A realization of twisted Grassmann varieties

メタデータ	言語：
	出版者：Department of Mathematical Sciences，Faculty
	of Science，University of the Ryukyus
	公開日：2010－03－04
	キーワード（Ja）：
	キーワード（En）：
	作成者：Maeda，Takashi，前田，高士
	メールアドレス：
	所属：
URL	http：／／hdl．handle．net／20．500．12000／16090

A REALIZATION OF TWISTED GRASSMANN VARIETIES

Takashi Maeda

Abstract

A twisted Grassmann variety (a form of Grassmann variety), which is the variety representing the functor of right ideals of prescribed rank in a central simple algebra over a field, is represented by a linear section of a Grassmann variety (Theorem A). The SeveriBrauer schemes of some R-orders in the matrix ring $M_{4}(R)$ of degree 4 over a regular local ring R are constructed (Theorem B). The variety of rank 4 right ideals of the associative k-algebra generated by x, y with the relations $x^{4}=y^{4}=0$ and $y x=\sqrt{-1} x y$ is described (Theorem C).

Introduction

Let A be a central simple algebra of degree n over a field F of characteristic zero with the unit group A^{*} and the opposite algebra $A^{o p}$ of A. If we regard A as $A^{*} \times\left(A^{o p}\right)^{*}$-module by $(u, v) \cdot x=u x v$ for $u, v \in A^{*}$ and $x \in A$ then the scalar extension $A \otimes F_{a}$ over the algebraic closure F_{a} of F is isomorphic to $V \otimes W$ for the standard $A^{*} \otimes F_{a}=G L_{n}\left(F_{a}\right)$-modules V and W of dimension n over F_{a}. By Cauchy's formula [A-B-W,p246,F-H,p80] we see

$$
\begin{equation*}
\wedge^{n}(V \otimes W)=\oplus_{\lambda}\left(S_{\lambda} V \otimes S_{\bar{\lambda}} W\right) \tag{1}
\end{equation*}
$$

where λ runs over partitions of the integer n and $S_{\lambda} V$ (resp. $S_{\tilde{\lambda}} W$) is the irreducible representation of $G L(V)$ (resp. $G L(W)$) associated with λ (resp. $\tilde{\lambda}$ conjugate to λ). In particular $\wedge^{n}(V \otimes W)$ contains the tensor product of the n-th symmetric tensor representation $S_{(n)} V$ of $G L(V)$ and the one-dimensional representation $S_{\left(1^{n}\right)} W=\wedge^{n} W$ of $G L(W)$, which descends to an $A^{*} \times\left(A^{o p}\right)^{*}$-submodule $\mathcal{V}_{(n)}$ of $\wedge^{n} A$ over

[^0]F. We will show that the Severi-Brauer variety X_{A} of A is represented by an $A^{*} \times\left(A^{o p}\right)^{*}$-equivariant cartesian square [cf.H,p113,Ex.9.23]

where $G(n, A)$ is the Grassmann variety of n-dimensional subspaces of A and the left (resp. the right) vertical arrow is the twisted Veronese embedding of degree n (resp. the Plücker embedding). We generalize this construction of Severi-Brauer varieties to that of twisted Grassmann varieties as follows. Let $A=M_{l}(D)$ be a central simple algebra of degree n over F with a division algebra D of index $m=n / l$. For an integer r dividing m the r-th twisted Grassmann variety $X_{A, r}$ of A is defined by the F-variety representing the functor of right ideals of A of dimension $n r$ over F and is a form of the Grassmann variety $G(r, n)$ of r-dimensional subspaces in an n-dimansional vector space over F [B,p98]. We show in Section 1
Theorem A. $X_{A, r}$ is represented by an $A^{*} \times\left(D^{o p}\right)^{*}$-equivariant cartesian square (fibre product)

Here L is the minimal left ideal of A of dimension nm over F, the left (resp. the right) vertical arrow is defined by the line bundle \mathcal{L} with $\mathcal{L} \otimes F_{a}=\mathcal{O}_{G(r, n)}(m)$ (resp. the Plücker embedding) and the lower arrow is a linear section.

If K is a maximal subfield of D then the minimal left ideal L is a left vector space of dimension n over K and the upper arrow in (2) factors through the Weil restriction of the Grassmann variety $G(r, L)$ over K :

$$
X_{A, r} \rightarrow R_{K / F} G(r, L) \rightarrow G(r m, L)
$$

Here the left arrow is the canonical embedding corresponding to the isomorphisms $X_{A, r} \otimes K=G(r, n)=G(r, L)$ over $K[\mathrm{~V}, \mathrm{p} 39]$, and the
right arrow is induced by regarding an r-dimensional subspace over K in L as an $r m$-dimensional subspace over $F[\mathrm{~S}, \mathrm{p} 325]$.

Let R be a regular local ring of dimension two with the maximal ideal $(f, g) R$. In Section 2 we consider the two R-orders

$$
\Lambda_{1}=\left(\begin{array}{cccc}
R & R & R & R \\
(f g) & R & (f) & R \\
(g) & (g) & R & R \\
(f g) & (g) & (f g) & R
\end{array}\right), \quad \Lambda_{2}=\left(\begin{array}{cccc}
R & R & R & R \\
(f) & R & (f) & R \\
(g) & (g) & R & R \\
(f g) & (g) & (f) & R
\end{array}\right)
$$

of the matrix ring $M_{4}(R)$ of degree four (where (f) means the principal ideal of R generated by f). Let V_{1} and V_{2} be the Severi-Brauer schemes of Λ_{1} and Λ_{2}, respectively, i.e. the R-schemes representing the functors of left ideals which are rank 4 subbundles of Λ_{1} and Λ_{2}, respectively. We will show V_{1} and V_{2} are embedded into $\left(\mathbb{P}_{R}^{3}\right)^{4}$ with the defining ideal generated by the minors of degree two in 4×4-matrices. As for closed fibres we show in Section 2

Theorem B. (i) The closed fibre of V_{1} consists of eight components $Z_{i}(1 \leq i \leq 8)$, four of which are isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{2}$, and the others are isomorphic to the closed subvariety of $\mathbb{P}_{x}^{3} \times \mathbb{P}_{y}^{1} \times \mathbb{P}_{z}^{1}$ defined by

$$
\left|\begin{array}{ll}
x_{1} & x_{2} \tag{3}\\
y_{1} & y_{2}
\end{array}\right|=\left|\begin{array}{ll}
x_{1} & x_{3} \\
z_{1} & z_{2}
\end{array}\right|=0
$$

V_{1} has singularity only at one point $p=\cap_{i=1}^{8} Z_{i}$, where the completion of the local ring is isomorphic to $k\left[\left|x_{1}, \cdots, x_{9}\right|\right]$ modulo

$$
\operatorname{rank}\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
x_{4} & x_{5} & x_{6} \\
x_{7} & x_{8} & x_{9}
\end{array}\right) \leq 1
$$

(ii) The closed fibre of V_{2} consists of six components $Y_{i}(1 \leq i \leq 6)$; two of which are isomorphic to $\mathbb{P}^{2} \times \mathbb{P}^{2}$, and the others are isomorphic to the variety defined by (3) in (i) above. V_{2} has singularity only at one point $p=\cap_{i=1}^{6} Y_{i}$, where the completion of the local ring is isomorphic to $k\left[\left|x_{i}, y_{i}, 1 \leq i \leq 4\right|\right]$ modulo

$$
\operatorname{rank}\left(\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4}
\end{array}\right) \leq 1
$$

The closed fibres are reduced in both cases (i)-(ii) and the total space V_{1} and V_{2} are irreducible.

Let $A=(0,0)_{4, k}$ be the 16 -dimensional associative algebra over a field k generated by x, y with the relations $x^{4}=y^{4}=0$ and $y x=$ $\sqrt{-1} x y$. We consider the closed subscheme W_{0} in Grassmann variety $G(4, A)=G(4,16)$ of rank 4 right ideals in A. We show in Section 3

Theorem C. (i) W_{0} is an irreducible variety of dimension three which is non-normal along a Weil divisor $S \cong \mathbb{P}^{2}$.
(ii) There is a birational morphism $\nu: X \rightarrow W_{0}$ such that $X=$ $\mathbb{P}[\mathcal{E}]$ is a \mathbb{P}^{1}-bundle over $\mathbb{F}_{3}=\mathbb{P}\left[\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-3)\right]$ with the rank two vector bundle \mathcal{E} on \mathbb{F}_{3} defined by the non-splitting exact sequence (note $\left.\operatorname{Ext}^{1}\left(\mathcal{O}_{\mathbb{F}_{3}}(2 f), \mathcal{O}_{\mathbb{F}_{3}}(s+3 f)\right)=H^{1}\left(\mathcal{O}_{\mathbb{F}_{3}}(s+f)\right) \cong k\right)$

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{F}_{3}}(s+3 f) \rightarrow \mathcal{E} \rightarrow \mathcal{O}_{\mathbb{F}_{3}}(2 f) \rightarrow 0 . \tag{4}
\end{equation*}
$$

(iii) $\nu^{-1}(S)$ consists of two irreducible divisors $D_{1} \cup D_{2}$ where
(iii-a) $D_{1}=\mathbb{P}\left[\left.\mathcal{E}\right|_{s}\right] \cong \mathbb{F}_{0}$ and the restricion $D_{1} \rightarrow S$ of ν is a double cover ramified along a conic q on $S=\mathbb{P}^{2}$,
(iii-b) $D_{2} \cong \mathbb{F}_{3}$ is the section defined by the surjection $\mathcal{E} \rightarrow \mathcal{O}_{\mathbb{F}_{3}}(2 f)$ in (4) above with the \mathbb{P}^{1}-bundle structure $\nu: D_{2}=\mathbb{F}_{3} \rightarrow C$ over a conic C on S.
(iv) For a point p of W_{0}
(iv-a) p is in S if and only if p corresponds to the rank 4 right ideals of A contained in the rank 9 ideal $x y A \subset A$.
(iv-b) p is in the conic C in (iii-b) if and only if p corresponds to non-principal rank four right ideals of A.

The results in Section 2 and Section 3 will be used in the construction of a fibre space associated with the cyclic algebra $(f, g)_{4, F}$ of degree 4 over a function field F.

The paper is organized as follows. In Section 1 we prove Theorem A. In Section 2 (resp. Section 3) we prove Theorem B (resp. Theorem C), respectively. In Section 4 we write down explicitly an ideal basis of the Severi-Brauer variety in \mathbb{P}^{9} of a cyclic algebra $A=(f, g)_{3, F}$ of degree three over a field F (Proposition 8). The base field is assumed to have characteristic zero for the sake of completely reducibility.

