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GENERIC G-LINEAR MAPS

TAKASHI MAEDA

ABSTRACT. A short proof is given for the existence of an SL(W) x
SL(V)-equivariant DG-algebra structure on the Eagon-Northcott
complex associated with a linear map V' — W™ over rational num-
bers, based on the Littlewood-Richardson rule. A generic G-linear
map is defined and it is proved that the linear maps defined from the
tensor product of three symmetric tensor representations of GL(d, Q)
is generic.

This note consists of two parts. The first part is concerned with
DG-algebra structures on finite free complex over a polynomial ring.
It was constructed in [Sr] DG-algebra structures on the minimal free
resolutions of cyclic modules R/I over a noether local ring R when
I is (i) a power of an ideal generated by a regular sequence (over Z)
and (ii) the ideal of maximal minors of a generic n X m matrix (over
rational numbers Q). A simple proof for the existence of a DG-algebra
structure in the case (i) was given in [M], assuming that R contains Q.
In this note we investigate a sufficient condition for the existence of
a G-equivariant DG-algebra structure on complex with an action of a
group G (Lemma 3) and deduce from it a short proof for the existence
in the case (ii) above using the Littlewood-Richardson rule.

In the second part we consider the following problem on the ten-
sor product of three representations of a group G all of whose finite-
dimensional reprentations are completely reducible. We denote by Vj,
V., -+ irreducible representaions of G' and by V| the V-isotypic com-
ponent of a representaion V' of G, i.e. V{,) is the image of the canonical
map from V) ® Homg(Vy,V) to V. A G-linear map ¢ : V — W re-
stricts to each isotypic component : px = ¢y, : V(a) = W(y).
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Definition. A G-linear map ¢ : V — W is generic if, for each iso-
typic component V() of V', the restriction @ of ¢ to V() is of mazimal
rank, that is, injective or surjective according to dim V() < dim W,
or dim V() > dim W(,,.

For three representations V, U and W of G let oy : (V@ U)n) —
V@U and ¢, : UQW — (U®@W)(,) be the canonical injection and the
canonical projection, respectively, and let us consider the composite
map

VolmeWw 2% (Ve ew 24 veUew), (1)

In general, (1) is not generic in the sense of Definition; a simple example
for a finite group is in Section 4. However, for G = GL(d,Q), the
canonical homomorphisms Sy tm ® Sp — Sn @ Sm @ Sp — S @ Sm+p
and A"®S,, — A" 1®5:®S5, — A" ®S,,41 are exapmles of generic
maps where S, (resp. A") is the n-th symmetric (resp. exterior)
representation of GL(d, Q). In view of this we consider

Problem. Is the composite map (1) generic for GL(d, Q) and for a
connected reductive group over a field of characteristic zero 7

We may assume that V, U and W are irreducible in the Problem.
In this note we show that the above problem is affirmative when V', U
and W are symmetric tensor representations of GL(d, Q).

Theorem 1. For five non-negative integers n,m,p, s,t such that 0 <
s < min(n,m) and 0 <t < min(m,p) the composite map ¢, 4

a®1 1®
Sn+m—s,s @ Sp ks, S5pn®Sm® Sp '_i”t Sn ® Sm+p-—t,t (2)

s generic in the sense of Definition where Sy4m—s,s 15 the irreducible
repesentation of GL(d) associatd with the partition (n +m — s,s) of
n -+ m.

Theorem means that the restriction of ¢, to each common irre-
ducible submodules of Sy, 4m—ss @ Sp and Sy, @ Spyp—t,¢, Which is
with multiplicity one by Pieri’s formula, is a nonzero scalar multiple.
Although this scalar is explicitly expressed in the case d = 3 (Lemma
5) it is not clear whether this scalar is nonzero or not. The outline
of the proof of Theorem 1 is as follows. We reduce to the case d = 3



(the case d = 2 is included in the case d = 3) and prove the Theorem
by induction on p —¢ > 0. The case p —t = 0 is proved by describ-
ing the composite map (2) explicitly (Corollary 6). If p — ¢ > 0 then
m -+ p—1{ >t and we note in Lemma 7 that the diagram

Sntm—ss ® 5y ety Sn'® Smap—it
lqbl lm 3)
0y 191

Ontmes,e D 8pag BBy —— 80 @ Bpuip-1)=44 D51

is commutative where ¢, and ¢, are induced from the polarizations
Sp = Sp—1®S51 and Sptp—t,t — Sm4p—1-t,t®S1. To prove Theorem 1
we have to show that if 7" and 7" are common irreducible constituents
of Spym—s,s @ Sp and Sy, @ Smyp—t,t Tespectively, then the restriction
¢s.t|T to T is nonzero. We prove in Lemma 9 that if ;¢ : Spym—s,s @
Sp — Sn®@Smip—t,t is generic then so is v, @1 : Spym—s,sQ5p®S; —
Sn® Sm4p—t,t®S1. Next we find an isomorphic irreducible submodules
U and U’ of Sptm—s,s @ Sp—1 and Sp, @ Sp4p—1-t,t respectively, such
that U ® S; and U’ ® S; contain an irreducible constituent isomorphic
to T'=T". Finally we show in Lemma 10 that the composite map

d1lT

T — Sn+m—s,a ®S 3 ®Sl l) U®Sl (4)

is nonzero where  is the projection. Since ¢} ; : Spym—s,s ® Sp—1 —
Sn® Sm4(p—1)—t,¢ is generic by the inductive hypothesis the restriction
¢, ¢lu to U is an isomorphism so the composite map

T ¢1_|T’ Sn+m—a,s ® Sp—l ® Sl Ws,_t®;1 Sn ® Sm+p—1—t,t ® Sl
is nonzero since (4) is nonzero. Thus the commutativity of the diagram
(3) implies that the restriction ¢, ¢|7 to T' is nonzero.

