
A = (AI ~ , .. ~ AI) with the diagram of row-length AI,' .. ,AI arranged
like matrix entries, i.e. the cell (i,j) with the row index i increasing
downwards and the column index j increasing to the right. The conju
gate of A is the partition A' = (A~, ... ,A~l) where Aj is the length of the
j-th column of the diagram A. We denote by

if {i l < ... < im} (resp. {jl > ... > jm}) is the distinct column (resp.
row) length of A, i.e. the diagram A consists of m rectangles with row
and column sizes (il,jl), (i2 - il,h),'" ,(im - im- ll jm).

i3 i~ i 1

I
I

I
The dominance order t> on the partitions is defined by At> 1-£ (1-£ is less

than or equal to A) iff Al + ... + Ai ~ 1-£1 + ... + I-£i for all i.
(2) The type of (V, 1) and cell vectors. Let f : V -+ V be a nilpotent

linear transformation of a vector space V over C of dimension n. The
type of f, denoted by type V, is the partition A of n = dim V with the
size of Jordan blocks Al ~ ... ~ AI. This means that the j-th column
of A is of length Aj = dim Ker fj /Ker f j - l = dimfj-l(V)/P(V). If
we denote by Xi a generator as C[J]-module of the i-th Jordan block of
size Ai then the cell (i, j) in the diagram A corresponds to the vector
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fj-I(Xi), which forms a basis of V for 1 :::; i :::; A~ and 1 :::; j :::; Ai.
We call fj-I(Xi) the cell vector of the cell (i,j) of A. We denote a
linear combination of the cell vectors by the diagram A the cells of which
are filled with the coefficients of the corresponding cell vectors, e.g. if
A = (21) then aXI + bf(xd + CX2 = ~

(3) The type of f-stable subspaces. For an f-stable subspace W of
V, i.e. f(W) C W, the type of W, v = type W (resp. the type of
VjW, fL = type VjW), is the type of the map flw : W -t W (resp. of
flv/w : VjW -t VjW) induced by f. For 0 < d < n = dim V and the
diagrams v, fL we denote by

X(V,j;A,d) = { WE G(d, V) ; f(W) C W}

S(V, f; A, v, fL) = { W E X(V, f; A, d) ; ~ype W = v, type VjW = fL }

and by X(V, f; A, v, fL) the closure of S(V, f; A, v, fL) in the grassmaniann
G(d, V) of d-dimensional subspaces of V. If (V, J) is fixed then they are
simply written by X(A, d), S(A, v, fL) and X(A, v, fL), respectively.

(4) LR-tableaux. For an element W of S(A, v, fL) let type Vj fk(W) =
fL(k) for 0 :::; k :::; VI and fL(O) = fL. Then type fk(W) = v - (kkk· .. ) and
there is an exact sequence

o-t fk-I(W)j fk(W) -t Vj fk(W) -t Vj fk-I(W) -t 0

type (1v~) fL(k) fL(k-l)

so that fk-I(W)j fk(W) is an element of S(Vj fk(W); fL(k) , (1v~), fL(k-I)).
We define

Definition 1. (i) The Semitic (resp. Kanji) word associated with a
tableau T is the word reading the letters of T from bottom to top (resp.
from left to right) in succesive columns (resp. rows) starting from the left
(resp. bottom) [L2,pl07j. (ii) The Littlewood-Richardson tableau (LR
tableau) associated with an element W of S(A, v, fL) is the tableau T of
shape >'1 fL and content v by filling the letter k in the cells of the vertical
strip fL(k)lfL(k-l) for 1:::; k ~ VI. We denote by T = LR(W,V) =
LR(fL C fL(l) C ... C fL(vI) = >.).

We use the following three facts.

Fact 2. (i)[M,p186,(3.4)] The Semitic (OT Kanji) word ala2'" ad asso
ciated with an LR-tableau is a lattice permutation, i.e. fOT all 1 ~ j ~ d
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and all 1 ~ k ~ VI - 1 the number of occurrences of the letter k in
al ... aj is not less than the number of occurrences of the letter k + 1.

(ii)[L,p411,(4·3)] The connected components of S(>", v, Jl) correspond
bijectively to the LR-tableaux of shape >"1 Jl and content v so the num
ber of the connected components of S(>.., Jl, v) is equal to the Littlewood
Richadson coefficient c~'I-"

(iii)[L,p414,(4.4)] The dimensions of the connceted components of
Vi

S(>..,V,Jl) are all equal to n(>..)-n(Jl)-n(v) wheren(>..) = Li~I(>"i-1) =
~~l (A~).
L.."J=I 2

We denote by ST the connected component of S(>.., v, Jl) consisting of
the f-stable subspaces with the associated LR-tableau T ; ST = {W E
S(>.., v, Jl) ; LR(W, V) = T}, and its closure by XT. We denote by T>k
(resp. T=k, TS,k) the LR-tableau deleting from T the cells filled with the
letters ~ k (resp. =I k, > k). For aWE ST we see that the LR-tableau
LR(Jk(W), V) is equal to T> k'

1. The defining equations of X(>.., v, J.l) and the automorohism
group of (V, J)

Let {VI,'" ,vn } be a basis of V and A E M n (C) be the represen
tation matrix of a linear transformation f : V -+ V with respect to
{ VI, ... ,vn }. A basis of a d-dimensional subspace W of V is given by
(WI,'" ,Wd) = (VI,'" ,vn)B for an nxd matrix B ofrank d. Extend the
basis {WI,'" ,Wd} of W to a basis of V by (WI,'" ,Wd, Ud+I,'" ,un) =
(VI,'" ,vn)D with D = (B B') E GL(n) for an n x (n - d) matrix B'.
Then

(J(wd,··· ,f(wd), f(ud+l),'" ,f(un)) = (J(VI),'" ,f(vn)) . D

= (VI,'" ,Vn) . AD = (WI,'" ,Wd, Ud+l,'" ,Un) . D- IAD

The condition of f-stability, f(W) C W, means that

D-IAD = (~ ~) (1)

i.e. the lower-left (n - d) x d submatrix of D- IAD is the zero matrix.
From the identity
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we see that another choice of {Ud+ 1, ... ,Un}, i.e. of B', alters only the
submatrix R in (1). Hence {B E M'(n, d) ; B satisfies (1) with D =

(B B')} is a closed set of the set M'(n, d) of n x d matrices of rank d,
which implies that X(A, d) = {W E G(d, V); f(W) C W } is a closed
set of the grassmannian G(d, V) of d-dimensional subspaces of V. The
induced linear maps on Wand on V/W are represented by the matrices
p and Q in (1), respectively. Hence, an f-stabe subspace W E X(A, d)
is contained in S(A, v, /l), i.e. dim Ker fkl w = dim W n Ker fk
, , d d' K fkl ' I 'ffv1 + ... + vk an 1m er VjW = /l1 + ... + Ilk 1

rank pk = d - (v~ + ... + v~), rank Qk = (n - d) - (/l~ + ... + /l~)

for all k 2': 1. Hence if W is contained in the closure X(A, v, /l) of
S(A, v, /l) in X(A, d) then

rank pk :S d - (v~ +... + v~), rank Qk :S (n - d) - (/l~ +... + /l~) (2)

for all k 2': 1. Thus we have proved

Lemma 3. The Zariski closure X(A, v, /l) of S(A, v, /l) in X(A, d) is
contained in the union of S(A, ii, ji) for ii<Jv and il' <J/l in the dominance
order <J of the partitions (Notation (1)).

