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A PARTIAL ORDER ON THE SYMMETRlC GROUPS

DEFINED BY 3-CYCLES

TAKASHI MAEDA

ABSTRACT. We define a partial order on the symmetric group Sn of
degree n by x ~ y iff y = at·· -a/cx with iCy) = i(x) + 2k where
at,'" ,a/c are 3-cyc1es of increasing or decreasing consecutive three
letters and i (*) is the number of inversions of the element * of Sn, on
the analogy of the weak Bruhat order. Whether an even permutation
is comparable to the identity or not in this ordering is considered. It
is shown that all of the even permutations of degree n which map 1 to
n or n - 1 are compara.ble to the identity.

Let G be a group generated by a subset S C G not containing
the identity of G. The pair (G, S) naturally defines an undirected
simple regular graph (Cayley graph) with the vertex set G and an edge
connecting x with y iff y = ax for some a E S, Le. the edges meeting at
a vertex x are {x, ax} and {x, a-1 x} = {a -1 x, aa -1x} for a E S. For
instance, if G is a free group with basis S then the associated graph is
a tree [Se,p26], and if G is a Coxeter group with the set S of simple
reflections then the graph defines the weak Bruhat order [B]. In this
note we investigate the graph associated with (G, S) where G =An is
the alternating group and S = {al,' .. ,an -2} with the 3-cyc1es aj =
(j,i + I,i + 2) of consecutive three letters for 1 ~ i ~ n - 2.

Since the 3-cycle aj is a product of two adjacent transpositions, if we
write an element 1r of An as a product of al,' .. , an-2, all, ... ,a;~2
then the number of the 3-cycles in the product is greater than or equal
to i(1r)/2, the half of the number of inversions i(1r) of 1r. Natural ques
tions arises ; which elements of An can be represented by a product
of exactly i(1r)/2 3-cycles al,'" ,an -2,aI 1, .. · ,a;~2 and what is the
canonical (reduced) expression of a general element of An by the prod
uct of these 3-cyc1es? The problem is explained in terms of words
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on [n] = ·{1, .. · ,n} (= arrangements of the n letters 1,'" ,n without
repetition) as follows. Let x = Xl'" xn be a word on [n]. For each
2 ~ j ~ n - 1 the sequence of three numbers X j -1 X j X j+1 in the word
X is equal to one of the six triples abc, acb, bac, cab, bca, coo. where
a, b, c are integers satisfying 1 ~ a < b < c ~ n. In order to decrease
the number of inversions by applying one of the 3-cycles at!1 , the op
erations on the word X are allowed only in the cases cab, bca, coo above,
Le. the leftmost letter of the triple is greater than the rightmost letter:

cab ~ abc, bca ~ abc, cba ~ acb or bac (1)

Let Sn(l) = {x E Sni i(x) = I} be the set of words on [n] with the
number of inversions i(x) equal to I. We define a partial order on Sn
analogous to the weak Bruhat order.

Definition 1. x ~ Y for x E Sn(/) and Y E Sn(m) ifm -I = 2k ~ 0 is
even and if x is obtained from y by applying k times the operations of
type (1) above. An even word x on [n] is called 'general' (resp. 'special')
if x is comparable (resp. not comparable) to the identity 12··· n by this
partial order.

An even permutation 1r corresponding to a special word, which is
the main object of this note, means that it cannot be expressed by the
product of i(1r)j2 3-cycles ajl. Definition 1 is formally generalized to
Coxeter groups generated by simple reflections 81, ..• ,Sn and 3-cycles
a j to 8 j Si+1 for 1 ~ j ~ n - 1. We consider Sn as the poset (=partially
ordered set) with the partial order of Definition 1, which is a union of
S~e) and S~o) of even and odd words. We shall prove in Section 1

Theorem 2. All of the even words x = n, X2 ••• X n and y = Yl, n, Ya,
... ,Yn on [n] with the maximal letter n in the leftmost position and
the second position from the left, are general, i.e. comparable to the
identity 12··· n.

The same conclusion holds for even words x = Xl'" Xn-l, 1 and
Y =Yl •.. Yn-2, 1, Yn on [n] with the minimal letter 1 in the rightmost
position and the second position from the right, by applying the invo
lution * on the poset Sn defined by (Xl'" X n )* = n + 1 - X n , n + 1 
Xn-l,'" ,n +1- Xl (d. Section 2). On the other hand there are even
words on [n] with the maximal letter n in the third position from the
left not comparable to the identity, e.g. 2143 and 246135. Theorem
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is easy to check for n = 3,4 and proved by induction on n and by
considering canonical expressions of odd words.

The associated Hasse diagram (y is drawn above x if x < y) of S~e)
of even words on [4J is given by

4321

2431----3241----3412----4132----4213

1234

where the dotted horizontal edges mean that the two vertices joined by
them are transformed each other by a single 3-cycle aT. We denote by
r n the Cayley graph of Sn, e.g. adjoined the dotted edges to the Hasse
diagram of sie

) above. The circuits in the Cayley graph r n correspond
to the relations among the 3-cycles aj for 1 ~ j ~ n - 2. The subgraph
of r n consisting of odd words as vertices is obtained by interchanging
two letters (e.g. 1 and 2) in the subgraph of r n consisting of even words
as vertices so that they are isomorphic each other as a graph (not as
a poset). The above graph of sie

) shows that 2143 is the only special
word on [4]. In general, if x is an odd word on [k] and y is an odd word
on {k +1,'" ,n} then the juxtaposition xy is a special word on [n]. In
order to separate these uninterested types of special words we define

Definition 3. (i) A word x = Xl'" X n on [n] is decomposable if
XIX2'" Xk is a word on [k] for some 1 ~ k ~ n - 1, and indecom
posable if there are no such k's.

(ii) An even word x is 'nearly decomposable' if x is indecomposable
and minimal in the partial order of Definition 1, or if x is indecompos
able and all of the words covered by x are decomposable.

For instance, 415263 and 3257146 are nearly decomposable words
because the former is indecomposable and minimal, and the latter is
indecomposable and the words covered by 3257146 are 3215746 and
3251476, both of whcih are decomposable. Let S~d,B) (resp. S~i,B»)

be the set of decomposable (resp. indecomposable) and special words
on [n] and let S~B) = sid,B) U S~i,B). The decomposable part S~d,B)
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is described by various subsets of Sk for k < n (Lemma 9) so we
focus on the indecomposable part S~i,8). The definitions above leads
to three facts; (i) the set of indecomposable words is a dual order
ideal of the poset Sn, Le. if x is indecomposable and x :::; y then y is
indecomposable (cf. Lemma 7), (ii) since the set of general words is
the dual order ideal of Sn generated by the identity 12· .. n, the set of
special words is an order ideal of Sn, i.e. if x is special and x ~ y then
y is special, (iii) for any indecomposable even word x there is a chain
in the poset Sn connecting x with a nearly decomposable word. These
three observations imply that the set S~i,8) of ibdecomposable special
words on [n] is the union of vxns~8) where x's run over the set of nearly
decomposable special words and Vx = { y E Sn; x :::; y} is the dual
order ideal generated by x. Once we find the set of nearly decomposable
special words, the set Vx n S~8) of the special words dominating x is
obtained by an easy, but lengthy calculation by hand (d. Section 4).