The paper is organized as follows. In Section one we review briefly
algebra structures on a complex and prove the existence of SL(V') x
SL(W)-equivariant DG-algebra structure on Eagon-Northcott com-
plex. In Section two we collect identities in invariant theory of GL(3)
[GY,p246] which are used in Section three. We give a proof of Theo-
rem 1 in Section three and a counterexample of the Problem for the
symmetric group of degree three in Section four. The base field is ra-
tional numbers Q. The irreducible representation of GL(d) associated
with a partition A = (A; > -+ > Ag) is denoted by Sy = Si,,... A,



1. DG-algebra structures

Let V = Q" be the vector space of dimension n over Q and let
R = 5.V = @®4>0Rq be the symmetric algebra of V' over Q. For a
reductive subgroup G of GL(V') let I be a G-stable ideal of R with a
graded R-free resolution of R/[

Y: oY By, 8Y,=R— R/I 0

which is we assume G-equivariant. Then the tensor products Y @ Y
and Y® Y®Y are graded R-free complex augmented by R/I with the
natural G-actions which are induced from that on Y. The complex Y
has a DG-algebra structure means that there is a graded homomor-
phism of complex ;1 : Y® Y — Y by which Y becomes a commutative
associative DG (differential graded) algebra, i.e.

(commutativity) p(z @ y) = (—1)deg =€ V. y(y @ 2)
(associativity) p(u(rz @ y) ® z) = p(r @ p(y @ 2))
(Leibniz rule) d(u(z @ y)) = dz @y + (—1)%*€ * -z @ d(y)

for all homogeneous elements z,y,z € Y. A DG-algebra structure
is said to be G-equivariant if the map g is so. Koszul complex is
a typical example with a DG-algebra structure while there are finite
minimal free resolutions of cyclic modules which do not admit a DG-
algebra structures [A2,p21]. We first show a Lemma, which follows
from the complete reducibility of the reductive group G.

Lemma 2. There is a G-equivariant map of compler p: Y@ Y — Y
inducing the identity on (Y ® Y)o = Yo = R.

Proof. We construct p, s : Y. ® Y, — Y,4s by the induction on the
total degree r + s. Let W ® R(—m) be a direct factor of Y;. @ Y, with
an irreducible G-module W and let us consider the diagram

6r s m r+s—
W Yeny(™_ L (Yo )™,

r+s—1
Jv#'r%-s—l l“r+s—2
(m) drts (m) drts—1 (m)
Y;'+8 Yr+s~—1 Yr+3—2

where Yr(_;';) is the degree m component of the graded R-module Y, 4,
etc. Assume pu; are constructed for all # <7 + s — 1. Then

dr+3—~1 O Hrys—10 5r+a = Upts-20© (67‘+8-1 o 6T+8) =0



so the image of jiy4 5106845 is contained in Ker dy 4,1 = Image d, ;.
Since dy4; : Yr(z) — Image d,4 s is G-split there is a G-homomorphism
Prs: W — Yr(r;) with dyys 0 pr s equal to ppys—1 08,4, O

For the G-equivariant map of complex p above we set £ = po (u®
1)—po(l@p) :YRY®Y — Y, which is a G-equivariant map of
complex. For r,s,t > 0 let

YT®YS®)Q:®W1®R(—m1) IS’LS}C(T,S,t) (5)

be the direct sum decomposotion with irreducible G-modules W, and
let us consider the diagram

brts
W "5 (YOY® Y)£T§+t-1

f'r.s,tl Er+a+t—ll

(m) (m)
YT+8+t }/7‘+s+t—1
drtsfigl dristt

(m)
Yr:rns+t+1

The following Lemma gives a sufficient condition for the map £ to be
zero, which implies that the homomorphism of complex 1 : Y®Y — Y
defines a multiplication of a G-equivariant DG-algebra structure on
the complex Y.

Lemma 3. If, forallr,s,t > 0, the homogeneous component Yr(f;lt 41
of degree m; in the r + s+t + 1-th component Yr4s4¢4+1 of Y, contains
no G-submodules isomorphic to irreducible G-module W; for any 1 <
i< k(r,s,t) in (5)then : Y®Y®Y — Y is a zero map.

Proof. We shall show the lemma by the induction on the total degree
r + s+ t. In the diagram above we see dyys4t 0 &rst = Epgpstt—1 ©
8r4+s+¢ = 0 by the inductive hypothesis &, ,4¢+—1 = 0 so the Image &, 5 ¢
is contained in Ker dr;s4++ = Image dyys4t+1. The hypothesis of
Lemma implies Image &, ;¢ = 0 since £ and d are G-equivariant. [

Now we show that the Eagon-Northcott complex satisfies the hy-
pothesis of Lemma 2 so that it has a DG-algebra structure. Let W =
Q™ (resp. V = Q") be the vector space of dimension m (resp. n) over
Q with the dual vector spce W* of W and let R = S,(W®V) = ®4>054
be the polynomial ring of mn variables over Q. Assume n > m and
let p: V=id@V Cc W*®@ W ®V be the canonical homomorphism.



We note that all maps below together with ¢ are SL(W) x SL(V)-
equivariant. By the isomorphisms A™W* = QQ we see A™¢ induces a

map
AV 5> AW RS (WeV)=_5,

hence a map of free R-modules A™V ® R(—m) — R with the image
equal to the ideal / generated by the maximal minors of the generic
n X m-matrix. The graded minimal R-free resolution of R/I is given
by the Eagon-Northcott complex E of length n — m + 1 [S,p182] :

E:0oYmuy 3P Y, ooa B, 8Y, =R
where Yii1 = Fr®@ R(-m —k), Fr=SiWeA™*y  (6)

The differential dg41 : Ye41 = FrQR(—m—k) — Yy = Fr_1QR(—m—
k + 1) is induced from the canonical map

where we set Dy, = S W and A™+E = AmHEY | We see from (6) that

Y,®Y3®}’t:F,_l®Fs_1®Ft_1®R(—3m—r—s—t+3)

Y(3m+r+s+t—3) - F

3m+rtstt—3
rstt+1 = Frpots ® R(—m — 1 — 5 — ) (3mtrts+i=9)

= Frtstt @ Sam—3.