1. Representation

Let $\nu=\left(\nu_{1} \geq \cdots \geq \nu_{d} \geq 0\right)$ be a partition of a natural number $d=\Sigma \nu_{i}$ and let V_{ν} be the irreducible representation of the symmetric group of degree d associated with ν. We denote by S_{ν} the Schur functor corresponding to the partition ν, i.e. $S_{\nu} V$ is the irreducible representation of $\mathrm{GL}(V)$ asssociated with ν for a vector space V over a field F. The decomposition of $S_{\nu}(V \otimes W)$ into irreducible $\mathrm{GL}(V) \times$ $\mathrm{GL}(W)$-module is given by

$$
\begin{equation*}
S_{\nu}(V \otimes W)=\oplus_{\lambda, \mu} C_{\lambda \mu \nu}\left(S_{\lambda} V \otimes S_{\mu} W\right) \quad[\mathrm{F}-\mathrm{H}, \mathrm{p} 80] \tag{1}
\end{equation*}
$$

where λ and μ are partitions of d and the coefficients $C_{\lambda \mu \nu}$ are calculated by the decomposition of the tensor product representation of the symmetric group of degree $d: V_{\lambda} \otimes V_{\mu}=\oplus_{\nu} C_{\lambda \mu \nu} V_{\nu}$. In particular if $n=\operatorname{dim} V \geq \operatorname{dim} W=m$ and $\nu=\left(1^{r s}\right)$, 1 repeats $r s$-times, for integers r, s then the decomposition (1) reduces to Cauchy's formula

$$
\begin{equation*}
\wedge^{r s}(V \otimes W)=\oplus_{\lambda}\left(S_{\lambda} V \otimes S_{\tilde{\lambda}} W\right) \tag{2}
\end{equation*}
$$

where $\tilde{\lambda}$ is the conjugate to each partition λ of weight $r s$. If $\left\{v_{1}, \cdots\right.$, $\left.v_{n}\right\}$ (resp. $\left\{w_{1}, \cdots, w_{m}\right\}$) is an F-basis of V (resp. W) and if $\lambda=$ $\left(\lambda_{1} \geq \cdots \geq \lambda_{p}>0\right)$ is a partition of $r s$, then the maximal vector of the component $S_{\lambda} V \otimes S_{\tilde{\lambda}} W$ with respect to a Borel subgroup of $G L(V) \times G L(W)$ is given by

$$
\begin{gathered}
\left(v_{1} \otimes w_{1}\right) \wedge\left(v_{1} \otimes w_{2}\right) \wedge \cdots \wedge\left(v_{1} \otimes w_{\lambda_{1}}\right) \\
\wedge\left(v_{2} \otimes w_{1}\right) \wedge\left(v_{2} \otimes w_{2}\right) \wedge \cdots \wedge\left(v_{2} \otimes w_{\lambda_{2}}\right) \\
\vdots \\
\wedge\left(v_{p} \otimes w_{1}\right) \wedge\left(v_{p} \otimes w_{2}\right) \wedge \cdots \wedge\left(v_{p} \otimes w_{\lambda_{p}}\right)
\end{gathered}
$$

[A-B-W,p248, cf. D-E-P,p147]. Therefore $\wedge^{r s}(V \otimes W)$ contains the tensor product $S_{\left(s^{r}\right)} V \otimes S_{\left(r^{s}\right)} W$ of the representation $S_{\left(s^{r}\right)} V$ (resp. $\left.S_{\left(r^{s}\right)} W\right)$ of $G L(V)$ (resp. $G L(W)$).
Lemma 1. The inclusion of $S_{\left(s^{r}\right)} V \otimes S_{\left(r^{s}\right)} W$ into $\wedge^{r s}(V \otimes W)$ induces a $G L_{n}\left(F_{a}\right) \times G L_{m}\left(F_{a}\right)$-equivariant commutative diagram

Here $G(r, V)$ is the Grassmann variety of r-dimensional subspacs (r subspaces, for short) in the vector space V, the left (resp. the right) arrow is the embedding by the line bundle $\mathcal{O}_{G(r, V)}(s) \otimes \mathcal{O}_{G(s, W)}(r)$ followed by the Segre embedding (resp. the Plücker embedding).
Proof. For an r-subspace V_{1} of V and an s-subspace W_{1} of W the upper arrow in (3) maps the pair (V_{1}, W_{1}) to the subspace $V_{1} \otimes W_{1}$ of $V \otimes W$ so the image is equal to $\wedge^{r s}\left(V_{1} \otimes W_{1}\right)$ in $\wedge^{r s}(V \otimes W)$. Since $\operatorname{dim} V_{1}=r$ and $\operatorname{dim} W_{1}=s$ we see from (2) that $S_{\lambda} V_{1} \otimes S_{\tilde{\lambda}} W_{1}=0$ except for $\lambda=\left(s^{r}\right)$, which in turn implies $\wedge^{r s}\left(V_{1} \otimes W_{1}\right)$ is just equal to $S_{\left(s^{r}\right)} V_{1} \otimes S_{\left(r^{s}\right)} W_{1}$.

Let $A=M_{l}(D)$ be a central simple algebra of degree n over F with a division algebra D of index (resp. exponent) equal to $m=n / l$ (resp. e). Let r, s be integers with $e=r s$. Denote by $X_{A, r}$ the r th twisted Grassmann variety of A, i.e. the F-variety representing the functor of right ideals of A of dimension $n r$ over F. Since the base field extension $X_{A, r} \otimes F_{a}=G(r, n)$ to the algebraic closure F_{a} of F (where $n=\operatorname{deg} A$) [B,p102,Cor.2], the Hochshild-Serre spectral seqence $E_{2}^{p q}=H^{p}\left(F, H^{q}\left(G(r, n), \mathbb{G}_{m}\right)\right) \Rightarrow H^{p+q}\left(X_{A, r}, \mathbb{G}_{m}\right)$ provides the exact sequence

$$
0 \rightarrow \operatorname{Pic} X_{A, r} \rightarrow(\operatorname{Pic} G(r, n))^{\mathcal{G}} \xrightarrow{f} \operatorname{Br} F \rightarrow \operatorname{Br} X_{A, r}
$$

where \mathcal{G} is the absolute Galois group of F. We see from $[\mathrm{S}-\mathrm{V}, \mathrm{p} 511$, Th.3.3] that the generator $\mathcal{O}(1)$ of Pic $G(r, n)$ is mapped to the class [$\left.A^{\otimes r}\right]$ by f. Hence Pic $X_{A, r}$ is generated by a line bundle \mathcal{L} such that $\mathcal{L} \otimes F_{a}=\mathcal{O}_{G(r, n)}(s)$ with $s=\exp A / r=e / r$. Similarly, Pic $X_{D, s}$ is generated by a line bundle \mathcal{L}^{\prime} with $\mathcal{L}^{\prime} \otimes F_{a}=\mathcal{O}_{G(s, m)}(r)$.

If we regard the minimal left ideal $L=D^{l}=F^{m n}$ of A as the $A^{*} \times\left(D^{o p}\right)^{*}$-module via $(u, v) \cdot x=u x v$ for $u \in A^{*}, v \in D^{*}$ and $x \in L$ then the scalar extension $L \otimes F_{a}$ is isomorphic to $V \otimes W$ for the standard $A^{*} \otimes F_{a}=G L_{n}\left(F_{a}\right)$ (resp. $D^{*} \otimes F_{a}=G L_{m}\left(F_{a}\right)$)-modules V (resp. W) of dimension n (resp. m) over F_{a}. The following Lemma deduced from [Ti,p216,Th.7.2; cf.Lemma 7 in Section 4] guarantees the descent of the diagram (3) from F_{a} to the base field F.
Lemma 2. Let B be a central simple algebra of degree n over F and let μ be a partition of an integer d. If the index of $B^{\otimes d}$ is equal to r then the homomorphisms

$$
G L_{n}\left(F_{s}\right)=G L(V) \rightarrow G L\left(S_{\mu} V\right) \xrightarrow{\delta} G L\left(\left(S_{\mu} V\right)^{\oplus r}\right)
$$

over F_{a}, where δ is the diagonal, descends to the irreducible representation $\left(\rho_{\mu}, W_{\mu}\right)$ over F of the unit group B^{*} of B :

$$
\rho_{\mu}: B^{*} \rightarrow B_{1}^{*} \rightarrow G L\left(W_{\mu}\right) .
$$

Here B_{1} is the central simple algebra over F Brauer equivalent to $B^{\otimes d}$ such that $B_{1}^{*} \otimes F_{a}=G L\left(S_{\mu} V\right)$. In particular if the exponent of B divides $d=$ weight μ then the absolutely irreducible representation $S_{\mu} V$ of $G L(V)$ descends to a representation of B^{*} over F.

Since weight $\left(1^{r s}\right)=e=\exp A$, Lemma 2 implies the decomposition (2) descends over F :

$$
\wedge^{r s} L=\oplus_{\lambda}\left(\mathcal{V}_{\lambda} \otimes \mathcal{W}_{\tilde{\lambda}}\right) \quad \text { weight } \lambda=r n
$$

where \mathcal{V}_{λ} (resp. $\mathcal{W}_{\tilde{\lambda}}$) is the irreducible A^{*} (resp. $\left.\left(D^{o p}\right)^{*}\right)$-module with $\mathcal{V}_{\lambda} \otimes F_{a}=S_{\lambda} V$ (resp. $\left.\mathcal{W}_{\hat{\lambda}} \otimes F_{a}=S_{\tilde{\lambda}} W\right)$. Therefore $\wedge^{r s} L$ contains the submodule $\mathcal{V}_{\left(s^{r}\right)} \otimes \mathcal{W}_{\left(r^{s}\right)}$ for which $\mathcal{V}_{\left(s^{r}\right)} \otimes \mathcal{W}_{\left(r^{s}\right)} \otimes F_{a}$ is isomorphic to the tensor product $S_{\left(s^{r}\right)} V \otimes S_{\left(r^{s}\right)} W$. Therefore the diagram (3) descends to an $A^{*} \times\left(D^{o p}\right)^{*}$-equivariant commutative diagram over F :

In particular, if $s=m=\operatorname{dim} W$ then $G(m, W)$ is one-point and $S_{\left(r^{m}\right)} W$ is a one-dimensional $G L(W)$-module. Hence (4) gives the diagram (2) in Theorem A. To complete the proof of Theorem A we have to show

Lemma 3. The commutative diagram

is cartesian.
Proof. Let R be an $r m$-subspace of $V \otimes W$ such that $\wedge^{r m} R$ is contained in $S_{\left(m^{r}\right)} V \otimes S_{\left(r^{m}\right)} W$. Since $\wedge^{r m} R$ is fixed by the action of $G L(W)$
because of $S_{\left(r^{m}\right)} W=F$ the subspace R is an $G L(W)$-submodule of $V \otimes W=W^{n}(n=\operatorname{dim} V)$. Therefore R is equal to $V_{1} \otimes W$ for an r-subspace V_{1} of V.

The $A^{*} \times\left(D^{o p}\right)^{*}$-isomorphism $A \cong L_{1} \oplus \cdots \oplus L_{l}$ with $L_{i}=L$ $(1 \leq i \leq l)$ induces the inclusions of $A^{*} \times\left(D^{o p}\right)^{*}$-subspaces

$$
\begin{equation*}
\mathcal{V}_{\left(n^{r}\right)}^{\prime} \subset \mathcal{V}_{\left(m^{r}\right)}^{\otimes l} \subset\left(\wedge^{r m} L_{1}\right) \otimes \cdots \otimes\left(\wedge^{r m} L_{l}\right) \subset \wedge^{r n} A \tag{5}
\end{equation*}
$$

with $\mathcal{V}_{\left(n^{r}\right)}^{\prime} \otimes F_{a}=S_{\left(n^{r}\right)} V$ and $\mathcal{V}_{\left(m^{r}\right)} \otimes F_{a}=S_{\left(m^{r}\right)} V$. The next Corollary follows from considering the corresponding diagram over F_{a}.
Corollary 4. The linear sections of $G(r n, A) \subset \mathbb{P}\left[\wedge^{r n} A\right]$ cut out by (5) induce the commutative diagram

where Δ is the diagonal and $\Pi^{l} *$ is the product of l factors of $*$.
2. Severi-Brauer schemes associated with orders in $M_{4}(R)$

Let R be a regular local ring of dimension two with the maximal ideal $(f, g) R$. In this section we consider the Severi-Brauer schemes of some R-orders in $M_{4}(R)$. First let us consider

$$
\Lambda_{1}=\left(\begin{array}{cccc}
R & R & R & R \\
(f g) & R & (f) & R \\
(g) & (g) & R & R \\
(f g) & (g) & (f g) & R
\end{array}\right)
$$

