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A REALIZATION OF

TWISTED GRASSMANN VARIETIES

TAKASHI MAEDA

ABSTRACT. A twisted Grassmann variety (a form of Grassmann va
riety), which is the variety representing the functor of right ideals of
prescribed rank in a central simple algebra over a field, is represented
by a linear section of a Grassmann variety (Theorem A). The Severi
Brauer schemes of some R-orders in the matrix ring M4(R) of degree
4 over a regular local ring R are constructed (Theorem B). The va
riety of rank 4 right ideals of the associative k-algebra generated by
X,1/ with the relations x 4 = 1/4 = 0 and 1/X = .;=Ixy is described
(Theorem C).

Introduction

Let A be a central simple algebra of degree n over a field F of
characteristic zero with the unit group A'" and the opposite algebra
AOP of A. If we regard A as A'" x (AOP)"'-module by (u, v) . x = uxv
for u, v E A'" and x E A then the scalar extension A 0 Fa over the
algebraic closure Fa of F is isomorphic to V 0 W for the standard
A'" 0 Fa = GLn(Fa)-modules V and W of dimension n over Fa. By
Cauchy's formula [A-B-W,p246,F-H,pBO] we see

(1)

where A runs over partitions of the integer n and 8~V (resp. 8 XW)
is the irreducible representation of GL(V) (resp. GL(W)) associated
with A (resp. ~ conjugate to A). In particular 1\n (V 0 W) contains
the tensor product of the n-th symmetric tensor representation 8(n) V

of GL(V) and the one-dimensional representation 8(1n) W = 1\n W of
GL(W), which descends to an A'" x (AOP)"'-submodule V(n) of I\nA over

Received November 30 1998

-25-



F. We will show that the Severi-Brauer variety X A of A is represented
by an A* x (AOJ')*-equivariant cartesian square [cf.H,p113,Ex.9.23]

X A I G(n,A)

1 1
where G(n, A) is the Grassmann variety of nrdimensional subspaces of
A and the left (resp. the right) vertical arrow is the twisted Veronese
embedding of degree n (resp. the PlUcker embedding). We generalize
this construction of Severi-Brauer varieties to that of twisted Grass
mann varieties as follows. Let A = M1(D) be a central simple algebra
of degree n over F with a division algebra D of index m = nil. For
an integer r dividing m the r-th twisted Grassmann variety XA,r of
A is defined by the F -variety representing the functor of right ideals
of A of dimension nr over F and is a form of the Grassmann variety
G(r, n) of r-dimensional subspaces in an nrdimansional vector space
over F [B,p98]. We show in Section 1

Theorem A. X A,r is represented by an A* x (DOP) *-equivariant carte
sian square (fibre product)

XA,r • G(rm,L)

1 1 (2)

Here L is the minimal left ideal of A of dimension nm over F, the
left (resp. the right) vertical arrow is defined by the line bundle {, with
{,0 Fa = OC(r,n)(m) (resp. the Pliicker embedding) and the lower
arrow is a linear section.

If K is a maximal subfield of D then the minimal left ideal L is a
left vector space of dimension n over K and the upper arrow in (2)
factors through the Wei! restriction of the Grassmann variety G(r, L)
over K: .

XA,r -+ R K / F G(r, L) -+ G(rm, L).

Here the left arrow is the canonical embedding corresponding to the
isomorphisms XA,r 0 K = G(r, n) = G(r, L) over K [V,p39], and the
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right arrow is induced by regarding an r-dimensional subspace over K
in L as an rm-dimensional subspace over F [S,p325].

Let R be a regular local ring of dimension two with the maximal
ideal (f, g)R. In Section 2 we consider the two R-orders

(
R R R R) (R R

A - (fg) R (f) R A _ (f) R
I - (g ) (g) R R 1 2 - (g) (g)

(fg) (g) (fg) R (fg) (g)

R
(f)
R

(I) ~)
of the matrix ring M4 (R) of degree four (where (f) means the principal
ideal of R generated by I). Let VI and V2 be the Severi-Brauer schemes
of Al and A2l respectively, Le. the R-schemes representing the functors
of left ideals which are rank 4 subbundles of Al and A2l respectively.
We will show VI and V2 are embedded into (~)4 with the defining
ideal generated by the minors of degree two in 4 x 4-matrices. As for
closed fibres we show in Section 2

Theorem B. (i) The closed fibre of VI consists of eight components
Zi (1 ~ i ~ 8), four of which are isomorphic to ]pI X]p2, and the others
are isomorphic to the closed subvariety of~ x ]p~ x]P; defined by

(3)

VI has singularity only at one point p = n~=1Zi, where the completion
of the local ring is isomorphic to k[lXI' ... ,Xgl] modulo

(ii) The closed fibre ofV2 consists of six components Yi (1 ~ i ~ 6) ;
two of which are isomorphic to IP2 x IP2, and the others are isomorphic
to the variety defined by (3) in (i) above. V2 has singularity only at one
point p = n?=1Yi, where the completion of the local ring is isomorphic
to k[lXi, Yi; 1 ~ i ~ 41] modulo
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The closed fibres are reduced in both cases (i)-(ii) and the total space
V1 and V2 are irreducible.

Let A = (0,0)4,k be the 16-dimensional associative algebra over a
field k generated by x, y with the relations x4 = y4 = 0 and yx =
yCIxy. We consider the closed subscheme Wo in Grassmann variety
G(4, A) = G(4, 16) of rank 4 right ideals in A. We show in Section 3

Theorem C. (i) Wo is an irreducible variety of dimension three which
is non-normal along a Weit divisor 8 rv JP2 .

(ii) There is a birational morphism v : X -t Wo such that X =
W[£] is a Wl-bundle over lF3 = W[Opl E9 Vpl (-3)] with the rank two
vector bundle £ on IF3 defined by the non-splitting exact sequence (note
Ext1(o,3 (2f), VJF3 (8 + 3f)) = H 1(O,3 (s + f)) rv k)

(4)

(iii) v-1(8) consists of two irreducible divisors D 1 U D2 where
(iii-a) D 1 = W[£lsJ C>l lFo and the restricion D 1 -t 8 ofv is a double

cover ramified along a conic q on 8 = W2,
(iii-b) D2 C>llF3 is the section defined by the surjection £ -t O,3(2f)

in (4) above with the Wl-bundle structure v: D2 = lF3 -t C over a conic
C on 8.