For the condition on Lemma 2 we have to show that there are no
common SL(W) x SL(V)-irreducible components of F._1 @ F,_{®@F;_;
and Frysy¢ @ Som—3, where Fr._1 ® Fy_1 ® Fy_1 is equal to

Dr—l ® Ds——l ® Dt—l ® /\m+r—1 ® /\m+s—1 ® /\m+t—1
and Fiigy¢ @ Som_3 is isomphic to

Dijaiy @ AT w2 3(8,\W = NG

by Cauchy’s formula [Mc,p63] where S)W is the irreducible represen-
tation of GL(W) associated with the partition A of 2m — 3. Hence,
as GL(W)-modules, F,_1 @ Fs_1 ® Fy_1 (resp. Frispt ® Som_3) is a
direct sum of
Dr_1®Ds_1 @Dy (7)
(resp. Dyisqe @ SAW  for A - 2m — 3)



We denote the GL(W) = GL(m)-irreducible components of (7) by the
associated partitions A = (A; > -+ > A, > 0). Then we see from the
Littlewood-Richardson rule [Mc,p142] that

M= Am <A S(r-1)+(s-1)+(-1) (8)

for all partitions A = (A\; > --- > A, > 0) which appear in D,_; ®
D3_1 ® Dt—l while

p1— pm 2 (T +8+1) — pm 27 +5+1—2 9)

for all partitions g = (1 > +++ > pm > 0) which appear in D,y ®
S\W with A+ 2m — 3, because, if y,, > 3 then p; > p, > 3 for all ¢
so3(m—1) < pz+ -+ pm < |A| = 2m — 3, a contradiction. On the
other hand two partitions A and i determine the same representation of
SL(m) if and only if \;—X; 41 = p;—p41 forall1 < ¢ < m—1, hence, in
particular, A\; — A, = f41—f4ym. Therefore (8) and (9) imply that the two
modules (7) have no common SL(W)-components and the hypothiesis
of Lemma 2 is satisfied. Thus we conclude that the Eagon-Northcott
complex has an SL(W) x SL(V)-equivariant DG-algebra structure.

Remark. An SL(W) x SL(V')-equivariant multiplication i : EQE —
E is defined as follows [cf.Sr,p184].

Pril,s41: Yr1 ® Yoy 2 Y 20 ®@ R(—m+1)
m-—1
Prt1,s41 ¢ Fr ® Fs 19_)0 Dr ® Ds ® /\m—l ® /\m+r+s+1 1®/\_) ¢
Dr@Ds®@W @Sy @ A™THH S FLL 11 ® S

Here # and A™ !¢ are canonical homorphisms (where A¥ = AFV)

9 . /\m+r ®/\m+s - /\m—l ® /\T+l ® /\m+3 - /\m—l ® /\m+r+s+1
AP Lo AL S A I 5, 1(WRV) =W ® Sp_1
Any homomorphism of complex p : E®E — E, which is SL(W) x

SL(V')-equivariant, automatically satifies the associative law by our
Lemma 3.



2. GL(3)-linear maps

Let {z1, 22,23} be a basis of the three-dimensional vector space W
with the dual basis {u;,uz,us} of the dual space W*. We denote

by SpW = S (resp. S,W* = S{) the representation space of
GL(3) with the basis consisting of the monomoials of {z,,z2,z3} (resp.
{u1,uz,usz}) of degree n, and denote a vector of s (resp. S,(lu,)l) by

n § : i k n § : B s R
a, = L. A4 .’El”(l? u, = L. Q45U USU
o (ij) ijkL1L243, [e" (Z]k) ijkly Ualog

i+ji+k=n i+ji+k=n

for scalars a;j, pqr. The basis of the tensor product ,S'(x)®5',(I ) consists
of the monomials of {z;} and {u;} of bidegree (n,n) so a vector of

(z) ® S,(,ur), is written by aZuy. We write a;jx = a;a;ar and a4, =
aajay symbolically, and the symbolic factors

3 a Ty Y1
Ao = i a;q, (azy) = |az T2 Y2
i=1 az I3 Y3

where {y1,y2,¥y3} is a basis of W which are transformed in the same
way as {z1, 2,23}, and the differential operators

(y (')x Z Yoz, 6:1: amau Z 63:,8u,
0/0x, 3/33/1 U1 Ty Y1 0/0u
(0z0yu) = |0/0zy 0[Oy wuz|,  (zY0u) = |T2 Y2 O0/0uy
0/0x3 0/0ys wus x3 yz O0/0us

which are SL(3)-invariant by definition. The differential operator
(9% /0x:0u) defines the contraction map ST @S5, — & @5

m—1m-1»

so a vector ajul' of S(x) ® S,(,? m is contained in the irreducible subspace

S,(li?,z m if and only if
52
(axau)a;ug‘ 2 U < g U 2 =10 (10)

We write a, = 0 symbolically if (10) holds.



Lemma 4. (i) For 0 < s < min(n,m) the image of a vector azby' of

5 o SW) ynder the projection 5 @ sW _, g=w is given by

n+m-—s,s8
(u020,)° (a2 }(yma) = (abu)®aZ=2b1 =", (11)

The equality in (11) (and in what follows) means modulo a nonzero
scalar multiple when the actual scalar is not important.

(ii) For 0 < s < min(n,m) the image of a vector a?t™ 25us of
57(11’:2—3,5 under the injection S&Y_ . — S @ S is given by

n+m-—s,s

(2900)° (40 ™ {aZ ™2 ug } = a7 ~*ap*~*(aya)®.