We will give a simple example in Section 3 that the closure X(A, v, /l)
of S(A, v, /l) is not equal to the union of S(A, ii, ji) for all ii <J V and all
il <J /l (Example 20).

Suppose that the d x d submatrix of the n x d-matrix B consisting of
the i1 , ... ,id-th rows i.s of maximal rank d for I = (i1 < ... < id) C [1, n]
and assume that it is the identity matrix. IfT is the permutation matrix
representing the permutation

T[ = (~
~l < ... < < ... <

then an n x (n - d) matrix B ' is chosen so as to satisfy the identity

T-1D = T- 1 . (B B ' ) =

-49-



with an (n - d) x d matrix C, and

Comparing (1) and (2) with (3) we see

Corollary 4. On the principal openset UI = M(n - d, d) ~ Ad(n-d) of
G(d, V), (i) X(>', d)nU1 = {C E M(n-d, d); C(A I +A2C) = A 3 +A4C}
(ii) X (>', v, J-L) consists of matries C E X (>', d) satisfying

rank (AI + A 2C)k S d - (v~ + ... + v~)

rank (A4 - CA2 )k S (n - d) - (J-L~ + ... + J-LU

for all k ~ 1.

In Section 4 we will use CorA to describe the coordinate ring of an
affine openset of (X, (d), J-L).

Remark 5. The ideal defined by the conditions of (i) and (ii) are,
in general, not reduced; In the case>' = (21) and d = 2 if we take
(Xl, f(XI), X2) as an ordered basis of V and I = (23) then

(
0 0 0)A= 1 0 0 ,
000

(

1 0
T- I AT = 0 1

X Y

Hence CA2C = (x y) (~ ) (x y) = (x 2
, xy) so Rad(x2

, xy) = (x). We

see that X((21), 2) = 5((21), (2), (1)) U 5((21), (11), (1)) ~ pi is nonsin
gular. 0
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Next we consider the automorphism group

A(V) = {g E GL(V) ; fog = 9 0 f }

of a nilpotent transformation f of V with the type of f equal to A =

[i l ,'" ,im I jl,'" ,jm] (Notation (1)). Since 9 E A(V) induces an
automorphism of all g-stable subspaces of V (for, g(W) C W implies
g(W) = W) there are restriction homomorphisms A(Jk(V)) -+ A(JI(V))
for k < l. Denoting by Uj = Ker {A(V) -+ A(Jj(V))} we obtain a
normal series A(V) t> Ul t> U2 t> ..• t> UiI t> {id}.

Lemma 6. (i) A(Jk(V)) -+ A(P(V)) is surjective for 0 ~ k < l ~ jl.
'(ii) ,Uj-dUj ~ Ker {A(Jj-l(V)) -+ A(Jj(V))} is isomorphic to a

unipotent group of dimension i~ if jk < j < jk-l (resp. a semidirect
product of a unipotent group of dimension i~ - (ik - ik_d2 and GL(ik 
i k - l ) if j = jk).

(iii) A(V) is isomorphic to a semidirect product of a unipotent group
of dimension 2.:;=1 i~(jk - jkH) - 2.:;=(ik - ik_l)2 and n;=l GL(ik 
ik-d·

Proof. (i) and (ii) follow from the two facts; (a) type fk(V) is obtained
by deleting the i-th column for all 1 ::; i ~ k in A = type V. (b) A
map g E A(V) is determined by the images g(Xi) of the leftmost cell
vectors Xi (Notation (2)) for 1 ~ i ~ A~, which are generators of the
C[f]-module V. Hence glf(V) = id iff g(Xi) - Xi are contained in the
subspace of V generated by the rightmost cell vectors of A. (iii) Let
Vk = ( Xi ; ik-l < i ~ ik ) be the subspace of dimension ik - ik-l
generated by the leftmost cell vectors in the k-th row-block of A and let

Then we see that the canonical map Vk C Ker fjk -+ Qk is an iso
morphism and there are a canonical inclusion n;=l GL(Vk) C A(V)
and a surjection 1r : A(V) -+ IT;=l GL(Qk) with the restriction of 1r to
IT GL(Vk) being an isomorphism. It follows from (ii) that Ker 1r is a

unipotent group of dimensnion equal to 2:~~1 dimUj_dUj = 2:;=1 i~
(., 1) "m {'2 (' , )2} "m '2(' , ) "m (.)k-)k+l- +L...k=l Zk- Zk-Zk-l = L...k=l Zk )k-)k+l - L...k=l Zk-
ik _d 2 . 0

We see from Lemma 6
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Corollary 7. A(V) acts on ST for each LR-tableau T.

Proof. For 9 E A(V) and W E S(A, v, p,) we see g(Jk(W)) = fk(g(W))
so g(W) E S(A, v, p,) hence S(A, v, p,) is A(V)-stable. Since A(V) is
connected by Lemma 6 A(V) acts on each connected component ST of
S(A, v, p,). 0

The homomorphism A(V) -+ A(Jk(V)) = A(VjKer fk) is surjec
tive by Lemma 6(i) but the homomorphisms A(V) -+ A(Ker fk) and
A(V) -+ A(Vjfk(V)) are not surjective in general. The representation
matrix of the generic element of A(V) with respect to the Jordan basis
is given explicitly in [G,p220] and the dimension E;=1 i~(jk - jk+d of

A(V) in Lemma 6(iii) also can be written by E7l1 (2i -1)Ai = E~~1 Nl
[ibid,p222jM1,p181].

Remark 8. If v ::j=. (1d) then S(A, v, p,) is, in general, not a single orbit
j The LR-tableau of shape (331)j(21) and content (22) is T =~
so S((331), (22), (21)) = ST is given by 1 2

~~ 1
{( ~,~ ); a,b E C, (a,b)::j=. (0,0) } rv A2 \{0}

and is not a single A(V)-orbit because S((331), (22), (21))jA(V) is bi
jective with the set

~
10POO PI0~OO

{( 0 0 0 0 1 0 ); b E C } u {( 0 0 0 0 1 0 . )} rv ]pI

1 ' b 0' 1

We end this section with a remark on the dual space V* = Hom(V, C)
and the dual map j* : V* -+ V*.