(iv) For a point p of Wo
(iv-a) p is in 8 if and only if p corresponds to the rank 4 right ideals

of A contained in the rank 9 ideal xyA c A.
(iv-b) p is in the conic C in (iii-b) if and only if p corresponds to

non-principal rank four right ideals of A.

The results in Section 2 and Section 3 will be used in the con
struction of a fibre space associated with the cyclic algebra (I, g )4,F of
degree 4 over a function field F.

The paper is organized as follows. In Section 1 we prove Theorem
A. In Section 2 (resp. Section 3) we prove Theorem B (resp. Theorem
C), respectively. In Section 4 we write down explicitly an ideal basis
of the Severi-Brauer variety in W9 of a cyclic algebra A = (I,g)a,F of
degree three over a field F (Proposition 8). The base field is assumed
to have characteristic zero for the sake of completely reducibility.

-28-



1. Representation

Let v = (VI 2: ... 2: Vd 2: 0) be a partition of a natural number
d = ~ Vi and let VII be the irreducible representation of the symmetric
group of degree d associated with v. We denote by SII the Schur
functor corresponding to the partition V, Le. SilVis the irreducible
representation of GL(V) asssociated with V for a vector space V over
a field F. The decomposition of SII(V 0 W) into irreducible GL(V) x
GL(W)-module is given by

SII(V 0 W) = EB>',14 C>'I4I1(S>,V 0 SI4 W) [F-H,p80] (1)

where .A and J.-L are partitions of d and the coefficients C>'1411 are cal
culated by the decomposition of the tensor product representation of
the symmetric group of degree d: V>. 0 V14 = EBII C>'1411VII' In particular
if n = dim V 2: dim W = m and v = (Irs), 1 repeats rs-times, for
integers r, s then the decomposition (1) reduces to Cauchy's formula

(2)

where). is the conjugate to each partition .A of weight rs. If {VI,'" ,

Vn } (resp. {WI,"', Wm }) is an F-basis of V (resp. W) and if .A =
(.AI 2: ... 2: .Ap > 0) is a partition of rs, then the maximal vector
of the component S>.V 0 S;xW with respect to a Borel subgroup of
GL(V) x GL(W) is given by

(VI 0 WI) A (VI 0 W2) A··· A (VI 0 W>'l)

A (V2 0 WI) A (V2 0 W2) A ... A (V2 0 W>'2)

A (vp 0 WI) A (vp 0 W2) A ... A (vp 0 w>'p)

[A-B-W,p248, d. D-E-P,p147]. Therefore Ars (V 0 W) contains the
tensor product S(sr) V 0 S(rll)W of the representation S(sr)V (resp.
S(rll) W) of GL(V) (resp. GL(W)).

Lemma 1. The inclusion OfS(sr)V0S(rll)W into Ars (V0W) induces
a GLn(Fa) x GLm(Fa)-equivariant commutative diagmm

G(r, V) x G(s, W) , G(rs, V 0 W)

1 1 (3)
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Here G(r, V) is the Grossmann variety of r-dimensional subspacs (r
subspaces, for short) in the vector space V, the left (resp. the right)
arrow is the embedding by the line bundle OG(r,V)(s) (8) OG(s,W)(r)
followed by the Segre embedding (resp. the Pliicker embedding).

Proof For an r-subspace VI of V and an s-subspace WI of W the
upper arrow in (3) maps the pair (VI, WI) to the subspace VI (8) WI of
V (8) W so the image is equal to t\rs(VI (8) WI) in t\rs(v (8) W). Since
dim VI = r and dim WI = s we see from (2) that SA VI (8) S>. WI = 0
except for). = (sr), which in turn implies t\rs(VI (8) WI) is just equal
to S(sr) VI (8) S(yd) WI. 0

Let A = M,(D) be a central simple algebra of degree n over F
with a division algebra D of index (resp. exponent) equal to m = nil
(resp. e). Let r, s be integers with e = rs. Denote by XA,r the r
th twisted Grassmann variety of A, i.e. the F-variety representing
the functor of right ideals of A of dimension nr over F. Since the
base field extension XA,r (8) Fa = G(r, n) to the algebraic closure Fa
of F (where n = deg A) [B,p102,Cor.2], the Hochshild-Serre spectral
seqence Er = HP(F, Hq(G(r, n), Gm )) ::::} Hp+q(XA,r, Gm ) provides
the exact sequence

0--. Pic XA,r --. (Pic G(r, n))Q L Br F --. Br XA,r

where 9 is the absolute Galois group of F. We see from [8-V,p511,
Th.3.3] that the generator 0(1) of Pic G(r, n) is mapped to the class
[A@r] by f. Hence Pic XA,r is generated by a line bundle £, such that
£, 0 Fa = OG(r,n)(s) with s = exp Air = elr. Similarly, Pic X D ,8 is
generated by a line bundle £' with £" (8) Fa = OG(8,m)(r).

If we regard the minimal left ideal L = D' = Fmn of A as the
A* x (DOP)*-module via (u, v) . x = uxv for u E A*, v E D* and
x E L then the scalar extension L (8) Fa is isomorphic to V (8) W for the
standard A* 0 Fa = GLn(Fa) (resp. D* (8) Fa = GLm(Fa))-modules
V (resp. W) of dimension n (resp. m) over Fa. The following Lemma
deduced from [Ti,p216,Th.7.2; cf.Lemma 7 in Section 4] guarantees
the descent of the diagram (3) from Fa to the base field F.