In Section 3 we consider minimal words. As remarked above, a word
x = Xl' " X n on [n] is minimal in the partial order of Definition 1 iff
the letters in odd-numbered and even-numbered positions in x are in
ascending order; Xl < X3 < Xs < ... < x2Ln/2J±1 and X2 < X4 < Xa <
... < x2Ln/2J' that is, x = Xl'" . X n is a two-ordered sequence appearing
in shellsort [K,p86]. By regarding the two-ordered sequences as lattice
paths we shall show in Lemma 10 that the number of indecomposable
minimal words on [n] is equal to the r - I-th Catalan number; e:'=-12)
for even n = 2r while all of the minimal words are decomposable for
odd n. In Section 4 are given the sets of nearly decomposable special
words on [n] for n :::; 8.

The rest of the paper is organized as follows. Theroem 2 above is
proved in Section 1 and the set S~d,8) of decomposable special words is
described explicitly in Section 2. Some results about minimal words are
given in Section 3. Nearly decomposable special words, which we shall
call primitive words, are considered in Section 4. The author would
like to thank Professor Takeuchi for providing a computer program as
well as for many useful discussions.

Notations
Sn : the set of words on [n] = {I"" ,n} endowed with the partial

order of Definition 1, denoted by x -4- y if x > y. A word x = Xl •.• X n

on [n] is identified with the bijection 11" of [n] if 11"(i) = Xi. A permutation
11" acts on the set of words on [n] through the positions rather than the
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letters, Le. 1rX = x7r(l) ••• x 7r (n) for x = Xl .•• X n . In order to make
Sn acts from left on the set of words the product of elements of Sn is
read from left to right, e.g. (12)(23) = (12)(23)123 = (12)132 = 312 =
(132)123 = (132).

r n : the Cayley graph associated to (Sn, {al," . ,an-2}) with the
3-cycles aj = (j,j + l,j + 2) for 1 ~ j ~ n - 2,

i(x) : the number of inversions of a word x, Le. the number of pairs
(i,j) for 1 ~ i < j ~ n with Xi > Xj,

For a subset X of Sn denote by X(l) = {x EX; i(x) = I} and X(*)
the set of the words on (n] contained in X with the property expressed
by *. Here * is e, 0, S, d, i, n, p means even, odd, special, decom
posable, indecomposable, nearly decomposable, primitive, respectively.
Similarly, x(m) (resp. X(M») is the set of the minimal (resp. maximal)
elements of Sn in the partial order of Definition 1 contained in X. For
instance, X(i,m) means the set of indecomposable and minimal words
on [nJ contained in X.

V.r, A.r : the dual order and order ideals of the poset Sn generated
by a word X E Sn, Le. Vx = {y E Sn; x ~ y} and Ax = {y E Sn; x ~ y}.

1. Proof of Theorem 2

In this section we prove Theorem 2 in Introduction. It is easy to
check Theorem 2 from the definition 312,231 -t 123 for n = 3, and
from the graph of S~e) in Introduction for n = 4. First we consider
words x = n, X2'" Xn on [n].

Proposition 4. Let x = nX2'" Xn be a word on [n] with the maximal
letter n in the leftmost position. If x is even (resp. odd) then x is
comparable to the identity 12··· n (resp. 12··· ,n - 2, n, n - 1).

Proof. The assertions on odd words are true from 321 ~ 132 for n = 3,
and from 4231, 4312 ~ 4123 -t 1243 for n = 4. Proposition will be
proved by induction on n for even and odd words simultaneously. It
may be assumed that the subword X2'" Xn on [n - 1] is minimal so
n - 1 E {Xn-l' xn}. Three cases are to be considered: (i) Xn = n - 1,
(ii) Xn-l = n - 1 and Xn = n - 2, (iii) Xn-l = n - 1 and Xn =:j:. n - 2.

(i) Case Xn = n - 1. If the subword nX2' .. Xn-l of x deleting the
rightmost letter X n = n -1, is even then it is comparable to 12· .. ,n
2, n by the inductive hypothesis, so

X=nX2,"',Xn_l,n-1 -t 12,···n-2,n,n-l
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If nX2 ... Xn-l is odd then it is comparable to 12··· n - 3, n, n - 2
by the inductive hypothesis, hence

x = nX2, ... ,Xn-l, n - 1 ~ 12"" , n - 3, n, n - 2, n - 1

~ 12"" ,n-3,n-2,n-l,n

(ii) Case Xn-l = n - 1 and Xn = n - 2. If nX2'" Xn-l is odd then

x = nX2,' .. ,Xn-2, n - 1, n - 2 ~ 12"" ,n - 3, n, n - 1, n - 2

~ 12"" ,n - 3, n - 2, n, n - 1

If nX2 .•. Xn-l is even then

x = nX2,'" ,Xn-2, n - 1, n - 2 ~ 12"" ,n - 1, n, n - 2

~ 12,' .. , n - 2, n - 1, n

(iii) Case Xn-l = n - 1 and Xn =F n - 2. Then Xn-3 = n - 2 because
Xl' •• , Xn-3, Xn-2, n - 1, Xn is minimal with Xn-2 < Xn ~ n - 3.

(a) Case nX2'" Xn-l odd.

X = nX2'" ,xn-2,n -1,xn

~ 12"" ,Xn - 1, Xn +1, ... , n, n - 1, Xn

~ { 12"" , Xn - 1, Xn + 1" .. , n - 1, Xn, n

12"" , Xn - 1, Xn + 1,," ,Xn, n, n - 1

from which, Proposition holds.
(b) Case nX2'" Xn-l even. If X is even then

if x even

if x odd

X=nX2"'Xn-IXn ~ 12"" ,xn -l,xn +l,··· ,n,xn

~ 12"" ,n

Suppose x is odd. That the word n, X2 ... Xn-l = n, X2 ... Xn -2, n - 1
is even means that nX2 ... ,Xn-2 is odd, hence

x = nX2,'" ,Xn_2,n -1,xn

~ 12"" ,Xn - 1, Xn + 1", . ,n, n - 2, n - 1, Xn

~ 12"" ,xn -l,xn +l,··· ,n,xn,n-2,n-l

~ 12"" ,Xn -1,xn + 1"" ,xn,n - 2,n,n-l

~ 12"" , n - 2, n, n - 1 0

Next consider words x = xI,n,X3" ·Xn. If Xl = 1 then Theorem 2
follows from the previous Proposition 4 so we assume Xl =F 1.
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Proposition 5. (I) Let x = n - 1, n, X3 ... , Xn be a word on [n] with
n - 1 and n in the first and the second position from left, respectively. If
x is even (resp. odd) then x is comparable to the identity 12··· n (resp.
both 12 ... n - 3 n - 1 n - 2 nand 12· .. n - 4 n - 1 n - 3 n n - 2), , , " "",.