(11i) For a vector aZ~™uZ' (resp. b%) of S (resp. SV let

0 )t
udy’ v==)

— pt, m—t s n—m—spp—s—t
- baua (ua'b) a’z bﬁ

P = ( (u0z0y)*{az ™M ug’ - by}

@ y

Then the 1mage of a vector aZ~™ulb? of S @ S under the pro-
jection
. U (z,u)
o SS:m) ® Sz(:'y) - Sn+(P—s—t),m+s,t (12)

where 0 < s <n—m and 0 <t <m, is given by

P+ ub o un =k (uab) el ook,
k>1

Here M\, € Q are determined so as to be annihilated by (8% /0z0u).

(iv) For a vector aMulY of Sfi"(‘;_s_t),mﬂ,t with M =n+(p—s—

t)—(m+t) and N =(m+s) —t let
Q = ub (298,)* (y0,)P~* " {aMul }

— ., t, N—s 8 M—(p—s—t) p—s—t
= Uy (zya)’a, ay

Then the image of a vector aMul¥ of .S"(i'(‘}),_s_t)‘mﬂ‘t under the injec-
tion

(z,u) ;
Sniz‘p—s—t),mﬂ,t - Sr(tfr:) ® Sr(fy) (13)



where 0 < s <n—m and 0 <t <m, is given by

k. 6 ,t—k, N—s M—(p—s—t)—k p—s—t+k
Q + E LUz Uy U (zYa)’ay (p—s—t) ay
k>1

Here pi € Q are determined so as to be annnihilated by (0°/0xdu).

Proof. (i) follows since (11) is annihilated by (8%/0zdu). (ii) By (i) we
have to show

n+m—2s, s L R
A-a? ud, ife=3s

(uB20y)(y=z)0z ‘ay'~*(zya)® = { 0 otherwise

for a nonzero A € Q. This follows from Lemma 5(i) since a, = 0 by the
irreducibility of a?+t™~2sy2 . (iii) The projection (12) factors through
U ¢, olz) (u) (z,u)
S&fm)®sz(7y) - Sn::-(p——s—t)—(m+s)®Sm+s—t,m+s—t = Sn::.t(‘p_s_t)'m_*.s_t
and ¢ takes the vector az~™ug'by to P, which is contained in the sub-

(z,u) (z) (u)
SPACe 3 k>0 Sy (p—s—t)—k,mrtot-+k OF Snt(p—s—t)—(mets) @ mts—tmta—t:

Hence the image w(af™™ugty) in Spy(p—s—t),m+s—t iS obtained by
adding to P a vector which is zero mod u, so as to be annihilated
by (8%/8z0u). (iv) The injection (13) factors through

szz-:(tzz—s—t),mﬂ,t <5 587, @550, ® S - S © S

M, N
Iua

and ¢ takes the vector a to @, which is contained in the

Syt (p—s—t),m+s,t-iS0typic component of Sff_)m ® S,(,'f, )m ® S,gy). Hnece

the image of aMul in S&Y @ S is obtained by adding to Q a vector

which is zero mod u, so as to be annihilated by (82/8zdu). O
Lemma 5. (i) (u0z0y)azby(zyc)® is equal to
nmay 07 Heya)* T + s(n + m+ s + Dugaly™(zya)®!

(14)

— s(naguzby + maxuyba)ag_lb;"_l(aa:y)s'l

(i) For 0 < k < min(n,m)

k
(zdy)*agby = k1) (’Z) (k”:’ 1) alal tbETimoE (15)

1=0



(i) For 0 < s < min(m,n, p,q)

38

_ —tpn—s+t p—sttpq—t
(u00y)°az bpayb] = (uab)“‘E ceag bp T ay b3

t=0 (16)

B e m! Q' n! p'
where ¢, = (—1) (t>(m—s+t)!(q—s+t)!(n—t)!(p—t)!

Proof. (i) (u0z0y)aZby'(zya)® is equal to

AP {m(udb)bm (zy)® + bTs(zudze) (zya)® 1}
= —mby N (ubd;)al (zya)® — s (udsTa)ay(zya)®™t  (17)

where (ubd;)al(zya)® is equal to

n(uba)a? ! (zya)® + a?s(ubya)(zya)® !

= —n(abu)al ! (zya)® + sal (Uyba — Uaby)(zya)®™? (18)

and  (u0,Za)al(zya)’ ! = {(0z)als — Ua(0s)s tal(zye)® ™!

(19)
Here (0;)auc-al(zya)®™! = Z?=1 0, uzal(zy)*~! is equal to
aj{uaz(zya) + ugna; (zya)ta?~Hzya)*=2 + - --
= (Uals + NUza0)ay~ (zya)* ™! (20)

and (9;)zal(zya)®~t = 32, 8, z:al(zya)®~! is equal to

al(zya)®~! + z1{na; (zya) + az(s — 1)(ya)zs}al *(zya)* 2 + - -
= (8+n+s—1)al(zya)! (21)

Substituting (20) and (21) into (19) and then (18) and (19) into (17)
we see that (0:0y)azb7 (zya)® is

— mb = (~n(abu)al~ (zya)*"! + s(uyba — uaby)al(zya)*"}

— b7 (Uas + Nuzaq)al H(zya)* ! — (B +n + s — Nugal(zya)® '}



which is equal to (14). (ii) When k£ = 1 we see

(zdy)ayby’ = z1(narby + aymbl)az_lb;"—1 e
= nagay b + maybyby
(15) follows from this and the induction on k. (iii) When s = 1 we see
(u0z0y)aTbrabbd = aT'b} (p(ubya)by + ay (udzb))ah b1~
= (uab)(—npa;"b;‘“lag_lbg + mga™ 1b"aPba )

Yy

(16) follows from this and the induction on s. [

3. Proof of Theorem 1

First we reduce the proof of Theorem 1 to the case d = 3. The case
d = 2 follows from the proof in the case d = 3. If {z1, -+, z4} is a
standard basis of the d(> 3)-dimensional vector space V' then the mono-
mials of degree n in {z1,-:-,z4} is a basis of S,, = Sym™V on which
the action of GL(d) is indueced from the action on {zq,--+,z4}. Let
W = (21, z2,x3) be the three-dimensional subspace of V' generated by
{z1, 2, 23} and GL(3) = GL(W) x{t¢d4—3} be the canonical subgroup of
GL(d) = GL(V). Then the irreducible components of S,V@S,V @S,V
are of the forms S; ; vV by Littlewood-Richardson rule so the decompo-
sition into irreducible components of GL(d)-module S,V @ S;,V @ S,V
is exactly the same as that of GL(3)-module S,W @ S,W @ S,W. It
follows from this that if ¢, = (1 @ ¢¢) o (ps @ 1) is generic in the case
d = 3 then so is in general d.