Lemma 2. Let B be a centml simple algebm of degree n over F and
let J-t be a partition of an integer d. If the index of B@d is equal to r
then the homomorphisms

GLn(Fs) = GL(V) --. GL(S/-,V) !--. GL«S/-,v)~r)
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over Fa, where 6 is the diagonal, descends to the irreducible represen
tation (Pp., Wp.) over F of the unit group B* of B :

Pp. : B* -+ B~ -+ GL(Wp.).

Here B 1 is the centml simple algebra over F Bmuer equivalent to B@d
such that Bi 0 Fa = GL(Sp.V). In particular if the exponent of B
divides d = weight J-L then the absolutely irreducible representation S p.V
of GL(V) descends to a representation of B* over F.

Since weight(lra) = e = exp A, Lemma 2 implies the decomposition
(2) descends over F :

weight ). = rn

where V~ (resp. W,\) is the irreducible A* (resp. (DOV)*)-module with
V~ 0 Fa = s.~V (resp. W,\ 0 Fa = S,\W). Therefore I\rB L contains the
submodule V(Br) 0 W(r-) for which V(Br) 0 W(r-) 0 Fa is isomorphic
to the tensor product S(ar)V 0 S(r3)W. Therefore the diagram (3)
descends to an A* x (DOP)*-equivariant commutative diagram over F:

XA,r X X D ,8

1
---.+1 G(rs,L)

1 (4)

In particular, if s = m = dim W then G(m, W) is one-point and
S(rm)W is a one-dimensional GL(W)-module. Hence (4) gives the
diagram (2) in Theorem A. To complete the proof of Theorem A we
have to show

Lemma 3. The commutative diagmm

G(r, V)

1
is cartesian.

---'+1 G(rm, V 0 W)

1
--+1 p[l\rm(v 0 W)]

Proof Let R be an rrrlrsubspace of V 0 W such that I\rm R is contained
in S(mr) V 0 S(rm) W. Since I\rm R is fixed by the action of GL(W)
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(1)

because of S(r.... )W = F the subspace R is an GL(W)-submodule of
V 0 W = W n (n = dim V). Therefore R is equal to VI 0 W for an
r-subspace VI of V. 0

The A* x (DOP)*-isomorphism A rv L 1 EB ... EB L l with L i = L
(1 ~ i ~ l) induces the inclusions of A* x (DOP)*-subspaces

V(nr) C V~r) C (Arm L 1 ) 0··· 0 (Arm Lt) eArn A (5)

with V(nr)0Fa = S(nr) V and VCmr)0Fa = SCmr)V. The next Corollary
follows from considering the corresponding diagram over Fa.

Corollary 4. The linear sections of G(rn, A) C lP[ArnA] cut out by
(5) induce the commutative diagrom

XA,r A) TIL XA,r I TIlG(rm, L) ) G(rn, A)

1 1 1 1
lPV(nr) ) lP[V~r)] I lP[(Arm L)@l] ) lP[Am A]

where 6. is the diagonal and TIL* is the product of 1 factors of *.

2. Severi-Brauer schemes associated with orders in M 4(R)

Let R be a regular local ring of dimension two with the maximal
ideal (I, g)R. In this section we consider the Severi-Brauer schemes of
some R-orders in M 4 (R). First let us consider

(
R R R R)

A - (fg) R (I) R
1 - (g) (g) R R .

(lg) (g) (lg) R

Since Al contains four primitive idempotents we will realize the Severi
Brauer scheme of Al as a closed subscheme of (~)4 (cf. CorA). Let
S be a local R-algebra and let L be a left ideal which is a rank 4
subbundle of Al 0 S. For any non-zero element

(

al a2 a3 a 4 )
~ = b1 fg b2 b3 f b4

clg c2g C3 C4

d1 fg ~g d3 fg d4

of Al 0 S with ai, bi, Ci, di E S we see (where eij are matrix units)
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( :~~~) = B1 • (:~~) ,
e13~ e13

e14~ e14

( ~:~~~) _ B . (~:~1)
e33~ - 3 e33 '

e34~ e34

with BI, . " ,B4 equal to

fg0-2
b2

fgC2
gd2

f a2

b2

fgc2
d2

This shows the rank 4 left ideal L decomposes into the direct sum
L1 61 ···61 L4 with Li contained in the i-th row of M4 (R). Suppose
L i is identically zero. Then Bi = 0 so that ~ = 0, a contradiction.
Therefore each L i is R-free and hence a line subbundle of AI' Hence
all minors of deg 2 in the matrices BI, ... ,B4 above are equal to zero.
Let ~i be a generator of L i which is uniquely deteremined up to the
multiplication by units of S. Write the sum ~ = ~l + ... + ~4 as in
(1). Each Li is a line subbundle of Al implies (ai), (bi), (Ci), (di ) are
unimodular rows:

(al"" ,a4)S = S,

(CI,'" ,C4)S = s,
(bI,'" ,b4 )S = S

(d l • .. ,d4 )S = S.

Therefore L defines an S-valued point of VI' Here VI is the closed
subscheme of (~)4 = ~x~x~x~ whose defining ideal is generated
by the minors of deg 2 in the above four matrices BI, ... ,B4 • This
ideal is simply written by
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where I is the ideal of R[ai, bi , €:i,~] generated by the minors of deg 2
in B1• The construction shows V1 is in fact the Severi-Brauer scheme
of A1 , Le. the R-scheme representing the functor of left ideals which
are rank 4 subbundles of A1 • By the same argument the R-order

A - (~) ~ (~) ~)
2 - (g) (g) R R

(fg) (g) (I) R

defines the Severi-Brauer scheme V2 which is represented by the closed
subscheme of (~)4 with the defining ideal equal to (1: fg) of
R[~, bi , Ci, di]where 1 is generated by the minors of deg 2 in the matrix

B~ = (;t1 ~: ;:3 ~:).
gC1 gC2 C3 C4

fgd1 gd2 fd3 d4

If we put f = 1 in A1 and A2 we see the following Lemma which are
special cases in [Al,pl84,Th.1.4].