(II) Let x = Xl, n, X3 ... , Xn be a word on [n] with the leftmost letter
Xl equal to neither 1 nor n - 1, and the maximal letter n in the second
position from left. If x is even (resp. odd) then x is comparable to the
identity 12· .. n (resp. 12"" ,n - 2, n, n - 1).

Proof. The assertions on odd words are true for n = 4 from 3412 -+
3214 -+ 1324, 3412 -+ 3142 and 2413 -+ 1243. Proposition will be
proved by induction on n. It may be assumed that the subword X3'" Xn
of x is minimal from the beginning, so 1 E {X3,X4}. If X3 = 1 then x =
xI,n,1,x4'''Xn covers the word 1,xI,n,x4'''Xn and the inductive
hypothesis is applied to the subword Xl, n, X4 ... Xn. Hence we assume
X4 = 1 from now on.

(1) Since n > X3 > 1 in the word x = n -1,n,x3, 1,"'xn it can be
transformed n to the rightmost position: x -+ n - 1, Y2 ... Yn-l, n. If
the subword n - 1, Y2'" Yn-l on [n - 1] is even (resp. odd) then it is
comparable to 12 .. ·,n -1 (resp. 12 .. ·,n - 3,n -l,n - 2) by the
previous Proposition, which implies

{
12··· ,n -l,n

x-+
12 . .. n - 3 n - 1 n - 2 n, , , ,

if x is even

if x is odd

Next we shall show that if x is odd then it is comparable to 12··· ,n
1, n - 3, n, n - 2. That the subword X3 ... Xn of x is minimal on [n - 2]
means that n - 2 E {Xn-I,Xn},

(i) Case x n = n - 2. The word x = n - 1, n, X3 ... , Xn-l , n - 2 is odd
so is the subword n -1, n, X3'" Xn-l on {I"" , n - 3, n -1, n}, which
is comparable to 12· .. n -1, n - 3, n by the inductive hypothesis. Thus

x = n - 1, n, X3'" Xn-l, n - 2 -t 12··· ,n - 1, n - 3, n, n - 2.

(ii) Case Xn-l = n - 2. Since n > X3 > 1 the letter n in the subword
n - 1, n, X3, 1, ... Xn-2 of x is transformed to the rightmost position,
hence

x = n - 1, n, X3, 1"" Xn-2, n - 2, Xn

-+ n - 1, Y2,'" ,Yn-3, n, n - 2, Xn

-t n - 1, Y2,'" , Yn-3, Xn , n, n - 2

-25-
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The word x is odd so is the subword n - 1, Y2," . ,Yn-a, X n on {I"" ,
n - 3, n - I}, which is comparable to 12· .. ,n - 1, n - 3 by the previous
Proposition. Hence (*) -4 12· .. ,n - 1, n - 3, n, n - 2.

(II) That the subword Xa'" X n is minimal means that n - 1 E
{Xn-l' x n }. First consider the case X n = n - 1.

(i) Case X n = n - 1 and Xl = n - 2. Applying the results of (I) to
the subword y = n - 2, n,Xa'" Xn-l on {I"" ,n - 2,n} of x we see

{
12··· ,n - 2, n

y-4
12· .. n - 2 n - 4 n n - 3, , "

if y is even

if Y is odd

Hence, if y is even then x = y, n - 1 -4 12· .. ,n - 2, n, n - 1, and if y
is odd then

x = Y, n - 1 -4 12··· ,n - 2, n - 4, n, n - 3, n - 1
-4 12··· ,n - 2, n - 4, n - 3, n - 1, n

-4 12· .. ,n - 4, n - 3, n - 2, n - 1, n

(ii) Case X n = n -1 and Xl =F n - 2. Applying the inductive hypothesis
of (II) to the subword Y = Xl,n,Xa'''Xn-l on {I"" ,n - 2,n} of x

we see

{
12··· ,n - 2, n if Y is even

y -4 12 ... ,n - 3, n, n - 2 if Y is odd

Hence, if y is even then x = y, n - 1 -4 12· .. ,n - 2, n, n - 1, and if y
is odd then

x = y, n - 1 -4 12··· ,n - 3, n, n - 2, n - 1

-4 12··· ,n - 3, n - 2, n - 1, n

Next consider the case Xn-l = n - 1.
(iii) Case Xn-l = n-I and X n = n-2. Since Xl =F n-I, applying the

inductive hypothesis of (II) to the subword y = Xl, n, Xa ••• X n -2, n - 1
on {I"" ,n - 3,n -I,n} of x we see

{
12··· ,n - 3, n - 1, n if y is even

y-4
12··· ,n - 3, n, n - 1 if y is odd

Hence, if y is even then

x = y, n - 2 -4 12·· . ,n - 3, n - 1, n, n - 2

-4 12··· ,n - 3,n - 2,n -I,n
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and if y is odd then

x = y, n - 2 ~ 12··· ,n - 3, n, n - 1, n - 2

~ 12··· , n - 3, n - 2, n, n - 1

(iv) Case Xn-l = n-1 and Xn =I- n-2. Ifthesubword XI,n, X3" 'Xn-2,
n-1 on {I"" , Xn -1, Xn+1"" ,n} of x is odd then, since Xl =I- n-1,
it is comparable to 12· .. ,Xn - 1, X n + 1,'" ,n, n - 1 by the inductive
hypotyesis of (II). Hence