Since Λ_{1} contains four primitive idempotents we will realize the SeveriBrauer scheme of Λ_{1} as a closed subscheme of $\left(\mathbb{P}_{R}^{3}\right)^{4}$ (cf. Cor.4). Let S be a local R-algebra and let L be a left ideal which is a rank 4 subbundle of $\Lambda_{1} \otimes S$. For any non-zero element

$$
\xi=\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \tag{1}\\
b_{1} f g & b_{2} & b_{3} f & b_{4} \\
c_{1} g & c_{2} g & c_{3} & c_{4} \\
d_{1} f g & d_{2} g & d_{3} f g & d_{4}
\end{array}\right)
$$

of $\Lambda_{1} \otimes S$ with $a_{i}, b_{i}, c_{i}, d_{i} \in S$ we see (where $e_{i j}$ are matrix units)

$$
\begin{gathered}
\left(\begin{array}{l}
e_{11} \xi \\
e_{12} \xi \\
e_{13} \xi \\
e_{14} \xi
\end{array}\right)=B_{1} \cdot\left(\begin{array}{c}
e_{11} \\
e_{12} \\
e_{13} \\
e_{14}
\end{array}\right),\left(\begin{array}{c}
f e_{21} \xi \\
e_{22} \xi \\
f e_{23} \xi \\
e_{24} \xi
\end{array}\right)=B_{2} \cdot\left(\begin{array}{c}
f e_{21} \\
e_{22} \\
f e_{23} \\
e_{24}
\end{array}\right) \\
\left(\begin{array}{c}
f g e_{31} \xi \\
g e_{32} \xi \\
e_{33} \xi \\
e_{34} \xi
\end{array}\right)=B_{3} \cdot\left(\begin{array}{c}
f g e_{31} \\
g e_{32} \\
e_{33} \\
e_{34}
\end{array}\right), \quad\left(\begin{array}{c}
f g e_{41} \xi \\
f g e_{42} \xi \\
f e_{43} \xi \\
e_{44} \xi
\end{array}\right)=B_{4} \cdot\left(\begin{array}{c}
f g e_{41} \\
f g e_{42} \\
f e_{43} \\
e_{44}
\end{array}\right)
\end{gathered}
$$

with B_{1}, \cdots, B_{4} equal to

$$
\left.\begin{array}{l}
B_{1}=\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
f g b_{1} & b_{2} & f b_{3} & b_{4} \\
g c_{1} & g c_{2} & c_{3} & c_{4} \\
f g d_{1} & g d_{2} & f g d_{3} & d_{4}
\end{array}\right), \quad B_{2}=\left(\begin{array}{ccc}
a_{1} & f g a_{2} & g a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & f g a_{4} & c_{3} \\
d_{1} & g d_{2} & g d_{3} \\
a_{4} & d_{4}
\end{array}\right) \\
B_{3}=\left(\begin{array}{ccc}
& g a_{3} & g a_{4} \\
f g b_{1} & b_{2} & f g b_{3} \\
c_{1} & c_{2} & c_{3} \\
f b_{4} \\
f d_{1} & d_{2} & f g d_{3}
\end{array} d_{4}\right.
\end{array}\right), \quad B_{4}=\left(\begin{array}{cccc}
a_{1} & f a_{2} & a_{3} & f g a_{4} \\
g b_{1} & b_{2} & b_{3} & g b_{4} \\
g c_{1} & f g c_{2} & c_{3} & f g c_{4} \\
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right) . .
$$

This shows the rank 4 left ideal L decomposes into the direct sum $L_{1} \oplus \cdots \oplus L_{4}$ with L_{i} contained in the i-th row of $M_{4}(R)$. Suppose L_{i} is identically zero. Then $B_{i}=0$ so that $\xi=0$, a contradiction. Therefore each L_{i} is R-free and hence a line subbundle of Λ_{1}. Hence all minors of deg 2 in the matrices B_{1}, \cdots, B_{4} above are equal to zero. Let ξ_{i} be a generator of L_{i} which is uniquely deteremined up to the multiplication by units of S. Write the sum $\xi=\xi_{1}+\cdots+\xi_{4}$ as in (1). Each L_{i} is a line subbundle of Λ_{1} implies $\left(a_{i}\right),\left(b_{i}\right),\left(c_{i}\right),\left(d_{i}\right)$ are unimodular rows :

$$
\begin{aligned}
\left(a_{1}, \cdots, a_{4}\right) S=S, & \left(b_{1}, \cdots, b_{4}\right) S=S \\
\left(c_{1}, \cdots, c_{4}\right) S=S, & \left(d_{1} \cdots, d_{4}\right) S=S
\end{aligned}
$$

Therefore L defines an S-valued point of V_{1}. Here V_{1} is the closed subscheme of $\left(\mathbb{P}_{R}^{3}\right)^{4}=\mathbb{P}_{a}^{3} \times \mathbb{P}_{b}^{3} \times \mathbb{P}_{c}^{3} \times \mathbb{P}_{d}^{3}$ whose defining ideal is generated by the minors of deg 2 in the above four matrices B_{1}, \cdots, B_{4}. This ideal is simply written by

$$
I: f g=\left\{h \in R\left[a_{i}, b_{i}, c_{i}, d_{i} ; 1 \leq i \leq 4\right] \mid f g h \in I\right\}
$$

where I is the ideal of $R\left[a_{i}, b_{i}, c_{i}, d_{i}\right]$ generated by the minors of deg 2 in B_{1}. The construction shows V_{1} is in fact the Severi-Brauer scheme of Λ_{1}, i.e. the R-scheme representing the functor of left ideals which are rank 4 subbundles of Λ_{1}. By the same argument the R-order

$$
\Lambda_{2}=\left(\begin{array}{cccc}
R & R & R & R \\
(f) & R & (f) & R \\
(g) & (g) & R & R \\
(f g) & (g) & (f) & R
\end{array}\right)
$$

defines the Severi-Brauer scheme V_{2} which is represented by the closed subscheme of $\left(\mathbb{P}_{R}^{3}\right)^{4}$ with the defining ideal equal to ($I: f g$) of $R\left[a_{i}, b_{i}, c_{i}, d_{i}\right]$ where I is generated by the minors of deg 2 in the matrix

$$
B_{1}^{\prime}=\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
f b_{1} & b_{2} & f b_{3} & b_{4} \\
g c_{1} & g c_{2} & c_{3} & c_{4} \\
f g d_{1} & g d_{2} & f d_{3} & d_{4}
\end{array}\right) .
$$

If we put $f=1$ in Λ_{1} and Λ_{2} we see the following Lemma which are special cases in [A1,p184,Th.1.4].
Lemma 5. (i) The Severi-Brauer scheme of the R-order of $M_{4}(R)$ setting $f=1$ in Λ_{1} is isomorphic to the blow-up of \mathbb{P}_{R}^{3} along

$$
\left\{g=a_{1}=0\right\} \supset\left\{g=a_{1}=a_{2}=0\right\} \supset\left\{g=a_{1}=a_{2}=a_{3}=0\right\}
$$

The closed fibre consists of four components, each of which is isomorphic to the blow-up of \mathbb{P}^{3} along a line l and a point lying on l.
(ii) The Severi-Brauer scheme of the R-order of $M_{4}(R)$ setting $f=$ 1 in Λ_{2} is isomorphic to the blow-up of $\mathbb{P}_{\boldsymbol{R}}^{3}$ along $\left\{g=a_{1}=a_{2}=\right.$ $0\}$. The closed fibre consists of two components, both of which are isomorphic to the blow-ups of \mathbb{P}^{3} along a line.

Now we prove Theorem B. Let $V_{i}^{o}=\{f=g=0\}$ be the closed fibre of $V_{i}(i=1,2)$. The complement $V_{i}-V_{i}^{o}$ are irreducible by Lemma 5. First we investigate the irreducible components $\left\{Z_{j}\right\}$ of the closed fibre $V_{i}{ }^{0}$. Next we find an irreducible openset U of V_{i} such that $U \cap Z_{j}$ are dense in Z_{j} for all j, hence V_{i} is irreducible.
(Proof of Theorem $\mathrm{B}(\mathrm{i})$) The group $G=\langle\sigma\rangle \cong \mathbb{Z} /(4)$ acts on V_{1} by

$$
\sigma:\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right) \rightarrow\left(\begin{array}{l}
b_{2} \\
b_{3} \\
b_{4} \\
b_{1}
\end{array}\right) \rightarrow\left(\begin{array}{l}
c_{3} \\
c_{4} \\
c_{1} \\
c_{2}
\end{array}\right) \rightarrow\left(\begin{array}{l}
d_{4} \\
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right) .
$$

Let F be one of the irreducible components of V_{1}^{o}.
(α) Suppose $a_{1}=a_{2}=a_{3}=0$ on F. If $f=g=a_{i}=0(i=1,2,3)$ and $a_{4}=1$ then the matrices in B_{1}, \cdots, B_{4} become

$$
\begin{array}{lll}
\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & b_{2} & 0 & b_{4} \\
0 & 0 & c_{3} & c_{4}
\end{array}\right), & \left(\begin{array}{cccc}
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & 0 & c_{3} & 0 \\
d_{1} & 0 & 0 & d_{4}
\end{array}\right) \\
\left(\begin{array}{cccc}
0 & b_{2} & 0 & 0 \\
c_{1} & c_{2} & c_{3} & c_{4} \\
0 & d_{2} & 0 & d_{4}
\end{array}\right), & \left(\begin{array}{cccc}
0 & b_{2} & b_{3} & 0 \\
0 & 0 & c_{3} & 0 \\
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right)
\end{array}
$$

where we are deleting redundant rows. From this we see $b_{2}=c_{3}=0$ on F so that

$$
b_{3}\left(c_{1}, d_{1}, d_{2}, d_{4}\right), \quad c_{1}\left(b_{4}, d_{2}, d_{4}\right), \quad\left|\begin{array}{ll}
b_{1} & b_{4} \\
d_{1} & d_{4}
\end{array}\right|, \quad\left|\begin{array}{ll}
c_{2} & c_{4} \\
d_{2} & d_{4}
\end{array}\right|
$$

vanish on F.
(1) If $b_{3}=c_{1}=0$ on F then $F=F_{1}$ is equal to

$$
F_{1}=\left\{\left(\begin{array}{cccc}
0 & 0 & 0 & a_{4} \\
b_{1} & 0 & 0 & b_{4} \\
0 & c_{2} & 0 & c_{4} \\
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right)| | \begin{array}{ll}
b_{1} & b_{4} \\
d_{1} & d_{4}
\end{array}\left|=\left|\begin{array}{cc}
c_{2} & c_{4} \\
d_{2} & d_{4}
\end{array}\right|=0\right\} .\right.
$$

(2) If $b_{3}=b_{4}=d_{2}=d_{4}=0$ on F then $F=F_{2}$ is equal to

$$
F_{2}=\left\{\left(\begin{array}{cccc}
0 & 0 & 0 & a_{4} \\
b_{1} & 0 & 0 & 0 \\
c_{1} & c_{2} & 0 & c_{4} \\
d_{1} & 0 & d_{3} & 0
\end{array}\right)\right\} \cong \mathbb{P}^{1} \times \mathbb{P}^{2}
$$

(3) If $c_{1}=d_{1}=d_{2}=d_{4}=0$ on F then $F=F_{3}$ is equal to

$$
F_{3}=\left\{\left(\begin{array}{cccc}
0 & 0 & 0 & a_{4} \\
b_{1} & 0 & b_{3} & b_{4} \\
0 & c_{2} & 0 & c_{4} \\
0 & 0 & d_{3} & 0
\end{array}\right)\right\}=\sigma^{-1}\left(F_{2}\right) .
$$

Considering the G-orbits of the above F_{1}, F_{2}, F_{3} we obtain eight components $Z_{i}(1 \leq i \leq 8)$ where four of them are isomorphic to F_{1} and the other four are isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{2}$.
(β) If a_{1} is not identically zero on F then we see from B_{1}, \cdots, B_{4} that the following determinants vanish on F.

$$
b_{2}, b_{3}, b_{4}, c_{3}, c_{4}, d_{2}, d_{4},\left|\begin{array}{ll}
a_{1} & a_{2} \\
c_{1} & c_{2}
\end{array}\right|,\left|\begin{array}{ll}
a_{1} & a_{3} \\
d_{1} & d_{3}
\end{array}\right|
$$

that is, F coincides with $\sigma\left(F_{1}\right)$. By the action of $G=\langle\sigma\rangle$ we see the same holds if one of b_{2}, c_{3}, d_{4} is not identically zero on F.
(γ) Suppose $a_{1}=b_{2}=c_{3}=d_{4}=0$ in the four matrices B_{1}, \cdots, B_{4} :

$$
\begin{array}{lll}
\left(\begin{array}{cccc}
0 & a_{2} & a_{3} & a_{4} \\
0 & 0 & 0 & b_{4} \\
0 & 0 & 0 & c_{4}
\end{array}\right), & \left(\begin{array}{cccc}
b_{1} & 0 & b_{3} & b_{4} \\
c_{1} & 0 & 0 & 0 \\
d_{1} & 0 & 0 & 0
\end{array}\right) \\
\left(\begin{array}{cccc}
0 & a_{2} & 0 & 0 \\
c_{1} & c_{2} & 0 & c_{4} \\
0 & d_{2} & 0 & 0
\end{array}\right), & \left(\begin{array}{cccc}
0 & 0 & a_{3} & 0 \\
0 & 0 & b_{3} & 0 \\
d_{1} & d_{2} & d_{3} & 0
\end{array}\right) .
\end{array}
$$

We see all the components defined by the minors of deg 2 in the above four matrices are contained in one of Z_{1}, \cdots, Z_{8}.