Lemma 5. (i) The Severi-Bmuer scheme of the R-order of M4 (R)
setting f = 1 in A1 is isomorphic to the blow-up of~ along

{g = a1 = O} :) {g = a1 =~ = O} ::) {g = a1 = a2 = a3 = O}.

The closed fibre consists of four components, each of which is isomor
phic to the blow-up of JP3 along a line 1 and a point lying on 1.

(ii) The Severi-Bmuer scheme of the R-order of M4 (R) setting f =
1 in A2 is isomorphic to the blow-up of~ along {g = a1 = a2 =
O}. The closed fibre consists of two components, both of which are
isomorphic to the blow-ups of JP3 along a line.

Now we prove Theorem B. Let ~o = {f = 9 = O} be the closed fibre
of Vi (i = 1,2). The complement Vi - ~o are irreducible by Lemma
5. First we investigate the irreducible components {Zj} of the closed
fibre ~o. Next we find an irreducible openset U of Vi such that un Zj
are dense in Zj for all j, hence Vi is irreducible.

(Proof of Theorem B(i)) The group G = (0-) rv Z!(4) acts on V1 by

-34-



Let F be one of the irreducible components of Vt.

(a) Suppose al = a2 = a3 = 0 on F. If f = 9 = aj = 0 (i = 1,2,3)
and a4 = 1 then the matrices in B I , ••• ,B4 become

G
0 0 :.), C'

b2 b3

~)b2 0 CI 0 C3

0 C3 C4 dl 0 0 d4

(; b2 0

~) , U.
b2 b3 1)C2 C3 0 C3

d2 0 d4 ~ d3

where we are deleting redundant rows. From this we see b2 = C3 = 0
on F so that

b3 (CI, dl , d2 , d4), CI (b4, d2 , d4), Ibl b41 IC2 C41dl d4 ' d2 d4

vanish on F.
(1) If b3 = CI = 0 on F then F = F I is equal to

FI ={( ~ ~ ~ ~:) I Ibl b41 = IC2 d
C4
4
I= O}.o C2 0 C4 d l d4 ~

dl d2 d3 d4

(2) If b3 = b4 = d2 = d4 = 0 on F then F = F2 is equal to

F2 = {( ~ ~ ~ ~4 ) } rv pI X p2.
CI C2 0 C4

d l 0 d3 0

(3) If CI = dl = d2 = d4 = 0 on F then F = F3 is equal to

Considering the G-orbits of the above F I , F2 , F3 we obtain eight
components Zj (1 ~ i ~ 8) where four of them are isomorphic to F I
and the other four are isomorphic to pI X p2.
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((3) If al is not identically zero on F then we see from B l , ••• ,B4

that the following determinants vanish on F.

that is, F coincides with O'(Fl ). By the action of G = (0') we see the
same holds if one of b2 , C3, d4 is not identically zero on F.

()') Suppose al = b2 = C3 = d4 = 0 in the four matrices B ll .•. ,B4 :

We see all the components defined by the minors of deg 2 in the above
four matrices are contained in one of Z 1 , •.. ,Zg.

We see from (a), ((3), (,) that the eight components Zi are all the
irreducible components of the closed fibre Vt of Vl , consisting of two
G-orbits, and Vt is a reduced schemes.

Next consider the openset U of Vl where a4blc2d3 is not zero. Set
ting a4 = bl = C2 = d 3 = 1 in B l , •.• ,B4 we see

9 = a2c4 = b3d ll

al = a2c l = a3d l'

b2 = a2b4 = b3d2 ·

Hence, at the point

C3 = a3c4 = b3Cl

d 4 = b4 d l = C4d 2

( ~ ~ ~ ~)
o 100
o 0 1 0

the completion of the local ring of Vl is isomorphic to

-36-
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Therefore U is irreducible. By setting f = 9 = 0 we see Vt n U in
{a4baCId2 is non-zero} rv Al2, is defined by the determinants

These quadrics define in {a4bl C2da is non-zero} rv A~ all the eight con
ponents corresponding to Zi (1 ~ i ~ 8). Therefore VI is irreducible.
We see by a direct caclculation that Vt is nonsingular except at the
point (2) (The proof is omitted).

(Proof of Theorem B(ii)) The Severi-Brauer scheme V2 of A2 is
the closed subscheme of (~)4 defined by the minors of deg 2 of four
matrices

(al a2 aa

~) Cl f a2 aa fa, )
B' = fbI b2 fba b4 B' = bl b2 ba b4

1 gCl gC2 Ca C4 ' 2 gCl fgC2 Ca f C4

fgdl gd2 fda d4 gdl g~ da d4

Cl ~ gaa
g~)

C
f a2 gaa f9~)

B~ = fbI b2 fgba gb4 B~ = bl b2 gba gb4
Cl C2 Ca C4 ' Cl f C2 Ca f C4 •

fd l d2 fda d4 dl d2 da d4

The group G = (0-, r) D{ 71../(2) $ 71../(2) acts on V2 by

-37-



If f = 9 = 0 then the minors of deg 2 in B~, ... ,B~ reduce to

(aI, aa)(b2,b4), (aI, ~)(ca,C4), (bl , b2)(da, <4), (CI, ca)(d2 , d4)
(3)

Ial aal Ial a21 Ib
l b21 ICI cal (4)

bl ba ' CI C2 ' dl d2 ' dl da

I~ a41 Iaa a41 Ib
a b41 IC2 C41 (5)

b4 ' Ca C4 ' da d4 ' d2
d4 .

Let F be one of the irreducible components of the closed fibre V2°
with the defining ideal 'P. We see from (3) that 'P contains one of the
following set of three elements :

{al,~,aa}, {bl ,b2 ,b4}, {CI,Ca,C4}, {d2 ,da,d4}. (6)

Since G = (a, T) permutes (6) tarnsitively we assume P contains
{all a2, aa}. Then a4 is not contained in P implies both b2 and Ca
are contained in 'P by (3). Since 'P contains (b l , b2 ) (da,d4 ) and (CI, ca)
(d2 , d4 ) in (3) we see one of the following four cases occurs.