X = XI,n,X3""xn_2,n -l,xn

~ 12··· ,Xn -l,xn + 1"" ,n,n -l,xn

~ { 12··· ,Xn -l,xn + 1"" ,n -l,xn,n
12· .. ,Xn -l,xn + 1,,,, ,xn ,n,n-1

if X is even

if X is odd

from which, Proposotion holds. Next suppose Xl, n, X3,'" ,Xn-2, n-1
is even, Le. Xl, n, X3," . , Xn-2 is an odd word on {1 .. · ,Xn - 1, Xn +
1,,,, ,n-2,n}. Ifxiseventhentheevenwordxl,n,x3,'" ,xn -2,n-1
is comparable to 12· .. ,Xn -1, X n +1, ... , n by the inductive hypothesis
of (II) we see

x= XI,n,X3,'" ,xn -2,n -l,xn

~ 12 .. · ,xn -1,xn +1,· .. ,n,xn

~ 12"'n

If X is odd then
(a) Case Xl = n - 2. Applying the result of (I) to the odd word

n - 2,n,x3," 'Xn-2 on {1,2,··· ,Xn -l,xn +1,···,n - 2,n} we see

X = n - 2,n,x3,'" ,xn -2,n -l,xn

~ 12· .. , Xn - 1, Xn + 1, ... , n - 4, n - 2, n - 3, n, n - 1, Xn

~ 12· " , Xn - 1, Xn + 1,'" ,n - 4, n - 2, n - 3, Xn , n, n - 1

~ 12 .. · ,xn -1,xn +l, .. · ,n-4,n-3,xn ,n-2,n,n-1

~ 12· .. , n - 2, n, n - 1

(b) Case Xl =I- n - 2. Applying the inductive hypotyesis of (II) to the
odd word XI, n, X3,'" , Xn -2 on {I, 2" .. , Xn - 1, Xn + 1", . , n - 2, n}
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we see

x = Xl, n, X3, ••• , X n -2, n - 1, X n

-4 12··· ,Xn -1,xn + 1"" ,n,n - 2,n -1,xn

-4 12··· , X n - 1, X n + 1" .. , n, X n,n - 2, n - 1

-4 12 .. · ,Xn -1,xn +1,,,, ,xn,n - 2,n,n-l

-4 12··· , n - 2, n, n - 1 0

2. Decomposable special words

In this section we define an involution on the poset Sn and then
determine the set S~d,8) of decomposable special words.

If we place vertical lines I at both ends of a word x = Xl'" X n

on [n] and between Xi and Xi+! whenever max(xl'''' , Xi) = i then
the indecomposable subwords of X are the s~gments between the lines.
We define an involution * on the poset Sn by X· = n + 1 - X n, n +
1 - Xn-l,'" , n + 1 - Xl for X = Xl'" x n . In the Caylet graph of
S~e) in Introduction, * induces the reflection about the vertical axis
of symmetry. The fact that n + 1 - Xi > n + 1 - Xi+2 if Xi > Xi+2,

means that if X covers y then X· covers y. so * is an automorphism of
the poset Sn. It follows from the identities i(xn ... xt} = (;) - i(x) =
i(n + 1- Xl,'" n + 1 - xn ) that the number of inversions is preserved
by *, i(x) = i(x·).

Lemma 6. A word X is (i) minimal (resp. (ii) indecomposable, (iii)
special, (iv) nearly decomposable) iff x* is a word with the same prop
erty.

Proof. (i) If X is not minimal with Xi > Xi+2 then n + 1 - Xi+2 >
n +1- Xi so the word X· is not minimal. (ii) If X is decomposable with
a subword Xl' .. Xk on [k] then n + 1 - Xk,'" n + 1 - Xl is a word on
{n +1- k, n +2 - k, ... , n} so the word X· is decomposable. (iii) If X is
not special with a chain X -4 X(l) -4 -4 x(r) = 12·· . n connectiong
X with the identity then x* -4 X(l) -4 -4 (12··· n)* = 12· .. n is a
chain connecting X· with the identity so x* is not special. (iv) follows
from the results of (i) and (ii). 0

Let Cn be the set of compositions (=ordered partitions) of n, e.g.
C3 = {(3), (2, 1), (1,2), (1, 1, I)}. A partial order on Cn is defined by
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the refinement; (ab'" ,ar) S (bb'" ,bs ) in Cn iff there are i l =
o < i2 < ... < is < isH = r such that (aikH,aik+2,'" ,aik+1 ) is a
composition of bk for each 1 S k S s. We define the map f : Sn -t Cn

by f(x) = (al'''' ,ar ) where the w~rd x = x(1) ... x(r) on [n] is the
juxtaposition of indecomposable subwords x(i) of length ai for 1 SiS
r. Then Ua>b!-l (b) = Sal X ... X Sar for a = (al'''' ,ar ) E Cn and
f-l((n)) C Sn is the set of indecomposable words on [n].

Lemma 7. The map f : Sn -t Cn is order-preserving, i.e. f(x) S f(y)
in Cn if x S y in the poset Sn'

Proof. 231 > 123 < 312 and 213 < 321 > 132 in Sn is transformed by
f to (3) > (1,1,1) < (3) and (21) < (3) > (1,2), respectively. 0

Hence the dual order ideal Vx = {y E Sn; x S y} for a word x
is contained in the union of f-l(b) with b E Cn satisfying f(x) S b,
in particular, if x is an indecomposable word then Vx is contained in
the set f- l ((n)) of indecomposables. Let us denote the number of
even (resp. odd) indecomposable words on [n] by 'Y~e) (resp. 'Y~o») and
'Yn = 'Y~e) + 'Y~o). The construction of the indecomposable words is
contained in the proof of the following Lemma.

Lemma 8. (i) 'Yn is expressed by a linear combination of 'Yl, 'Y2,'" ,

'Yn-l·

'Yn = 'Yl ·1· (n - 2)! + 'Y2 ·2· (n - 3)! + 'Y3 ·3· (n - 4)!

+ ... + 'Yn-2 . (n - 2) . I! + 'Yn-l . (n - 1) ·O!

(ii) 'Y~e) - 'Y~o) = (-1)n-l

n 1 2 3 4 5 6 7 8 9

n! 1 2 6 24 120 720 5040 40320 362980

'Yn 1 1 3 13 71 461 3447 29093 273343

Proof. (i) The indecomposable words on [n] are constructed from words
on [n -1] as follows. Let x = yz be a word on [n -1] with an indecom
posable subword y = Yl ... Yi of x of length 1 SiS n - 1. Then the i
words
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inserting the letter n in the word x = yz, are indecomposable words on
[n] and all of the indecomposable words on [n] are obtained in this way
from words on [n - 1]. (i) follows from this. (ii) Let Hk = Sk X Sn-k C
Sn for 1 ~ k ~ n - 1. Then the set of indecomposables f- 1 ((n)) is the
complement of HI U··· U Hn- 1 in Sn so In = If- 1((n))1 is equal to

n-l

n! - L IHil +L IHi n Hjl-'" +(-It-1IH1n··· n Hn- 11

i=1 i<i

by the Principle of Inclusion-Exdusion[S,vol 1,p64]. The numbers of
even and odd pennutations in H il n· .. n Hi/< are same for all 1 ~ i 1 <
... < ik ~ n-l exceptH1 n···nHn _ 1 = {e}. (ii) follows from this. 0

(i) also follows from the identity n! = 11·(n-1)!+'2·(n-2)!+·· '+,n'
O! and the generating function En>llnXn is equal to l-(En>o n!xn)-l
[e; S,vol1,p49]. Alternatively, indecomposable words on [n] are divided
into the following three types.

