琉球大学学術リポジトリ

Generic G－linear maps

メタデータ	言語：
	出版者：Department of Mathematical Sciences，Faculty
of Science，University of the Ryukyus	
	公開日：2010－03－04
	キーワード（Ja）：
	キーワード（En）：
	作成者：Maeda，Takashi，前田，高士
	メールアドレス：
	所属：
URL	http：／／hdl．handle．net／20．500．12000／16093

GENERIC G-LINEAR MAPS

Takashi Maeda

Abstract

A short proof is given for the existence of an $\operatorname{SL}(W) \times$ SL(V)-equivariant DG-algebra structure on the Eagon-Northcott complex associated with a linear map $V \rightarrow W^{*}$ over rational numbers, based on the Littlewood-Richardson rule. A generic G-linear map is defined and it is proved that the linear maps defined from the tensor product of three symmetric tensor representations of $\mathrm{GL}(d, \mathbb{Q})$ is generic.

This note consists of two parts. The first part is concerned with DG-algebra structures on finite free complex over a polynomial ring. It was constructed in $[\mathrm{Sr}] \mathrm{DG}$-algebra structures on the minimal free resolutions of cyclic modules R / I over a noether local ring R when I is (i) a power of an ideal generated by a regular sequence (over \mathbb{Z}) and (ii) the ideal of maximal minors of a generic $n \times m$ matrix (over rational numbers \mathbb{Q}). A simple proof for the existence of a DG-algebra structure in the case (i) was given in $[\mathrm{M}]$, assuming that R contains \mathbb{Q}. In this note we investigate a sufficient condition for the existence of a G-equivariant DG-algebra structure on complex with an action of a group G (Lemma 3) and deduce from it a short proof for the existence in the case (ii) above using the Littlewood-Richardson rule.

In the second part we consider the following problem on the tensor product of three representations of a group G all of whose finitedimensional reprentations are completely reducible. We denote by V_{λ}, V_{μ}, \cdots irreducible representaions of G and by $V_{(\lambda)}$ the V_{λ}-isotypic component of a representaion V of G, i.e. $V_{(\lambda)}$ is the image of the canonical map from $V_{\lambda} \otimes \operatorname{Hom}_{G}\left(V_{\lambda}, V\right)$ to V. A G-linear $\operatorname{map} \varphi: V \rightarrow W$ restricts to each isotypic component $: \varphi_{\lambda}=\left.\varphi\right|_{V_{(\lambda)}}: V_{(\lambda)} \rightarrow W_{(\lambda)}$.

[^0]Definition. A G-linear $\operatorname{map} \varphi: V \rightarrow W$ is generic if, for each isotypic component $V_{(\lambda)}$ of V, the restriction φ_{λ} of φ to $V_{(\lambda)}$ is of maximal rank, that is, injective or surjective according to $\operatorname{dim} V_{(\lambda)} \leq \operatorname{dim} W_{(\lambda)}$ or $\operatorname{dim} V_{(\lambda)} \geq \operatorname{dim} W_{(\lambda)}$.

For three representations V, U and W of G let $\varphi_{\lambda}:(V \otimes U)_{(\lambda)} \rightarrow$ $V \otimes U$ and $\phi_{\mu}: U \otimes W \rightarrow(U \otimes W)_{(\mu)}$ be the canonical injection and the canonical projection, respectively, and let us consider the composite map

$$
\begin{equation*}
(V \otimes U)_{(\lambda)} \otimes W \xrightarrow{\varphi_{\lambda} \otimes 1}(V \otimes U) \otimes W \xrightarrow{1 \otimes \phi_{\mu}} V \otimes(U \otimes W)_{(\mu)} \tag{1}
\end{equation*}
$$

In general, (1) is not generic in the sense of Definition; a simple example for a finite group is in Section 4. However, for $G=G L(d, \mathbb{Q})$, the canonical homomorphisms $S_{n+m} \otimes S_{p} \rightarrow S_{n} \otimes S_{m} \otimes S_{p} \rightarrow S_{n} \otimes S_{m+p}$ and $\wedge^{n} \otimes S_{m} \rightarrow \wedge^{n-1} \otimes S_{1} \otimes S_{m} \rightarrow \wedge^{n-1} \otimes S_{m+1}$ are exapmles of generic maps where S_{n} (resp. \wedge^{n}) is the n-th symmetric (resp. exterior) representation of $G L(d, \mathbb{Q})$. In view of this we consider

Problem. Is the composite map (1) generic for $G L(d, \mathbb{Q})$ and for a connected reductive group over a field of characteristic zero?

We may assume that V, U and W are irreducible in the Problem. In this note we show that the above problem is affirmative when V, U and W are symmetric tensor representations of $G L(d, \mathbb{Q})$.

Theorem 1. For five non-negative integers n, m, p, s, t such that $0 \leq$ $s \leq \min (n, m)$ and $0 \leq t \leq \min (m, p)$ the composite map $\varphi_{s, t}$

$$
\begin{equation*}
S_{n+m-s, s} \otimes S_{p} \xrightarrow{\varphi_{s} \otimes 1} S_{n} \otimes S_{m} \otimes S_{p} \xrightarrow{1 \otimes \phi_{t}} S_{n} \otimes S_{m+p-t, t} \tag{2}
\end{equation*}
$$

is generic in the sense of Definition where $S_{n+m-s, s}$ is the irreducible repesentation of $G L(d)$ associatd with the partition $(n+m-s, s)$ of $n+m$.

Theorem means that the restriction of $\varphi_{s, t}$ to each common irreducible submodules of $S_{n+m-s, s} \otimes S_{p}$ and $S_{n} \otimes S_{m+p-t, t}$, which is with multiplicity one by Pieri's formula, is a nonzero scalar multiple. Although this scalar is explicitly expressed in the case $d=3$ (Lemma $5)$ it is not clear whether this scalar is nonzero or not. The outline of the proof of Theorem 1 is as follows. We reduce to the case $d=3$
(the case $d=2$ is included in the case $d=3$) and prove the Theorem by induction on $p-t \geq 0$. The case $p-t=0$ is proved by describing the composite map (2) explicitly (Corollary 6). If $p-t>0$ then $m+p-t>t$ and we note in Lemma 7 that the diagram

$$
\begin{align*}
& \begin{array}{cc}
S_{n+m-s, s} \otimes S_{p} & \xrightarrow{\varphi_{s, t}} \\
\downarrow_{1} & S_{n} \otimes S_{m+p-t, t} \\
\downarrow_{\phi_{2}}
\end{array} \tag{3}\\
& S_{n+m-s, s} \otimes S_{p-1} \otimes S_{1} \xrightarrow{\varphi_{s, t}^{\prime} \otimes 1} S_{n} \otimes S_{m+(p-1)-t, t} \otimes S_{1}
\end{align*}
$$

is commutative where ϕ_{1} and ϕ_{2} are induced from the polarizations $S_{p} \rightarrow S_{p-1} \otimes S_{1}$ and $S_{m+p-t, t} \rightarrow S_{m+p-1-t, t} \otimes S_{1}$. To prove Theorem 1 we have to show that if T and T^{\prime} are common irreducible constituents of $S_{n+m-s, s} \otimes S_{p}$ and $S_{n} \otimes S_{m+p-t, t}$ respectively, then the restriction $\left.\varphi_{s, t}\right|_{T}$ to T is nonzero. We prove in Lemma 9 that if $\varphi_{s, t}: S_{n+m-s, s} \otimes$ $S_{p} \rightarrow S_{n} \otimes S_{m+p-t, t}$ is generic then so is $\varphi_{s, t} \otimes 1: S_{n+m-s, s} \otimes S_{p} \otimes S_{1} \rightarrow$ $S_{n} \otimes S_{m+p-t, t} \otimes S_{1}$. Next we find an isomorphic irreducible submodules U and U^{\prime} of $S_{n+m-s, s} \otimes S_{p-1}$ and $S_{n} \otimes S_{m+p-1-t, t}$ respectively, such that $U \otimes S_{1}$ and $U^{\prime} \otimes S_{1}$ contain an irreducible constituent isomorphic to $T \cong T^{\prime}$. Finally we show in Lemma 10 that the composite map

$$
\begin{equation*}
T \xrightarrow{\phi_{1} \mid T} S_{n+m-s, s} \otimes S_{p-1} \otimes S_{1} \xrightarrow{\pi} U \otimes S_{1} \tag{4}
\end{equation*}
$$

is nonzero where π is the projection. Since $\varphi_{s, t}^{\prime}: S_{n+m-s, s} \otimes S_{p-1} \rightarrow$ $S_{n} \otimes S_{m+(p-1)-t, t}$ is generic by the inductive hypothesis the restriction $\left.\varphi_{s, t}^{\prime}\right|_{U}$ to U is an isomorphism so the composite map

$$
T \xrightarrow{\left.\phi_{1}\right|_{T}} S_{n+m-s, s} \otimes S_{p-1} \otimes S_{1} \xrightarrow{\varphi_{s, t}^{\prime} \otimes 1} S_{n} \otimes S_{m+p-1-t, t} \otimes S_{1}
$$

is nonzero since (4) is nonzero. Thus the commutativity of the diagram (3) implies that the restriction $\left.\varphi_{s, t}\right|_{T}$ to T is nonzero.

The paper is organized as follows. In Section one we review briefly algebra structures on a complex and prove the existence of $\mathrm{SL}(V) \times$ $\mathrm{SL}(W)$-equivariant DG-algebra structure on Eagon-Northcott complex. In Section two we collect identities in invariant theory of GL(3) [GY,p246] which are used in Section three. We give a proof of Theorem 1 in Section three and a counterexample of the Problem for the symmetric group of degree three in Section four. The base field is rational numbers \mathbb{Q}. The irreducible representation of GL (d) associated with a partition $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{d}\right)$ is denoted by $S_{\lambda}=S_{\lambda_{1}, \cdots, \lambda_{d}}$.