Remark 9. For an f stable subspace W C V of type W = v and of
type VjW ---.: p, the j*-stable subspace (VjW)* C V* is of type (VjW}*
= p, and type V* j(VjW)* = v. Hence the isomorphism G(d, V) C>o'

G(n - d, V*), W t-t (VjW)*, of the grassmanianns induces the isomor
phism between S(V, f; A, v, p,) and S(V*, j*; A, p" v), which induces the
commutative diagram

X(V, f; A, v, p,) ~ X(V*, j*; A, p" v)

U U

X(V, f; A, ii, p,) rv X(V*, j*; A, p" iI)

for all iI <J V and p, <J p,.
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2. The nonsingularity and the rationality of S(>", 1/, /1)

In this section we prove that S(>", 1/, /1) are nonsingular rational va
rieties (Theorem A). Let U c V be an f -stable subspace such that
f(U) = 0 with type V = >.. and type V/U = a (where >../a is a vertical
strip since f(U) = 0). For partitions a c /3 c >.. we consider the set
[M1,p188]

H(a,/3, >..) = { We V f-stable ; U::) W, type V/W = /3 }

If a = >.. - (111 ... ) deleting the first column from>.. then U = Ker f and
H(a, /3, >..) = S(>", (11)./,81), /3). Let>.. = [ill' .. ,im Ij1, ... ,jm] (Notation
(1)). We assume that U has a basis consisting of the (rightmost) cell
vectors of >../a, i.e. f ik - 1(Xi) for ajk < i ::; ik and 1 ::; k ::; m. Since
>../a is a vertical strip the length of the jk-th column of a satisfies i k - 1 ::;

I <.a ik _ 'tk·

Lemma 10. H(a, /3, >..) is a union of Schubert cells in the grassmaniann
G(I>..//31, U) and its Zariski closure is a Schubert variety of dimension
L:;;=l(ik - /3jJ(/3jk - ajJ. Hence H(a,/3,>") is a nonsingular rational
variety.

Proof· Let ak = L:~=l(il - ajl) ~ bk = L:~=l(il - /3jl) with am = I>../al
and bm = \>"//31, and for ak-1 < s ::; ak denote by Us the s-dimensional
subspace of U generated by the rightmost cell vectors jik-1(Xi) for ajl <
i ::; il and 1 ::; I ::; k -1 together with f ik - 1(Xi) for ajk < i ::; ajk + (8
ak-1)' Let K(bm,am) = { k = (1 ::; k1 < ... < kbTn ::; am) } be the set
of bm-subsets choosing from the am-set {1, 2, ... ,am} with the partial
order defined by k ::; I iff ks ::; Is for all 1 ::; s ::; bm. The Schubert cell
and the Schubert variety assosiated to k E K(bm, am) are defined by

C(k) = {W E G(bm,U); dimWnUs = t for kt ::; s < kt +ll 1::; t < bm }

X(k) = C(k) = { W E G(bm, U) ; dim W n Uk, ~ t for 1 ::; t ::; bm }

IIC(l), I E K(bm, am), I ::; k
l

with the associated partition ( = (kbYn - bm ,· .. ,k1 - 1) [G-L,p93].
The dimension of C(k) is equal to 1(1 = L:~:\ (k t - t) [ibid,p94]. Now
H(a, /3, >..) is written by H(a, /3, >..) = { W c U ; dim W n Uak =
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I
1 I

I

1

1
'--

bk for 1 ~ k ~ m }. Thus H(o:, (3, >..) is a union of the Schubert cells;
H(o:, (3, >..) = Uk C(k) where k E K(bm,am) satisfies

Let ko := ( al - bl + 1, ... ,al ; a2 - (b2 - bd + 1, ... ,a2 ; ... ; am 
(bm - bm-d + 1,'" ,am) E K(bm, am). Then ko is greater than any
other elements of K(bm, am) satisfying (*) with respset to the partial
order defined above. This implies that H(o:, (3, >..) is irreducible and its
Zariski closure is the Schubert variety associated to ko ; [[(0:, (3, >..) =

X(ko) = Uk C(k), k E K(bm, am) with k ~ ko. 0

The Schubert variety C(ko) is nonsingular iff the associatd diagram is
rectangle [G-L,p156], i.e. al - bl = a2 = b2.= ... = am - bm. It follows
from this

Corollary 11. The closure of H(o:,v,/-L) is nonsingular iff o:jk = {3jk
for all 2 ~ k ~ m.

Example 12. >.. = (332221) = [256; 321] ~. {3 = (32211) ~ 0: =

>.. - (1 6 ) = (22111).

Then we see that (aI, a2, a3) = (256) and (b1 , b2, b3 ) = (134) so k =
(k l ,k2 ,k3 ,k4 ) E K(4,6) must satisfy kl ~ 2 < k2 and k3 ~ 5 < k4 .

Hence H(o:, (3, >..) = S(>.., (14
), (3) = Uk C(k) with k = (2456), (2356),

(2346), (1456), (1356), (1346) and

X(>.., (1 4
), (3) = 0(2456) = IlC(l),

I

l ~ (2456)

= S(>.., (1 4
), (32211)) Il S(>.., (1 4

), (321111))

Il S(>.., (1 4
), (22221)) Il S(>.., (1 4

), (222111))

where S(>.., (1 4 ),(321111)) = C(2345) IlC(1345)

S(>.., (1 4 ),(22221)) = C(1256) IlC(1246) LI C(1245) LI C(1236)

S(>.., (1 4 ),(222111)) = C(1235) LI C(1234)
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We see that C(2456) :) C(2345) :) C(1235) and C(2456) :) C(1256) :)
C(1235) with the associatd partitions (1222) :J (1111) :) (0001) and
(1222) :) (0022) :) (0001). The diagram of the singular loci of C(2456)
is obtained by deleting the hook from the diagram (2221) of C(2456)
[G-L,pI56], i.e. (22). Hence we see Sing X(>., (1 4 ),fL) = C(1256) =
X(>., (1 4 ), (22221)). 0