We see from $(\alpha),(\beta),(\gamma)$ that the eight components Z_{i} are all the irreducible components of the closed fibre V_{1}^{o} of V_{1}, consisting of two G-orbits, and V_{1}^{o} is a reduced schemes.

Next consider the openset U of V_{1} where $a_{4} b_{1} c_{2} d_{3}$ is not zero. Setting $a_{4}=b_{1}=c_{2}=d_{3}=1$ in B_{1}, \cdots, B_{4} we see

$$
\begin{aligned}
g & =a_{2} c_{4}=b_{3} d_{1}, & & c_{3}=a_{3} c_{4}=b_{3} c_{1} \\
a_{1} & =a_{2} c_{1} & =a_{3} d_{1}, & d_{4}=b_{4} d_{1}=c_{4} d_{2} \\
b_{2} & =a_{2} b_{4} & =b_{3} d_{2} . &
\end{aligned}
$$

Hence, at the point

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \tag{2}\\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

the completion of the local ring of V_{1} is isomorphic to

$$
\operatorname{rank}\left(\begin{array}{ccc}
a_{2} & b_{3} & a_{3} \\
d_{1} & c_{4} & c_{1} \\
d_{2} & b_{4} & f
\end{array}\right) \leq 1
$$

Therefore U is irreducible. By setting $f=g=0$ we see $V_{1}^{o} \cap U$ in $\left\{a_{4} b_{3} c_{1} d_{2}\right.$ is non-zero $\} \cong \mathbb{A}_{k}^{12}$, is defined by the determinants

$$
\begin{aligned}
& \left(c_{1}, a_{3}\right)\left(b_{4}, d_{2}\right), \quad a_{2} c_{4}, \quad b_{3} d_{1} \\
& \left|\begin{array}{cc}
b_{3} & a_{3} \\
c_{4} & c_{1}
\end{array}\right|, \quad\left|\begin{array}{ll}
a_{2} & a_{3} \\
d_{1} & c_{1}
\end{array}\right|, \quad\left|\begin{array}{ll}
d_{1} & c_{4} \\
d_{2} & b_{4}
\end{array}\right|, \quad\left|\begin{array}{ll}
a_{2} & b_{3} \\
d_{2} & b_{4}
\end{array}\right| .
\end{aligned}
$$

These quadrics define in $\left\{a_{4} b_{1} c_{2} d_{3}\right.$ is non-zero $\} \cong \mathbb{A}_{k}^{9}$ all the eight conponents corresponding to $Z_{i}(1 \leq i \leq 8)$. Therefore V_{1} is irreducible. We see by a direct caclculation that V_{1}^{o} is nonsingular except at the point (2) (The proof is omitted).
(Proof of Theorem B(ii)) The Severi-Brauer scheme V_{2} of Λ_{2} is the closed subscheme of $\left(\mathbb{P}_{R}^{3}\right)^{4}$ defined by the minors of $\operatorname{deg} 2$ of four matrices

$$
\begin{aligned}
& B_{1}^{\prime}=\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
f b_{1} & b_{2} & f b_{3} & b_{4} \\
g c_{1} & g c_{2} & c_{3} & c_{4} \\
f g d_{1} & g d_{2} & f d_{3} & d_{4}
\end{array}\right), \quad B_{2}^{\prime}=\left(\begin{array}{cccc}
a_{1} & f a_{2} & a_{3} & f a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
g c_{1} & f g c_{2} & c_{3} & f c_{4} \\
g d_{1} & g d_{2} & d_{3} & d_{4}
\end{array}\right) \\
& B_{3}^{\prime}=\left(\begin{array}{cccc}
a_{1} & a_{2} & g a_{3} & g a_{4} \\
f b_{1} & b_{2} & f g b_{3} & g b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
f d_{1} & d_{2} & f d_{3} & d_{4}
\end{array}\right), \quad B_{4}^{\prime}=\left(\begin{array}{cccc}
a_{1} & f a_{2} & g a_{3} & f g a_{4} \\
b_{1} & b_{2} & g b_{3} & g b_{4} \\
c_{1} & f c_{2} & c_{3} & f c_{4} \\
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right) .
\end{aligned}
$$

The group $G=\langle\sigma, \tau\rangle \cong \mathbb{Z} /(2) \oplus \mathbb{Z} /(2)$ acts on V_{2} by

$$
\begin{aligned}
\sigma:\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right) \leftrightarrow\left(\begin{array}{l}
b_{2} \\
b_{1} \\
b_{4} \\
b_{3}
\end{array}\right), & \left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right) \leftrightarrow\left(\begin{array}{l}
d_{2} \\
d_{1} \\
d_{4} \\
d_{3}
\end{array}\right) \\
\tau:\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right) \leftrightarrow\left(\begin{array}{l}
c_{3} \\
c_{4} \\
c_{1} \\
c_{2}
\end{array}\right), & \left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right) \leftrightarrow\left(\begin{array}{l}
d_{3} \\
d_{4} \\
d_{1} \\
d_{2}
\end{array}\right) .
\end{aligned}
$$

If $f=g=0$ then the minors of $\operatorname{deg} 2$ in $B_{1}^{\prime}, \cdots, B_{4}^{\prime}$ reduce to

$$
\begin{array}{ll}
\left(a_{1}, a_{3}\right)\left(b_{2}, b_{4}\right), & \left(a_{1}, a_{2}\right)\left(c_{3}, c_{4}\right), \\
\left|\begin{array}{ll}
\left.a_{1}, b_{2}\right)\left(d_{3}, d_{4}\right) & \left(c_{1}, c_{3}\right)\left(d_{2}, d_{4}\right) \\
b_{1} & b_{3}
\end{array}\right|, & \left|\begin{array}{ll}
a_{1} & a_{2} \\
c_{1} & c_{2}
\end{array}\right|,
\end{array}\left|\begin{array}{ll}
b_{1} & b_{2} \\
d_{1} & d_{2}
\end{array}\right|, \quad\left|\begin{array}{ll}
c_{1} & c_{3} \tag{5}\\
d_{1} & d_{3}
\end{array}\right|,
$$

Let F be one of the irreducible components of the closed fibre V_{2}^{o} with the defining ideal \mathcal{P}. We see from (3) that \mathcal{P} contains one of the following set of three elements :

$$
\begin{equation*}
\left\{a_{1}, a_{2}, a_{3}\right\},\left\{b_{1}, b_{2}, b_{4}\right\},\left\{c_{1}, c_{3}, c_{4}\right\},\left\{d_{2}, d_{3}, d_{4}\right\} . \tag{6}
\end{equation*}
$$

Since $G=\langle\sigma, \tau\rangle$ permutes (6) tarnsitively we assume \mathcal{P} contains $\left\{a_{1}, a_{2}, a_{3}\right\}$. Then a_{4} is not contained in \mathcal{P} implies both b_{2} and c_{3} are contained in \mathcal{P} by (3). Since \mathcal{P} contains $\left(b_{1}, b_{2}\right)\left(d_{3}, d_{4}\right)$ and $\left(c_{1}, c_{3}\right)$ (d_{2}, d_{4}) in (3) we see one of the following four cases occurs.
(i) If $b_{1}=b_{2}=c_{1}=c_{3}=0$ on F then $F=F_{1}$ is equal to

$$
F_{1}=\left\{\left(\begin{array}{cccc}
0 & 0 & 0 & a_{4} \\
0 & 0 & b_{3} & b_{4} \\
0 & c_{2} & 0 & c_{4} \\
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right)| | \begin{array}{cc}
b_{3} & b_{4} \\
d_{3} & d_{4}
\end{array}\left|=\left|\begin{array}{cc}
c_{2} & c_{4} \\
d_{2} & d_{4}
\end{array}\right|=0\right\}\right.
$$

(ii) If $b_{1}=b_{2}=d_{2}=d_{4}=0$ on F then $\left(c_{1}, b_{4}\right) d_{3}=0$ on F so $F=F_{2}^{\prime}$ or $F_{2}^{\prime \prime}$ where

$$
F_{2}^{\prime}=\left\{\left(\begin{array}{cccc}
0 & 0 & 0 & a_{4} \\
0 & 0 & b_{3} & b_{4} \\
c_{1} & c_{2} & 0 & c_{4} \\
d_{1} & 0 & 0 & 0
\end{array}\right)\right\}, \quad F_{2}^{\prime \prime}=\left\{\left(\begin{array}{cccc}
0 & 0 & 0 & a_{4} \\
0 & 0 & b_{3} & 0 \\
0 & c_{2} & 0 & c_{4} \\
d_{1} & 0 & d_{3} & 0
\end{array}\right)\right\}
$$

which are isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{2}$ and $\mathbb{P}^{1} \times \mathbb{P}^{1}$, respectively.
(iii) If $d_{3}=d_{4}=c_{1}=c_{3}=0$ on F then $\left(b_{1}, c_{4}\right) d_{2}=0$ on F so $F=F_{3}^{\prime}$ or $F_{3}^{\prime \prime}$ where

$$
F_{3}^{\prime}=\left\{\left(\begin{array}{cccc}
0 & 0 & 0 & a_{4} \\
b_{1} & 0 & b_{3} & b_{4} \\
0 & c_{2} & 0 & c_{4} \\
d_{1} & 0 & 0 & 0
\end{array}\right)\right\}, \quad F_{3}^{\prime \prime}=\left\{\left(\begin{array}{cccc}
0 & 0 & 0 & a_{4} \\
0 & 0 & b_{3} & b_{4} \\
0 & c_{2} & 0 & 0 \\
d_{1} & d_{2} & 0 & 0
\end{array}\right)\right\}
$$

which are isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{2}$ and $\mathbb{P}^{1} \times \mathbb{P}^{1}$, respectively.
(iv) If $d_{2}=d_{3}=d_{4}=0$ on F then $F=F_{4}$ is equal to

$$
F_{4}=\left\{\left(\begin{array}{cccc}
0 & 0 & 0 & a_{4} \\
b_{1} & 0 & b_{3} & b_{4} \\
c_{1} & c_{2} & 0 & c_{4} \\
d_{1} & 0 & 0 & 0
\end{array}\right)\right\} \cong \mathbb{P}^{2} \times \mathbb{P}^{2}
$$

Thus $F_{2}^{\prime \prime}, F_{3}^{\prime \prime} \subset F_{1}$ and $F_{2}^{\prime}, F_{3}^{\prime} \subset F_{4}$. Considering the action of $G=$ $\langle\sigma, \tau\rangle$ we see the irreducible components of the closed fibre V_{2}^{o} consists of just six components, which are the G-orbits of the above F_{1} and F_{4}.