(i) If bl = ~ = CI = Ca = 0 on F then F = FI is equal to

FI = { ( ~ ~ b~ ~:) II ba b41 = IC2 C41 = O}.o C2 0 C4 da d4 d2 d4
d l ~ dg d4

(ii) If bl = b2 = d2 = d4 = 0 on F then (CI, b4)dg = 0 on F so
F = F~ or F~' where

which are isomorphic to ]pI X ]p2 and ]pI x ]pI, respectively.
(iii) If dg = d4 = CI = Cg = 0 on F then (bl , c4)d2 = 0 on F so

F = F~ or F~' where

F~ = {(~ ! ~ ~O: ) },
d l 0 0
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which are isomorphic to ]pI X JP2 and ]pI x ]pI, respectively.
(iv) If~ = d3 = d4 = 0 on F then F = F4 is equal to

Thus F~', F~' C F I and F~, F~ cF4 • Considering the action of G =
(0", r) we see the irreducible components of the closed fibre V2° consists
of just six components, which are the G-orbits of the above F I and F4 •

If we set a4 = b3 = C2 = dl = 1 in B~,··· ,B~ then the defining
equations of V2 reduce to

! = a3b4 = cI d2 ,

9 = a2c4 = bId3,

al = a3bI = a2cI,

b2 = a2b4 = bId2,

C3 = a3c4 = cId3

d4 = b4d3 = C4d2·

Thus, {!,g,al,b2,c3,d4 } are expressed by the eight elements {a2,a3,
bl , b4, CI, C4, d2, d3} with the relations

(7)

Therefore the openset U of V2 where a4b3c2dI is not zero is irreducible.

Setting ! = 9 = 0 we see U n V2° is the closed set in Af with
the affine coordinates (a2, a3, bll b4, CI, C4, d2, d3), which is defined by
a3b4 = CId2 = a2c4 = bl d3 = 0 together with (7). Hence we see Un V20
decomposes into the six irreducible components corresponding to Fi
(1 ~ i ~ 6). Therefore ~ is irreduicble. We see by a direct calculation
that "40 is nonsingular except at the one point

o 1)1 0
o 0
o 0

where V; is defined by (7).
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3. Right ideals in A = (0,0)4,k

Let (R, (f), k) be a DVR and let (f, g)4,R be the cyclic R-algebra
generated by x, y with the relations x4 = j, y4 = 9 and yx = (xy
(( = v=I). If 9 = 1 then (f,g)4,R is isomorphic to the R-order Al in
Section 2 setting 9 = 1 so the closed fibre of the Severi-Brauer scheme
of (f, 1)4,R consists of four components. For an element

z = y3+ (ao + alx + a2x2 + a3x3)y2 (1)

+ (a4 + asx + a6x2 + a7x3)y + (as + agx + alOx2 + allx3)

of (0,g)4,k with ai E k (0 ~ i ~ 11) we consider the condition that the
principal right ideal zAg of A g = (0, g)4,k is rank 4. From x 4 = 0 we
see t(z,zx,zx2,zx3) is equal to

A t (1 2 3 2 3 3 2 3 3 3). ,x,x ,x ,y,XY,'" ,y ,'" ,y ,xy ,x y ,x y

with the 4 x 16-matrix A equal to (where ( = Fl)

n
ag a.lO all a4 as Q.() a7
as ag alO 0 (a4 (as (a6
0 as ag 0 0 (2 a4 (2as
0 0 as 0 0 0 (3 a4

ao al a2 a3 1 0 0

D
0 (2 ao (2al (2 a2 0 (3 0
0 0 ao al 0 0 (2
0 0 0 (2ao 0 0 0

and zy is equal to

9 + (as + agx + alOx2 + anx3)y+(a4 + asx + Q.() + a7x3 )y2

( 2 3) 3+ ao + al x + a2x + a3x y.

Since {z,zx, zx2, zx3} are linearly independent over k we see zAg =
z· (0, g)4,k is rank 4 if and only if

(3)
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Therefore a~ = g and ai (4 ~ i ~ 11) are expressed byai (0 ~ i ~ 3) :

a4 = a~

as = (1 + (3)aOal

D{j = (3ai
a7 = (1 + ()((2 ala2 + aoa3)

as = a~

ag = (3a~al

alO = (2 aoai +a~a2

all = (a~ + 2(3aoala2 + (a~a3.

In order to define the PlUcker coordinates of zAg we shall calculate
zAzxAzx2 Azx3 Le. the maximal minors of the above 4 x l&-matrix A.
We number elements xiyi (0 ~ i, j ~ 3) of a k-basis of Ag = (0, g)4,k:

(0) = 1 (1) = x (2) = x2 (3) = x 3

(4) = Y (5) = xy (6) = x2y (7) = x 3y

(8) = y2 (9) = xy2 (10) = x 2y2 (11) = X3y2

(12) = y3 (13) = xy3 (14) = x2y3 (15) = x 3y3

and denote by (ijkl) (0 ~ i < j < k < 1 ~ 15) the coefficient of (i) A
(j)A(k)A(l) in zAzxAzr Azx3 • We see from the 4 x 1&-matrix A that
the Ag-module generated bye:) = 1820 elements {(ijkl) I0 ~ i < j <
k ~ 15} is of dimension 14 with the follwoing k-basis {Xi, Yj, zklO ~

i ~ 6, 0 ~ j ~ 3, 0 ~ k ~ 2} (for simplicity we are calculating up to
multiplication by non-zero constants) :

Xo = (12,13, 14, 15) = 1

Xl = (9,13,14,15) = al

X2 = (6,13,14,15) = ai
X3 = (3,13,14,15) = a~ + 2(2aoala2

X4 = (3,10,14,15) = at + (2(2 + ()aoaia2 + a~(ala3 + (3a~)