Let (n,m,p ;s,t ;t,7,k,1) be nine integers such that

0 < s <min(n,m), 0<t < min(m,p) (22)
0<i<m+m-—2s, 0<j<s, i+j<p (23)
0<k<m+p-2t, 0<I<t, k+l<n

and let

T= S(n+m—s)+(p—i—j),s+i,j T'= S(m+p—k)+(n—k—l),t+k,l



be an irreducible component of Sp4pm—ss @ Sp and S, @ Smip—t,t TE-
spectively. If we set

M=(n+m+p)-2s+i)—j, N=(s+9)—J
M=h+m+p)-20t+k) -1, N =(@t+k)-1

then there are isomorphisms 7" 2 Sprn and 177 = Sy e of SL(3)-
modules. Suppose T and T" are isomorphic GL(3)-modules. Then [ = j
and t + k = s+, ie.

le=1. k=s+i—-1t (24)
so the ranges of ¢ and j are

max(0,t —s) <i<min(n+m-—2s,m+p—s—t) (25)
0 < j < min(s,t), t+ 7 < min(p,n — s+ 1)

Let us consider the compostion of GL(3)-maps.

o1, glau) ng) EZN S'Etx) ®S§g) ®S;(;z) e, ng)®5(z ,u) (26)

n+m—s,s m+p—t,t

where 1, @2, 3 are uniquely determined up to scalar multiples. From
Lemma 4(iv) a vector a2l of S(yim+p)—(s+itj),s+ij is transformed
under ¢, to

S - (aza)falf -0k ()
k>0

where o = 1 and pr € Q are determined so as to be annihilated by

(02/0z0u). Since N —1 = s — j we see (2y0y)*{ukui=FulN—i} =0 for
any k > 0 so (27) is mapped by ¢ = (y0;)™ *(2yd,)° to

(402)™*{ (zy2) (2ya) V= (w2a)iaM - P=i-Dgp=i-1}

= (y0z)™ *{(zza) e ™2~ Y (zyz)? (zya)* TP I

which in turn is transformed under 3 = (udyd, )t ) to

(y=2

ul (udy0, )(y z)(y(? )™ al T2 (p2a) H (zya) TIaP T (28)



From Lemma 5(ii) we see
(y0z)™*{af T (w20)'}

— (m _ S)' Z Ak X a:(rn+m-23—i)—(m—a)-{-ka.gm—s)——k(mza)i—k(yza)k
k

n+m=—28—=1) {1
ith Xz =
W § ( m—s—k )(k) (29)
Here k's in the summation run over the range
max(0,s + i —n) < k < mini(m — s,1) (30)
Hence (28) divided by (m — s)! is equal to
u? (ua 0, )(y_z){z )\ka"_"””k m‘s_k(mza)i‘k(yza)k}(a:ya)’_jaf_i”j
ul gtttk Z)\k (udy8,) (y_z){am =k (r20)"k(yza)kF (zya)*~iaP~9}
= gl gt o= b Z A2k kluk (uayaz)gi;)k{a;"_s_k(mza)i_k(mya)“_ja;"i(;g

since (udyd,)t 77 (yza)® = 2Fkluk (udyd,)t=7F. From Lemma 4(iii) we
see

(udy8,)' ¥ {a*"*(zza) F(zya)*~Ial 77}
- (—1)(i_k)+(3—j)(u()yaz)t"j”k{a;”“"’k(waz)i_k(xay)s_jaf_i“j}
= (-1 (uaga) kY

l

R o R

= (=1)" 7 *(waza)' IR gy (32)
1
% a;n—s—t-{-j+l(wza)i—t+j+l(may)(s—j)—lag—i—j—l

Here (uaZa)t=77F = (ugaq — uqag)t=97% = (=1)t+3+*(uq a,)t=7—* and
pr,y € Q is equal to

ek (m— s — k)] (¢ —k)!
Pt = ( 1)( ! )(m—s—t-{—]+l) HE+g—t+D (33

(=) _(p—i—j)
G—i-Dlp—i—j-D)

X



and [/'s in the summation in (32) run over

max(O,s+t—m—],t—z—])<l (t—'J kS J)p—"‘—.]) (34)

We set y = 2z in (32), which becomes equal to

(uaaz)t—j—ka;n+p~s—t——i(xza)s——t+i Z Lk
l

Substituting this into (31) we see that the image of aMulY under the
composition (26) is equal to

ugan 8— z+k§ :)\k2kk'u (u a )t i—k m+p—~s —t— ‘(:rza s t+z§ :Nkl

§ :)\k2kk' E :Hkl uJ ug—Ja:——s—H——z—-Ja;n+p—3—t—z($za)s—t+z

Therefore we have proved

Lemma 5. The restriction of st t0 T = Sipym—s)+(p—i—j),s+i,j 15 an
tsomorphism if and only if the scalar

Z )\k2kk! Z Hk,l (35)
k l

s nonzero where A\ and pg,; are the rational numbers (29) and (33)
with the ranges of k and | given by (80) and (84), respectively.

As a consequence we see

Corollary 6. The restriction of ¢s¢ to T is an isomorphism in the
caset =p.