1. DG-algebra structures

Let $V=\mathbb{Q}^{n}$ be the vector space of dimension n over \mathbb{Q} and let $R=S_{*} V=\oplus_{d \geq 0} R_{d}$ be the symmetric algebra of V over \mathbb{Q}. For a reductive subgroup G of GL (V) let I be a G-stable ideal of R with a graded R-free resolution of R / I

$$
\mathbb{Y}: \cdots \rightarrow Y_{2} \xrightarrow{d_{2}} Y_{1} \xrightarrow{d_{1}} Y_{0}=R \rightarrow R / I \rightarrow 0
$$

which is we assume G-equivariant. Then the tensor products $\mathbb{Y} \otimes \mathbb{Y}$ and $\mathbb{Y} \otimes \mathbb{Y} \otimes \mathbb{Y}$ are graded R-free complex augmented by R / I with the natural G-actions which are induced from that on \mathbb{Y}. The complex \mathbb{Y} has a DG-algebra structure means that there is a graded homomorphism of complex $\mu: \mathbb{Y} \otimes \mathbb{Y} \rightarrow \mathbb{Y}$ by which \mathbb{Y} becomes a commutative associative DG (differential graded) algebra, i.e.

$$
\begin{aligned}
& \text { (commutativity) } \mu(x \otimes y)=(-1)^{\operatorname{deg} x \cdot \operatorname{deg} y} \cdot \mu(y \otimes x) \\
& \text { (associativity) } \mu(\mu(x \otimes y) \otimes z)=\mu(x \otimes \mu(y \otimes z)) \\
& \text { (Leibniz rule) } d(\mu(x \otimes y))=d x \otimes y+(-1)^{\operatorname{deg} x} \cdot x \otimes d(y)
\end{aligned}
$$

for all homogeneous elements $x, y, z \in \mathbb{Y}$. A DG-algebra structure is said to be G-equivariant if the map μ is so. Koszul complex is a typical example with a DG-algebra structure while there are finite minimal free resolutions of cyclic modules which do not admit a DGalgebra structures [A2,p21]. We first show a Lemma, which follows from the complete reducibility of the reductive group G.
Lemma 2. There is a G-equivariant map of complex $\mu: \mathbb{Y} \otimes \mathbb{Y} \rightarrow \mathbb{Y}$ inducing the identity on $(\mathbb{Y} \otimes \mathbb{Y})_{0}=\mathbb{Y}_{0}=R$.

Proof. We construct $\mu_{r, s}: Y_{r} \otimes Y_{s} \rightarrow Y_{r+s}$ by the induction on the total degree $r+s$. Let $W \otimes R(-m)$ be a direct factor of $Y_{r} \otimes Y_{s}$ with an irreducible G-module W and let us consider the diagram

$$
\begin{aligned}
& W \xrightarrow{\delta_{r+s}}(\mathbb{Y} \otimes \mathbb{Y})_{r+s-1}^{(m)} \xrightarrow{\delta_{r+s-1}}(\mathbb{Y} \otimes \mathbb{Y})_{r+s-2}^{(m)} \\
& \downarrow_{\mu_{r+s-1}} \|_{\mu_{r+s-2}} \\
& Y_{r+s}^{(m)} \xrightarrow{d_{r+s}} Y_{r+s-1}^{(m)} \quad \xrightarrow{d_{r+s-1}} \quad Y_{r+s-2}^{(m)}
\end{aligned}
$$

where $Y_{r+s}^{(m)}$ is the degree m component of the graded R-module Y_{r+s} etc. Assume μ_{i} are constructed for all $i \leq r+s-1$. Then

$$
d_{r+s-1} \circ \mu_{r+s-1} \circ \delta_{r+s}=\mu_{r+s-2} \circ\left(\delta_{r+s-1} \circ \delta_{r+s}\right)=0
$$

so the image of $\mu_{r+s-1} \circ \delta_{r+s}$ is contained in Ker $d_{r+s-1}=$ Image d_{r+s}. Since $d_{r+s}: Y_{r+s}^{(m)} \rightarrow$ Image d_{r+s} is G-split there is a G-homomorphism $\mu_{r, s}: W \rightarrow Y_{r+s}^{(m)}$ with $d_{r+s} \circ \mu_{r, s}$ equal to $\mu_{r+s-1} \circ \delta_{r+s}$.

For the G-equivariant map of complex μ above we set $\xi=\mu \circ(\mu \otimes$ 1) $-\mu \circ(1 \otimes \mu): \mathbb{Y} \otimes \mathbb{Y} \otimes \mathbb{Y} \rightarrow \mathbb{Y}$, which is a G-equivariant map of complex. For $r, s, t \geq 0$ let

$$
\begin{equation*}
Y_{r} \otimes Y_{s} \otimes Y_{t}=\oplus W_{i} \otimes R\left(-m_{i}\right) \quad 1 \leq i \leq k(r, s, t) \tag{5}
\end{equation*}
$$

be the direct sum decomposotion with irreducible G-modules W_{i} and let us consider the diagram

$$
\begin{array}{cc}
W \\
Y_{r+s+t+1}^{(m)} \xrightarrow[d_{r+s+t+1}]{\xi_{r, s, t} \downarrow} Y_{r+s+t}^{(m)} \xrightarrow[d_{r+s+t}]{ } & (\mathbb{Y} \otimes \mathbb{Y} \otimes \mathbb{Y})_{r+s+t-1}^{(m)} \\
\xi_{r+s+t-1} \downarrow
\end{array}
$$

The following Lemma gives a sufficient condition for the map ξ to be zero, which implies that the homomorphism of complex $\mu: \mathbb{Y} \otimes \mathbb{Y} \rightarrow \mathbb{Y}$ defines a multiplication of a G-equivariant DG-algebra structure on the complex \mathbb{Y}.
Lemma 3. If, for all $r, s, t \geq 0$, the homogeneous component $Y_{r+s+t+1}^{\left(m_{i}\right)}$ of degree m_{i} in the $r+s+t+1$-th component $Y_{r+s+t+1}$ of \mathbb{Y}, contains no G-submodules isomorphic to irreducible G-module W_{i} for any $1 \leq$ $i \leq k(r, s, t)$ in (5) then $\xi: \mathbb{Y} \otimes \mathbb{Y} \otimes \mathbb{Y} \rightarrow \mathbb{Y}$ is a zero map.

Proof. We shall show the lemma by the induction on the total degree $r+s+t$. In the diagram above we see $d_{r+s+t} \circ \xi_{r, s, t}=\xi_{r+s+t-1} \circ$ $\delta_{r+s+t}=0$ by the inductive hypothesis $\xi_{r+s+t-1}=0$ so the Image $\xi_{r, s, t}$ is contained in Ker $d_{r+s+t}=$ Image $d_{r+s+t+1}$. The hypothesis of Lemma implies Image $\xi_{r, s, t}=0$ since ξ and d are G-equivariant.

Now we show that the Eagon-Northcott complex satisfies the hypothesis of Lemma 2 so that it has a DG-algebra structure. Let $W=$ \mathbb{Q}^{m} (resp. $V=\mathbb{Q}^{n}$) be the vector space of dimension m (resp. n) over \mathbb{Q} with the dual vector spce W^{*} of W and let $R=S_{*}(W \otimes V)=\oplus_{d \geq 0} S_{d}$ be the polynomial ring of $m n$ variables over \mathbb{Q}. Assume $n>m$ and let $\phi: V=\mathrm{id} \otimes V \subset W^{*} \otimes W \otimes V$ be the canonical homomorphism.

We note that all maps below together with ϕ are $\mathrm{SL}(W) \times \mathrm{SL}(V)$ equivariant. By the isomorphisms $\wedge^{m} W^{*}=\mathbb{Q}$ we see $\wedge^{m} \phi$ induces a map

$$
\wedge^{m} V \rightarrow \wedge^{m} W^{*} \otimes S_{m}(W \otimes V)=S_{m}
$$

hence a map of free R-modules $\wedge^{m} V \otimes R(-m) \rightarrow R$ with the image equal to the ideal I generated by the maximal minors of the generic $n \times m$-matrix. The graded minimal R-free resolution of R / I is given by the Eagon-Northcott complex \mathbb{E} of length $n-m+1[\mathrm{~S}, \mathrm{p} 182]$:

$$
\mathbb{E}: 0 \rightarrow Y_{n-m+1} \xrightarrow{d_{n-m+1}} Y_{n-m} \rightarrow \cdots \rightarrow Y_{2} \xrightarrow{d_{2}} Y_{1} \xrightarrow{d_{1}} Y_{0}=R
$$

$$
\begin{equation*}
\text { where } \quad Y_{k+1}=F_{k} \otimes R(-m-k), \quad F_{k}=S_{k} W \otimes \wedge^{m+k} V \tag{6}
\end{equation*}
$$

The differential $d_{k+1}: Y_{k+1}=F_{k} \otimes R(-m-k) \rightarrow Y_{k}=F_{k-1} \otimes R(-m-$ $k+1$) is induced from the canonical map

$$
D_{k} \otimes \wedge^{m+k} \subset D_{k-1} \otimes W \otimes V \otimes \wedge^{m+k-1}=D_{k-1} \otimes \wedge^{m+k-1} \otimes S_{1}
$$

where we set $D_{k}=S_{k} W$ and $\wedge^{m+k}=\wedge^{m+k} V$. We see from (6) that

$$
\begin{aligned}
Y_{r} \otimes Y_{s} \otimes Y_{t} & =F_{r-1} \otimes F_{s-1} \otimes F_{t-1} \otimes R(-3 m-r-s-t+3) \\
Y_{r+s+t+1}^{(3 m+r+s+t-3)} & =F_{r+s+t} \otimes R(-m-r-s-t)^{(3 m+r+s+t-3)} \\
& =F_{r+s+t} \otimes S_{2 m-3} .
\end{aligned}
$$

For the condition on Lemma 2 we have to show that there are no common $\mathrm{SL}(W) \times \mathrm{SL}(V)$-irreducible components of $F_{r-1} \otimes F_{s-1} \otimes F_{t-1}$ and $F_{r+s+t} \otimes S_{2 m-3}$, where $F_{r-1} \otimes F_{s-1} \otimes F_{t-1}$ is equal to

$$
D_{r-1} \otimes D_{s-1} \otimes D_{t-1} \otimes \wedge^{m+r-1} \otimes \wedge^{m+s-1} \otimes \wedge^{m+t-1}
$$

and $F_{r+s+t} \otimes S_{2 m-3}$ is isomphic to

$$
D_{r+s+t} \otimes \wedge^{m+r+s+t} \otimes \underset{\lambda \vdash 2 m-3}{\oplus}\left(S_{\lambda} W \otimes S_{\lambda} V\right)
$$

by Cauchy's formula [$\mathrm{Mc}, \mathrm{p} 63$] where $S_{\lambda} W$ is the irreducible representation of $\mathrm{GL}(W)$ associated with the partition λ of $2 m-3$. Hence, as $\mathrm{GL}(W)$-modules, $F_{r-1} \otimes F_{s-1} \otimes F_{t-1}$ (resp. $F_{r+s+t} \otimes S_{2 m-3}$) is a direct sum of

$$
\begin{array}{ll}
& D_{r-1} \otimes D_{s-1} \otimes D_{t-1} \tag{7}\\
\text { (resp. } & D_{r+s+t} \otimes S_{\lambda} W \text { for } \lambda \vdash 2 m-3 \text {) }
\end{array}
$$

We denote the GL(W) $=\mathrm{GL}(m)$-irreducible components of (7) by the associated partitions $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{m} \geq 0\right)$. Then we see from the Littlewood-Richardson rule [Mc,p142] that

$$
\begin{equation*}
\lambda_{1}-\lambda_{m} \leq \lambda_{1} \leq(r-1)+(s-1)+(t-1) \tag{8}
\end{equation*}
$$

for all partitions $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{m} \geq 0\right)$ which appear in $D_{r-1} \otimes$ $D_{s-1} \otimes D_{t-1}$ while

$$
\begin{equation*}
\mu_{1}-\mu_{m} \geq(r+s+t)-\mu_{m} \geq r+s+t-2 \tag{9}
\end{equation*}
$$

for all partitions $\mu=\left(\mu_{1} \geq \cdots \geq \mu_{m} \geq 0\right)$ which appear in $D_{r+s+t} \otimes$ $S_{\lambda} W$ with $\lambda \vdash 2 m-3$, because, if $\mu_{m} \geq 3$ then $\mu_{i} \geq \mu_{m} \geq 3$ for all i so $3(m-1) \leq \mu_{2}+\cdots+\mu_{m} \leq|\lambda|=2 m-3$, a contradiction. On the other hand two partitions λ and μ determine the same representation of SL (m) if and only if $\lambda_{i}-\lambda_{i+1}=\mu_{i}-\mu_{i+1}$ for all $1 \leq i \leq m-1$, hence, in particular, $\lambda_{1}-\lambda_{m}=\mu_{1}-\mu_{m}$. Therefore (8) and (9) imply that the two modules (7) have no common SL(W)-components and the hypothiesis of Lemma 2 is satisfied. Thus we conclude that the Eagon-Northcott complex has an $\mathrm{SL}(W) \times \mathrm{SL}(V)$-equivariant DG-algebra structure.