If we set $a_{4}=b_{3}=c_{2}=d_{1}=1$ in $B_{1}^{\prime}, \cdots, B_{4}^{\prime}$ then the defining equations of V_{2} reduce to

$$
\begin{array}{llll}
f=a_{3} b_{4}=c_{1} d_{2}, & a_{1}=a_{3} b_{1}=a_{2} c_{1}, & c_{3}=a_{3} c_{4}=c_{1} d_{3} \\
g=a_{2} c_{4}=b_{1} d_{3}, & b_{2}=a_{2} b_{4}=b_{1} d_{2}, & d_{4}=b_{4} d_{3}=c_{4} d_{2} .
\end{array}
$$

Thus, $\left\{f, g, a_{1}, b_{2}, c_{3}, d_{4}\right\}$ are expressed by the eight elements $\left\{a_{2}, a_{3}\right.$, $\left.b_{1}, b_{4}, c_{1}, c_{4}, d_{2}, d_{3}\right\}$ with the relations

$$
\operatorname{rank}\left(\begin{array}{llll}
a_{2} & d_{3} & d_{2} & a_{3} \tag{7}\\
b_{1} & c_{4} & b_{4} & c_{1}
\end{array}\right) \leq 1 .
$$

Therefore the openset U of V_{2} where $a_{4} b_{3} c_{2} d_{1}$ is not zero is irreducible.
Setting $f=g=0$ we see $U \cap V_{2}^{o}$ is the closed set in \mathbb{A}_{k}^{8} with the affine coordinates ($a_{2}, a_{3}, b_{1}, b_{4}, c_{1}, c_{4}, d_{2}, d_{3}$), which is defined by $a_{3} b_{4}=c_{1} d_{2}=a_{2} c_{4}=b_{1} d_{3}=0$ together with (7). Hence we see $U \cap V_{2}^{o}$ decomposes into the six irreducible components corresponding to F_{i} ($1 \leq i \leq 6$). Therefore V_{2} is irreduicble. We see by a direct calculation that V_{4}^{o} is nonsingular except at the one point

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

where V_{4}^{o} is defined by (7).
3. Right ideals in $A=(0,0)_{4, k}$

Let $(R,(f), k)$ be a DVR and let $(f, g)_{4, R}$ be the cyclic R-algebra generated by x, y with the relations $x^{4}=f, y^{4}=g$ and $y x=\zeta x y$ ($\zeta=\sqrt{-1}$). If $g=1$ then $(f, g)_{4, R}$ is isomorphic to the R-order Λ_{1} in Section 2 setting $g=1$ so the closed fibre of the Severi-Brauer scheme of $(f, 1)_{4, R}$ consists of four components. For an element

$$
\begin{align*}
z=y^{3} & +\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right) y^{2} \tag{1}\\
& +\left(a_{4}+a_{5} x+a_{6} x^{2}+a_{7} x^{3}\right) y+\left(a_{8}+a_{9} x+a_{10} x^{2}+a_{11} x^{3}\right)
\end{align*}
$$

of $(0, g)_{4, k}$ with $a_{i} \in k(0 \leq i \leq 11)$ we consider the condition that the principal right ideal $z \Lambda_{g}$ of $\Lambda_{g}=(0, g)_{4, k}$ is rank 4. From $x^{4}=0$ we see ${ }^{t}\left(z, z x, z x^{2}, z x^{3}\right)$ is equal to

$$
A \cdot{ }^{t}\left(1, x, x^{2}, x^{3}, y, x y, \cdots, y^{2}, \cdots, y^{3}, x y^{3}, x^{2} y^{3}, x^{3} y^{3}\right)
$$

with the 4×16-matrix A equal to (where $\zeta=\sqrt{-1}$)

$$
\left(\begin{array}{cccccccc}
a_{8} & a_{9} & a_{10} & a_{11} & a_{4} & a_{5} & a_{6} & a_{7} \\
0 & a_{8} & a_{9} & a_{10} & 0 & \zeta a_{4} & \zeta a_{5} & \zeta a_{6} \\
0 & 0 & a_{8} & a_{9} & 0 & 0 & \zeta^{2} a_{4} & \zeta^{2} a_{5} \\
0 & 0 & 0 & a_{8} & 0 & 0 & 0 & \zeta^{3} a_{4} \\
& a_{0} & a_{1} & a_{2} & a_{3} & 1 & 0 & 0 \\
0 \\
& 0 & \zeta^{2} a_{0} & \zeta^{2} a_{1} & \zeta^{2} a_{2} & 0 & \zeta^{3} & 0 \\
0 \\
& 0 & 0 & a_{0} & a_{1} & 0 & 0 & \zeta^{2} \\
& 0 & 0 & 0 & \zeta^{2} a_{0} & 0 & 0 & 0 \\
\zeta
\end{array}\right)
$$

and $z y$ is equal to

$$
\begin{aligned}
g+\left(a_{8}+a_{9} x+a_{10} x^{2}+a_{11} x^{3}\right) y & +\left(a_{4}+a_{5} x+a_{6}+a_{7} x^{3}\right) y^{2} \\
& +\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right) y^{3}
\end{aligned}
$$

Since $\left\{z, z x, z x^{2}, z x^{3}\right\}$ are linearly independent over k we see $z \Lambda_{g}=$ $z \cdot(0, g)_{4, k}$ is rank 4 if and only if

$$
\begin{equation*}
z y=a_{0} z+\zeta a_{1} z x+\zeta^{2} a_{2} z x^{2}+\zeta^{3} a_{3} z x^{3} \tag{3}
\end{equation*}
$$

Therefore $a_{0}^{4}=g$ and $a_{i}(4 \leq i \leq 11)$ are expressed by $a_{i}(0 \leq i \leq 3)$:

$$
\begin{array}{lrl}
a_{4} & =a_{0}^{2} & a_{8}
\end{array}=a_{0}^{3} \quad 1+a_{9}=\zeta^{3} a_{0}^{2} a_{1} .
$$

In order to define the Plücker coordinates of $z \Lambda_{g}$ we shall calculate $z \wedge z x \wedge z x^{2} \wedge z x^{3}$ i.e. the maximal minors of the above 4×16-matrix A. We number elements $x^{i} y^{j}(0 \leq i, j \leq 3)$ of a k-basis of $\Lambda_{g}=(0, g)_{4, k}$:
$(0)=1$
(1) $=x$
$(2)=x^{2}$
$(3)=x^{3}$
$(4)=y$
(5) $=x y$
(6) $=x^{2} y$
(7) $=x^{3} y$
$(8)=y^{2}$
(9) $=x y^{2}$
(10) $=x^{2} y^{2}$
(11) $=x^{3} y^{2}$
$(12)=y^{3}$
$(13)=x y^{3}$
(14) $=x^{2} y^{3}$
(15) $=x^{3} y^{3}$
and denote by $(i j k l)(0 \leq i<j<k<l \leq 15)$ the coefficient of $(i) \wedge$ $(j) \wedge(k) \wedge(l)$ in $z \wedge z x \wedge z x^{2} \wedge z x^{3}$. We see from the 4×16-matrix A that the Λ_{g}-module generated by $\binom{16}{4}=1820$ elements $\{(i j k l) \mid 0 \leq i<j<$ $k \leq 15\}$ is of dimension 14 with the follwoing k-basis $\left\{x_{i}, y_{j}, x_{k} \mid 0 \leq\right.$ $i \leq 6,0 \leq j \leq 3,0 \leq k \leq 2\}$ (for simplicity we are calculating up to multiplication by non-zero constants) :

$$
\begin{aligned}
x_{0}= & (12,13,14,15)=1 \\
x_{1}= & (9,13,14,15)=a_{1} \\
x_{2}= & (6,13,14,15)=a_{1}^{2} \\
x_{3}= & (3,13,14,15)=a_{1}^{3}+2 \zeta^{2} a_{0} a_{1} a_{2} \\
x_{4}= & (3,10,14,15)=a_{1}^{4}+\left(2 \zeta^{2}+\zeta\right) a_{0} a_{1}^{2} a_{2}+a_{0}^{2}\left(a_{1} a_{3}+\zeta^{3} a_{2}^{2}\right) \\
x_{5}= & (3,7,14,15)=a_{1}^{5}+\left(\zeta+3 \zeta^{2}\right) a_{0} a_{1}^{3} a_{2} \\
& \quad+a_{0}^{2}\left\{\left(\zeta^{3}+2\right) a_{1}^{2} a_{3}+\left(\zeta^{3}+1\right) a_{2}^{2}\right\}+\left(\zeta+\zeta^{2}\right) a_{0}^{3} a_{2} a_{3} \\
x_{6}= & (3,7,11,15)=a_{1}^{6}+\left(2 \zeta+4 \zeta^{2}\right) a_{0} a_{1}^{4} a_{2}
\end{aligned} \quad \begin{aligned}
& \quad+a_{0}^{2}\left\{\left(4 \zeta^{3}+2\right) a_{1}^{2} a_{2}^{2}+\left(2 \zeta^{3}+2\right) a_{1}^{3} a_{3}\right\}+4 \zeta a_{0}^{3} a_{1} a_{2} a_{3} \\
& y_{0}=(10,13,14,15)=a_{2} \\
& y_{1}=(7,13,14,15)=a_{1} a_{2}+\zeta^{2} a_{0} a_{3} \\
& y_{2}=(7,10,14,15)=a_{1}^{2} a_{2}+\left(\zeta+\zeta^{2}\right) a_{0} a_{1} a_{3}
\end{aligned}
$$

$$
\begin{aligned}
& y_{3}=(3,11,14,15)=a_{1}^{3} a_{2}+a_{0}\left(2 \zeta^{2} a_{1} a_{2}^{2}+\zeta a_{1}^{2} a_{3}\right)+\left(1+\zeta^{3}\right) a_{0}^{2} a_{2} a_{3} \\
& z_{0}=(11,13,14,15)=a_{3} \\
& z_{1}=(10,11,14,15)=a_{1} a_{3}+\zeta^{2} a_{2}^{2} \\
& z_{2}=(7,11,14,15)=a_{1}^{2} a_{3}+\left(\zeta^{2}+\zeta^{3}\right) a_{1} a_{2}^{2}+(1+\zeta) a_{0} a_{2} a_{3}
\end{aligned}
$$

Thus the Severi-Brauer variety W of $\Lambda_{g}=(0, g)_{4, k}$ contains an openset U which is isomorphic to \mathbb{A}_{k}^{3} with the affine coordinates (a_{1}, a_{2}, a_{3}), and which is embedded into \mathbb{P}_{k}^{13} with the homogeneous coordinates $\left(x_{i}, y_{j}, z_{k}\right)(0 \leq i \leq 6,0 \leq j \leq 3,0 \leq k \leq 2)$. If g is non-zero then the closure of U in \mathbb{P}_{k}^{13} is isomorphic to the closed fibre of the Severi-Brauer variety of Lemma 5(i) in Section 2.