Proof. We see A\, > 0 for any k by (29), and !’s satisfying the range
(24) consists of one element  =p—i—j. Infact , 4 —t+j+1> 0 and
p—t—j—1>0in (32) impliesl =p—-i¢—j5. O

Now we prove Theorem 1 by induction on p—¢ > 0. The case p—t =0
is Corollary 6 so we assume p — ¢t > 0 in what follows.



Lemma 7. Ifp—1t > 0 then the square

s o8 2 sPesmn
lm(wa,) ll@(wm) (36)
(z,u) (2) (w) *"s 181 (2) (z,u) (w)
Snﬁ—:n ss®sz—1 ®Slw Sx ®Sr::'(p—1)—t,t®sl

s commutative up to scalar multiples.

Proof. We note that p—t > 0 implies m+ (p—1) —t > m >t by (22) so
Sm+(p—1)—t,¢ is contained in Sp, ® S,_1. The square (36) is decomposed
to

SEm-es @S 22 sPesPes
1®(waz)l 1®1®(w6z)l (37)
s @88 @ s #e8181, (@) o W) 8@, @ s
SHesPesy B sPestM .,
1®1®(w8,)l 1®(w8z)l (38)

55 0 SW @ 5P, @ s 1OHL @) g o) oW

where @5 = ¢ = (2y0.)°(y9:)™ " and ¢y = ¢} = (u0y0;)(,_,) by
Lemma 4(i) and (ii). In the square (37) a vector alt™=2%y2cP of
sEw @54 is transformed, up to scalar multiples, as

n+m-—s,s8
n+m—2s,,8 n 8 ,m—38
al uec?  ——  (zya)’apfalock

n+m—2s, s .p—1 n S, m—3s 1
al usch ey —— (TYa)’ar%a " ch ey

In the square (38) a vector aZ?b, —mcP of SE @S5y ®S,(,z) is transformed

to
npm .p n tpm—t .p—t
dghy'ey —— az(bcu)tby ek

! !

njim ,.p—1 n tym—t p—t—1
azby ct~'c,, — al(bcu) by ek Cw O

Let ¢ : V — W is a G-linear map with K = Ker ¢ and C' = Cok ¢.



Lemma 8. Suppose K® S and C® S has no common irreducible com-
ponents for a G-module S and ¢ : V — W is generic (see the Definition
in Introduction). Then p@1:V @S5S > W ®S s genric.

Proof. Write V = K& L and W = L' @ C with an isomorphism ¢ : L —
L'. Let (V @ S)(x) be an isotypic component of V @ S. If (K ® S)(a)
is nonzero then (C' ® S)(») = 0 by the hypothesis, so (¢ @ 1)(») : (V ®
S)(,\) - (We® S)()\) =(L'® S)(A) is surjective. If (K @ S)()‘) = 0 then
((,0 ® 1)(>‘) . (V ® S)(,\) = (L ® S)(A) = (W ® S)(,\) is injective. O

We apply Lemma 8 to @5+t : Sptm—s,s @ Sp — Sn @ Sm4p—t,t and
S = Sl.

Lemma 9. Ifp,; above s generic then $0 15 05t @1 : Spim—s,s@Sp @
Sl — S.n_ @ Sm+p—t,t ® Sl.

Proof. We shall show that for any irreducible component

U = Stntm—s)+(p—i—i),s+i,i (resp. U’ = S(m4p—t)+(n—k—1),t+k,1)
of Ker ¢ (resp. Cok ), U®S; and U’®S; has no isomorphic irreducible
components. For, suppose U ® S, and U’® S; has a common irreducible
component Z. Then Z is obtained by adjoining one box to the e;-th
row of U and to the ep-th row of U’ for distinct integers e; and e; with
1<e,eq <3.

(i) (e1,e2) = (1,2). Then Z = Spim—s)tp—i-j)+latii =
S(m+p—t)+(n—k—1),t+k+1,0- f2>0then V =5, ;,® S, contains

S(ntm—s)+(p—i—j)+1,6+i-1,j = S(mtp—t)+(n—k—1)t+ki = U’

since @, is genric. A contradiction to U’ C Cok . Similarly, if n —
k—1>0then W =S, ® Spyp—t, contains

S(m4p—t)+(n—k—)—1t+k+1,l = S(n+m—s)+(p—i—j),s+ij = U-
A contradiction to U C Ker . Ifi = n—-k -1 = 0 then Z =
S(n+m—8)+(p—j)+1,3,j = Sm+4p—tt+k+1,0- Then t > [ implies s = ¢ +
k+1=t+ (n—1)+ 1> n, which contradicts (22).

(ii) (er,e2) = (1,3). Then Z = Siuim—s)+(p—i-j)+l,s+ii
S(mtp—t)+(n—k—1),t+k1+1- Hence j=1+1>1and V = S, @ Smip-t,t
contains S(n+m—5)+(p—i—j)+1,s+i,j—1 = S(m+p—t)+(n——k—~l),t+k,l =U"

(iii) (e1,e2) = (2,3). Then Z = S(nim—s)+(p—i-i)s+i+l,j
S(m+p—t)+(n——k—l),t+k,l+1' Hence j=1l+1>1and V =S, ® Smip-t,t

contains Sip 4 m—s)+(p—i-j),s+itl,im1 = S(mtp—t)+(n—k—),t+k1 = U’
The cases (ey,e2) = (2,1),(3,1),(3,2) are similarly proved. O



By induction on p —t we assume ¢, ; : Spym—ss @ Sp-1 — Sn @
Sm+(p—1)—t,¢ is generic. Then ¢ ,®1 is generic by Lemma 9. To prove
Theorem 1 we have to show that if T' = S(pym—s)+(p—i—j),s+i,j (T€SP.
T" = Spntp—t+(ntk+l),t+k,) is an irreducible component of Sp4m—s,s @
Sp (resp. Sy, ® Sm4p—t,¢) and if T is isomorphic to 7" as GL(3)-module
then @, ¢|r : T'— T is an isomorphism, i.e. nonzero. Let