Remark. An $\mathrm{SL}(W) \times \mathrm{SL}(V)$-equivariant multiplication $\mu: \mathbb{E} \otimes \mathbb{E} \rightarrow$ \mathbb{E} is defined as follows [cf.Sr,p184].

$$
\begin{aligned}
\mu_{r+1, s+1}: & Y_{r+1} \otimes Y_{s+1} \rightarrow Y_{r+s+2} \otimes R(-m+1) \\
\mu_{r+1, s+1}: & F_{r} \otimes F_{s} \xrightarrow{1 \otimes \theta} D_{r} \otimes D_{s} \otimes \wedge^{m-1} \otimes \wedge^{m+r+s+1} \stackrel{1 \otimes \wedge^{m-1} \phi}{\rightarrow} \\
& D_{r} \otimes D_{s} \otimes W \otimes S_{m-1} \otimes \wedge^{m+r+s+1} \rightarrow F_{r+s+1} \otimes S_{m-1}
\end{aligned}
$$

Here θ and $\wedge^{m-1} \phi$ are canonical homorphisms (where $\wedge^{k}=\wedge^{k} V$)

$$
\begin{aligned}
\theta: & \wedge^{m+r} \otimes \wedge^{m+s} \rightarrow \wedge^{m-1} \otimes \wedge^{r+1} \otimes \wedge^{m+s} \rightarrow \wedge^{m-1} \otimes \wedge^{m+r+s+1} \\
& \wedge^{m-1} \phi: \wedge^{m-1} \rightarrow \wedge^{m-1} W^{*} \otimes S_{m-1}(W \otimes V)=W \otimes S_{m-1}
\end{aligned}
$$

Any homomorphism of complex $\mu: \mathbb{E} \otimes \mathbb{E} \rightarrow \mathbb{E}$, which is $\mathrm{SL}(W) \times$ SL(V)-equivariant, automatically satifies the associative law by our Lemma 3.

2. GL(3)-linear maps

Let $\left\{x_{1}, x_{2}, x_{3}\right\}$ be a basis of the three-dimensional vector space W with the dual basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ of the dual space W^{*}. We denote by $S_{n} W=S_{n}^{(x)}$ (resp. $\left.S_{n} W^{*}=S_{n, n}^{(u)}\right)$ the representation space of GL(3) with the basis consisting of the monomoials of $\left\{x_{1}, x_{2}, x_{3}\right\}$ (resp. $\left\{u_{1}, u_{2}, u_{3}\right\}$) of degree n, and denote a vector of $S_{n}^{(x)}$ (resp. $S_{n, n}^{(u)}$) by

$$
a_{x}^{n}=\sum_{i+j+k=n}\binom{n}{i j k} a_{i j k} x_{1}^{i} x_{2}^{j} x_{3}^{k}, \quad u_{\alpha}^{n}=\sum_{i+j+k=n}\binom{n}{i j k} \alpha_{i j k} u_{1}^{i} u_{2}^{j} u_{3}^{k}
$$

for scalars $a_{i j k}, \alpha_{p q r}$. The basis of the tensor product $S_{n}^{(x)} \otimes S_{n, n}^{(u)}$ consists of the monomials of $\left\{x_{i}\right\}$ and $\left\{u_{i}\right\}$ of bidegree (n, n) so a vector of $S_{n}^{(x)} \otimes S_{n, n}^{(u)}$ is written by $a_{x}^{n} u_{\alpha}^{n}$. We write $a_{i j k}=a_{i} a_{j} a_{k}$ and $\alpha_{i j k}=$ $\alpha_{i} \alpha_{j} \alpha_{k}$ symbolically, and the symbolic factors

$$
a_{\alpha}=\sum_{i=1}^{3} a_{i} \alpha_{i}, \quad(a x y)=\left|\begin{array}{ccc}
a_{1} & x_{1} & y_{1} \\
a_{2} & x_{2} & y_{2} \\
a_{3} & x_{3} & y_{3}
\end{array}\right|
$$

where $\left\{y_{1}, y_{2}, y_{3}\right\}$ is a basis of W which are transformed in the same way as $\left\{x_{1}, x_{2}, x_{3}\right\}$, and the differential operators

$$
\begin{array}{rr}
\left(y \frac{\partial}{\partial x}\right)=\sum_{i=1}^{3} y_{i} \frac{\partial}{\partial x_{i}}, & \left(\frac{\partial^{2}}{\partial x \partial u}\right)=\sum_{i=1}^{3} \frac{\partial^{2}}{\partial x_{i} \partial u_{i}} \\
\left(\partial_{x} \partial_{y} u\right)=\left|\begin{array}{lll}
\partial / \partial x_{1} & \partial / \partial y_{1} & u_{1} \\
\partial / \partial x_{2} & \partial / \partial y_{2} & u_{2} \\
\partial / \partial x_{3} & \partial / \partial y_{3} & u_{3}
\end{array}\right|, & \left(x y \partial_{u}\right)=\left|\begin{array}{lll}
x_{1} & y_{1} & \partial / \partial u_{1} \\
x_{2} & y_{2} & \partial / \partial u_{2} \\
x_{3} & y_{3} & \partial / \partial u_{3}
\end{array}\right|
\end{array}
$$

which are SL(3)-invariant by definition. The differential operator ($\partial^{2} / \partial x \partial u$) defines the contraction map $S_{n}^{(x)} \otimes S_{m, m}^{(u)} \rightarrow S_{n-1}^{(x)} \otimes S_{m-1, m-1}^{(u)}$, so a vector $a_{x}^{n} u_{\alpha}^{m}$ of $S_{n}^{(x)} \otimes S_{m, m}^{(u)}$ is contained in the irreducible subspace $S_{n+m, m}^{(x, u)}$ if and only if

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x \partial u}\right) a_{x}^{n} u_{\alpha}^{m}=n m \cdot a_{\alpha} a_{x}^{n-1} u_{\alpha}^{m-1}=0 \tag{10}
\end{equation*}
$$

We write $a_{\alpha}=0$ symbolically if (10) holds.

Lemma 4. (i) For $0 \leq s \leq \min (n, m)$ the image of a vector $a_{x}^{n} b_{y}^{m}$ of $S_{n}^{(x)} \otimes S_{m}^{(y)}$ under the projection $S_{n}^{(x)} \otimes S_{m}^{(y)} \rightarrow S_{n+m-s, s}^{(x, u)}$ is given by

$$
\begin{equation*}
\left(u \partial_{x} \partial_{y}\right)^{s}\left\{a_{x}^{n} b_{y}^{m}\right\}_{(y=x)}=(a b u)^{s} a_{x}^{n-s} b_{x}^{m-s} \tag{11}
\end{equation*}
$$

The equality in (11) (and in what follows) means modulo a nonzero scalar multiple when the actual scalar is not important.
(ii) For $0 \leq s \leq \min (n, m)$ the image of a vector $a_{x}^{n+m-2 s} u_{\alpha}^{s}$ of $S_{n+m-s, s}^{(x, u)}$ under the injection $S_{n+m-s, s}^{(x, u)} \rightarrow S_{n}^{(x)} \otimes S_{m}^{(y)}$ is given by

$$
\left(x y \partial_{u}\right)^{s}\left(y \partial_{x}\right)^{m-s}\left\{a_{x}^{n+m-2 s} u_{\alpha}^{s}\right\}=a_{x}^{n-s} a_{y}^{m-s}(x y \alpha)^{s} .
$$

(iii) For a vector $a_{x}^{n-m} u_{\alpha}^{m}\left(\right.$ resp. $\left.b_{y}^{p}\right)$ of $S_{n, m}^{(x, u)}\left(\right.$ resp. $\left.S_{p}^{(y)}\right)$ let

$$
\begin{aligned}
P & =\left(\frac{\partial^{2}}{\partial u \partial y}\right)_{(y=x)}^{t}\left(u \partial_{x} \partial_{y}\right)^{s}\left\{a_{x}^{n-m} u_{\alpha}^{m} \cdot b_{y}^{p}\right\} \\
& =b_{\alpha}^{t} u_{\alpha}^{m-t}(u a b)^{s} a_{x}^{n-m-s} b_{x}^{p-s-t}
\end{aligned}
$$

Then the image of a vector $a_{x}^{n-m} u_{\alpha}^{m} b_{y}^{p}$ of $S_{n, m}^{(x, u)} \otimes S_{p}^{(y)}$ under the projection

$$
\begin{equation*}
\pi: S_{n, m}^{(x, u)} \otimes S_{p}^{(y)} \rightarrow S_{n+(p-s-t), m+s, t}^{(x, u)} \tag{12}
\end{equation*}
$$

where $0 \leq s \leq n-m$ and $0 \leq t \leq m$, is given by

$$
P+\sum_{k \geq 1} \lambda_{k} u_{x}^{k} \cdot b_{\alpha}^{t+k} u_{\alpha}^{m-t-k}(u a b)^{s} a_{x}^{n-m-s} b_{x}^{p-s-t-k}
$$

Here $\lambda_{k} \in \mathbb{Q}$ are determined so as to be annihilated by $\left(\partial^{2} / \partial x \partial u\right)$.
(iv) For a vector $a_{x}^{M} u_{\alpha}^{N}$ of $S_{n+(p-s-t), m+s, t}^{(x, u)}$ with $M=n+(p-s-$ $t)-(m+t)$ and $N=(m+s)-t$ let

$$
\begin{aligned}
Q & =u_{y}^{t}\left(x y \partial_{u}\right)^{s}\left(y \partial_{x}\right)^{p-s-t}\left\{a_{x}^{M} u_{\alpha}^{N}\right\} \\
& =u_{y}^{t} u_{\alpha}^{N-s}(x y \alpha)^{s} a_{x}^{M-(p-s-t)} a_{y}^{p-s-t}
\end{aligned}
$$