We investigate the structure of H(O'., (3, >.) more closely. Let A(U, V) =

{g E GL(V)j fog = g 0 f, g(U) = U} be the automorphism group
(V, U, I). Recall Lemma 5 that the automorphism group A(V) is a
semidirect product of a unipotent group and n:=1 GL(Qk) where Qk =
Ker fil, /( Ker f jk -l, Ker jik nf(V) ) isomprphic to the subspace Vk of
dimension i k - i k- I generated by the leftmost cell vectors Xi for i k- I <
'i::; ill;. If we denote by V~ (resp. QU the subspace of Vk (resp. Qk) gen
erated by the cell vectors (resp. the residue classes of cell vectors) Xi for
O'.Jk < i ::; ik then V~ ~ Q~ is isomorphic to (Unfjk-I(V))/(Unjik (V)).
We see that g E A(U, V) induces an automorphism of Q~ and the canon
ical map A(U, V) -t n:=1 GL(Qk) rv n:=1 GL(Vn is well-defined and
split surjective. Let

V(j) = ( fA;-j(Xi) ; 1::; i::; >.~ ) rv Ker fj /Ker f j - I

V[j] = ( fj-I(Xi) ; 1::; i ::; >.~) rv fj-I(V)/ fj (V)

be the subspaces of dimension >'J generated by the cell vectors of the j-th
columns of >. from right and left, respectively. Denote the projections
by 1rj : V -t V(j), 1rj(x) = xU) and Tj : V -t V[j], Tj(X) = x[j]. Then
there are canonical maps

f : V(j) y V(j-I),

f : V[j-I] -» V[j],

f(X)(j-I) = f(x(j))

f(x)[j] = f(X[j-I])

Definition 13. The right (resp. left) degree of a nonzero vector X E V
is defined by R(x) = j (resp. L(x) = j) if x E Ker fj and x et Ker f j - I

(resp. x E fj-I(V) and x et fj(V)).

Then R(Jk(x)) = R(x) - k for 0 ::; k ::; R(x) and L(Jk-I(X))
L(x) + k for 0 ::; k ::; R(x[L(x)]) and a vector x E V is written by

x = x(R(x» + x(R(x)-I) + + x(2) + x(1),

x = x[L(x)] + x[L(x)+I] + + X[Al-I] + X[AJl,

x(j) E V(j)

x[j] E V[j]

Denote by A = [i l ,'" ,im I jl,'" ,jm] (Notation (1)).
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Lemma 14. H(a, f3, >..) is an A(U, V)-homogeneous space H(a, f3, >") =

A(U, V)/G, which fits in the commutative diagram with exact rows

l-tNnG G P ----t 1

1 1 1
l-t N A(U, V) I1~=1 GL(Q~) ----t 1

1 iT 1
N/NnG ) H(a, f3, >") 11" ) I1~=1 G(>"jk - ajk' >"jk - f3jk)

where G is the stabilaizer at an element W of H(a, f3, >..), T is the orbit
map and 7f is a vector bundle in the Zariski topology of rank equal to
dimN/N n G = Lk>s(>"jk - f3jJ(f3j. - ajJ.

Proof. For a subspace W E H(a, f3, >") we see

W n fj-1(V) {N. - f3'.
d' - Jk Jk

1m W n Ji (V) - 0
for J = Jk, 1 ~ k ~ m

otherwise

so we can choose a basis {gk,z} of W as L(gk,l) = jk for 1 ~ k ~ m and

1 ~ l ~ >"jk - f3jk' Since g~~] E U the element gk,l - g~~] is contained in

Un jjk (V) so {g~,~] = gj,k - (gj,k - g~~]) ; 1 ~ l ~ >"jk - f3jk} generates
the >"jk - f3jk -dimensional subspace

wnjjk -1(V) rv (Wnj jk -1(V),Unjjk (V))
W n Jik (V) Un Jik (V)

. . -, I

of (unjJk- 1(v))/(unjJk (V)) rv ((yk-aik, If we take another vector 9 E

W with L(g) = jk and g(jk] = g~,~] then g-gk,l = (g_g(jk])_(9j,k-9Y,~])

is contained in W n jjk (V). Therefore the map
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is a vector bundle with the fibre 1r- 11r(W) isomorphic to EBk=1 EB>"jk -f3jk
(U n f jk - 1(V)/(W n fjk (V)) whose dimension N is equal to

m, , . Un fjk (V)
L(-\jk - f3jk ) dIm W n Jik(V)
k=1

m k-l

L(-\jk - f3jJ . L {(-\js - ajJ - (-\js - f3jJ}
k=1 s=1

L(-\jk - f3jJ(f3js - ajJ
k>s

Denote the rightmost cell vectors of -\ by Yt = f jk - 1(xt) for 1 ~ t ~ -\~.

Let Wo E H (a, f3, -\) be the subspace of V generated by the cell vectors of
-\/f3, i.e. by Yt = f jk - 1(xt) for f3jk < t ~ -\jk and 1 ~ k ~ m. Then the
above discussion shows that for any W E H(a, f3, >.) there are constants
at,u for f3jk < t ~ -\jk and ajs < u ~ f3j. and 9k E GL(jjk- 1(Vk)) with
9k(jjk- 1(Vk) n U) = f jk - 1(Vk) n U, such that W is generated by the
elements

k-l f3js

Zt = 9k(Yt) + L L at,u9s(Yu)
s=1 u=ajs +1

for f3jk < t ~ -\Jk and 1 ~ k ~ m. By the inclusion GL(Vk) rv GL(Qk) C

A(V) there is a unique <Pk E A(U, V) such that <Pklvk = 9k and <PkiVi = id
for k =1= l. If the automorphism <P E A(U, V) is defined by <p(Xt) equal to

<Pk(Xt) for -\jk+1 < t ~ f3jk' 1 ~ k ~ m

k-l f3j.
<pdxt) + L L at,ufjs-jk(<ps(xu))

s=1 u=aj. +1

for f3j k < t ~ -\jk' 1 ~ k ~ m

then <p(Yt) = Zt and <p(Wo) = W so H(a, f3, -\) is a homogeneous space
with respect to A(U, V). The stabilizer G at Wo in A(U, V) is a semidi
rect product of a unipotent group and a parabolic subgroup P of 0;:1
GL(Q~). The projection A(U, V) -+ 0 GL(Q~) induces the commuta
tive diagram

A(U, V)

1
H(a, f3,-\)

1
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where the vertical maps are the orbit maps at Wo and 1r(Wo), respec
tively. 0

In the case a = ~ = A - (111· .. ), i.e. U = Ker f let ti (1 ~ i ~

d:= IA/.BI) be the cell of the vertical strip A/.B which is in the li-th row
with II < ... < ld· If .Bjk < li ~ Ajk = ik then the number of the rows

not containing the cells of A/.B is equal to 2::~=1(.8j. - Aj._J = li - i
(cf.Definition 18), from which we have the identity

m k

I)Ajk - .BjJ(.Bj. - Aj._J = I)Ajk - .BjJ L(,8j. - Aj._J
k>s k=1 s=1

m d

= I)~jk - ,8jJ . (li - i) = L(li - i)
k=1 i=1

= n(A) - n(,B) - (~)

Since A(Ker f, V) = A(V) because Ker f is A(V)-stable we see

Corollary 15. For partitions A ~ ,8 ~ ~ = A - (111·· -) the set
H(~,,8, A) = {W ; V ~ Ker f ~ W, type V/W = .B } is an A(V)
homogeneous rational variety of dimension n(A) - n(,8) - (I>'~{jl)-

Let T = (/l C /l(I) C /l(2) C ... C /l(r-l) C /l(r) = A) be an LR
tabluaux of shape A/ /l and content v and set ST = {W E S(A, v, /l) ;
LR(W, V) = T}. Let WT be an element of ST- We show

Theorem A. (i) ST is birationally isomorphic to the product SI x S2 X

... X Sr where Sk = S(V/fk(WT);/l(k),(lV~),/l(k-l)), i.e.