Xs = (3,7,14,15) = a~ + ( + 3(2)aoa~~

+ a~{(3 + 2)aia3 + (3 + 1)~} + ( + (2)aga2 a3

Xe = (3,7,11,15) = a~ + (2( + 4(2)aoat~

+ a~{(4(3 + 2)ai~ + (2(3 + 2)a~a3} + 4(agala2a3,

Yo = (10,13,14,15) =a2

YI = (7,13,14,15) = ala2 + (2 aOa3

Y2 = (7,10,14,15) = a~a2 + (( + (2)aOala3
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Y3 = (3,11,14,15) = a~a2 + ao(2(2ala~ + (a~a3) + (1 + (3)a~~a3

Zo = (11,13,14,15) = a3

Zl = (10,11,14,15) = ala3 + (2a~

Z2 = (7,11,14,15) = a~a3 + ((2 + (3)al~ + (1 + ()aOa2a3

Thus the Severi-Brauer variety W of Ag = (0, g)4,k contains an openset
U which is isomorphic to A~ with the affine coordinates (aI, a2, a3),
and which is embedded into lP13 with the homogeneous coordinates
(Xi,Yj,Zk) (O:s i:S 6,0:S j:S 3,0:S k:S 2). If 9 is non-zero then the
closure of U in lP13 is isomorphic to the closed fibre of the Severi-Brauer
variety of Lemma 5(i) in Section 2.

Now let us consider the case 9 = °in the above calculations to
describe the closure Wo of U rv A~ in IP13. The above {Xi, Yj, Zk}
become

Xi = at (1:S i :S 6),

Yj = a2a{ (O:S j :S 3),

Zo = a3

Zl = alaa + (2a~

_ 2 (1"2 I"a) 2Z2 - a l aa + ~ + ~ al a2·

(1)

We see from this that the closure Wo in IPla is defined by the following
three kind of quadrics :

rank (xo Xl X2 Xa X4 Xs Yo Yl Y2):S 1 (2)
Xl X2 Xa X4 Xs X6 Yl Y2 Ya

YjZ2 - (1 + ()Yj+lZl + (Yj+2Z0 =° (j = 0,1) (3)
(20 Zl 1) . Bl = (0, ... ,0), (Zl Z2 1) . B2 = (0" .. ,0) (4)

with the 3 x 6-matrices B l and B2 equal to

eXl -X2 -Xa -X4 -Xs
-X6 )

B l = Xo Xl X2 Xa X4 Xs

Y5 YOYI Y? YlY2 y~ Y2Ya

eXl -X2 -Xa -X4 -Xs
-X6 )

B2 = Xo Xl X2 Xa X4 Xs .

(YOYI (y? (YlY2 (y~ (Y2Ya (y~
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We see from (2)-(4) that S = {Xi = Yj = 0 (0 ~ i ~ 6,0 ~ j ~ 3)} rv

]p2 is singular on Wo. Moreover, we see from (4)

Z2X~ - (1 + ()ZlXiXi+l + (ZOX~+l

Z2Y; - (1 + ()ZlYjYj+l + (ZOY;+l

are equal to zero on Wo for 0 ~ i ~ 5, 0 ~ j ~ 2 so that Wo is
non-normal along S. Let

(X : Y : z) -- (x : Y)

be the projection from S = ]p2(CWo). We see from (2) that the image
1ro(Wo) is isomorphic to lFa. Let v: X ---+ Wo be the blow-up along S.

Lemma 6. 1ro induces a ]pI-bundle stuctU1'e 1r : X ---+ lFa C ]p1O.

Proof Let (~o : ... : ~6 : TJo : ... : TJa) be the homogeneous coordi
nates of ]plO. We see from (2)-(4) that blow-up X of Wo is the closed
subscheme of ]pIa x IFa defined by

together with

rank (xo .
~o .

Ya) = 1
TJa

(7)

TJjZ2 - (1 + ()TJj+lZl + (TJj+2Z0 = 0 (j = 0, 1) (8)
(zo Zl Yo Ya) .01 = (0, ,0) (9)

(Zl Z2 Yo Ya)' O2 = (0, ,0) (10)

where 0 1 and O2 are 4 x 6-matrices equal to

-6 -6 -6 -~4 -~5 -~6

~o ~l 6 6 ~4 ~5

TJo TJl 0 0 0 0
0 0 TJl TJ2 0 0
0 0 0 0 "12 TJa
-~l -6 -6 -~4 -~5 -~6

~o ~l 6 6 ~4 ~5
(TJo (TJl (TJ2 0 0 0
0 0 0 ("12 (TJa 0
0 0 0 0 0 (TJa
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We see 1f-I (P) Di]pI for any point p E IFa. 0

In the equations (7)-(10) of X in ]pIO x ]pIa, ei = 0 (0 :S i :S 6) imply
Xi = Yj = 0 for all 0 :S i :S 6 and 0 :S j :S 3. Hence, for the (-3)-curve
s = {ei = 0 (0 :S i :S 6)} on IFa we see 1f-I(S) is isomorphic to the
closed subscheme of~ x IP; C ]pIO X ]pIa defined by

rank ("l0 "ll "l2) = 1
TJI "l2 "la

Z2"lJ - (1 + ()ZI"lj"lj+I + (zo"lJ+l = 0 (j = 0,1,2).

Therefore v : 1f-I (s) -t ]p2 C jpla is a double cover with the branch
locus equal to the conic q = {z? = 2z0z2}. From this we see 1f-I(s) is
isomorphic to IFo. On the other hand, for any point p = (1 : ). : ).2)
on another conic C = {z? = ZOZ2}, v-I(P) contains a line {p x (1 : ). :
).2 : ... : ).6 : J.-t : J.-t)' : J.-t).2 : J.-t).a) I J.-t E k}. This implies v-I(C) -t C is
a ]pI-bundle and V-I (C) is a section of the ]pI-bundle 1f : X -t !Fa.

Next we construct a rank two bundle E on !Fa such that X = P[E].
Let {Uij;i,j = 0,1} be an open cover of IFa with Uij Di A,,2 and the
affine coordinates given by

Uo = eI!eo,

Uo = "lI!"lo ,

UI = eS/e6,

UI = "l2/"la,

Vo = "lo/f.o

VI = eo/"lo

Wo = "la/f.6

WI = e6/TJa

on Uoo
on UOI
on UlO

on Un.