Now let us consider the case $g=0$ in the above calculations to describe the closure W_{0} of $U \cong \mathbb{A}_{k}^{3}$ in \mathbb{P}_{k}^{13}. The above $\left\{x_{i}, y_{j}, z_{k}\right\}$ become

$$
\begin{array}{rll}
x_{i}=a_{1}^{i} & (1 \leq i \leq 6), & z_{0}=a_{3} \tag{1}\\
y_{j}=a_{2} a_{1}^{j} & (0 \leq j \leq 3), & z_{1}=a_{1} a_{3}+\zeta^{2} a_{2}^{2} \\
& & z_{2}=a_{1}^{2} a_{3}+\left(\zeta^{2}+\zeta^{3}\right) a_{1} a_{2}^{2}
\end{array}
$$

We see from this that the closure W_{0} in \mathbb{P}_{k}^{13} is defined by the following three kind of quadrics :

$$
\begin{gather*}
\operatorname{rank}\left(\begin{array}{lllllllll}
x_{0} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & y_{0} & y_{1} & y_{2} \\
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & y_{1} & y_{2} & y_{3}
\end{array}\right) \leq 1 \tag{2}\\
y_{j} z_{2}-(1+\zeta) y_{j+1} z_{1}+\zeta y_{j+2} z_{0}=0 \quad(j=0,1) \tag{3}\\
\left(z_{0} z_{1} 1\right) \cdot B_{1}=(0, \cdots, 0), \quad\left(z_{1} z_{2} 1\right) \cdot B_{2}=(0, \cdots, 0) \tag{4}
\end{gather*}
$$

with the 3×6-matrices B_{1} and B_{2} equal to

$$
\begin{align*}
B_{1} & =\left(\begin{array}{cccccc}
-x_{1} & -x_{2} & -x_{3} & -x_{4} & -x_{5} & -x_{6} \\
x_{0} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
y_{0}^{2} & y_{0} y_{1} & y_{1}^{2} & y_{1} y_{2} & y_{2}^{2} & y_{2} y_{3}
\end{array}\right) \tag{5}\\
B_{2} & =\left(\begin{array}{cccccc}
-x_{1} & -x_{2} & -x_{3} & -x_{4} & -x_{5} & -x_{6} \\
x_{0} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\zeta y_{0} y_{1} & \zeta y_{1}^{2} & \zeta y_{1} y_{2} & \zeta y_{2}^{2} & \zeta y_{2} y_{3} & \zeta y_{3}^{2}
\end{array}\right) . \tag{6}
\end{align*}
$$

We see from (2)-(4) that $S=\left\{x_{i}=y_{j}=0(0 \leq i \leq 6,0 \leq j \leq 3)\right\} \cong$ \mathbb{P}^{2} is singular on W_{0}. Moreover, we see from (4)

$$
\begin{aligned}
& z_{2} x_{i}^{2}-(1+\zeta) z_{1} x_{i} x_{i+1}+\zeta z_{0} x_{i+1}^{2} \\
& z_{2} y_{j}^{2}-(1+\zeta) z_{1} y_{j} y_{j+1}+\zeta z_{0} y_{j+1}^{2}
\end{aligned}
$$

are equal to zero on W_{0} for $0 \leq i \leq 5,0 \leq j \leq 2$ so that W_{0} is non-normal along S. Let

$$
\pi_{0}: W_{0} \subset \mathbb{P}^{13} \cdots \rightarrow \mathbb{P}^{10}, \quad(x: y: z) \rightarrow(x: y)
$$

be the projection from $S=\mathbb{P}^{2}\left(\subset W_{0}\right)$. We see from (2) that the image $\pi_{0}\left(W_{0}\right)$ is isomorphic to \mathbb{F}_{3}. Let $\nu: X \rightarrow W_{0}$ be the blow-up along S.
Lemma 6. π_{0} induces a \mathbb{P}^{1}-bundle stucture $\pi: X \rightarrow \mathbb{F}_{3} \subset \mathbb{P}^{10}$.
Proof. Let ($\xi_{0}: \cdots: \xi_{6}: \eta_{0}: \cdots: \eta_{3}$) be the homogeneous coordinates of \mathbb{P}^{10}. We see from (2)-(4) that blow-up X of W_{0} is the closed subscheme of $\mathbb{P}^{13} \times \mathbb{F}_{3}$ defined by

$$
\operatorname{rank}\left(\begin{array}{llllll}
x_{0} & \cdots & x_{6} & y_{0} & \cdots & y_{3} \tag{7}\\
\xi_{0} & \cdots & \xi_{6} & \eta_{0} & \cdots & \eta_{3}
\end{array}\right)=1
$$

together with

$$
\begin{align*}
& \eta_{j} z_{2}-(1+\zeta) \eta_{j+1} z_{1}+\zeta \eta_{j+2} z_{0}=0 \quad(j=0,1) \tag{8}\\
& \left(z_{0} z_{1} y_{0} \cdots y_{3}\right) \cdot C_{1}=(0, \cdots, 0) \tag{9}\\
& \left(z_{1} z_{2} y_{0} \cdots y_{3}\right) \cdot C_{2}=(0, \cdots, 0) \tag{10}
\end{align*}
$$

where C_{1} and C_{2} are 4×6-matrices equal to

$$
\begin{aligned}
C_{1} & =\left(\begin{array}{cccccc}
-\xi_{1} & -\xi_{2} & -\xi_{3} & -\xi_{4} & -\xi_{5} & -\xi_{6} \\
\xi_{0} & \xi_{1} & \xi_{2} & \xi_{3} & \xi_{4} & \xi_{5} \\
\eta_{0} & \eta_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & \eta_{1} & \eta_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \eta_{2} & \eta_{3}
\end{array}\right) \\
C_{2} & =\left(\begin{array}{cccccc}
-\xi_{1} & -\xi_{2} & -\xi_{3} & -\xi_{4} & -\xi_{5} & -\xi_{6} \\
\xi_{0} & \xi_{1} & \xi_{2} & \xi_{3} & \xi_{4} & \xi_{5} \\
\zeta \eta_{0} & \zeta \eta_{1} & \zeta \eta_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \zeta \eta_{2} & \zeta \eta_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & \zeta \eta_{3}
\end{array}\right) .
\end{aligned}
$$

We see $\pi^{-1}(p) \cong \mathbb{P}^{1}$ for any point $p \in \mathbb{F}_{3}$.
In the equations (7)-(10) of X in $\mathbb{P}^{10} \times \mathbb{P}^{13}, \xi_{i}=0(0 \leq i \leq 6)$ imply $x_{i}=y_{j}=0$ for all $0 \leq i \leq 6$ and $0 \leq j \leq 3$. Hence, for the (-3)-curve $s=\left\{\xi_{i}=0(0 \leq i \leq 6)\right\}$ on \mathbb{F}_{3} we see $\pi^{-1}(s)$ is isomorphic to the closed subscheme of $\mathbb{P}_{\eta}^{3} \times \mathbb{P}_{z}^{2} \subset \mathbb{P}^{10} \times \mathbb{P}^{13}$ defined by

$$
\begin{aligned}
& \operatorname{rank}\left(\begin{array}{lll}
\eta_{0} & \eta_{1} & \eta_{2} \\
\eta_{1} & \eta_{2} & \eta_{3}
\end{array}\right)=1 \\
& z_{2} \eta_{j}^{2}-(1+\zeta) z_{1} \eta_{j} \eta_{j+1}+\zeta z_{0} \eta_{j+1}^{2}=0 \quad(j=0,1,2)
\end{aligned}
$$

Therefore $\nu: \pi^{-1}(s) \rightarrow \mathbb{P}^{2} \subset \mathbb{P}^{13}$ is a double cover with the branch locus equal to the conic $q=\left\{z_{1}^{2}=2 z_{0} z_{2}\right\}$. From this we see $\pi^{-1}(s)$ is isomorphic to \mathbb{F}_{0}. On the other hand, for any point $p=\left(1: \lambda: \lambda^{2}\right)$ on another conic $C=\left\{z_{1}^{2}=z_{0} z_{2}\right\}, \nu^{-1}(p)$ contains a line $\{p \times(1: \lambda$: $\left.\left.\lambda^{2}: \cdots: \lambda^{6}: \mu: \mu \lambda: \mu \lambda^{2}: \mu \lambda^{3}\right) \mid \mu \in k\right\}$. This implies $\nu^{-1}(C) \rightarrow C$ is a \mathbb{P}^{1}-bundle and $\nu^{-1}(C)$ is a section of the \mathbb{P}^{1}-bundle $\pi: X \rightarrow \mathbb{F}_{3}$.

Next we construct a rank two bundle \mathcal{E} on \mathbb{F}_{3} such that $X=\mathbb{P}[\mathcal{E}]$. Let $\left\{U_{i j} ; i, j=0,1\right\}$ be an open cover of \mathbb{F}_{3} with $U_{i j} \cong \mathbb{A}^{2}$ and the affine coordinates given by

$$
\begin{array}{rlll}
u_{0} & =\xi_{1} / \xi_{0}, & v_{0}=\eta_{0} / \xi_{0} & \text { on } U_{00} \\
u_{0} & =\eta_{1} / \eta_{0}, & v_{1}=\xi_{0} / \eta_{0} & \text { on } U_{01} \\
u_{1} & =\xi_{5} / \xi_{6}, & w_{0}=\eta_{3} / \xi_{6} & \text { on } U_{10} \\
u_{1}=\eta_{2} / \eta_{3}, & w_{1}=\xi_{6} / \eta_{3} & \text { on } U_{11} .
\end{array}
$$

The transition functions are obtained from the relations

$$
\begin{align*}
u_{0} u_{1} & =v_{0} v_{1}=w_{0} w_{1}=1 \\
v_{0} & =\eta_{0} / \xi_{0}=\eta_{3} / \xi_{3}=\left(\eta_{3} / \xi_{6}\right) /\left(\xi_{3} / \xi_{6}\right) \tag{11}\\
& =\left(\eta_{3} / \xi_{6}\right) /\left(\xi_{1} / \xi_{6}\right)^{3}=w_{0} / u_{0}^{3} .
\end{align*}
$$

Now we see from (7)-(10)

$$
\left(\begin{array}{llll}
z_{0} & z_{1} & z_{2} & y_{0}
\end{array}\right)\left(\begin{array}{cc}
-\xi_{1} / \xi_{0} & 0 \\
1 & -\xi_{1} / \xi_{0} \\
0 & 1 \\
\eta_{0} / \xi_{0} & \zeta \eta_{1} / \xi_{0}
\end{array}\right)=(0,0) \quad \text { on } U_{00}
$$

$$
\begin{aligned}
& \left(\begin{array}{llll}
z_{0} & z_{1} & z_{2} & y_{0}
\end{array}\right)\left(\begin{array}{cc}
-\xi_{1} / \xi_{0} & 0 \\
\xi_{0} / \eta_{0} & -(1+\zeta) \eta_{1} / \eta_{0} \\
0 & 1 \\
1 & 0
\end{array}\right)=(0,0)
\end{aligned} \begin{aligned}
& \text { on } U_{01} \\
& \left(\begin{array}{llll}
z_{0} & z_{1} & z_{2} & y_{3}
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
\xi_{5} / \xi_{6} & -1 \\
0 & \xi_{5} / \xi_{6} \\
\eta_{2} / \xi_{6} & \zeta \eta_{3} / \xi_{6}
\end{array}\right)=(0,0) \\
& 0
\end{aligned} \quad \begin{aligned}
& \text { on } U_{10} \\
& \left(\begin{array}{llll}
x_{0} & z_{1} & z_{2} & y_{3}
\end{array}\right)\left(\begin{array}{cc}
-\xi_{6} / \eta_{3} & -(1+\zeta) \eta_{2} / \eta_{3} \\
\xi_{5} / \eta_{3} & \eta_{1} / \eta_{3} \\
\zeta & 0
\end{array}\right)=\left(\begin{array}{ll}
0,0) & \text { on } U_{11}
\end{array}\right.
\end{aligned}
$$

Therefore $X=\mathbb{P}[\mathcal{E}]$ for a rank two bundle \mathcal{E} on $\mathbb{F}_{\mathbf{3}}$ such that

$$
\begin{array}{ll}
\left.\mathcal{E}\right|_{U_{00}} \mathcal{O}_{U_{00}} z_{0}+\mathcal{O}_{U_{00}} y_{0}, & \left.\mathcal{E}\right|_{U_{10}}=\mathcal{O}_{U_{10}} z_{2}+\mathcal{O}_{U_{10}} y_{3} \\
\left.\mathcal{E}\right|_{U_{01}}=\mathcal{O}_{U_{01}} z_{0}+\mathcal{O}_{U_{01}} z_{1}, & \left.\mathcal{E}\right|_{U_{11}}=\mathcal{O}_{U_{11}} z_{1}+\mathcal{O}_{U_{11}} z_{2} .
\end{array}
$$

The section $\nu^{-1}(C)$ of $\pi: X \rightarrow \mathbb{F}_{3}$ considered above, is defined by

$$
\begin{array}{lll}
y_{0}=0 & \text { over } U_{00}, & y_{3}=0 \quad \text { over } U_{10} \\
u_{0} z_{0}=z_{1} & \text { over } U_{01}, & z_{1}=u_{1} z_{2} \text { over } U_{11}
\end{array}
$$