Then the image of a vector $a_{x}^{M} u_{\alpha}^{N}$ of $S_{n+(p-s-t), m+s, t}^{(x, u)}$ under the injection

$$
\begin{equation*}
S_{n+(p-s-t), m+s, t}^{(x, u)} \rightarrow S_{n, m}^{(x, u)} \otimes S_{p}^{(y)} \tag{13}
\end{equation*}
$$

where $0 \leq s \leq n-m$ and $0 \leq t \leq m$, is given by

$$
Q+\sum_{k \geq 1} \mu_{k} u_{x}^{k} \cdot u_{y}^{t-k} u_{\alpha}^{N-s}(x y \alpha)^{s} a_{x}^{M-(p-s-t)-k} a_{y}^{p-s-t+k}
$$

Here $\mu_{k} \in \mathbb{Q}$ are determined so as to be annnihilated by $\left(\partial^{2} / \partial x \partial u\right)$.
Proof. (i) follows since (11) is annihilated by ($\partial^{2} / \partial x \partial u$). (ii) By (i) we have to show

$$
\left(u \partial_{x} \partial_{y}\right)_{(y=x)}^{i} a_{x}^{n-s} a_{y}^{m-s}(x y \alpha)^{s}= \begin{cases}\lambda \cdot a_{x}^{n+m-2 s} u_{\alpha}^{s} & \text { if } i=s \\ 0 & \text { otherwise }\end{cases}
$$

for a nonzero $\lambda \in \mathbb{Q}$. This follows from Lemma $5(\mathrm{i})$ since $a_{\alpha}=0$ by the irreducibility of $a_{x}^{n+m-2 s} u_{\alpha}^{s}$. (iii) The projection (12) factors through
$S_{n, m}^{(x, u)} \otimes S_{p}^{(y)} \xrightarrow{\varphi} S_{n+(p-s-t)-(m+s)}^{(x)} \otimes S_{m+s-t, m+s-t}^{(u)} \rightarrow S_{n+(p-s-t), m+s-t}^{(x, u)}$
and φ takes the vector $a_{x}^{n-m} u_{\alpha}^{m} b_{y}^{p}$ to P, which is contained in the subspace $\sum_{k \geq 0} S_{n+(p-s-t)-k, m+s, t+k}^{(x, u)}$ of $S_{n+(p-s-t)-(m+s)}^{(x)} \otimes S_{m+s-t, m+s-t}^{(u)}$. Hence the image $\pi\left(a_{x}^{n-m} u_{\alpha}^{m} b_{y}^{p}\right)$ in $S_{n+(p-s-t), m+s-t}$ is obtained by adding to P a vector which is zero $\bmod u_{x}$ so as to be annihilated by $\left(\partial^{2} / \partial x \partial u\right)$. (iv) The injection (13) factors through

$$
S_{n+(p-s-t), m+s, t}^{(x, u)} \stackrel{\varphi}{\longrightarrow} S_{n-m}^{(x)} \otimes S_{m, m}^{(u)} \otimes S_{p}^{(y)} \rightarrow S_{n, m}^{(x, u)} \otimes S_{p}^{(y)}
$$

and φ takes the vector $a_{x}^{M} u_{\alpha}^{N}$ to Q, which is contained in the $S_{n+(p-s-t), m+s, t}$-isotypic component of $S_{n-m}^{(x)} \otimes S_{m, m}^{(u)} \otimes S_{p}^{(y)}$. Hnece the image of $a_{x}^{M} u_{\alpha}^{N}$ in $S_{n, m}^{(x, u)} \otimes S_{p}^{(y)}$ is obtained by adding to Q a vector which is zero mod u_{x} so as to be annihilated by $\left(\partial^{2} / \partial x \partial u\right)$.
Lemma 5. (i) $\left(u \partial_{x} \partial_{y}\right) a_{x}^{n} b_{y}^{m}(x y \alpha)^{s}$ is equal to

$$
\begin{gather*}
n m a_{x}^{n-1} b_{y}^{m-1}(x y \alpha)^{s-1}+s(n+m+s+1) u_{\alpha} a_{x}^{n} y^{m}(x y \alpha)^{s-1} \tag{14}\\
-s\left(n a_{\alpha} u_{x} b_{y}+m a_{x} u_{y} b_{\alpha}\right) a_{x}^{n-1} b_{y}^{m-1}(\alpha x y)^{s-1}
\end{gather*}
$$

(ii) For $0 \leq k \leq \min (n, m)$

$$
\begin{equation*}
\left(x \partial_{y}\right)^{k} a_{y}^{n} b_{y}^{m}=k!\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i} a_{x}^{i} a_{y}^{n-i} b_{x}^{k-i} b_{y}^{m-k+i} \tag{15}
\end{equation*}
$$

(iii) For $0 \leq s \leq \min (m, n, p, q)$

$$
\begin{gather*}
\quad\left(u \partial_{x} \partial_{y}\right)^{s} a_{x}^{m} b_{x}^{n} a_{y}^{p} b_{y}^{q}=(u a b)^{s} \sum_{t=0}^{s} c_{t} \cdot a_{x}^{m-t} b_{x}^{n-s+t} a_{y}^{p-s+t} b_{y}^{q-t} \tag{16}\\
\text { where } \quad c_{t}=(-1)^{t}\binom{s}{t} \frac{m!}{(m-s+t)!} \frac{q!}{(q-s+t)!} \frac{n!}{(n-t)!} \frac{p!}{(p-t)!}
\end{gather*}
$$

Proof. (i) $\left(u \partial_{x} \partial_{y}\right) a_{x}^{n} b_{y}^{m}(x y \alpha)^{s}$ is equal to

$$
\begin{align*}
& a_{x}^{n}\left\{m\left(u \partial_{x} b\right) b_{y}^{m-1}(x y \alpha)^{s}+b_{y}^{m} s\left(x \widehat{\partial_{x}} \alpha\right)(x y \alpha)^{s-1}\right\} \\
= & -m b_{y}^{m-1}\left(u b \partial_{x}\right) a_{x}^{n}(x y \alpha)^{s}-s b_{y}^{m}\left(u \partial_{x} \widehat{x \alpha}\right) a_{x}^{n}(x y \alpha)^{s-1} \tag{17}
\end{align*}
$$

where $\left(u b \partial_{x}\right) a_{x}^{n}(x y \alpha)^{s}$ is equal to

$$
\begin{align*}
& \quad n(u b a) a_{x}^{n-1}(x y \alpha)^{s}+a_{x}^{n} s(u b \widehat{y \alpha})(x y \alpha)^{s-1} \\
& \tag{18}\\
& =-n(a b u) a_{x}^{n-1}(x y \alpha)^{s}+s a_{x}^{n}\left(u_{y} b_{\alpha}-u_{\alpha} b_{y}\right)(x y \alpha)^{s-1} \tag{19}\\
& \text { and } \quad\left(u \partial_{x} \widehat{x \alpha}\right) a_{x}^{n}(x y \alpha)^{s-1}=\left\{\left(\partial_{x}\right)_{\alpha} u_{x}-u_{\alpha}\left(\partial_{x}\right)_{x}\right\} a_{x}^{n}(x y \alpha)^{s-1}
\end{align*}
$$

Here $\left(\partial_{x}\right)_{\alpha} u_{x} a_{x}^{n}(x y \alpha)^{s-1}=\sum_{i=1}^{3} \alpha_{i} \partial_{x_{i}} u_{x} a_{x}^{n}(x y \alpha)^{s-1}$ is equal to

$$
\begin{align*}
& \alpha_{1}\left\{u_{1} a_{x}(x y \alpha)+u_{x} n a_{1}(x y \alpha)\right\} a_{x}^{n-1}(x y \alpha)^{s-2}+\cdots \\
= & \left(u_{\alpha} a_{x}+n u_{x} a_{\alpha}\right) a_{x}^{n-1}(x y \alpha)^{s-1} \tag{20}
\end{align*}
$$

and $\left(\partial_{x}\right)_{x} a_{x}^{n}(x y \alpha)^{s-1}=\sum_{i=1}^{3} \partial_{x_{i}} x_{i} a_{x}^{n}(x y \alpha)^{s-1}$ is equal to

$$
\begin{align*}
& a_{x}^{n}(x y \alpha)^{s-1}+x_{1}\left\{n a_{1}(x y \alpha)+a_{x}(s-1)(y \alpha)_{23}\right\} a_{x}^{n-1}(x y \alpha)^{s-2}+\cdots \\
= & (3+n+s-1) a_{x}^{n}(x y \alpha)^{s-1} \tag{21}
\end{align*}
$$

Substituting (20) and (21) into (19) and then (18) and (19) into (17) we see that $\left(\partial_{x} \partial_{y}\right) a_{x}^{n} b_{y}^{m}(x y \alpha)^{s}$ is

$$
\begin{aligned}
& -m b_{y}^{m-1}\left\{-n(a b u) a_{x}^{n-1}(x y \alpha)^{s-1}+s\left(u_{y} b_{\alpha}-u_{\alpha} b_{y}\right) a_{x}^{n}(x y \alpha)^{s-1}\right\} \\
& -s b_{y}^{m}\left\{\left(u_{\alpha} a_{x}+n u_{x} a_{\alpha}\right) a_{x}^{n-1}(x y \alpha)^{s-1}-(3+n+s-1) u_{\alpha} a_{x}^{n}(x y \alpha)^{s-1}\right\}
\end{aligned}
$$

which is equal to (14). (ii) When $k=1$ we see

$$
\begin{aligned}
\left(x \partial_{y}\right) a_{y}^{n} b_{y}^{m} & =x_{1}\left(n a_{1} b_{y}+a_{y} m b_{1}\right) a_{y}^{n-1} b_{y}^{m-1}+\cdots \\
& =n a_{x} a_{y}^{n-1} b_{y}^{m}+m a_{y}^{m} b_{x} b_{y}^{m-1}
\end{aligned}
$$

(15) follows from this and the induction on k. (iii) When $s=1$ we see

$$
\begin{aligned}
\left(u \partial_{x} \partial_{y}\right) a_{x}^{m} b_{x}^{n} a_{y}^{p} b_{y}^{q} & =a_{x}^{m} b_{x}^{n}\left(p\left(u \partial_{x} a\right) b_{y}+a_{y}\left(u \partial_{x} b\right)\right) a_{y}^{p-1} b_{y}^{q-1} \\
& =(u a b)\left(-n p a_{x}^{m} b_{x}^{n-1} a_{y}^{p-1} b_{y}^{q}+m q a_{x}^{m-1} b_{x}^{n} a_{y}^{p} b_{y}^{q-1}\right)
\end{aligned}
$$

(16) follows from this and the induction on s.