The transition functions are obtained from the relations

UOUI = VOVI = WOWI = 1

Vo = "lo/f.o = TJa/f.a = ("la/e6)/(f.a/e6) (11)

= ("la/e6)/(f.!/e6)a = wo/u~.

Now we see from (7)-(10)

on Uoo
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on UQ1

on UlO

on Un

Therefore X = JP>[£] for a rank two bundle £ on IFa such that

£Iuoo = OUoozo + OuooYo,

£lu01 = OU01 Zo + OU01 Zll

£lulO = OUlOZ2 + OUlOYa

£IUn = OUn ZI + OUn Z2'

The section V-I (C) of 7r : X -t IFa considered above, is defined by

Yo = 0 over Uoo,

UOZo = ZI over UOI ,

Ya = 0 over UlO

ZI = UIZ2 over Un.

Therefore v-I (C) = JP>[L:] for a line bundle L: on X defined by the exact
sequence 0 -t M -t £ -t L: -t 0 with

o-t OUoo ~ £Iuoo -t Ouoozo -t 0

O Pl UO ZO-Z1 COl /Yl 0
-t VU01 ~ C, U01 -t VU01 Zo -t

o-t OUlO ~ £lulO -t OUlOZ2 -t 0

o-t OUn Z1- U
\Z2 £IUn -t OUnZ2 -t O.

The relations (11) imply

ZI = zo(6/~o) - YO(TJo/~o) = ZOUo - YoVo

Z2 = zl(6/~o) - Yo((TJd~o) = (ZOUo - YoVo)Uo - (YouoVo

= ZoU~ - (1 + ()YoUoVo
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so there are identities

UoZo - Zl = VoYo = (1/Vl)YO

Y3 = (1]I!TJO)3yO = ugyo = (1/u~)yo

Z2 - ZOu~ = (1/u~)zo mod Yo.

on Uoo n UOI

on Uoo n UlO (12)

Now the (-3)-curve 8 on lF3 is defined by VI = 0 on UOl , and Ul = 0
defines a fibre on UlO , so that (12) implies M rv 0..-3 (8 + 3f) and
£, CY. OF3 (2f), i.e. £ fits into an exact sequence

(13)

and v-l(C) = IP[OF3 (2f)]. Restricting (13) to the (-3)-curve s we get

o-+ (?PI -+ £Is -+ Opi (2) -+ O.

We have shown IP[£ls] CY.lFo so £Is = 0(1,1) and (13) does not split.

(Proof of Theorem C(iv» Let I be a rank 4 right ideal of A =
(0,0)4,k contained in xyA. Suppose I contains an element Z which has
a nonzero coefficient in one of the three monomials xy, x2y, xy2. Then
we see Z generates a right ideal of rank greater than 4. Hence the
rank 4 ideal I is contained in the rank 6 ideal generated by xiyi with
i + j ~ 4. Therefore I contains an element

with bl , b2 , b3 not all equal to zero. The identities

imply that if (blb3 - b~ is not equal to zero then {z, zx, zy, x3y3} is a
k-basis of I and its PHicker coordinates are given by

bl = xy3 A x2y3 A x3y2 A x3y3 = Zo

b2 = x 2y2 A x2y3 A x3y2 A x3y3 = zl

b3 = x3y A x2y3 A x3y2 A x3y3 = Z2

-46-



while the other PHicker coordinates are all equal to zero. Thus I
corresponds to a point of S. This also holds in the case (bI b3 = b~

considering the closure of (b1ba - b~ not equal to zero. Therefore
rank 4 right ideals in xyA corresponds bijectively to k-points of S.
Moreover, I contains an element z in (14) with (b1ba = b~ if and
only if 1= (z,x2y3,x3y2,x3y3), Le. a non-princiapl ideal. The conic
(b1ba = b~ is equal to C in (iii-b). 0

4. Galois descent

Let A be a central simple algebra of degree n over a field F with
the unit group A·. Let K / F be a Galois splitting field of A with
the Galois group Q and let {4>0} E ZI(Q,PGL(VK )) be a 1-cocycle
defining A (dim VK = n). From the cocycle condition 4>~ ·4>T = 4>OT
if we define the K/F-semi-linear transformations [0"] of Mn(K) by
x[o] = 4>;;1 . XO . 4>0 for 0" E Q then we see X[O][T] = X[OT) and A is
realized as the F-subalgebra of End VK fixed by this Galois group
action on End VK :

A = {x E End VK I x[ol = x for all 0" E Q}.

We see from this

Lemma 7. A K -homomorphism P : GL(VK ) -t GL(WK ) descends
to an F -homomorphism Po : A* -t GL(WF) if and only if there is an
element ), E GL(WK) such that the diagmm

GL(VK) p ~ GL(WK )

[OIl 1[01' (1)

GL(VK) p) GL(WK )

is commutative for all elements 0" E Q where [0"]' is defined by yfo )' =
),-1 . >,0 . yO. (),0)-1 . ), for y E GL(WK ).

Proof The K-homomorphism p descends over F if and only if there is
a 1-cocycle {Oo} E ZI(Q, AutK_alg GL(WK )) such that the diagram (1)
is commutative for yfol' = 0;;1 . yO .00 • Since 0 defines the split group
GL(W) over F the 1-cocycle 0 is equal to zero in Hl(Q, PGL(WK )).
This implies there is a 1-cocycle {),o} E ZI(Q, GL(WK )) such that
00 =>'0 in PGL(WK ) or 00 =(),0)-1.), for an element), E GL(WK )
by Hilbert Theorem 90. 0
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Remark. If {WI,'" ,WN} is a K-basis of WK (dim WK = N)
then the images {wr,'" ,w~} by.x E GL(VK) in Lemma 7 is an F
basis of W. For, let t(wr,·· . ,w~) = M). .t (WI,' .. ,WN) for a matrix
M>. E GLN(K). Then

t(w). W). )a.().C7)-l.). - M a t (w W )().C7)-1).
1"'" N -).. 1,"', N

= t(Wl"" ,WN).