Sk = {U C V/ fk(WT ) ; f(U) = 0, type (V/ fk(WT ))/U = /l(k-l) }

(ii) ST is a nonsingular rational variety of dimension n(A) - n(/l) - n(v).

Proof. Except nonsingularity, (ii) follows from (i) and Cor.15. We shall
show (i) and the nonsingularity of ST by the induction on r := VI.

If r = 1 then v = (IV;) and ST = S(A, (lv;),/l) = {W ; V ~ Ker f ~

W, type V/W = /l}, which is nonsingular rational of dimension n(/l(I))
n(/l) - (~;) by Cor.15. Suppose r > 1. Then type r- l (WT ) = (1v~)
and consider the map
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which we see is a surjective morphism. Let U E Sr = S(>", (P'~), J..l(r-l»)
be the subspace generated by the cell vectors of >"/J..l(r-l). Then 1r- I (U)
= {W E ST ; r-I(W) = U} is a subset of

{W E X(V, d) ; W =:> U, type V/Uk(W),U) = J..l(k) for 0:::; k:::; r -I}

rv {W E X(V/U,d - v~) ; LR(W, V/U) = T<r } = ST<r(V/U) (*)

where T<r = (J..l C J..l(l) C ... C J..l(r-l»). Since type V/ur-I(W), U) =

J..l(r-l) = type V/U implies r-I(W) C U we see that W in (*) is con
tained in 1r- I (U) iff U = r-I(W), i.e. dimr-I(W) = dimU = v~.

Hence 1r-
I (U) is a Zariski openset of (*) isomorphic to ST<r (V/U), which

is nonsingular by the inductive hypothesis, so 7r- 1 (U) is nonsingular.
SiI).ce 1r : ST ~ Sr = S(>", (111~), J..l(r-l») is A(V)-equivariant surjective
and S(>", (111~), J..l(r-l») is A(V)-homogeneous by Cor.15 we see that all
of the fibres of 1r are nonsingular, which implies that ST is nonsingu
lar. Since S(>", (F~), J..l(r-l») is a Schubert cell by Lemma 10 there is a
subgroup G' of A(V) such that the orbit map G' ~ S(>", (111~), J..l(r-l»)

at U is an open immersion. We see from this that the product map
G' x 1r-

1 (U) ~ ST is an open immersion so ST is birationally isomor
phic to the product G' x 1r- I (U) ::: S(>", (111~), J..l(r-l») x ST<r' Then (i)
follows from the inductive hypothesis on ST<r' 0

3. Generic vectors for an LR-tableau

In this section we define the generic vectors for an LR-tableau T and
give some examples. We begin with a remark on a linear isomorphism
of the vector space V with a basis consisting of the cell vectors fi-I(Xi)
of the cells of >.. for 1 :::; i :::; >..~ and 1 :::; j :::; >"i' Let Yi be a vector
contained in the subspace (XI, ... ,Xi-I, f(V)) for 1 :::; i :::; >..~. We define
a linear map 9 : V ~ V by g(Jk(Xi)) = fk(g(Xi)) = fk(Xi) + fk(Yi) for
1 :::; i :::; >..~ and 0 :::; k :::; >"i - 1. The representation matrix with respect
to the basis of cell vectors with the Semitic order (Definition 1) is uni
triangular so 9 is an isomorphism.

Definition 16. We call the isomorphism 9 of V above the canonical
isomorphism determined by the vectors YI, ... ,Y>-' .

1

In general 9 is not an automorphism of (V, I), e.g. if >.. = (21) and
Y2 = Xl then fg(X2) = f(X2 + Y2) = f(XI) while gf(X2) = g(O) = O. Let
T = (J..l C J..l(l) C ... c J..l(1II) = >..) be an LR-tableau of shape >../ J..l and
content v. We define the parameter cells and vectors, and the weight of
the cells of T as follows.
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Definition 17. Let tik (1 ~ i ~ 1I~) be the cell of the vertical strip
T=k = J-L(k)/J-L(k-1) which is in the lik-th row with llk < ... < lv~,k.

Then the parameter cells and vectors of the cell tik are defined by the
. (k») . J.L(k)-k( )cells (J, J-Lj - k + 1 and by the correspondmg cell vectors f j Xj

for 1 ~ j ~ lik and j =/:- ll,k,' .. ,li-1,k, respectively. The weight W(tik)
of the cell tik is defined by the number of the parameter cells of tik, i.e.
lik - i.

The sum of the weights for all of the cells of T is equal to the dimension
of ST because

I I
VI Vic VI Vic

L L W(tik) = L {L (lik - in
k=l i=l k=l i=l

VI

= L {n(J-L(k) / J-L(k-1») - n(IV~n
k=l

= n(A) - n(J-L) - n(lI)

0 0 olel
0 0 01

0 b

0 1

0 0 olal
0 0 I I
0 0

0 0

Now we construct vectors Vi (1 ~ i ~ liD for each cell of T=1 = J-L(1) I J-L,
called the generic vectors for T (Definition 18), such that the f-stable
subspace generated by {VI,' .. ,vv~} is a subspace which defines a generic
point of ST, by the induction on 111 as follows.

(i) If 111 = 1 then T is a vertical strip of shape AIJ-L filled with the
letter 1. We asssociate to each cell ti of T in the li-th row the vector Vi
containing W(ti) parameters in the coefficients of the parameter vectors of
ti and the coefficient of the cell vector f AI,-l(x,J ofthe cell ti equal to 1 ;
Vi = fA,,-l(x,J+ 2:j aijfAj-1(xj) where 1 ~ j < li and j =/:- it,,·· ,li-1,
e.g. if A = (4322), II = (11), J-L = (4221) and

T=P then Vl=
If gl E GL(V) is the canonical isomorphism of V (Definition 16) de
termined by the vectors Yli = 2:j aijfAj->"li (Xj) for 1 ~ j < li and
j =/:-ll,··· ,li-1, and Yk = 0 for k =/:-l1,'" ,lv~ then we see Vi = gl(xd
for 1 ~ i ~ 1I~. We see that the subspaces generated by {VI,··' ,Vv ' }

VI

is nothing but a Schubert cell which is an openset of ST with the affine
coordinates {aij} (d. Lemma 10).