3. Proof of Theorem 1

First we reduce the proof of Theorem 1 to the case $d=3$. The case $d=2$ follows from the proof in the case $d=3$. If $\left\{x_{1}, \cdots, x_{d}\right\}$ is a standard basis of the $d(\geq 3)$-dimensional vector space V then the monomials of degree n in $\left\{x_{1}, \cdots, x_{d}\right\}$ is a basis of $S_{n}=S y m^{n} V$ on which the action of $\mathrm{GL}(d)$ is indueced from the action on $\left\{x_{1}, \cdots, x_{d}\right\}$. Let $W=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ be the three-dimensional subspace of V generated by $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\mathrm{GL}(3)=\mathrm{GL}(W) \times\left\{i d_{d-3}\right\}$ be the canonical subgroup of $\mathrm{GL}(d)=\mathrm{GL}(V)$. Then the irreducible components of $S_{n} V \otimes S_{m} V \otimes S_{p} V$ are of the forms $S_{i, j, k} V$ by Littlewood-Richardson rule so the decomposition into irreducible components of $\mathrm{GL}(d)$-module $S_{n} V \otimes S_{m} V \otimes S_{p} V$ is exactly the same as that of GL(3)-module $S_{n} W \otimes S_{m} W \otimes S_{p} W$. It follows from this that if $\varphi_{s, t}=\left(1 \otimes \phi_{t}\right) \circ\left(\varphi_{s} \otimes 1\right)$ is generic in the case $d=3$ then so is in general d.

Let ($n, m, p ; s, t ; i, j, k, l$) be nine integers such that

$$
\begin{array}{ll}
0 \leq s \leq \min (n, m), & 0 \leq t \leq \min (m, p) \\
0 \leq i \leq n+m-2 s, & 0 \leq j \leq s, \quad i+j \leq p \tag{23}\\
0 \leq k \leq m+p-2 t, & 0 \leq l \leq t, \quad k+l \leq n
\end{array}
$$

and let

$$
T=S_{(n+m-s)+(p-i-j), s+i, j} \quad T^{\prime}=S_{(m+p-k)+(n-k-l), t+k, l}
$$

be an irreducible component of $S_{n+m-s, s} \otimes S_{p}$ and $S_{n} \otimes S_{m+p-t, t}$ respectively. If we set

$$
\begin{aligned}
M & =(n+m+p)-2(s+i)-j, & & N=(s+i)-j \\
M^{\prime} & =(n+m+p)-2(t+k)-l, & & N^{\prime}=(t+k)-l
\end{aligned}
$$

then there are isomorphisms $T \cong S_{M, N}$ and $T^{\prime} \cong S_{M^{\prime}, N^{\prime}}$ of SL(3)modules. Suppose T and T^{\prime} are isomorphic GL(3)-modules. Then $l=j$ and $t+k=s+i$, i.e.

$$
\begin{equation*}
l=j, \quad k=s+i-t \tag{24}
\end{equation*}
$$

so the ranges of i and j are

$$
\begin{align*}
& \max (0, t-s) \leq i \leq \min (n+m-2 s, m+p-s-t) \tag{25}\\
& 0 \leq j \leq \min (s, t), \quad i+j \leq \min (p, n-s+t)
\end{align*}
$$

Let us consider the compostion of GL(3)-maps.

$$
\begin{equation*}
T \xrightarrow{\varphi_{1}} S_{n+m-s, s}^{(x, u)} \otimes S_{p}^{(z)} \xrightarrow{\varphi_{2}} S_{n}^{(x)} \otimes S_{m}^{(y)} \otimes S_{p}^{(z)} \xrightarrow{\varphi_{3}} S_{n}^{(x)} \otimes S_{m+p-t, t}^{(z, u)} \tag{26}
\end{equation*}
$$

where $\varphi_{1}, \varphi_{2}, \varphi_{3}$ are uniquely determined up to scalar multiples. From Lemma 4(iv) a vector $a_{x}^{M} u_{\alpha}^{N}$ of $S_{(n+m+p)-(s+i+j), s+i, j}$ is transformed under φ_{1} to

$$
\begin{equation*}
\sum_{k \geq 0} \mu_{k} u_{x}^{k} \cdot u_{z}^{j-k} u_{\alpha}^{N-i}(x z \alpha)^{i} a_{x}^{M-(p-i-j)-k} a_{z}^{p-i-j+k} \tag{27}
\end{equation*}
$$

where $\mu_{0}=1$ and $\mu_{k} \in \mathbb{Q}$ are determined so as to be annihilated by $\left(\partial^{2} / \partial x \partial u\right)$. Since $N-i=s-j$ we see $\left(x y \partial_{u}\right)^{s}\left\{u_{x}^{k} u_{z}^{j-k} u_{\alpha}^{N-i}\right\}=0$ for any $k>0$ so (27) is mapped by $\varphi_{2}=\left(y \partial_{x}\right)^{m-s}\left(x y \partial_{u}\right)^{s}$ to

$$
\begin{aligned}
& \left(y \partial_{x}\right)^{m-s}\left\{(x y z)^{j}(x y \alpha)^{N-i}(x z \alpha)^{i} a_{x}^{M-(p-i-j)} a_{z}^{p-i-j}\right\} \\
& =\left(y \partial_{x}\right)^{m-s}\left\{(x z \alpha)^{i} a_{x}^{n+m-2 s-i}\right\}(x y z)^{j}(x y \alpha)^{s-j} a_{z}^{p-i-j}
\end{aligned}
$$

which in turn is transformed under $\varphi_{3}=\left(u \partial_{y} \partial_{z}\right)_{(y=z)}^{t}$ to

$$
\begin{equation*}
u_{x}^{j}\left(u \partial_{y} \partial_{z}\right)_{(y=z)}^{t-j}\left(y \partial_{x}\right)^{m-s}\left\{a_{x}^{n+m-2 s-i}(x z \alpha)^{i}\right\}(x y \alpha)^{s-j} a_{z}^{p-i-j} \tag{28}
\end{equation*}
$$

From Lemma 5(ii) we see

$$
\begin{align*}
&\left(y \partial_{x}\right)^{m-s}\left\{a_{x}^{n+m-2 s-i}(x z \alpha)^{i}\right\} \\
&=(m-s)! \\
& \quad \sum_{k} \lambda_{k} \cdot a_{x}^{(n+m-2 s-i)-(m-s)+k} a_{y}^{(m-s)-k}(x z \alpha)^{i-k}(y z \alpha)^{k} \tag{29}\\
& \text { with } \quad \lambda_{k}=\binom{n+m-2 s-i}{m-s-k}\binom{i}{k}
\end{align*}
$$

Here k 's in the summation run over the range

$$
\begin{equation*}
\max (0, s+i-n) \leq k \leq \operatorname{mini}(m-s, i) \tag{30}
\end{equation*}
$$

Hence (28) divided by $(m-s)$! is equal to

$$
\begin{align*}
& u_{x}^{j}\left(u \partial_{y} \partial_{z}\right)_{(y=z)}^{t-j}\left\{\sum_{k} \lambda_{k} a_{x}^{n-s-i+k} a_{y}^{m-s-k}(x z \alpha)^{i-k}(y z \alpha)^{k}\right\}(x y \alpha)^{s-j} a_{z}^{p-i-j} \\
& =u_{x}^{j} a_{x}^{n-s-i+k} \sum_{k} \lambda_{k}\left(u \partial_{y} \partial_{z}\right)_{(y=z)}^{t-j}\left\{a_{y}^{m-s-k}(x z \alpha)^{i-k}(y z \alpha)^{k}(x y \alpha)^{s-j} a_{z}^{p-i-j}\right\} \\
& =u_{x}^{j} a_{x}^{n-s-i+k} \sum_{k} \lambda_{k} 2^{k} k!u_{\alpha}^{k}\left(u \partial_{y} \partial_{z}\right)_{(y=z)}^{t-j-k}\left\{a_{y}^{m-s-k}(x z \alpha)^{i-k}(x y \alpha)^{s-j} a_{z}^{p-i-j}\right\} \tag{31}
\end{align*}
$$

since $\left(u \partial_{y} \partial_{z}\right)^{t-j}(y z \alpha)^{k}=2^{k} k!u_{\alpha}^{k}\left(u \partial_{y} \partial_{z}\right)^{t-j-k}$. From Lemma 4(iii) we see

$$
\begin{align*}
& \left(u \partial_{y} \partial_{z}\right)^{t-j-k}\left\{a_{y}^{m-s-k}(x z \alpha)^{i-k}(x y \alpha)^{s-j} a_{z}^{p-i-j}\right\} \\
= & (-1)^{(i-k)+(s-j)}\left(u \partial_{y} \partial_{z}\right)^{t-j-k}\left\{a_{y}^{m-s-k}(x \alpha z)^{i-k}(x \alpha y)^{s-j} a_{z}^{p-i-j}\right\} \\
= & (-1)^{i-k+s-j}(u a \widehat{x \alpha})^{t-j-k} \sum_{l} \mu_{k, l} \\
& \times a_{y}^{(m-s-k)-(t-j-k)+l}(x \alpha z)^{(i-k)-(t-j-k)+l}(x \alpha y)^{(s-j)-l} a_{z}^{p-i-j-l} \\
= & (-1)^{t-j-k}(u a \widehat{x \alpha})^{t-j-k} \sum_{l} \mu_{k, l} \tag{32}\\
& \times a_{y}^{m-s-t+j+l}(x z \alpha)^{i-t+j+l}(x \alpha y)^{(s-j)-l} a_{z}^{p-i-j-l}
\end{align*}
$$

Here $(u a \widehat{x \alpha})^{t-j-k}=\left(u_{x} a_{\alpha}-u_{\alpha} a_{x}\right)^{t-j-k}=(-1)^{t+j+k}\left(u_{\alpha} a_{x}\right)^{t-j-k}$ and $\mu_{k, l} \in \mathbb{Q}$ is equal to

$$
\begin{array}{r}
\mu_{k, l}=(-1)^{l}\binom{t-j-k}{l} \frac{(m-s-k)!}{(m-s-t+j+l)!} \frac{(i-k)!}{(i+j-t+l)!} \tag{33}\\
\times \frac{(s-j)!}{(s-j-l)!} \frac{(p-i-j)!}{(p-i-j-l)!}
\end{array}
$$

and l 's in the summation in (32) run over

$$
\begin{equation*}
\max (0, s+t-m-j, t-i-j) \leq l \leq \min (t-j-k, s-j, p-i-j) \tag{34}
\end{equation*}
$$

We set $y=z$ in (32), which becomes equal to

$$
\left(u_{\alpha} a_{x}\right)^{t-j-k} a_{z}^{m+p-s-t-i}(x z \alpha)^{s-t+i} \sum_{l} \mu_{k, l}
$$

Substituting this into (31) we see that the image of $a_{x}^{M} u_{\alpha}^{N}$ under the composition (26) is equal to

$$
\begin{aligned}
& u_{x}^{j} a_{x}^{n-s-i+k} \sum_{k} \lambda_{k} 2^{k} k!u_{\alpha}^{k}\left(u_{\alpha} a_{x}\right)^{t-j-k} a_{z}^{m+p-s-t-i}(x z \alpha)^{s-t+i} \sum_{l} \mu_{k, l} \\
= & \left(\sum_{k} \lambda_{k} 2^{k} k!\sum_{l} \mu_{k, l}\right) u_{x}^{j} u_{\alpha}^{t-j} a_{x}^{n-s+t-i-j} a_{z}^{m+p-s-t-i}(x z \alpha)^{s-t+i}
\end{aligned}
$$

Therefore we have proved
Lemma 5. The restriction of $\varphi_{s, t}$ to $T=S_{(n+m-s)+(p-i-j), s+i, j}$ is an isomorphism if and only if the scalar

$$
\begin{equation*}
\sum_{k} \lambda_{k} 2^{k} k!\sum_{l} \mu_{k, l} \tag{35}
\end{equation*}
$$

is nonzero where λ_{k} and $\mu_{k, l}$ are the rational numbers (29) and (33) with the ranges of k and l given by (30) and (34), respectively.