(i) x = AnB1C where A, B, Care subwords of x (or empty).
(ii) x = A1BnC and there are a E A and c E C with a > c,
(iii) x = A1BnC and a < c for all a E A and all c E C but there

are a E A, b, b' E Band c E C such that b is in the left of b' ; x =
... a ... 1 ... b· .. b' ... n ... c· .. with a > b' and b > c.

If a special word x on [n] is decomposed by x = yz with an indecom
posable z on {n - k + 1, ... ,n} then the three cases occur: (i) y and
z are odd words, (ii) y is a special word on [n - k], (iii) z is a special
word on {n - k + 1,," ,n}. We see from this

Lemma 9. The set S~d,s) of the decomposable special words on [n] is

the disjoint union B 111 B 211···11 B n- 1 with Bk = { yz E sid,s) ; z E

Sii)}, which, in turn, is the disjoint union of BL Bk" and Bk'" where

B~ = { yz ; S(o) z E Sii,o)}, 2~k~n-2y E n-k'

Bk" = { yz ; S(s) non-special z E Sli,e)}, k :f: 2, n-k~4y E n-k'

Bk"'= {yz; S(e) Z E Sii,s)}, k~6y E n-k'
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For 1 ~ k ~ 6 we see

B - B " - S(8) . S(i,e) e:.! S(S)
1 - 1 - n-l 1 - n-l

B - B' - S(o) • S(i,o) e:.! S(o)
2 - 2 - n-2 2 - n-2

B3 = B~ 11 B3"

= S(o) . S(i,o) IIS(S) . (S(i,e)\S(s)) f'V S(o) II2. S(s)
n-3 3 n-3 3 3 n-3 n-3

B4 = B~11 B4"

= S(o) . S(i,o) 11 S(8) . (S(i,e)\S(s») f'V 7. S(o) 116 . S(8)
n-4 4 n-4 4 4 n-4 n-4

B5 = B~ IIB5"

= S(o) • S(i,o) II S(8) . (S(i,e) \S(8») :: 35 . S(o) 1136 . S(s)
n-S S n-5 S S n-S n-S

B6 = B~ IIB6 " IIB6"'

= s(o) • S(i,o) II s(s) . (S(i,e)\S(s») Il S(e) Il S(i,s)
n-6 6 n-6 6 6 n-6 6

f'V 231 . S(o) 11 226 . S(8) 11 4 . S(e)
n-6 n-6 n-6

n IBd /B2 1 lB3 1 IB4 / IBs / IB6 1 IB71 IS~d,s) I

4 0 1 0 - - - - 1

5 0 3 2 0 - - - 5

6 5 12 3 7 0 - - 27

7 31 60 14 21 35 4 - 165

8 177 360 70 90 105 232 12 649

Thus the decomposable part S~d,s) of the special words on [n] are de
scribed from those of degree k smaller than n. Therefore the study of
the set S~8) = S~d,8) U S~i,s) is reduced to that of the indecomposable
part S~i,8) of S~8).
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3. Minimal words

A word x = Xl ••• xn on [n] is minimal in the partial order of Def
inition 1 iff the triples Xj_IXjXj+l for all 1 ~ j ~ n - 2 are one of
abc, boo, cab for some 1 ~ a < b < c ~ n, i.e. the minimal a is in the
left of the maximal c. This is equivalent to the condition that the sub
sequences of X in the odd-numbered and the even-numbered positions
form increasing sequences.

Xl < X3 < Xs < ... < x2ln/2J±1l X2 < X4 < X6 < '" < x2ln/2J (3)

Thus the number of the set S~m) of the minimal words on [n] is equal to
the number of ways of choosing Ln/2J elements X2, X4,'" , x2ln/2J from

[n] = {I,,,, ,n}, i.e. IS~m) I = (In/2J)' The two inequalities (3) mean
that a word X = Xl ••• X n on [n] is minimal iff max(xi , ... ,Xi) = Xi-lor

Xi for all 2 ~ i ~ n, and the minimality of X implies that the subwords
XiXi+1 ••• Xj are minimal for all 1 ~ i < j ~ n. A minimal words
X = Xl'" X2r on [2r] corresponds bijectively to lattice pathes from
(0,0) to (r, r) with unit steps to the right and up where the i-th step
is horizontal or vertical according to the integer i in an even-numbered
position or in an odd numbered-position [K,p86]. We shall show

Lemma 10. A minimal word X =Xl ••• X2r on [2r] is indecomposable
iff the corresponding lattice path is in the range {(i, j) j 0 ~ j < i ~
r }U{(0,0), (r, r)}. Hence the number 01 indecomposable minimal words
on [2r] is equal to the r -l-th Catalan number ~ e:-=-D = (2:'=-12)- er;2)
{cl.St,voI2,p223]. II n is odd then all 01 the minimal words on [n] are
decomposable.

Prool. The two inequalities (3) and X is indecomposable imply that
X2 = 1 and X4 = 2. If X3 is less than X6 then XlX2X3X4 = Xl, 1, X3, 2 is
a subword of X on [4] so X is indecomposable implies X3 > X6. Similarly,
if Xs is less than Xg then Xl'" X6 is a subword of X on [6] so Xs > Xg. In
general, X is indecomposable implies X2k-3 > X2k for all 3 ~ k ~ Ln/2J.
We see from this that X2k-1 is greater than Xl, X2, ••• ,X2k-2 for all
2 ~ k ~ Ln/2J. Hence, if X2k-1 ~ 2k - 1 then X2k-1 = 2k - 1 and
Xl' •• X2k-l is a subword of X on [2k - 1]. Therfore, if X = Xl'" x n is
indecomposable and minimal then X2k-1 ~ 2k for all 1 ~ k ~ Ln/2J.
Hence, if n = 2r - 1 is odd then X2r-1 ~ 2r, a contradiction. Thus
n = 2r is even with X2r-l = 2r and X2r-3 = 2r - 1. In conclusion,
there is an indecomposable minimal word on [n] iff n = 2r is even,
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and indecomposable minimal words on [2r] corresponds bijectively to
two-array sequences with the following inequalities

1 < 2 < X6 < Xg < XIO < ... < X2r-2 < X2r

/\ /\ /\ /\ /\ /\

Xl < X3 < Xs < X7 < ... < X2r-S < 2r - 1 < 2r

These two-array, in turn, corresponds bijectively to the lattice path
stated in Lemma. 0

The r - I-th Catalan numbers IS~~m) I = ~ e:'=-l2) for small 2r are
given by

2r 2 4 6 8 10 12 14 16 18 20 22

IS~~m)1 1 1 2 5 14 42 132 429 1430 4862 16796

and indecomposable minimal words for small n = 2r are given as fol
lows.

n=2

n=6

n=8

21 (i = 1) j

415263 (i = 6)

51627384 (i = 10)

31627485 (i = 8)

n=4 3142 (i=3)

315264 (i = 5)

41627385 (i = 9) 41527386 (i = 8)

31527486 (i =7)

Next let us consider the number of inversions. The number of inversions
of X = Xl' "xn is written by i(x) = r::=l ik(X) where ik(X) is the
number of the pairs (k,j) with k < j :s; nand Xk > Xi' Then we see

max(Xk - k,O) :s; ik(X) :s; min(xk - 1, n - k)

for all 1 :s; k :s; n and X E Sn. The numbers of inversions of minimal
words on [n] are described as follows.