-60-



(ii) Suppose III > 1 and assume that the generic vectors for T <VI

have been defined by the induction. Let ti = ti,vI (1 ~ i ~ lI~J be
the cell of the vertical strip T=vI = >../ /-L(vl-1) which is in the position
(li, >"d with II < ... < lV~I· We consider an element gVI E GL(V) so
as to transform the cell vector fAl, -l(xd of ti to the generic vector
Vi E Ker f for T=vI defined as in (i). As such a gVI E GL(V) we
choose the canonical isomorphism of V (Definition 16) determined by
the vectors Yl; = L.j aij fAj -AI; (x j) for 1 ~ j < li and j =1= h, ... ,li-1,

i.e. fAj-VI(Xj) are the parameter vectors of the cell ti, and Yk = 0 for
I

k =1= ll,· .. ,lv~l· Here the L.;':\ W(ti,vJ parameters aij are algebraically
independent. The generi~ vectors for T is obtained by applying gVI to
the generic vectors for T <VI constructed by the induction.

Now we define

Definition 18. The generic vectors for T are the lI~ vectors in the above
construction corresponding to the cells of T filled with the least letter.

Example 19. For>" = (5332), II = (331) and /-L = (321) we consider

1 I 3 I
2

1 3 ,
1 2

T= T9 =F, T~l=~
The generic vectors for T=1 are given by

0 0 0101

0 x *1

0 0

1 x

0 0 01 0 1

0 y *1
0 1

0 *

0 0 o 11 I
0 0 */
0 0

0 *

In order to construct the generic vectors for T9 we consider g2 E GL(V)
determined by the vectors Y1 = 0, Y2 = Xl, Y3 = 0 and Y4 = X3, i.e.

0 a 0101

1 0 01

0 0

0 0

0 c 010 I
0 0 01

b 0

1 0

and g2(Xi) = Xi for i = 1,3. The generic vectors for T 5:2 are obtained
by applying g2 to the generic vectors for T= 1 :

000

o 0

o 0

oo 0 a y

o y 0

o 1

o 0

0 0 a x+c I 0 I
0 x 0 I
b 0 ,
1 0
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Lastly consider 93 E GL(V) determined by the vectors Y3 = X2 and
Yi = 0 for i = 1,2,4, i.e. 93(X3) = X3 + PX2 and 93(Xi) = Xi for
i = 1,2,4. The generic vectors for T are obtained by applying 93 to the
one for T>2 constructed above:

0 0 a x+c oJ~J
bp x 0 ,
b 0 0

1 0

0 0 ay o 101

0 y+p 0

0 1 0

0 0

and V14 = 9392(V3) = f3(xd. Hence the images of these three vectors
V41, V32, VI4 under f are represented by

0 0 0 clol
0 bp 0

0 b 0

0 1

0 0 0 alOI
0 0 1

0 0 0

0 0

+X

+

0 0 0 a 101

0 0 1

0 0 0

0 0

0 0 0 0101

0 0 p

0 0 1

0 0

:= y. V23 + V33

0 0 0 0101

0 0 p

0 0 1

0 0

+ (ax + c)

0 0 0 o 11 I
0 0 0

0 0 0

0 0

:= b· V33 + (ax + c) . VI5

f2(V32) = ay· V15, f2(VI4) = 0

Here {V42' V23} and {V33' VIs} are the generic vectors for

I 3 I
2

3

2

and T>3 =
I 3 I

3

- '-----

respectively. 0
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The generic vectors VI,'" , vv~ contain the dim ST parameters aji

(1 :s: i:S: n(j1(k)Ij1(k-l)) - n(lV~)) corresponding to the parameter cells
of the cells of T=j for 1 :s: j :s: v~. Let W be the f -stable subspace
of V ® C(aji) generated by the generic vectors for T over the rational
function field C(aji) of dim ST-variables aji's. As is observed in Example
19 we can show

Theorem B. (i) For 1 :s: k :s: VI the residure classes modulo fk(W)
of the generic vectors for T?k is a basis of fk-l(W)lfk(W). Hence
the generic vectors for T, T?2,··· , T?'VI form a basis of W. (ii) The
morphism from the affine space of dimension N = dim ST with the affine
coordinates being the parameters of the generic vectors for T to X T ,. cp :
AN -t XT, which associates a subspace of V to its Plucker coordinate,
is a birational morphism, i. e. the Plucker coordinate of W is a generic
point of ST over C.

Proof. (i) We shall show by the induction on VI. If VI = 1 then the as
sertion holds as in the construction (i) preceding Definition 19. Suppose
VI > 1 and assume that the residue classes modulo fk(W) of the generic
vectors of T?k is a bsais of fk-l(W)1 fk(W) for 2 :s: k :s: VI, and the
generic vectors for T>2, ... , T>Vl is a basis of f(W). We shall show that
the residue classes ~odulo f(W) of the generic vectors for T is a basis
of Wlf(W). If the cells of T=l are in the it"" ,lv~-th rows then the
generic vectors VI,' .. , vv~ for T are represented as Vi = gVl ... gl (Xli)
by the construction (ii) preceding Definition 19. If the generic vector
Vi has a nonzero coefficient in the cell vector of a rightmost cell of the
k-th row of >. then there are no cells in the k-th row of T, which implies
that f(Vi) = fgvl ... gl(xd = gVl ... g2fgl(XIJ. Now fgl(xd is a linear
combination of the cell vectors of the cells of T> 1 with the coefficients
{al,d corresponding to the parameter cells of the cells of T=l' Hence
f(Vi) = gVl ... g2fgl (xd is a linear combination of the generic vectors
for T?2,· .. , T?'VI by the inductive hypothesis for all 1 :s: i :s: v~. The
generic vector Vi of the cell ti has coefficient equal to 1 in the cell vector
of the cell ti so the residue classes of VI, ... , vv[ form a basis of WI f (W).
(ii) follows from (i) and the fact that the generic point WI f(W) of XT=l
is the image under gVl ... g2 of the Schubert cell of ST=l with the affine
coordinates being the parameter {al,d of the parameter cells of the cells
ofT=l' 0

We give the simplest examples that
(i) the shape (resp. the content) of t is the same as (resp. less than)
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that of T but Xi' is not contained in XT (Example 20),
(ii) the singular locus of XT is not equal to the union of Si"S for some

LR-tableaux T (Example 21)

Example 20. Let A = (3211), v = (22), v = (211) and J-t = (21).
Then v [> v and the LR-tableaux of shape AIJ-t and content v (resp. v)
are

(resp. T,=F md T,=F )

FbX 0 ro
x

bOO 1

1 0

o ,0 ,

FdO roo FOIcoo 1 0 0

1 0 0

o ) 0 ) 0

Fxo f¥YO rzo FOl00 00 01 00

o 1 0 0

1 '0 ) 0 ,0

F
Ol

o 0

o
oF

ax 0

a 0

o
1 ,.