As a consequence we see
Corollary 6. The restriction of $\varphi_{s, t}$ to T is an isomorphism in the case $t=p$.

Proof. We see $\lambda_{k}>0$ for any k by (29), and l 's satisfying the range (24) consists of one element $l=p-i-j$. In fact, $i-t+j+l \geq 0$ and $p-i-j-l \geq 0$ in (32) implies $l=p-i-j$.

Now we prove Theorem 1 by induction on $p-t \geq 0$. The case $p-t=0$ is Corollary 6 so we assume $p-t>0$ in what follows.

Lemma 7. If $p-t>0$ then the square

$$
\begin{array}{ccc}
S_{n+m-s, s}^{(x, u)} \otimes S_{p}^{(z)} & \xrightarrow{\varphi_{s, t}} & S_{n}^{(x)} \otimes S_{m+p-t, t}^{(z, u)} \\
\downarrow 1 \otimes\left(w \partial_{z}\right) & & \downarrow 1 \otimes\left(w \partial_{z}\right) \tag{36}
\end{array}
$$

is commutative up to scalar multiples.
Proof. We note that $p-t>0$ implies $m+(p-1)-t \geq m \geq t$ by (22) so $S_{m+(p-1)-t, t}$ is contained in $S_{m} \otimes S_{p-1}$. The square (36) is decomposed to

$$
\begin{array}{ccc}
S_{n+m-s, s}^{(x, u)} \otimes S_{p}^{(z)} & \xrightarrow{\varphi_{s} \otimes 1} & S_{n}^{(x)} \otimes S_{m}^{(y)} \otimes S_{p}^{(z)} \\
1 \otimes\left(w \partial_{z}\right) \\
\downarrow
\end{array}
$$

where $\varphi_{s}=\varphi_{s}^{\prime}=\left(x y \partial_{u}\right)^{s}\left(y \partial_{x}\right)^{m-s}$ and $\phi_{t}=\phi_{t}^{\prime}=\left(u \partial_{y} \partial_{z}\right)_{(y=z)}^{t}$ by Lemma 4(i) and (ii). In the square (37) a vector $a_{x}^{n+m-2 s} u_{\alpha}^{s} c_{z}^{p}$ of $S_{n+m-s, s}^{(x, u)} \otimes S_{p}^{(z)}$ is transformed, up to scalar multiples, as

$$
\begin{array}{cl}
a_{x}^{n+m-2 s} u_{\alpha}^{s} c_{z}^{p} & \longrightarrow(x y \alpha)^{s} a_{x}^{n-s} a_{y}^{m-s} c_{z}^{p} \\
\downarrow & \downarrow \\
a_{x}^{n+m-2 s} u_{\alpha}^{s} c_{z}^{p-1} c_{w} \longrightarrow(x y \alpha)^{s} a_{x}^{n-s} a_{y}^{m-s} c_{z}^{p-1} c_{w}
\end{array}
$$

In the square (38) a vector $a_{x}^{n} b_{x}-m c_{z}^{p}$ of $S_{n}^{(x)} \otimes S_{m}^{(y)} \otimes S_{p}^{(z)}$ is transformed to

Let $\varphi: V \rightarrow W$ is a G-linear map with $K=\operatorname{Ker} \varphi$ and $C=\operatorname{Cok} \varphi$.

Lemma 8. Suppose $K \otimes S$ and $C \otimes S$ has no common irreducible components for a G-module S and $\varphi: V \rightarrow W$ is generic (see the Definition in Introduction). Then $\varphi \otimes 1: V \otimes S \rightarrow W \otimes S$ is genric.
Proof. Write $V=K \oplus L$ and $W=L^{\prime} \oplus C$ with an isomorphism $\varphi: L \rightarrow$ L^{\prime}. Let $(V \otimes S)_{(\lambda)}$ be an isotypic component of $V \otimes S$. If $(K \otimes S)_{(\lambda)}$ is nonzero then $(C \otimes S)_{(\lambda)}=0$ by the hypothesis, so $(\varphi \otimes 1)_{(\lambda)}:(V \otimes$ $S)_{(\lambda)} \rightarrow(W \otimes S)_{(\lambda)}=\left(L^{\prime} \otimes S\right)_{(\lambda)}$ is surjective. If $(K \otimes S)_{(\lambda)}=0$ then $(\varphi \otimes 1)_{(\lambda)}:(V \otimes S)_{(\lambda)}=(L \otimes S)_{(\lambda)} \rightarrow(W \otimes S)_{(\lambda)}$ is injective.

We apply Lemma 8 to $\varphi_{s, t}: S_{n+m-s, s} \otimes S_{p} \rightarrow S_{n} \otimes S_{m+p-t, t}$ and $S=S_{1}$.
Lemma 9. If $\varphi_{s, t}$ above is generic then so is $\varphi_{s, t} \otimes 1: S_{n+m-s, s} \otimes S_{p} \otimes$ $S_{1} \rightarrow S_{n} \otimes S_{m+p-t, t} \otimes S_{1}$.
Proof. We shall show that for any irreducible component

$$
U=S_{(n+m-s)+(p-i-j), s+i, j} \quad\left(\text { resp. } U^{\prime}=S_{(m+p-t)+(n-k-l), t+k, l}\right)
$$

of $\operatorname{Ker} \varphi$ (resp. $\operatorname{Cok} \varphi), U \otimes S_{1}$ and $U^{\prime} \otimes S_{1}$ has no isomorphic irreducible components. For, suppose $U \otimes S_{1}$ and $U^{\prime} \otimes S_{1}$ has a common irreducible component Z. Then Z is obtained by adjoining one box to the e_{1}-th row of U and to the e_{2}-th row of U^{\prime} for distinct integers e_{1} and e_{2} with $1 \leq e_{1}, e_{2} \leq 3$.
(i) $\left(e_{1}, e_{2}\right)=(1,2)$. Then $Z=S_{(n+m-s)+(p-i-j)+1, s+i, j}=$ $S_{(m+p-t)+(n-k-l), t+k+1, l}$. If $i>0$ then $V=S_{n+m-s, s} \otimes S_{p}$ contains

$$
S_{(n+m-s)+(p-i-j)+1, s+i-1, j}=S_{(m+p-t)+(n-k-l), t+k, l}=U^{\prime}
$$

since $\varphi_{s, t}$ is genric. A contradiction to $U^{\prime} \subset \operatorname{Cok} \varphi$. Similarly, if $n-$ $k-l>0$ then $W=S_{n} \otimes S_{m+p-t, t}$ contains

$$
S_{(m+p-t)+(n-k-l)-1, t+k+1, l}=S_{(n+m-s)+(p-i-j), s+i, j}=U
$$

A contradiction to $U \subset \operatorname{Ker} \varphi$. If $i=n-k-l=0$ then $Z=$ $S_{(n+m-s)+(p-j)+1, s, j}=S_{m+p-t, t+k+1, l}$. Then $t \geq l$ implies $s=t+$ $k+1=t+(n-l)+1>n$, which contradicts (22).
(ii) $\left(e_{1}, e_{2}\right)=(1,3)$. Then $Z=S_{(n+m-s)+(p-i-j)+1, s+i, j}=$ $S_{(m+p-t)+(n-k-l), t+k, l+1}$. Hence $j=l+1 \geq 1$ and $V=S_{n} \otimes S_{m+p-t, t}$ contains $S_{(n+m-s)+(p-i-j)+1, s+i, j-1}=S_{(m+p-t)+(n-k-l), t+k, l}=U^{\prime}$.
(iii) $\left(e_{1}, e_{2}\right)=(2,3)$. Then $Z=S_{(n+m-s)+(p-i-j), s+i+1, j}=$ $S_{(m+p-t)+(n-k-l), t+k, l+1}$. Hence $j=l+1 \geq 1$ and $V=S_{n} \otimes S_{m+p-t, t}$ contains $S_{(n+m-s)+(p-i-j), s+i+1, j-1}=S_{(m+p-t)+(n-k-l), t+k, l}=U^{\prime}$.

The cases $\left(e_{1}, e_{2}\right)=(2,1),(3,1),(3,2)$ are similarly proved.

By induction on $p-t$ we assume $\varphi_{s, t}^{\prime}: S_{n+m-s, s} \otimes S_{p-1} \rightarrow S_{n} \otimes$ $S_{m+(p-1)-t, t}$ is generic. Then $\varphi_{s, t}^{\prime} \otimes 1$ is generic by Lemma 9 . To prove Theorem 1 we have to show that if $T=S_{(n+m-s)+(p-i-j), s+i, j}$ (resp. $T^{\prime}=S_{m+p-t+(n+k+l), t+k, l)}$ is an irreducible component of $S_{n+m-s, s} \otimes$ S_{p} (resp. $S_{n} \otimes S_{m+p-t, t}$) and if T is isomorphic to T^{\prime} as GL(3)-module then $\left.\varphi_{s, t}\right|_{T}: T \rightarrow T^{\prime}$ is an isomorphism, i.e. nonzero. Let

$$
\begin{array}{ll}
U_{1}=S_{n+m-s+(p-i-j)-1, s+i, j} & \text { if } p-i-j>0 \\
U_{2}=S_{n+m-s+(p-i-j), s+i-1, j} & \text { if } i>0 \tag{39}\\
U_{3}=S_{n+m-s+(p-i-j), s+i, j-1} & \text { if } j>0
\end{array}
$$

be irreducible submodules of $S_{n+m-s, s} \otimes S_{p-1}$, and let

$$
\begin{array}{ll}
U_{1}^{\prime}=S_{m+p-t+(n-k-l)-1, t+k, l} & \text { if } m+p-t>t+k \\
U_{2}^{\prime}=S_{m+p-t+(n-k-l), t+k-1, l} & \text { if } k>0 \\
U_{3}^{\prime}=S_{m+p-t+(n-k-l), t+k, l-1} & \text { if } l>0
\end{array}
$$

be irreducible submodules of $S_{n} \otimes S_{m+(p-1)-t, t}$. Then the T-isotypic (resp. T^{\prime}-isotypic) component of $S_{n+m-s, s} \otimes S_{p-1} \otimes S_{1}$ (resp. $S_{n} \otimes$ $\left.S_{m+(p-1)-t, t} \otimes S_{1}\right)$ is contained in $\left(U_{1} \oplus U_{2} \oplus U_{3}\right) \otimes S_{1}$ (resp. $\left(U_{1}^{\prime} \oplus\right.$ $\left.U_{2}^{\prime} \oplus U_{3}^{\prime}\right) \otimes S_{1}$) and the multiplicity is at most three. We denote by

$$
T_{r} \subset U_{r} \otimes S_{1}, \quad T_{r}^{\prime} \subset U_{r}^{\prime} \otimes S_{1} \quad r=1,2,3
$$

the submodule isomorphic to $T \cong T^{\prime}$. The square (36) is commutative by Lemma 7 so $\left.\varphi_{s, t}\right|_{T}: T \rightarrow T^{\prime}$ factors through

$$
T \subset \oplus_{r=1}^{3} T_{r} \subset \oplus_{r=1}^{3} U_{r} \otimes S_{1} \xrightarrow{\varphi_{s, t}^{\prime} \otimes 1} \oplus_{r=1}^{3} U_{r}^{\prime} \otimes S_{1}
$$

where the left-most inclusion is induced from $1 \otimes\left(w \partial_{z}\right)$. On the other hand $\varphi_{s, t}^{\prime}$ is generic by the inductive hypothesis, hence, if both U_{r} and U_{r}^{\prime} appear for some common $1 \leq r \leq 3$ then $\varphi_{s, t}^{\prime}: U_{r} \cong U_{r}^{\prime}$ is an ismorphism and we have the composite of the injections

$$
T_{r} \subset U_{r} \otimes S_{1} \cong U_{r}^{\prime} \otimes S_{1} \subset S_{n} \otimes S_{m+p-1-t, t} \otimes S_{1}
$$