Le. {wt} is invariant under the K / F -semi-linear transformations a .
(.xa )-I.x for all a E Q.

Let A = (I, 9h,F be a cyclic algebra of degree 3 over F. Then
K = F(Q) with Q3 = f is a Galois splitting field whose Galois group
Q = Z/3 is generated by a : Q -+ (Q with ( = exp(211'vCI/3). Lemma
2 in Section 1 shows there is an F-homomorphism Po : A* -+ GL(W)
such that W0K is the third symmetric tensor representation 8(3) VK of
A* 0K = GL(VK ). We will write down below an F-basis of Wand an
ideal basis of the Severi-Brauer variety in JP>[W] = JP>~ of A = (I, g)3,F.
Let {VI, V2, V3} be a K-basis of VK and let

(u) = t(U111' U222 , U333, U112, U223, U331 , U122, U233 , U331, U123)

be the column vector consisting of the K-basis of 8(3) VK where Uijk =
ViVjVk. The element <Pa E PGL(VK ) with

[
Vl],pC7 [0 10] [VI]
~: ~ ~ ~ ~:' <Pa~ = <P;, <PI = 13

,

is a l-cocycle {<Pa} E ZI(Q,PGL(VK)) defining A = (I,g)3,F. We
take a preimage ()a E GL(8(3)VK ) of P(<Pa) E PGL(8(3)VK ) by (u)8C7 =
Ba • (u). Here Ba E GLlO (K) is equal to

(
0 g-1 0) (0 g-1 0) (0 g-1 0)

diagonal( 0 0 g-1 , 0 0 1 , 0 0 9 ,1).
g2 0 0 gOO 1 0 0

Next we shall find aCE GLlO (K) such that Ba = (ca)-IC. Let

P = (~Q~1 ~) , Q = (~ !2 ~), R = (~ ~ ~)
o 0 Q-2 1 ( (2 0 0 r3

8rl,r~,f"J = p. Q. R = (Q~irl Q-~(2r2 Q-~(r3)
Q-2r1 Q-2(r2 Q-2(2r3
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fY1) (zo)fY2 Zl
Yo Z2

J,) PQR = R-
1 G~ DR

= (_~ r,~r2 r2~r3)-
r 3 rl 0 0

Hence if we set C = diagonal(Sl,g-1,g-2,Sl,g-1,g-l,Sl,g-1,l,l) then
(C7 )-lC = Bu - By the Remark after Lemma 7 an F-basis of W is
given by C - (Uijk), Le. the following ten elements; W = U123 and

Gn=PQo ° o ) em)g-l o U222
0 -29 U333

Gn=PQO ° o ) (Ull2)g-l o U223 (2)
0 -19 U331

(~)=PQG ° 0) (U122)g-l o U233.
0 1 U311

Proposition 8. The folwwing set of 27 quadric equations is an ideal
basis of the Severi-Bmuer variety A = (f,gh,F in lP~ with the homo
geneous coordinates (Xi,Yi,Zi,W) (i=O,1,2) ((= exp(21rv=I/3)).

(
Yo fY2 fY1) (Yo)
Y1 Yo fY2 Y1
Y2 Y1 Yo Y2

(
Xo fX2 fXl) ( Yo) (Zo f

Z
2 f

Z
1) (Zo)9 Xl Xo fX2 (2Y1 = w2Zl (2 zo (2 fZ2 Zl

X2 Xl Xo (Y2 WZ2 (Zl (zo Z2

(
Yo fY2 fYl) (Zo) (xo)Yl Yo fY2 Zl = W Xl
Y2 Yl Yo Z2 X2

(
XO fX2 fXl) ( xo) (YO fY2

9 Xl Xo f X2 (Xl = Y1 Yo
X2 Xl Xo (2 X2 . Y2 Y1

-49-



(Xo f X2 IX,) CO) ('0 IX2 IX,) ( ~ )9 Xl Xo f X2 (JIl = Zl Zo fZ2 (2 Z1

X2 Xl Xo ( Y2 Z2 Zl Zo (Z2

=w (E)
(xo f X2 IX,) ( ~) CO IY2 IY,) CO )9 Xl Xo f X2 \Zl = 9 YI Yo fY2 (2YI

X2 Xl Xo ( Z2 Y2 YI Yo (Y2

=w e~,)
(Z2

(YO IY2 IY,) ( ~) ( W

2
)9 YI Yo fY2 (2Z1 = 0 .

Y2 YI Yo ( Z2 0

Proof Note first that the Veronese embedding IP[V] -+ IP[8(3)V] of
degree three is defined by the quadrics in the subspace 8(4,2)V in
8(2)8(3) V = 8(6)V EB 8(4,2) V so there are dim 8(4,2)V = 27 linearly
independent quadrics. We see from (2)

The first three identities in Proposition 8 follow from Ulllu l22 = UII2:

9u111u'22 = 9XoZo= (xo x, X2) (:2 ) (1" ,,2) (~)
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fY2

Yo

YI

fYI) (Yo)fY2 YI'
Yo Y2

The remaining eight sets of the three identities are obtained by the
same way from the realtions UIllUI33 = U~13 and

UIllU223 = U113U I22 = U112 U I23

UlllU233 = U112 U I33 = U113U I23

U112 U233 = U~23

respectively. 0

The above calculations are generalized to those of a cyclic algebra
of higher degree, e.g. it can be written by hand 465 = dim 8(2)8(4)V 
dim 8(8)V (where dim V = 4) quadrics defining the Severi-Brauer va
riety in jp34 associated with a cyclic algebra (I, g)4,F of degree four.
However, if we set f = 9 = 0 in the 27 quadrics in Proposition 8 then
the resulting algebraic set in p9 has dimension greater than two so
these quadrics are not used for a flat fibre space with the generic fibre
isomorphic to the Severi-Brauer variety of (I, g)3,F.
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