Lemma 11. If X = Xl'" x n is minimal then (i) ik(X) = max(xk 
k,O) for all 1 :s; k :s; n so i(x) = r::=l max(xk - k,O), and (ii)
Xl, X2,' .. ,Xk-l < Xk for all k such that Xk ~ k.

Proof. For a minimal word X on [n] suppose ik(x) > O. Then there is
an 1 > k with Xk > Xl. Since X is minimal we see 1=k + 1 mod 2 so
Xl,'" ,Xk-l < Xk, which implies ik(X) = Xk - k. 0
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Remark. The converse of (i) does not hold, e.g. x = 231 is not
minimal, but i 1(x) = i 2 (x) = 1 and i 3 (x) = O.

2

:4 1

(0.0)

The number of inversions of a minimal word x on [2r] is the sum of
the weights in the corresponding lattice path. Here the weights in the
unit edges are given below in the case 2r = 12.

s q 3 2. 1 (6.1,1

1

In particular, the number of inversions of an indecomposable minimal
word x on [2r] is calculated by Lemma11: i(x) = E~=1 (X2k-l - (2k
1)), which is, by the diagram above, equal to Yl + ... + Yr-2 + 3, where
Yi is the weight of the vertical unit edge from (i,j - 1) to (i,j) for
some i. Since the path corresponding to an indecomposable x is in the
shaded region the weight Yi for 1 ~ j ~ r - 2 satisfy

max(2, Yj-l - 1) ~ Yj ~ r + 1 - j

If we set >'j = r - Yi - j + 1 for 1 ~ j ~ r - 2 then the weight diagram
above changes to

i

2- 1

3 2. I

~ 3 2- 1

2.

o
o

o
o

with

r-2
'" (r - 3)(r - 2)>'1 + ... + >'r-2 = r(r - 2) - L.J Yi - 2
j=1

(r - 2)
= {2r - (r - 3)} - i(x) +3

2
= r(r + 1) _ i(x)

2
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and Aj for 1 ::; j ::; r - 2 satisfy

A·<r-J·-1J -

Therefore we have shown

Lemma 12. The indecomposable minimal words on [2r] with the num
ber of inversions equal to 1, corresponds bijectively to the partitions
A= (AI ~ 0 •• ~ Ar-2) of r(ri

l) -I with the height ht(A) ::; r - 2 and
contained in the staircase diagmm 6 = (r - 2, r - 3,00 0,2,1) 0

We see from the weight diagram above that among the indecompos
able minimal words on (2r] the minimal (respo maximal) value of the
number of inversions is given by

r

2(r - 1) + 3 = 2r - 1 (respo L k = r(r + 1)/2 )
k=l

when X2k = 2k - 2 and X2k-1 = 2k + 1, Le. x = 31527496 0
•• 2r 

1,2r - 4, 2r, 2r - 2 (resp. X2k = k and X2k+l = r + k, Le. x =
r + 1,1, r + 2,2, r +3,3"" ,2r - 1, r - 1, 2r, r )0 For a mimimal word
x = Xl' 0 • X n on [n] let m be the integer such that Xm+l ••• X n is an
indecomposable subword of x. Then the subword xl'" x m is minimal
on [m] and X is written by juxtaposing a mimimal words on [m] and
an indecomposable minimal word on [n - m + 1, . o. ,n]. We see from
this that the set S~m) of miminal word on [n] is decomposed by

s(m) S(m) Il S(m) S(i,m) Il S(m) S(i,m) Il· .0 IlS(m) S(i,m) Il s(i,m)
n-l 1 n-2 2 n-3 3 1 n-l n

We saw S~i,m) = ¢ for all odd n so S~m) is equal to

s(m) s IIS(m) S(i,m) Il S(m) S(i,m) Il S(m) S(i,m) Il
2m-l 1 2m-2 2 2m-4 4 2m-6 6

II S
(m)S(i,m) Il S(i,m)

•••••• 2 2m-22m

The set S~m) (I) is decomposed by S~m>Cl) = lly S~m) (1, y) where y runs
over indecomposable minimal word on [m] for m ::; n of length iCy) ::; I
and S~m) (1, y) is the set

{ YZ ; z is a minimal word on {m + 1,0" ,n} with i(z) =1- iCy) }
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Hence the number of the set S~m) (I) is written by

Is~m)(I)1 =L Is~m)(I,y)1

y

with IS~m) (I, y)1 = IS~~~(l- i(y»I. From the number of indecompos

able minimal words given above we see IS~m) (1)1 is equal to

IS~~~ (1)1 + IS~~~(l- 1)1 + IS~~~(l- 3)1 + IS~~~(1- 5)1

+ IS~~~(l- 6)1 + IS~~~(l- 7)1 +2 'IS~~~(l- 8)1 + IS~~~(l- 9)1

+ IS~~~(1- 10)1 + IS~~)lO(l- 9)1 +3 'IS~~~o(l- 10)1

+ 3 'IS~~)lO(l- 11)1 +...

From the binomial identity~? (k+i) = (n+k+l) we see
L."a=O k k+l

Is~m)(1)1 = (n ~ 1), Is~m)(2)1 = (n; 2)

Is~m)(3)1 = (n; 3) + (n ~ 3), Is~m)(4)1 = (n ~ 4) +2(n; 4)

Is~m)(5)1 = (n ~ 5) +3(n; 5) + (n ~ 5)

Is~m)(6)1= (n;6) +4(n~6) +3(n;6) + (n~6) + (n~6)

Is~m)(7)1 = (n ~ 7) +5(n ~ 7) +6(n; 7) +2(n; 7) +3(n ~ 7)
By the induction on 1 we see that IS~m) (1)1 is a polynomial of nof
degree I expressed in the form

(n~l) +(1-2)(7~~) + e~3)(7~~)

(n- I) (n - ') (n - I) (n - ')+ al-5 I _ 5 +al-6 ,_ 6 + ... +al 1 + ao 0

for some nonnegative integers ao, al, ... ,al-5.
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4. Primitive words

Primitive words in the title means nearly decomposable and special
words and denote the set consisting of these words on [n] by S~p). In
this section we shall determine sr) explicitly for n = 5,6,7,8. We first
make a remark on nearly decomposable words.