The generic vectors for T, T1 and T2 are, respectively

F
bO

a 0

o
1 ,

If z i= 0 then the Plucker coordinate X4 /\ X3 /\ f(Xl) /\ P(Xl) of WI
is nonzero where Xi are the cell vectors of A (Notation (2)), so WI is
contained in the closure X T of ST iff z = 0, hence STl is not contained
in XT. On the other hand the set ST2 is contained in X T because W2 is
defined by the condition ad = be in the parametrization of W. We see
that X T is isomorphic to G(2,4), the grassmaniann of subspaces of C4

of dimension two so is nonsingular and X Tl n X T2 ~ jp2. 0

Example 21. Let A = (3221), v = (22) [> iI = (211) and J-t = (211).
Then the LR-tableaux of shape AIJ-l and content v (resp. v) are

( resp. T j = Wand T, =~ )

-64-



The generic vectors for T and T?2 are

V1 =

0 b oj
ax 0 ,
a 0

1
'--

0 c 01

0 1 ,
0 0

0
'--

;f0 0

_ 0 xV3 - ,
o 1

o
;W

o 1
V4 = 0 0

o 0

o

We form the 4 x 7 matrix whose entries are the coefficients of the cell
vectors f(xd, X2, x3, j2(xd, f(X2), f(X3), f(X4) in column in the vectors
V1, V2, V3, V4 in row:

(

b ax a 0

/\4 cOO 0
o 0 0 0
o 0 0 1

o 01) ( b100 _ 3
X 1 0 = /\ _c
o 0 0 ex

ax a 001)
o 0 1 0 0
o 0 0 1 0

r
Oy

o x

o 1

1

0 ay 01

a x 0

a 0

1
L---

from which the Plucker coordinate of the generic element of ST is given
by (1 : a : b : c : ax : ex : ac : aex : aex2 ) in !ps , (xo : ... : xs). We see
from this that the singular locus is {(Xo : Xl)} = !p1 , which corresponding
to the line L joining the point [1456] = f(X1) /\ f2(X1) /\ f(X2) /\ f(X3)
and [4567] = f2(xd /\ f(X2) /\ f(X3) /\ f(X4)' The generic vectors for
Til (T1h2 and T2, (T2h2 are

;ra0 ;rb0 ;rc0 ;WO1
00.00.00.00

00 00 00 00

1 1 1 0

roo '01. 0 1 . 0 0 .

o 0 0 0

o 0

from which we have

coo 0 0 0 1) (0 00)4 bOO 0 0 1 ~ = /\3 ~ 0 0 0/\ cOO 0 1 0
000 1 0 0 o cOO 0

n
ax a 0 0 0

D=A
3

( ~!x
a 0 0

D
0 0 1

ax
/\4 y X

0 0 0 1
0 0 0 1 0

0 0 1 00 0 1 0 0
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We see that the line L = pI is contained in the 3-dimensional subvariety
BTl and L = X TI n X T2 . 0

Example 19 (continued). We consider the variety X T for T in Ex
ample*. We form the 7 x 11 matrix whose entries are the coefficients of
the cell vectors ordered by the right tableau o(T)

T=
I I 3 I

2

I 3

I 2

o(T) =

1 41 8 1

2 5 9

3 6 10

7 11

in row from top to bottom, in the generic vectors (V41' V32 j VI4 ; V42, V23

V33, VIS) for T, T?2' T?3 obtained in Example 19 in column from left to
right:

ax+c
ay
o
o
o
o
o

which is simplified as

bp b 0
o 0 ay
o 0 1
o 0 c
o 0 a
o 0 0
o 0 0

x
y+p

o
bp
o
o
o

o 1 000 0
1 0 0 000
000 0 0 0
bOO 001
000 100
o 0 0 P 1 0
001 000

(

ax+c
/\3 ay

o

(

c'
_ /\3 ay

-aby
(*)

where c' = ax +c. This means that X T is contained in G (3, 7) C P[/\3Vo]
where Vo = (1,2,3,5,6,7,11) = C7 , and X T is parametrized on the
principal affine openset U[6,7,1l] = U[4,6,7,8,9,10,1l] ~ A12 by

YOI 2 YOI3 YI5 ) (ax + c bp b X)
Y25 = ay 0 0 y + P

o 0 Y35 - aby 0 0 - by

We see that Y3I = -aby = -Y21 Y13 and YI2 - Y35 = bp+by = b(p+y) =
Y13 Y25, which implies that X T n U[6,7,1l] ~ A6 is nonsingular. Next we
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consider the complement XT\U[6,7,1l). If Sf' n XT is nonempty with
shape T = Ajii then ii C A is less than or equal to J-L = (321), i.e.
ii = (321), (311), (222), (2211). This means that XT is covered by four
principal opensets corresponding to these ii's; X T C U[6,7,1l) u U[5,6,1l) u
U[1,7,1l) u U[1,6,1l). We saw above X T n U[6,7,1l) rv A6

.

(i) On the openset U[5,6,1l) = U 4,5,6,8,9,lO,1l), (*) is equivalent to

(

c' bp b x 0 1 0 )
1\3 axy-c'(y+p) -bp(y+p) -b(y+p) 0 x -(y+p) 0

-abxy + c'by bpby bby 0 0 by x

We see that on the openset U[5,6,1l) = A12
, X T is parametrized by

The 6-dimensional variety XT is defined on U[5,6,1l) by

(

Y12 Y13 Y17)
rank Y22 Y23 Y27 :::; 1,

Y32 Y33 Y37

Y12 Yll + Y13 Y21 + Y17Y31

= bp' c' + b{axy - c'(y + p)} + (-abxy + c'by) = 0

We see from this that the singular locus of XT on U[5,6,1l) is equal
to {(Yll , Y21 , Y31 )} rv A3 , which corresponds to ST

l
U ST

2
for the LR

tableaux

21 3 1

1 2

1 2

1

1 I 1 \

1 2

1 2

1
l-- '----

(ii) On the openset U[1,7,1l) = U[1,4,7,8,9,lO,1l), (*) is equivalent to

(

0 bp b x-(y+p)c'jay -c'jay 10)
1\3 ~ ~ ~ (y +b~jay 1j;y ~ ~
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from which we see that XT n U[I,7,1l] rv A6 is nonsingular.
(iii) The LR-tableaux t with shape t = >./(2211) and X r c XT are

I 2131

2

I 2

I
'--'---

I 2131

I

I 2

I
'--~

so ST3 (=> STJ are contained in XT1 and the singular locus of XT on
U[I,6,1l] = U[I,4,6,S,9,IO,1l] is reduced to the case (i).