Ul = Sn+m—s+(p-i-j)—1,s+i,j lfp o= .7 >0
Uz = Sn+m-—8+(p—i—j),s+i—1,j ifi>0 (39)
Ug = 8, tmi—ai(p—i—i) s 505—1 if7>0

be irreducible submodules of Sp4m—ss ® Sp—1, and let

Ul = Smtp—t+(n—k—l)—1,t+kl fm+p-—t>t+k

Uz = Smtp—t4(n—k—1),t+k—1,1 ifk>0

Ué = Sm+p—t+(n—k~l).t+k.l—1 ifl>0
be irreducible submodules of S, ® Sy, 1 (p—1)—t,¢- Then the T-isotypic
(resp. T’-isotypic) component of Sy im—ss @ Sp—1 @ S1 (resp. S, ®

Smt(p—1)—t,t ® S1) is contained in (U ® Uz @ Us) @ Sy (resp. (U] &
U; @ U3) @ S1) and the multiplicity is at most three. We denote by

T.cU.®8;, T, cU.®% r=1,2,8

the submodule isomorphic to 7' 22 T”. The square (36) is commutative
by Lemma 7 so @, 4|7 : T'— T” factors through

5 ®1
Tcad , T,CO_ U85 5 &2, U/®S;

where the left-most inclusion is induced from 1® (wd,). On the other
hand ¢} , is generic by the inductive hypothesis, hence, if both U,. and
U,. appear for some common 1 < r < 3 then ¢}, : U, & U] is an
ismorphism and we have the composite of the injections

T C . @5 2 U,’. ®8S; CS,® Sm+p—1—t,t ®5;

Therefore, in order to complete the proof of Theorem 1 we have only
to show
Tced T, - T (40)



where 7; is the projection, is nonzero. We prove this in Lemma 10
below. As to the existence of U, and U/ for some common 1 <r <3
we see

(DIfp—it—j>0and m+p—1t>t+k then U; and U] exist.
(I1) If ¢ >0 and k = s —t + % > 0 then U, and U, exist.
(IIT) If j =1 > 0 then U and U} exist.

All the cases when (%, j) satisfying none of (I), (II), (III) are reduced
to t = p, the initial hypothesis of the induction :

(i)p—t—j=k=j=0. Theni=t—sby(24),s00=p—i—j=
p—(t—s)=(p—1t)+ s hencet=psince p—t > 0and s > 0 by (22).

(i) p—t—j=i=3j=0. Then p=0=t.

(iii) (m+p—1t)— (t+k) =¢=j=0. Then k = s — t by (24) so
m+p=2t+k=1%t+s. Since s <m and t < p we see t = p.

(ivy(im+p—t)—(t+k)=k=3=0. Then0=m+p-2t =
(m—1t)+ (p—1t) sot=psince t < min(m, p) by (22).

Now we shall show that (40) is nonzero. We assume p —% — 7 > 0,
¢ >0 and j > 0 and denote by

n+m—s,s n+m-—s,s

T4y, 08" & 5&w 059 05"  r=1,23
where ¢ and ¢, are induced from 1® (wd,) and U, is the submodule of
Sntm—s,s@Sp—1 defined in (39). The multiplicity of T in Spym—s,s®Sp
is equal to three so the composite map ¢ o ¢ is expressed by a linear
combination of ¢.0 ¢, forr=1,2,3:

$op= A1 001+ A2 0 Y2 + X33 0 3

All of ¢, i, ¢, ¢; are determined up to nonzero scalar multiples so it
is well-determined whether each of \;, Az, A3 is zero or not.

Lemma 10. All of A1, A2, A3 are nonzero.

Proof. By using Lemma 4(iv) we calculate the image of a vector aMu®

of T = S((:fzn—-a)+(p+1—i—j),s+i,j by mod u, and modulo scalars. We
note that p—¢—j > 0 (resp. ¢ > 0) implies M > 0 (resp. N > 0). For

simplicity we denote by L =p —1 — J.



(0) aMul) is transformed under ¢ mod u, to
ul (£20,)4(20;) {aMull} = wlu N-i(zza)iaM—Lal
which is mapped by ¢ = (w3;) to
Wl " (z2a) " taM Ll !

X {J - uy(z2a)a, + i - u(zwa)a, + L - u (r2a)a,}

(i) p1(adul) = (wdg)af uf = ulNaM—-1q, is transformed under ¢, =

ud (220,)"(20)*~! mod u, to
i N—i (M= 1)— (1) L
wWul i (zza)laM-D-L-Del=1g
(ii) p2(aMul) = (zwdy,)aMul = ul~1(zwa)aM is transformed under

$o = ul (220,) " (205)F mod U to

IuN=i(z20) " aMLal"1{(M — L + 1)(zwa)a, + L(zwa)ag}

x

(i) ps(azug) = upugag’ +

(02/0x0u) so that

.-+, which have to be annihilated by

@3(0/24'&2,) -uwuN M + p1ug - ugai” L i (41)
with g =-M/(B3+ (M —1)+ N) (42)

Here we used the irreducibility condition a, = 0 in (10). (41) is
transformed by ¢3 = ui~1(220,)*(20;)% mod u, to

j=1, N—i i-1, M—L_L-1
wl Tty TH(rza) T e, Cay

XMa {i(zzw)ue + (N — i + Duy(zza)} + p1 LN — i + 1)ayu, (z2a)