Lemma 13. Let x = Xl •.• X n be a nealy decomposable word. If Xi-I>

Xi > Xi+l for some i then Xi = i.

Proof X -+ Xl'" Xi-2XiXi+IXi-IXi+2 ••. X n is decomposable implies
that Xl" • Xi-2Xi is a subword on [i-I] or Xl" • Xi-2XiXi+1 is a subword
on [i] so that Xi ~ i. Similarly, X -+ Xl ••• Xi-2Xi+IXi-IXiXi+2 ••. X n

is decomposable means that Xl" • Xi-2Xi+1 is a subword on [i - 1] or
Xl'" Xi-2Xi+IXi-1 is a subword on [i] so that Xi ~ i. 0

Now we start from special words on [5].

Proposition 14. S~8) = S~8td) = { 21354, 13254, 21435, 21543,
32154 } and s~p) = S~8,i) = <p.

Proof It is easily seen that the five words in Proposition are special.
Since the minimal even words on [5] are {21354, 13254, 21435} we shall
show; (i) the special words covering these minimal words are 32154 and
21543, (ii) 32154 and 21543 are not covered by the special words. (i)
The words covering 21354 are {32154, 23514, 25134, 21543}, where
23514 -+ 23145 -+ 12345 and 25134 -+ 12534 -+ 12345. Similarly,
the words covering 13254 are {32154, 15324, 13542}, where 15324 -+
12534 -+ 12345 and 13542 -+ 13425 -+ 12345. The same result holds
for 21435 because 21435 = 13254*. (ii) The words covering 21543 are
{52143, 25413}, where 52143 -+ 15243 -+ 12453 -4 12345 and 25413 -4

24153 -+ 12453 -4 12345. The same result holds for 32154 because
32154 = 21543*. 0

Next we consider special words on [6].

Proposition 15. S~it8) = s~p) = {246135, 245163, 416235, 415263 }.

Proof It is easily seen that the four words in Proposition are indecom
posable and special. Let X = abcdef E s~p) be a primitive word on
[6]. We first show that X is one of the four words in Proposition 15,
according to the position of the letter 6 in the word x. We have to
consider the three cases 6 E {c, d, e} by Theorem 3.
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(I) c = 6. x = ab6def -t abde6f E S~d,B) implies (i) f = 5 and
x = ab6de5 or (ii) (e,1) = (5,4) and x = ab6d54. (i) If d > e then x -+
abe6d5 -t abed56 E S~B) implies abed E S~B) = {2143}, so x = 216354
is decomposable. If b > d then x -+ adb6e5 -+ adbe56 E S~s) implies
adbe = 2143, from which we obtain a primitive word x = 246135. If
b < d < e then b = 1 and a = 3 or 4 so x = a16de5 is equal to 316245
odd or 416235, which is a primitive word. (ii) x -+ abd564 -+ abd456
so abd E S~s) = </>.

(II) d = 6. x = abc6ef -t abcef6 E S~d,B) implies abcef E S~s).

Proposition 14 shows that {a,b} = {1,2} or {a,b,c} = {1,2,3} so x is
decomposable.

(III) e = 6 and x = abcd6f. If d > f then x -+ abcfd6 E S~d,B) im

plies abcfd E S~s), a contradiction as in the case (II). Hence we assume
d < f in what follows. Since x = abcd6f with d < f is indecomposable
we see 5 E {a, b, c}. (i) a = 5. x = 5bcd6f -t bc5d6h E S~d,8) implies
b = 1 or (b,c) = (2,1). If b = 1 then x = 51cd6f -+ 1c5d6f so c5d6f is
special. If (b, c) = (2,1) then x = 521d6f -+ 152d6f so 52d6f is special.
Both cases cannot occur by Proposition 14. (ii) b = 5. x = a5cd6f -+
acd56f E S~d,8) implies ~a, c) = (2,1) or f = 4. If (a, c) = (2,1)
then x = 251d6f = 251463 -t 125463 -+ 125346 -+ 123456. If f = 4
then x = a5cd64, which is equal to 253164 -+ 231564 -t-+ 123456 or
x =351264 -+ 312564 -t-t 123456. (iii) c = 5 and x =ab5d6f. If b > d
then x -t adb56f implies (a,d) = (2,1) or f = 4. If (a, d) = (2,1) then
x = 2b516f = 245163 is primitive. If f = 4 then x = ab5d64, which is
equal to 235164 odd or 325164 -t 312564 -+-+ 123456. If b < d then
b < d < f implies b = 1 and x = a15d6f, which is equal to 315264 odd
or 415263 is primitive. Thus the set of primitive words on [6] consists
of the four words in Proposition 15.

Next, we have to show that any words covering these four words are
not special. The words covering the primitive words 246315, 245136,
415263 are

246315 r 462135,

245136 r 452163,

415263 r 541263,

624135,

524163,

452163,

246351,

246513,

416523,

246513

245631

415632

respectvely. Thses twelve words are non-special, e.g. 462135 -+ 421635
-+-+ 123456, 624135 -+ 641235 -t 164235 -+ 126435 -+ 123645 -+
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123456, 246351 -+ 234651 -+ 234516 -+-+ 123456, 246513 -+ 241653
-+-+ 124536 -+ 123456. The same conclusion holds for the primitive
word 416235 because 416235 = 245163*. Thus any indecomposable
special words on [6] is primitive and Proposition is proved. 0

Proposition 16. S~i,s) = S~p) and it consists of the following twelve
words.

2471365, 3257146, 5217346,

4172365, 3517246, 2461735,

4162735, 4152763,

2451763, 3256174,

3516274

5216374

Proof. Let x = abcdefg be a primitive word on [7]. We first show that
x is one of the twelve words in Proposition according to the position of
the letter 7 in the word x, i.e. 7 E {c, d, e, fl.

(I) c = 7. x =ab7defg -+ abde7fg E sid,s) implies {f,g} = {5,6} or
{a,b,d} = {1,2,3}. If (j,g) = (5,6) then x = ab7de56 -+ abde756 -+
abde567 implies abde E sls) = {2143} so x = 2173456 is decomposable.
Suppose (j, g) = (6,5). (i) If b > d then x = ab7de65 -+ adb7e65 E
S~d,s) implies (a,d) = (2,1) or e = 4. If (a, d) = (2,1) then

x =2b71e65 = 2471365 E S~p) .

If e = 4 then x = ab7d465. Since b > d, x is equal to 2371465, 3172465,
which are odd, or 3271465 -+ 3127465 -+-+ 1234675 -+ 1234567. (ii)
If d > e then x = ab7de65 -+ abe7d65 E S~d,s) implies d = 4 so

x -+ abe7465 -+ abe4675 -+ abe4567 E S~s), which is impossible. (iii) If
b < d < e then (b,d) = (1,2) so

x = a172e65 =4172365 E sip) .