Summing up the singular locus of XT is equal to XT1. Considering
the generic vectors for TI we see that XT1 rv]p3 => XT

3
~ ]p2 => XT

4
~ ]pI

and X T2 = {one point}. The embedding dimension at W E X T1 is equal
to 10 (resp. 11) if W et X T2 (resp. if W E X T2 ). Besides TI ,' .. ,T4 the
LR-tableaux whose shapes and contents are less than or equal to those
of T are the followings. There are two LR-rableaux of shape >./(321)
and content (331) :

2131

1

1 2

1 2

1 I 2

2

1 3

1 2

where X Ts is not contained in X T with X Ts n X T = X T7 . Here

1 I 3 I
1

1 2

1 2

Ts =
1 I 2 I

2

1 3

1 2

are the LR-tableaux of shape >./(321) and content (321) for which
X 7 rv G(2,4) while X T => X T6 => X Ts with Sing XT6 = Sing X Ts = X T2 .
The least LR-tableau among those of shape >'/ (321) is

Tg =

1 I 2 I
1

1 2

1 2

for which X Tg = ]p2. There are two LR-tableaux of shape >../(222) :

TlO =

1 2131
1

3
1 2

Tll =

1 21 3 1

1

1

1 2
where Sing X 10 = T4 ~ ]p2 and X II ~ ]p2. 0
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4. Proof of Proposition C

In this section we prove Proposition C in Introduction. We may as
sume d = A1 by deleting the columns of A in which there are no cell of
T. We note that ST is homogeneous. Let us considre the d-dimensional
subspace W = ( A, f(A), f2(A), .. · , fd-2(A), B ) with

A=

a 1 0 0 01
B=

a' 0 0 0 01

where 2 ~ i ~ r - 2 and 1 ~ j ~ Ai. If all of the 2(\AI - d) variables
{a, bij , Cj , a', b~j , cj} are equal to zero then W is an element of
ST' Now W is f-stable iff fd-1(W) and feB) are expressed by linear
combinations of {A, f(A),·· . fd-2(A), B}, Le.

(_a)d-1 A + (_a)d-2 f(A) + (_a)d-3 f2(A) + ...
.. .+ a2fd-3(A) - afd-2(A) + fd-1(A) + (_a)d-k {3B = 0

where {3 = C1 - aC2 + a2c3 - ... + (-a)k-2 ck_1

and feB) = a' A + C~_lB

from which we have the following identities (where 2 ~ i ~ r - 1) :

(11) 0 = (_a)d-1 . a + (-a)d-k{3a' = (_1)d-1ad-k{ak + (-1)k-1{3a/}

(ik) 0 = (-a)d-1bik + (-a)d- 2bi,k_1 + (-a)d- 3bi,k_2 + ...
+ (-a)d-kbi,l + (_a)d-k {3b~k

= (_a)d-k {(-a)k-1bik + (-a)k- 2bi,k_1 + ... - abi,2 + bi,l + {3}

(rj) 0 = (_a)d-1 cj + (-a)d-k{3c~ = (_a)d-k{ak-1cj + (-1)k-1{3c~}

(11)' 0 = a'a + c~_la' = a'(a + C~_l)

(il)' 0 = a'bi1 + c~-lb~l

(rl)' 0 = a'Cl + C~_lC'l

(ij)' b~,j_1 = a'bij + C~_lb~j

(
.)' I I I IrJ Cj_l=aCj+Ck_lCj
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We shall show that a+c~_l = o. Suppose a+c~_l =1= o. Then a' = 0 by
(11)', which implies a = 0 by (11) so C~_l =1= 0 by the assumption. Then
c~ = 0 by (r1)', from which c~ = ... = C~_l = 0 successively by (rj)',
a contradiction to C~_l =1= O. Hence a + C~_l = o. (i) Case a =1= o. The
linear terms

(ik)

(11)'

(ij)'

(rj)'

bi1 2 < i < r - 1
,

ck-l = -a

b~ ° 1 ~ JO ~ Ai - 1
'J

cj 1 ~ j ~ k - 2

are expressed by the remaining IAI - d + 1 variables

a,

a'

bij (2 ~ i ~ r - 1, 2 ~ j ~ Ai),

b~j (2 ~ i ~ r - 1, j = Ai)

Cj (1 ~ j ~ k - 1)

with one relation j := ak + (-1)k-l,Ba' = 0 from (11). (ii) Case a = o.
Then jd-l(A) = 0, and a + C~_l = 0 implies C~_l = 0 so j(B) =
a'A. If a' = 0 then j(B) = 0 and W is not a cyclic C[j]-module, i.e.
not contained in ST. Hence a' =1= o. Then j(B) = a'A implies that
bi1 = 0 from (i1)' and {c~_l' b~j' cj} are expressed by the remaining
IAI - d + 1 variables as in the case (i). In this case Cl = 0 by (rl)' so
,B = Cl - aC2 + ... = 0 hence j = ak + (-1)k-l,Ba' = o. 0

Remark 22. Let T' be the LR-tableau of content (d -1, 1) deleting the
leftmost cell of the first row of T, replacing the letter i in the remaining
cells in the first row of T by i - 1 and adding the cell filled with the
letter 1 in the cell (r - 1, Ar ). If T is the example in Introduction before
Proposition C then

T=

I I 7 I
6 I

1 4 5

1 2 3

We see dim XT, = IAI - d + r - s - 2, T' [> t and TXI is nonsingular
along Sf'. For, if W E ST' then jd-l (W) = O. Hence jd-l (A) = 0
means a = b1j = 0 for 2 ~ j ~ s. Similarly, jd-l (B) = 0 means a' = 0,
and a + C~_l = a = 0 implies C~_l = 0, so j(B) = a' A + c~_lB = 0,
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from which we see b~j = Cj = 0 except bij for 2 ::; i ::; r - 1 and j = .Ai.
Hence the nonzero parameters in the entries of A and Bare

bij 2::; i ::; s, 2 ::; j ::; .Ai; s < i ::; r - 1, 1::; j ::; .Ai

Cj 1::; j ::; k - 1

b~j 2::; i ::; r - 1, j = .Ai

the number of which is equal to (I.AI-d- s) + (r- 2) = \.AI-d+r- s- 2 =
dimX(.A, (d -1, 1),p,). Thus XT , is nonsingular along ST' 0
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