Therefore, in order to complete the proof of Theorem 1 we have only to show

$$
\begin{equation*}
T \subset \oplus_{r=1}^{3} T_{i} \rightarrow T_{r} \tag{40}
\end{equation*}
$$

where π_{i} is the projection, is nonzero. We prove this in Lemma 10 below. As to the existence of U_{r} and U_{r}^{\prime} for some common $1 \leq r \leq 3$ we see
(I) If $p-i-j>0$ and $m+p-t>t+k$ then U_{1} and U_{1}^{\prime} exist.
(II) If $i>0$ and $k=s-t+i>0$ then U_{2} and U_{2}^{\prime} exist.
(III) If $j=l>0$ then U_{3} and U_{3}^{\prime} exist.

All the cases when (i, j) satisfying none of (I), (II), (III) are reduced to $t=p$, the initial hypothesis of the induction :
(i) $p-i-j=k=j=0$. Then $i=t-s$ by (24), so $0=p-i-j=$ $p-(t-s)=(p-t)+s$ hence $t=p$ since $p-t \geq 0$ and $s \geq 0$ by (22).
(ii) $p-i-j=i=j=0$. Then $p=0=t$.
(iii) $(m+p-t)-(t+k)=i=j=0$. Then $k=s-t$ by (24) so $m+p=2 t+k=t+s$. Since $s \leq m$ and $t \leq p$ we see $t=p$.
(iv) $(m+p-t)-(t+k)=k=j=0$. Then $0=m+p-2 t=$ $(m-t)+(p-t)$ so $t=p$ since $t \leq \min (m, p)$ by (22).

Now we shall show that (40) is nonzero. We assume $p-i-j>0$, $i>0$ and $j>0$ and denote by

$$
\begin{aligned}
& T \xrightarrow{\varphi} S_{n+m-s, s}^{(x, u)} \otimes S_{p}^{(z)} \xrightarrow{\phi} S_{n+m-s, s}^{(x, u)} \otimes S_{p-1}^{(z)} \otimes S_{1}^{(w)} \\
& T \xrightarrow{\varphi_{r}} U_{r} \otimes S_{1}^{(w)} \xrightarrow{\phi_{r}} S_{n+m-s, s}^{(x, u)} \otimes S_{p-1}^{(z)} \otimes S_{1}^{(w)} \quad r=1,2,3
\end{aligned}
$$

where φ and φ_{r} are induced from $1 \otimes\left(w \partial_{z}\right)$ and U_{r} is the submodule of $S_{n+m-s, s} \otimes S_{p-1}$ defined in (39). The multiplicity of T in $S_{n+m-s, s} \otimes S_{p}$ is equal to three so the composite map $\phi \circ \varphi$ is expressed by a linear combination of $\phi_{r} \circ \varphi_{r}$ for $r=1,2,3$:

$$
\phi \circ \varphi=\lambda_{1} \phi_{1} \circ \varphi_{1}+\lambda_{2} \phi_{2} \circ \varphi_{2}+\lambda_{3} \phi_{3} \circ \varphi_{3}
$$

All of $\varphi, \varphi_{i}, \phi, \phi_{i}$ are determined up to nonzero scalar multiples so it is well-determined whether each of $\lambda_{1}, \lambda_{2}, \lambda_{3}$ is zero or not.

Lemma 10. All of $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are nonzero.
Proof. By using Lemma 4(iv) we calculate the image of a vector $a_{x}^{M} u_{\alpha}^{N}$ of $T=S_{(n+m-s)+(p+1-i-j), s+i, j}^{(x, u)}$ by mod u_{x} and modulo scalars. We note that $p-i-j>0($ resp. $i>0)$ implies $M>0$ (resp. $N>0$). For simplicity we denote by $L=p-i-j$.
(0) $a_{x}^{M} u_{\alpha}^{N}$ is transformed under $\varphi \bmod u_{x}$ to

$$
u_{z}^{j}\left(x z \partial_{u}\right)^{i}\left(z \partial_{x}\right)^{L}\left\{a_{x}^{M} u_{\alpha}^{N}\right\} \equiv u_{z}^{j} u_{\alpha}^{N-i}(x z \alpha)^{i} a_{x}^{M-L} a_{z}^{L}
$$

which is mapped by $\phi=\left(w \partial_{z}\right)$ to

$$
\begin{aligned}
& u_{z}^{j-1} u_{\alpha}^{N-i}(x z \alpha)^{i-1} a_{x}^{M-L} a_{z}^{L-1} \\
\times & \left\{j \cdot u_{w}(x z \alpha) a_{z}+i \cdot u_{z}(x w \alpha) a_{z}+L \cdot u_{z}(x z \alpha) a_{w}\right\}
\end{aligned}
$$

(i) $\varphi_{1}\left(a_{x}^{M} u_{\alpha}^{N}\right)=\left(w \partial_{x}\right) a_{x}^{M} u_{\alpha}^{N} \equiv u_{\alpha}^{N} a_{x}^{M-1} a_{w}$ is transformed under $\phi_{1} \equiv$ $u_{z}^{j}\left(x z \partial_{u}\right)^{i}\left(z \partial_{x}\right)^{L-1} \bmod u_{x}$ to

$$
u_{z}^{j} u_{\alpha}^{N-i}(x z \alpha)^{i} a_{x}^{(M-1)-(L-1)} a_{z}^{L-1} a_{w}
$$

(ii) $\varphi_{2}\left(a_{x}^{M} u_{\alpha}^{N}\right)=\left(x w \partial_{u}\right) a_{x}^{M} u_{\alpha}^{N} \equiv u_{\alpha}^{N-1}(x w \alpha) a_{x}^{M}$ is transformed under $\phi_{2} \equiv u_{z}^{j}\left(x z \partial_{u}\right)^{i-1}\left(z \partial_{x}\right)^{L} \bmod u_{x}$ to

$$
u_{z}^{j} u_{\alpha}^{N-i}(x z \alpha)^{i-1} a_{x}^{M-L} a_{z}^{L-1}\left\{(M-L+1)(x w \alpha) a_{z}+L(z w \alpha) a_{x}\right\}
$$

(iii) $\varphi_{3}\left(a_{x}^{M} u_{\alpha}^{N}\right)=u_{w} u_{\alpha}^{N} a_{x}^{M}+\cdots$, which have to be annihilated by $\left(\partial^{2} / \partial x \partial u\right)$ so that

$$
\begin{align*}
& \varphi_{3}\left(a_{x}^{M} u_{\alpha}^{N}\right)=u_{w} u_{\alpha}^{N} a_{x}^{M}+\mu_{1} u_{x} \cdot u_{\alpha}^{N} a_{x}^{M-1} a_{w} \tag{41}\\
& \text { with } \quad \mu_{1}=-M /(3+(M-1)+N) \tag{42}
\end{align*}
$$

Here we used the irreducibility condition $a_{\alpha}=0$ in (10). (41) is transformed by $\phi_{3}=u_{z}^{j-1}\left(x z \partial_{u}\right)^{i}\left(z \partial_{x}\right)^{L} \bmod u_{x}$ to

$$
\begin{aligned}
& u_{z}^{j-1} u_{\alpha}^{N-i}(x z \alpha)^{i-1} a_{x}^{M-L} a_{z}^{L-1} \\
\times & M a_{z}\left\{i(x z w) u_{\alpha}+(N-i+1) u_{w}(x z \alpha)\right\}+\mu_{1} L(N-i+1) a_{w} u_{z}(x z \alpha)
\end{aligned}
$$

Dividing by $u_{z}^{j-1} u_{\alpha}^{N-i}(x z \alpha)^{i-1} a_{x}^{M-L} a_{z}^{L-1}$ we set

$$
\begin{aligned}
f & =j \cdot u_{y}(x z \alpha) a_{z}+i \cdot u_{z}(x w \alpha) a_{z}+L \cdot u_{x}(x z \alpha) a_{w} \\
f_{1} & =u_{z}(x z \alpha) a_{w} \\
f_{2} & =(M-L+1) \cdot u_{z}(x w \alpha) a_{z}+L \cdot u_{z}(z w \alpha) a_{x} \\
f_{3} & =(N-i+1) \cdot u_{w}(x z \alpha) a_{z}+i \cdot u_{\alpha}(x z w) a_{z}-\mu_{2} L \cdot u_{z}(x z y) a_{w}
\end{aligned}
$$

with $\mu_{2}=(N-i+1) /(M+N+2)$. Substituting the relations

$$
\begin{aligned}
u_{z}(z w \alpha) a_{x} & =u_{z}(x w \alpha) a_{z}+u_{w}(z x \alpha) a_{y}+u_{z}(z w x) a_{\alpha} \\
& =u_{z}(x w \alpha) a_{z}-\phi_{1} \quad \text { since } a_{\alpha}=0,
\end{aligned}
$$

$$
\text { and } \quad u_{\alpha}(x z w) a_{z}=u_{x}(\alpha z w) a_{z}+u_{z}(x \alpha w) a_{z}+u_{w}(x z \alpha) a_{z}
$$

into f_{2} and f_{3} we obtain

$$
\begin{aligned}
& f_{2}=(M+1) \cdot u_{z}(x w \alpha) a_{z}-L \cdot \phi_{1} \\
& f_{3}=(N+1) \cdot u_{w}(x z \alpha) a_{z}-i \cdot u_{z}(x w \alpha) a_{z}-\mu_{2} L \cdot u_{z}(x z y) a_{w}
\end{aligned}
$$

Hence we see

$$
\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-L & M+1 & 0 \\
-\mu_{2} L & -i & N+1
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
u_{z}(x w \alpha) a_{z} \\
u_{w}(x z \alpha) a_{z}
\end{array}\right)
$$

If we set $f=\lambda_{1} f_{1}+\lambda_{2} f_{2}+\lambda_{3} f_{3}$ then

$$
\left(\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-L & M+1 & 0 \\
-\mu_{2} L & -i & N+1
\end{array}\right)=\left(\begin{array}{lll}
L & i & j
\end{array}\right)
$$

from which

$$
\begin{aligned}
& \lambda_{1}=L\left(1+\frac{i}{M+1}+\mu_{2} \frac{j}{N+1}\right) \\
& \lambda_{2}=\frac{i}{M+1}\left(1+\frac{j}{N+1}\right), \quad \lambda_{3}=\frac{j}{N+1}
\end{aligned}
$$

We note $M, N>0$ and $\mu_{2}>0$ since $N-i=s-j \geq 0$. Hence, if $L=p-i-j, i, j>0$ then $\lambda_{1}, \lambda_{2}, \lambda_{3}$ is positive.