Dividing by uJ =l ~(zza)"1aM-Lal~1 we set

[ =7 ylzza)a, + i u,(zwa)a, + L - uz(Tza)a,
fi = uz(z2a)ay,
fo=(M~—-L+1) u,(zwa)a, + L - u,(2wa)a,

fa=(N—-i+1) uy(z2a)a, + 1 ug(rzw)a, — poL - u,(c2y)ay,



with gy = (N —i+1)/(M + N + 2). Substituting the relations

U, (zwa)ay = u,(zwa)a, + uy(zza)ay + u, (2wz)agy
= u,(zwa)a, — ¢, since ay =0,

and  ug(zzw)a, = uz(azw)a, + u;(zaw)a, + uy(r2a)a,
into f, and f3 we obtain

fo=(M+1) u,(zwa)a, — L-¢;

fs = (N +1) - uy(220a)a, — i - u,(@wa)a, — paL - u,(2y)a

Hence we see

i 1 0 0 N
fHl= -L M+1 0 u,(zwa)a,
f3 — oL —1 N+1 Uy (T200)0,

If we set f = Alfl + )\2f2 + Agfg then

1 0 0
M Add)| -L M+1 0 |=(Lij)
—,UlzL —1 N+1
from which
_ i J
AI_L(1+M+1+M2N+1)
o J ]
Az_M+1(1+N+1)’ ’\3“N+1

We note M, N > 0 and pp > 0 since N —¢ = s — j > 0. Hence, if

L=p—1—73, 1 7>0then A\, Ay, A3 is positive. [

We see from the above proof that if one of L, ¢, j is nonzero then the
corresponding A, is positive. Thus the composite map 7' — T, in (40)
is nonzero if U, ® S; has a component isomorphic to 7. This means
that the restriction ¢, |1 is nonzero for any common component 7' of
Snim—s,s @ Sp and Sy, @ Spmyp—t,t and the proof of Theorem 1 is now

complete.



4. An example

Let G = S3 be the symmetric group of degree three, which has three
irreducible representations : the trivial representation ¢, the alternat-
ing repesentation x, and the two dimensional representation V' = V,,.
Here V =V, is defined by

£Y (0 =1 N _ [ =y
() =G 3)E)-0Y) e
() =6 5)6)-
y 0 -1/\y ~y
for a basis {z, y} of V, and the generators {c, 7} of S3 with the relations
0% =12 = (07)%2 = 1. We shall show in this section that the canonical

map
Va(VeV),y—=VeveVrVs{VeV),aV (44)

is not a generic map. Since V@V 2V, +V, 4+ V, we see
(VOV)oVi, 2 V.oV +V,aV+(VeV), (45
{V@(V@V)}(p)§V®V5+V®VX+(V®V)(,,) (46)

Let {a,b}, {z,y} and {{,n} be the three set of the basis of V' =V,
which are transformed by ¢ and 7 in the same way as (43). If we set

2 2 -1 -1
“(21 22 23 24) = A (az by ay bz), A= (1) 8 _11 :i (47)
01 -1 -1
then we see from (43) that
O'(Z]_ 000 24):(2;1 e z4).B, 7'(21 G0 24):(z1 I 2'4).0

1 0 O 0 1 0 0 0

{0 1 0 O [0 -1 0 O

3 = 0 0 O 1 ! b= 0 O 1 0

0 0 -1 -1 0O 0 -1 -1

so 21 (resp. zz) is a basis of V. (resp. V,) and {23,24} is a basis of
(V ®V)(,). Hence, in the decomposition (45)

(52)=(2%) - (Beorm i)



is a basis of {(V @ V) @ V}(p),

(fa) _ (hf) _ ((ay - bl’)f)
/s 2y (ay — bz)n
is a basis of {(V @ V)(y) @ V}(,), and
A (zsf — (230 + 24€) ) _ ((ax - by)¢ — {a(z —y) - bx}n)
fo 241 — (231 + 24§) {ay +b(z — y)}¢ — (az = by)n
is a basis of {(V @ V)(,) ® V}(,)- Similarly, if we set
Hwy -+ wy) = At (2€ yn 2 y€)
using A in (47) then w; (resp. ws) is a basis of V. (resp. V) and
{23, 24} is a basis of (V ® V)(,y. In the decomposition (45)

(Sh) _ (aw1> _ (a{2(1‘§ +yn) — (e +yf)}>
92 bw, 0{2(¢ +yn) — (en +y&)}
is a basis of {V® (V@ V) }(p),
(93) _ (awz) _ (a(-’m-yﬁ))
94 bws b(zn — y§)
is a basis of {V @ (V ®@ V) (x)}(p), and
(!]5) _ (aws ~ (awq + bws)) _ (a(wE —yn) —b{(z - y)¢ - :vn}>
g6 bws — (aws + bws) a{y€ + (¢ — y)n} — b(z —yn)
is a basis of {V @ (V @ V)(,) }(p)- Putting all this together we obtain
‘(fi -+ fo) = X * (ax€ azn ay€ ayn bz€ ban by¢ byn)

“(91 -+~ g6) = Y * (az€ azn ay€ ayn b€ ban byé byn)
where X and Y are 6 X 8 matrices given by

2 0 -1 0 -1 0 2 0\
o 2 0 -1 0 -1 0 2
X = 0 0 1 0 -1 0 0 O
0 0 O 1 0 -1 0 O
i =1 10 1 0 1 =1 0
g -1 1 0 1 0 -1 1/
2 -1 -1 2 0 0 0 O
o 0 0o 0 2 -1 -1 2
Y = 01 -1 0 0 O 0 O
0o 0 0 o0 o 1 -1 0
1 0 0 -1 -1 1 1 0
0 1 1 -1 -1 0 O 1/




Then we see *(2f1 2fz 6fs 6f4 2fs 2f6) = Z - *(g1 -+ ge) With the
6 x 6 matrix Z equal to

0 I -2 2
1 2 =1 0
-2 -3 0 -2
=1 0 =3 -4
0O -1 2 O
1 -2 1 0

SO N O
O O N NDO

Thus the basis {fs, fe} of {V ® (V ® V)(p)}(p) is contained in the
subspace (g1, ,94) ={VOVOV)() }(o) +H{VO(V®V)(x) }(p) and
the restriction of (44) to the V,-isotypic component is a zero map.
Remark. The projection Py : V — V() C V to the Vj-isotypic
component V|, is expressed using the character x» of Vi [S,p34] :

_ dim V) .

B==a

> xa(9)e(9)

g€eG
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