(II) d = 7. x = abc7efg -+ abcef7g E sid,s) implies that g = 6
or (I, g) = (6,5). If (I, g) = (6,5) then x = abc7e65 -+ abce675 -+
abce567 E sis) so abce = 2143 and x = 2147365 is decomposable.
Suppose 9 = 6 and x = abc7ef6. (i) If e > f then x -+ abcf7e6 -+
abcfe67 so abcfe E S~s). Then Proposition 14 shows {a, b} = {I, 2} or
{a,b,c} = {1,2,3} and x = abc··· is decomposable. (ii) If c > e then
x = abc7ef6 -+ abec7f6 -+ abecf67 so abecf E S~s) with e < c. Since

a =F 1 and ab =F 21 we see abecf = 32154 E S~s) by Proposition 14 and

x = 3257146 E sip).
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(iii) Ifc < e < f then 1 E {b,c}. Ifb = 1 thenc = 2 and x = a127ef6 ~
12a7ef6 so a7ef6 E S;8), whcih is impossible by Proposition 14. If

c = 1 then x = ab17ef6 ~ 1ab7ef6. If a = 2 then b7ef6 E S~8),
which is impossible by Proposition 14, so 2 E {b, e}. If b = 2 then
ab7ef6 = a27ef6 with e < f is equal to 327456 (then x = 3217456 is
decomposable) or 427356 (odd), or 527346, from which we obtain

x = 5217346 E sip).

If e = 2 then ab7ef6 = ab72f6 ~ a2b7f6 ~ a2bf67 E S~8) implies
a2bf = 3254, from which

x = 3517246 E sip).

(III) e = 7. x =abed7fg ~ abedfg7 E S~d,8) implies that abedfg E S~8).

If this is decomposable then 9 = 6 and abedf E S~8), which is impossible
by Proposition 14 because x is indecomposable. Hence abedfg E S~i,8).
Then Proposition 15 shows that x is equal to

2461735, 4162735, 2451763, 4152763.

These four words are primitive.
(IV) f = 7 and x = abede7g. If e > 9 then x ~ abedge7 E

S~d,8) so abedge E S~8). If this is decomposable then e = 6 and

abedg E S~B), which is impossible by Proposition 14 because x is
indecomposable. Hence abcdge E S~i,8). Since 9 < e we see from
Proposition 15 that abedge = 246135 or 416235, so x = 2461573 -+
2415673 -+~ 1245367 ~ 1234567 or x = 4162573 ~ 4125673 ~~
1245367 ~ 1234567. Thus we assume e < 9 in what follows, which
imlies 6 E {a, b, c, d} because x is indecompoasble.

(i) a = 6. x = 6bcde7g ~ bc6de7g E S~d,8) so b = 1 or (b, c) =
(2,1). If (b,c) = (2,1) then x = 621de7g ~ 162de7g E S~d,8) so
62de79 E S~i,8), which is impossible by Proposition 15. If b = 1 then

x = 61cde7g ~ lc6de7g so c6de7g E S~8), which is decomposable by
Proposition 15. Then c = 2 and 6de79 E S~8), which is impossible by
Proposition 14.

(ii) b = 6. x = a6cde7g ~ acd6e7g E S~d,8) so (a, c) = (2,1) or
(e, g) = (4,5) since e < g. If (a, c) = (2,1) then x = 261de7g with
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e < g, which is equal to 2615374 -+ 1265374 -+ 1236574 -+ 1236457 -+
1234567 or 2614375 odd or 2614375 -+ 1263475 -+ 1234675 -+ 1234567.
If (e,g) = (4,5) then x = a6cd475 -+ acd6475. Since 6475 is odd we see
acd = 213 or 321 so x = 2613475 -+ 1263475 -+ 1234675 -+ 1234567 or
x = 3621475 -+ 2361475 -+ 2314675 -+ 1234567.

(iii) c = 6. x = ab6de7g -+ abde67g E S~d,s) implies 9 = 5 (since

e < g). Then abde E S~s) = {2143}, which implies x is decomposable.
(iv) d = 6 and x = abc6e7g. If c > e then x -+ abec679 E S~d,s)

so 9 = 5 or (c, g) = (5,4). If 9 = 5 then abec E sis) = {2143},
which imples x is decomposable. If (c, g) = (5,4) then x = ab56e74 -+
abe5674. Since 5674 is odd we see abe = 321 and

x = 3256174 E s~p)

If c < e < 9 then 1 E {b,c}. If b= 1 then x = a1c6e7g with c < e < g,
which is equal to x = 5126374 odd or x = 4126375 -+ 1246375 -+
1234675 -t 1234567. If c = 1 then x = ab16e79 -+ 1ab6e79 E S~s) so
ab6e7g E S~s). If this is decomposable then a = 2 and b6e7g E s~s),

which is impossible by Proposition 14. Hence ab6e7g E S~i,s) with
e < g, which is equal to 356274 or 526374 by Proposition 15, hence

x = 3516274, 5216374,

both of which are primitive. Thus the set S~p) of primitive words on
[7] consists of the twelve words in Proposition 16.

Next we shall show that any word covering these twelve words are
general. The words covering 2471365 are {4721365, 7241365, 2473615,
2476135, 2471653}, each of which is general because

4721365 -t 4217365 -+ 1427365 -+ 1423675 -+-+ 1234567

7241365 -t 7124365 -+ 1274365 -+ 1237465 -+ 1234675 -+ 1234567

2473615 -t 2347615 -+ 2346175 -+ 2314675 -+-+ 1234567

2476135 -t 2417635 -+-+ 1246375 -+ 1234675 -+ 1234567

2471653 -t 2416753 -+-+ 1245673 -t 1245367 -+ 1234567

and the remaining eleven words are shown to be general similarly. 0

For n = 8 we write down the primitive words without proof.
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Proposition 17. s~p) consists of the following 50 words.

24813567, 23518467, 24613857, 24713586, 51627384

41823567, 23618457, 41623857, 41723586, 61427385

32581476, 24518367, 24516837, 24617583, 41527386

35182476, 25618347, 41526837, 41627583, 31627485

52183476, 26138457, 52163874, 41267385, 25617384

31468257, 61238457, 52173846, 24167385, 24517386

41268357, 31628457, 32571846, 23467185, 23617485

23468157, 41528367, 35172846, 31467285, 24613785

24168357, 51628347, 35162874, 61237485, 41623785

41526783, 61428357, 32561874, 26137485, 24516783

and the set of indecomposable special words consists of 150 words.

Lastly we propose a problem; what is the range of the number of
inversions of primitive words, i.e. the set P(n) = {i(x) ; x E S}r)} ?
We see from the results in this section that P(6) = {8}, P(7) = {1O}
and P(8) = {8, 1O}.
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