Therefore $\nu^{-1}(C)=\mathbb{P}[\mathcal{L}]$ for a line bundle \mathcal{L} on X defined by the exact sequence $0 \rightarrow \mathcal{M} \rightarrow \mathcal{E} \rightarrow \mathcal{L} \rightarrow 0$ with

$$
\begin{aligned}
&\left.0 \rightarrow \mathcal{O}_{U_{00}} \xrightarrow{y_{0}} \mathcal{E}\right|_{U_{00}} \rightarrow \mathcal{O}_{U_{00}} z_{0} \rightarrow 0 \\
& 0\left.\rightarrow \mathcal{O}_{U_{01}} \xrightarrow{u_{0} z_{0}-z_{1}} \mathcal{E}\right|_{U_{01}} \rightarrow \mathcal{O}_{U_{01}} z_{0} \rightarrow 0 \\
& 0 \rightarrow \mathcal{O}_{U_{10} \xrightarrow{y_{3}}} \mathcal{E}_{U_{10}} \rightarrow \mathcal{O}_{U_{10} z_{2}} \rightarrow 0 \\
&\left.0 \rightarrow \mathcal{O}_{U_{11}} \xrightarrow{z_{1}-u_{1} z_{2}} \mathcal{E}\right|_{U_{11}} \rightarrow \mathcal{O}_{U_{11} z_{2}} \rightarrow 0 .
\end{aligned}
$$

The relations (11) imply

$$
\begin{aligned}
z_{1} & =z_{0}\left(\xi_{1} / \xi_{0}\right)-y_{0}\left(\eta_{0} / \xi_{0}\right)=z_{0} u_{0}-y_{0} v_{0} \\
z_{2} & =z_{1}\left(\xi_{1} / \xi_{0}\right)-y_{0}\left(\zeta \eta_{1} / \xi_{0}\right)=\left(z_{0} u_{0}-y_{0} v_{0}\right) u_{0}-\zeta y_{0} u_{0} v_{0} \\
& =z_{0} u_{0}^{2}-(1+\zeta) y_{0} u_{0} v_{0}
\end{aligned}
$$

so there are identities

$$
\begin{array}{ll}
u_{0} z_{0}-z_{1}=v_{0} y_{0}=\left(1 / v_{1}\right) y_{0} & \text { on } U_{00} \cap U_{01} \\
y_{3}=\left(\eta_{1} / \eta_{0}\right)^{3} y_{0}=u_{0}^{3} y_{0}=\left(1 / u_{1}^{3}\right) y_{0} & \text { on } U_{00} \cap U_{10} \tag{12}\\
z_{2} \equiv z_{0} u_{0}^{2}=\left(1 / u_{1}^{2}\right) z_{0} & \bmod y_{0} .
\end{array}
$$

Now the (-3)-curve s on \mathbb{F}_{3} is defined by $v_{1}=0$ on U_{01}, and $u_{1}=0$ defines a fibre on U_{10}, so that (12) implies $\mathcal{M} \cong \mathcal{O}_{\mathbb{F}_{3}}(s+3 f)$ and $\mathcal{L} \cong \mathcal{O}_{\mathrm{F}_{3}}(2 f)$, i.e. \mathcal{E} fits into an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{F}_{3}}(s+3 f) \rightarrow \mathcal{E} \rightarrow \mathcal{O}_{\mathbb{F}_{3}}(2 f) \rightarrow 0 \tag{13}
\end{equation*}
$$

and $\nu^{-1}(C)=\mathbb{P}\left[\mathcal{O}_{\mathbb{F}_{3}}(2 f)\right]$. Restricting (13) to the (-3)-curve s we get

$$
\left.0 \rightarrow \mathcal{O}_{\mathbb{P}^{1}} \rightarrow \mathcal{E}\right|_{s} \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(2) \rightarrow 0 .
$$

We have shown $\mathbb{P}\left[\left.\mathcal{E}\right|_{s}\right] \cong \mathbb{F}_{0}$ so $\left.\mathcal{E}\right|_{s}=\mathcal{O}(1,1)$ and (13) does not split.
(Proof of Theorem C(iv)) Let I be a rank 4 right ideal of $A=$ $(0,0)_{4, k}$ contained in $x y A$. Suppose I contains an element z which has a nonzero coefficient in one of the three monomials $x y, x^{2} y, x y^{2}$. Then we see z generates a right ideal of rank greater than 4 . Hence the rank 4 ideal I is contained in the rank 6 ideal generated by $x^{i} y^{j}$ with $i+j \geq 4$. Therefore I contains an element

$$
\begin{equation*}
z=b_{1} x y^{3}+b_{2} x^{2} y^{2}+b_{3} x^{3} y+b_{4} x^{2} y^{3}+b_{5} x^{3} y^{2}+b_{6} x^{3} y^{3} \tag{14}
\end{equation*}
$$

with b_{1}, b_{2}, b_{3} not all equal to zero. The identities

$$
\begin{aligned}
& \binom{z x \zeta^{2}}{z y}=\left(\begin{array}{ccc}
\zeta^{3} b_{1} & b_{2} & \zeta b_{3} \\
b_{2} & b_{3} & b_{5}
\end{array}\right) \cdot{ }^{t}\left(x^{2} y^{3} x^{3} y^{2} x^{3} y^{3}\right) \\
& \left(z x^{2} z x y z y^{2}\right)=\left(\zeta^{2} b_{1} \zeta^{2} b_{2} b_{3}\right) x^{3} y^{3}
\end{aligned}
$$

imply that if $\zeta b_{1} b_{3}-b_{2}^{2}$ is not equal to zero then $\left\{z, z x, z y, x^{3} y^{3}\right\}$ is a k-basis of I and its Plücker coordinates are given by

$$
\begin{aligned}
& b_{1}=x y^{3} \wedge x^{2} y^{3} \wedge x^{3} y^{2} \wedge x^{3} y^{3}=z_{0} \\
& b_{2}=x^{2} y^{2} \wedge x^{2} y^{3} \wedge x^{3} y^{2} \wedge x^{3} y^{3}=z_{1} \\
& b_{3}=x^{3} y \wedge x^{2} y^{3} \wedge x^{3} y^{2} \wedge x^{3} y^{3}=z_{2}
\end{aligned}
$$

while the other Plücker coordinates are all equal to zero. Thus I corresponds to a point of S. This also holds in the case $\zeta b_{1} b_{3}=b_{2}^{2}$ considering the closure of $\zeta b_{1} b_{3}-b_{2}^{2}$ not equal to zero. Therefore rank 4 right ideals in $x y A$ corresponds bijectively to k-points of S. Moreover, I contains an element z in (14) with $\zeta b_{1} b_{3}=b_{2}^{2}$ if and only if $I=\left\langle z, x^{2} y^{3}, x^{3} y^{2}, x^{3} y^{3}\right\rangle$, i.e. a non-princiapl ideal. The conic $\zeta b_{1} b_{3}=b_{2}^{2}$ is equal to C in (iii-b).

4. Galois descent

Let A be a central simple algebra of degree n over a field F with the unit group A^{*}. Let K / F be a Galois splitting field of A with the Galois group \mathcal{G} and let $\left\{\phi_{\sigma}\right\} \in Z^{1}\left(\mathcal{G}, P G L\left(V_{K}\right)\right)$ be a 1-cocycle defining $A\left(\operatorname{dim} V_{K}=n\right)$. From the cocycle condition $\phi_{\sigma}^{\tau} \cdot \phi_{\tau}=\phi_{\sigma \tau}$ if we define the K / F-semi-linear transformations [σ] of $M_{n}(K)$ by $x^{[\sigma]}=\phi_{\sigma}^{-1} \cdot x^{\sigma} \cdot \phi_{\sigma}$ for $\sigma \in \mathcal{G}$ then we see $x^{[\sigma][\tau]}=x^{[\sigma \tau]}$ and A is realized as the F-subalgebra of End V_{K} fixed by this Galois group action on End V_{K} :

$$
A=\left\{x \in \text { End } V_{K} \mid x^{[\sigma]}=x \quad \text { for all } \sigma \in \mathcal{G}\right\}
$$

We see from this
Lemma 7. A K-homomorphism $\rho: G L\left(V_{K}\right) \rightarrow G L\left(W_{K}\right)$ descends to an F-homomorphism $\rho_{0}: A^{*} \rightarrow G L\left(W_{F}\right)$ if and only if there is an element $\lambda \in G L\left(W_{K}\right)$ such that the diagram

is commutative for all elements $\sigma \in \mathcal{G}$ where $[\sigma]^{\prime}$ is defined by $y^{[\sigma]^{\prime}}=$ $\lambda^{-1} \cdot \lambda^{\sigma} \cdot y^{\sigma} \cdot\left(\lambda^{\sigma}\right)^{-1} \cdot \lambda$ for $y \in G L\left(W_{K}\right)$.
Proof. The K-homomorphism ρ descends over F if and only if there is a 1-cocycle $\left\{\theta_{\sigma}\right\} \in Z^{1}\left(\mathcal{G}\right.$, Aut $\left._{K \text {-alg }} G L\left(W_{K}\right)\right)$ such that the diagram (1) is commutative for $y^{[\sigma]^{\prime}}=\theta_{\sigma}^{-1} \cdot y^{\sigma} \cdot \theta_{\sigma}$. Since θ defines the split group $G L(W)$ over F the 1-cocycle θ is equal to zero in $H^{1}\left(\mathcal{G}, P G L\left(W_{K}\right)\right)$. This implies there is a 1 -cocycle $\left\{\lambda_{\sigma}\right\} \in Z^{1}\left(\mathcal{G}, G L\left(W_{K}\right)\right)$ such that $\theta_{\sigma} \equiv \lambda_{\sigma}$ in $P G L\left(W_{K}\right)$ or $\theta_{\sigma} \equiv\left(\lambda^{\sigma}\right)^{-1} \cdot \lambda$ for an element $\lambda \in G L\left(W_{K}\right)$ by Hilbert Theorem 90.

Remark. If $\left\{w_{1}, \cdots, w_{N}\right\}$ is a K-basis of $W_{K}\left(\operatorname{dim} W_{K}=N\right)$ then the images $\left\{w_{1}^{\lambda}, \cdots, w_{N}^{\lambda}\right\}$ by $\lambda \in G L\left(V_{K}\right)$ in Lemma 7 is an F basis of W. For, let ${ }^{t}\left(w_{1}^{\lambda}, \cdots, w_{N}^{\lambda}\right)=M_{\lambda} \cdot{ }^{t}\left(w_{1}, \cdots, w_{N}\right)$ for a matrix $M_{\lambda} \in G L_{N}(K)$. Then

$$
\begin{aligned}
{ }^{t}\left(w_{1}^{\lambda}, \cdots, w_{N}^{\lambda}\right)^{\sigma \cdot\left(\lambda^{\sigma}\right)^{-1} \cdot \lambda} & =M_{\lambda}^{\sigma} \cdot t\left(w_{1}, \cdots, w_{N}\right)^{\left(\lambda^{\sigma}\right)^{-1} \lambda} \\
& ={ }^{t}\left(w_{1}, \cdots, w_{N}\right)^{\lambda}
\end{aligned}
$$

i.e. $\left\{w_{i}^{\lambda}\right\}$ is invariant under the K / F-semi-linear transformations σ. $\left(\lambda^{\sigma}\right)^{-1} \lambda$ for all $\sigma \in \mathcal{G}$.