We see from the above proof that if one of L, i, j is nonzero then the corresponding λ_{r} is positive. Thus the composite map $T \rightarrow T_{r}$ in (40) is nonzero if $U_{r} \otimes S_{1}$ has a component isomorphic to T. This means that the restriction $\left.\varphi_{s, t}\right|_{T}$ is nonzero for any common component T of $S_{n+m-s, s} \otimes S_{p}$ and $S_{n} \otimes S_{m+p-t, t}$ and the proof of Theorem 1 is now complete.

4. An example

Let $G=S_{3}$ be the symmetric group of degree three, which has three irreducible representations : the trivial representation ϵ, the alternating repesentation χ, and the two dimensional representation $V=V_{\rho}$. Here $V=V_{\rho}$ is defined by

$$
\begin{align*}
& \sigma\binom{x}{y}=\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right)\binom{x}{y}=\binom{-y}{x-y} \tag{43}\\
& \tau\binom{x}{y}=\left(\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right)\binom{x}{y}=\binom{x-y}{-y}
\end{align*}
$$

for a basis $\{x, y\}$ of V, and the generators $\{\sigma, \tau\}$ of S_{3} with the relations $\sigma^{3}=\tau^{2}=(\sigma \tau)^{2}=1$. We shall show in this section that the canonical map

$$
\begin{equation*}
V \otimes(V \otimes V)_{(\rho)} \rightarrow V \otimes V \otimes V \rightarrow(V \otimes V)_{(\rho)} \otimes V \tag{44}
\end{equation*}
$$

is not a generic map. Since $V \otimes V \cong V_{\epsilon}+V_{\chi}+V_{\rho}$ we see

$$
\begin{align*}
& \{(V \otimes V) \otimes V\}_{(\rho)} \cong V_{\epsilon} \otimes V+V_{\chi} \otimes V+(V \otimes V)_{(\rho)} \tag{45}\\
& \{V \otimes(V \otimes V)\}_{(\rho)} \cong V \otimes V_{\epsilon}+V \otimes V_{\chi}+(V \otimes V)_{(\rho)} \tag{46}
\end{align*}
$$

Let $\{a, b\},\{x, y\}$ and $\{\xi, \eta\}$ be the three set of the basis of $V=V_{\rho}$ which are transformed by σ and τ in the same way as (43). If we set

$$
{ }^{t}\left(z_{1} z_{2} z_{3} z_{4}\right)=A \cdot{ }^{t}(\text { ax by ay bx}), \quad A=\left(\begin{array}{cccc}
2 & 2 & -1 & -1 \tag{47}\\
0 & 0 & 1 & -1 \\
1 & 0 & -1 & -1 \\
0 & 1 & -1 & -1
\end{array}\right)
$$

then we see from (43) that

$$
\begin{array}{cc}
\sigma\left(z_{1} \cdots z_{4}\right)=\left(z_{1} \cdots z_{4}\right) \cdot B, & \tau\left(z_{1} \cdots z_{4}\right)=\left(z_{1} \cdots z_{4}\right) \cdot C \\
B=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & -1
\end{array}\right), & C=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & -1
\end{array}\right)
\end{array}
$$

so z_{1} (resp. z_{2}) is a basis of V_{ϵ} (resp. V_{χ}) and $\left\{z_{3}, z_{4}\right\}$ is a basis of $(V \otimes V)_{(\rho)}$. Hence, in the decomposition (45)

$$
\binom{f_{1}}{f_{2}}=\binom{z_{1} \xi}{z_{1} \eta}=\binom{\{2(a x+b y)-(a y+b x)\} \xi}{\{2(a x+b y)-(a y+b x)\} \eta}
$$

is a basis of $\left\{(V \otimes V)_{(\epsilon)} \otimes V\right\}_{(\rho)}$,

$$
\binom{f_{3}}{f_{4}}=\binom{z_{2} \xi}{z_{2} \eta}=\binom{(a y-b x) \xi}{(a y-b x) \eta}
$$

is a basis of $\left\{(V \otimes V)_{(x)} \otimes V\right\}_{(\rho)}$, and

$$
\binom{f_{5}}{f_{6}}=\binom{z_{3} \xi-\left(z_{3} \eta+z_{4} \xi\right)}{z_{4} \eta-\left(z_{3} \eta+z_{4} \xi\right)}=\binom{(a x-b y) \xi-\{a(x-y)-b x\} \eta}{\{a y+b(x-y)\} \xi-(a x-b y) \eta}
$$

is a basis of $\left\{(V \otimes V)_{(\rho)} \otimes V\right\}_{(\rho)}$. Similarly, if we set

$$
{ }^{t}\left(w_{1} \cdots w_{4}\right)=A \cdot{ }^{t}(x \xi y \eta x \eta y \xi)
$$

using A in (47) then w_{1} (resp. w_{2}) is a basis of V_{ϵ} (resp. V_{χ}) and $\left\{z_{3}, z_{4}\right\}$ is a basis of $(V \otimes V)_{(\rho)}$. In the decomposition (45)

$$
\binom{g_{1}}{g_{2}}=\binom{a w_{1}}{b w_{1}}=\binom{a\{2(x \xi+y \eta)-(x \eta+y \xi)\}}{b\{2(x \xi+y \eta)-(x \eta+y \xi)\}}
$$

is a basis of $\left\{V \otimes(V \otimes V)_{(\epsilon)}\right\}_{(\rho)}$,

$$
\binom{g_{3}}{g_{4}}=\binom{a w_{2}}{b w_{2}}=\binom{a(x \eta-y \xi)}{b(x \eta-y \xi)}
$$

is a basis of $\left\{V \otimes(V \otimes V)_{(x)}\right\}_{(\rho)}$, and
$\binom{g_{5}}{g_{6}}=\binom{a w_{3}-\left(a w_{4}+b w_{3}\right)}{b w_{4}-\left(a w_{4}+b w_{3}\right)}=\binom{a(x \xi-y \eta)-b\{(x-y) \xi-x \eta\}}{a\{y \xi+(x-y) \eta\}-b(x \xi-y \eta)}$
is a basis of $\left\{V \otimes(V \otimes V)_{(\rho)}\right\}_{(\rho)}$. Putting all this together we obtain

$$
\begin{aligned}
& { }^{t}\left(f_{1} \cdots f_{6}\right)=X^{\cdot t}(a x \xi \text { axp ayk ay } \quad b x \xi \text { bx } \quad \text { by } \xi \text { by } \eta)
\end{aligned}
$$

where X and Y are 6×8 matrices given by

$$
\begin{aligned}
& X=\left(\begin{array}{cccccccc}
2 & 0 & -1 & 0 & -1 & 0 & 2 & 0 \\
0 & 2 & 0 & -1 & 0 & -1 & 0 & 2 \\
0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\
1 & -1 & 0 & 1 & 0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 & 1 & 0 & -1 & 1
\end{array}\right) \\
& Y=\left(\begin{array}{cccccccc}
2 & -1 & -1 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & -1 & -1 & 2 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
1 & 0 & 0 & -1 & -1 & 1 & 1 & 0 \\
0 & 1 & 1 & -1 & -1 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Then we see ${ }^{t}\left(2 f_{1} 2 f_{2} 6 f_{3} 6 f_{4} 2 f_{5} 2 f_{6}\right)=Z \cdot{ }^{t}\left(g_{1} \cdots g_{6}\right)$ with the 6×6 matrix Z equal to

$$
Z=\left(\begin{array}{cccccc}
1 & 0 & 1 & -2 & 2 & 0 \\
0 & 1 & 2 & -1 & 0 & 2 \\
1 & -2 & -3 & 0 & -2 & 4 \\
2 & -1 & 0 & -3 & -4 & 2 \\
1 & 0 & -1 & 2 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 0
\end{array}\right)
$$

Thus the basis $\left\{f_{5}, f_{6}\right\}$ of $\left\{V \otimes(V \otimes V)_{(\rho)}\right\}_{(\rho)}$ is contained in the subspace $\left\langle g_{1}, \cdots, g_{4}\right\rangle=\left\{V \otimes(V \otimes V)_{(\epsilon)}\right\}_{(\rho)}+\left\{V \otimes(V \otimes V)_{(\chi)}\right\}_{(\rho)}$ and the restriction of (44) to the V_{ρ}-isotypic component is a zero map.

Remark. The projection $P_{\lambda}: V \rightarrow V_{(\lambda)} \subset V$ to the V_{λ}-isotypic component $V_{(\lambda)}$ is expressed using the character χ_{λ} of $V_{\lambda}[\mathrm{S}, \mathrm{p} 34]$:

$$
P_{\lambda}=\frac{\operatorname{dim} V_{\lambda}}{|G|} \cdot \sum_{g \in G} \bar{\chi}_{\lambda}(g) \rho(g)
$$

References

[A1] L. Avramov, Problems on infinite free resolutions, Free resolutions in commutative algebra and algebraic geometry; Sundance 1990 (D. Eisenbud, C. Hunecke, eds.), Res. Notes Math. 2 (1992), Jones and Bartlett, 3-25.
[A2] L. Avramov, Infinite free resolutions, Six lectures on commutative algebra, Progress in Math. 166 (1991), Birkhäuser, 1-118.
[GY] J. H. Grace, A. Young, The Algebra of Invariants, Cambridge Univ, Press, Cambridge, 1903.
[M] T. Maeda, Minimal algebra resolution associated with hook representations to appear in, J. of Alg.
[Mc] I. G. Macdonald, Symmetric functions and Hall Polynomials, Oxford University Press, Oxford, 1995.
[S] J.-P. Serre, Représentations linéaires des groups finis, Hermann, 1971.
[Sr] H. Srinivasan, Algebra structures on some canonical resulutions, J. of Alg. 122 (1989), 150-187.

Department of Mathematical Sciences
Faculty of Science
University of the Ryukyus
Nishihara-cho, Okinawa 903-0213
JAPAN

[^0]: Received November 30, 2000.