Let $A=(f, g)_{3, F}$ be a cyclic algebra of degree 3 over F. Then $K=F(\alpha)$ with $\alpha^{3}=f$ is a Galois splitting field whose Galois group $\mathcal{G}=\mathbb{Z} / 3$ is generated by $\sigma: \alpha \rightarrow \zeta \alpha$ with $\zeta=\exp (2 \pi \sqrt{-1} / 3)$. Lemma 2 in Section 1 shows there is an F-homomorphism $\rho_{0}: A^{*} \rightarrow G L(W)$ such that $W \otimes K$ is the third symmetric tensor representation $S_{(3)} V_{K}$ of $A^{*} \otimes K=G L\left(V_{K}\right)$. We will write down below an F-basis of W and an ideal basis of the Severi-Brauer variety in $\mathbb{P}[W]=\mathbb{P}_{F}^{9}$ of $A=(f, g)_{3, F}$. Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a K-basis of V_{K} and let

$$
(u)={ }^{t}\left(u_{111}, u_{222}, u_{333}, u_{112}, u_{223}, u_{331}, u_{122}, u_{233}, u_{331}, u_{123}\right)
$$

be the column vector consisting of the K-basis of $S_{(3)} V_{K}$ where $u_{i j k}=$ $v_{i} v_{j} v_{k}$. The element $\phi_{\sigma} \in P G L\left(V_{K}\right)$ with

$$
\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]^{\phi_{\sigma}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
g & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right], \quad \phi_{\sigma^{2}}=\phi_{\sigma}^{2}, \quad \phi_{1}=I_{3} .
$$

is a 1-cocycle $\left\{\phi_{\sigma}\right\} \in Z^{1}\left(\mathcal{G}, P G L\left(V_{K}\right)\right)$ defining $A=(f, g)_{3, F}$. We take a preimage $\theta_{\sigma} \in G L\left(S_{(3)} V_{K}\right)$ of $\rho\left(\phi_{\sigma}\right) \in P G L\left(S_{(3)} V_{K}\right)$ by $(u)^{\theta_{\sigma}}=$ $B_{\sigma} \cdot(u)$. Here $B_{\sigma} \in G L_{10}(K)$ is equal to

$$
\operatorname{diagonal}\left(\left(\begin{array}{ccc}
0 & g^{-1} & 0 \\
0 & 0 & g^{-1} \\
g^{2} & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & g^{-1} & 0 \\
0 & 0 & 1 \\
g & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & g^{-1} & 0 \\
0 & 0 & g \\
1 & 0 & 0
\end{array}\right), 1\right)
$$

Next we shall find a $C \in G L_{10}(K)$ such that $B_{\sigma}=\left(C^{\sigma}\right)^{-1} C$. Let

$$
\begin{aligned}
& P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \alpha^{-1} & 0 \\
0 & 0 & \alpha^{-2}
\end{array}\right), Q=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \zeta^{2} & \zeta \\
1 & \zeta & \zeta^{2}
\end{array}\right), R=\left(\begin{array}{ccc}
r_{1} & 0 & 0 \\
0 & r_{2} & 0 \\
0 & 0 & r_{3}
\end{array}\right) \\
& S_{r_{1}, r_{2}, r_{3}}=P \cdot Q \cdot R=\left(\begin{array}{ccc}
r_{1} & r_{2} & r_{3} \\
\alpha^{-1} r_{1} & \alpha^{-1} \zeta^{2} r_{2} & \alpha^{-1} \zeta r_{3} \\
\alpha^{-2} r_{1} & \alpha^{-2} \zeta r_{2} & \alpha^{-2} \zeta^{2} r_{3}
\end{array}\right)
\end{aligned}
$$

for $r_{i} \in F$. Then $\left(S_{r_{1}, r_{2}, r_{3}}^{\sigma}\right)^{-1} S_{r_{1}, r_{2}, r_{3}}$ is equal to

$$
\begin{aligned}
R^{-1} Q^{-1} P^{-1}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \zeta & 0 \\
0 & 0 & \zeta^{2}
\end{array}\right) P Q R & =R^{-1}\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) R \\
& =\left(\begin{array}{ccc}
0 & r_{1}^{-1} r_{2} & 0 \\
0 & 0 & r_{2}^{-1} r_{3} \\
r_{3}^{-1} r_{1} & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Hence if we set $C=\operatorname{diagonal}\left(S_{1, g^{-1}, g^{-2}}, S_{1, g^{-1}, g^{-1}}, S_{1, g^{-1}, 1}, 1\right)$ then $\left(C^{\sigma}\right)^{-1} C=B_{\sigma}$. By the Remark after Lemma 7 an F-basis of W is given by $C \cdot\left(u_{i j k}\right)$, i.e. the following ten elements; $w=u_{123}$ and

$$
\begin{align*}
& \left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right)=P Q\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & g^{-1} & 0 \\
0 & 0 & g^{-2}
\end{array}\right)\left(\begin{array}{l}
u_{111} \\
u_{222} \\
u_{333}
\end{array}\right) \\
& \left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right)=P Q\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & g^{-1} & 0 \\
0 & 0 & g^{-1}
\end{array}\right)\left(\begin{array}{l}
u_{112} \\
u_{223} \\
u_{331}
\end{array}\right) \tag{2}\\
& \left(\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right)=P Q\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & g^{-1} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
u_{122} \\
u_{233} \\
u_{311}
\end{array}\right) .
\end{align*}
$$

Proposition 8. The following set of 27 quadric equations is an ideal basis of the Severi-Brauer variety $A=(f, g)_{3, F}$ in \mathbb{P}_{F}^{9} with the homogeneous coordinates $\left(x_{i}, y_{i}, z_{i}, w\right)(i=0,1,2)(\zeta=\exp (2 \pi \sqrt{-1} / 3))$.

$$
\begin{aligned}
\left(\begin{array}{ccc}
x_{0} & f x_{2} & f x_{1} \\
x_{1} & x_{0} & f x_{2} \\
x_{2} & x_{1} & x_{0}
\end{array}\right)\left(\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right) & =\left(\begin{array}{ccc}
y_{0} & f y_{2} & f y_{1} \\
y_{1} & y_{0} & f y_{2} \\
y_{2} & y_{1} & y_{0}
\end{array}\right)\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right) \\
g\left(\begin{array}{ccc}
x_{0} & f x_{2} & f x_{1} \\
x_{1} & x_{0} & f x_{2} \\
x_{2} & x_{1} & x_{0}
\end{array}\right)\left(\begin{array}{c}
y_{0} \\
\zeta^{2} y_{1} \\
\zeta y_{2}
\end{array}\right) & =\left(\begin{array}{ccc}
z_{0} & f z_{2} & f z_{1} \\
\omega^{2} z_{1} & \zeta^{2} z_{0} & \zeta^{2} f z_{2} \\
\omega z_{2} & \zeta z_{1} & \zeta z_{0}
\end{array}\right)\left(\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right) \\
\left(\begin{array}{ccc}
y_{0} & f y_{2} & f y_{1} \\
y_{1} & y_{0} & f y_{2} \\
y_{2} & y_{1} & y_{0}
\end{array}\right)\left(\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right) & =w\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right) \\
g\left(\begin{array}{ccc}
x_{0} & f x_{2} & f x_{1} \\
x_{1} & x_{0} & f x_{2} \\
x_{2} & x_{1} & x_{0}
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
\zeta x_{1} \\
\zeta^{2} x_{2}
\end{array}\right) & =\left(\begin{array}{ccc}
y_{0} & f y_{2} & f y_{1} \\
y_{1} & y_{0} & f y_{2} \\
y_{2} & y_{1} & y_{0}
\end{array}\right)\left(\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
g\left(\begin{array}{ccc}
x_{0} & f x_{2} & f x_{1} \\
x_{1} & x_{0} & f x_{2} \\
x_{2} & x_{1} & x_{0}
\end{array}\right)\left(\begin{array}{c}
y_{0} \\
\zeta y_{1} \\
\zeta^{2} y_{2}
\end{array}\right) & =\left(\begin{array}{ccc}
z_{0} & f z_{2} & f z_{1} \\
z_{1} & z_{0} & f z_{2} \\
z_{2} & z_{1} & z_{0}
\end{array}\right)\left(\begin{array}{c}
z_{0} \\
\zeta^{2} z_{1} \\
\zeta z_{2}
\end{array}\right) \\
& =w\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right) \\
g\left(\begin{array}{lll}
x_{0} & f x_{2} & f x_{1} \\
x_{1} & x_{0} & f x_{2} \\
x_{2} & x_{1} & x_{0}
\end{array}\right)\left(\begin{array}{c}
z_{0} \\
\zeta z_{1} \\
\zeta^{2} z_{2}
\end{array}\right) & =g\left(\begin{array}{ccc}
y_{0} & f y_{2} & f y_{1} \\
y_{1} & y_{0} & f y_{2} \\
y_{2} & y_{1} & y_{0}
\end{array}\right)\left(\begin{array}{c}
y_{0} \\
\zeta^{2} y_{1} \\
\zeta y_{2}
\end{array}\right) \\
& =w\left(\begin{array}{c}
z_{0} \\
\zeta^{2} z_{1} \\
\zeta z_{2}
\end{array}\right) \\
g\left(\begin{array}{ccc}
y_{0} & f y_{2} & f y_{1} \\
y_{1} & y_{0} & f y_{2} \\
y_{2} & y_{1} & y_{0}
\end{array}\right)\left(\begin{array}{c}
z_{0} \\
\zeta z_{1} \\
\zeta^{2} z_{2}
\end{array}\right) & =\left(\begin{array}{c}
w^{2} \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Proof. Note first that the Veronese embedding $\mathbb{P}[V] \rightarrow \mathbb{P}\left[S_{(3)} V\right]$ of degree three is defined by the quadrics in the subspace $S_{(4,2)} V$ in $S_{(2)} S_{(3)} V=S_{(6)} V \oplus S_{(4,2)} V$ so there are $\operatorname{dim} S_{(4,2)} V=27$ linearly independent quadrics. We see from (2)

$$
\begin{aligned}
& \left(\begin{array}{l}
u_{111} \\
u_{222} \\
u_{333}
\end{array}\right)=\left(\begin{array}{c}
X_{0} \\
g X_{1} \\
g^{2} X_{2}
\end{array}\right), \quad 3\left(\begin{array}{l}
X_{0} \\
X_{1} \\
X_{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \zeta & \zeta^{2} \\
1 & \zeta^{2} & \zeta
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
\alpha x_{1} \\
\alpha^{2} x_{2}
\end{array}\right) \\
& \left(\begin{array}{l}
u_{112} \\
u_{223} \\
u_{331}
\end{array}\right)=\left(\begin{array}{c}
Y_{0} \\
g Y_{1} \\
g Y_{2}
\end{array}\right), \quad 3\left(\begin{array}{l}
Y_{0} \\
Y_{1} \\
Y_{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \zeta & \zeta^{2} \\
1 & \zeta^{2} & \zeta
\end{array}\right)\left(\begin{array}{c}
y_{0} \\
\alpha y_{1} \\
\alpha^{2} y_{2}
\end{array}\right) \\
& \left(\begin{array}{l}
u_{122} \\
u_{233} \\
u_{311}
\end{array}\right)=\left(\begin{array}{c}
Z_{0} \\
g Z_{1} \\
Z_{2}
\end{array}\right), \quad 3\left(\begin{array}{l}
Z_{0} \\
Z_{1} \\
Z_{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \zeta & \zeta^{2} \\
1 & \zeta^{2} & \zeta
\end{array}\right)\left(\begin{array}{c}
z_{0} \\
\alpha z_{1} \\
\alpha^{2} z_{2}
\end{array}\right)
\end{aligned}
$$

The first three identities in Proposition 8 follow from $u_{111} u_{122}=u_{112}^{2}$:

$$
9 u_{111} u_{122}=9 X_{0} Z_{0}=\left(\begin{array}{lll}
x_{0} & x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{c}
1 \\
\alpha \\
\alpha^{2}
\end{array}\right)\left(1 \alpha \alpha^{2}\right)\left(\begin{array}{c}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{lll}
x_{0} & x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{ccc}
1 & \alpha & \alpha^{2} \\
\alpha & \alpha^{2} & f \\
\alpha^{2} & f & f \alpha
\end{array}\right)\left(\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & \alpha & \alpha^{2}
\end{array}\right)\left(\begin{array}{ccc}
x_{0} & f x_{2} & f x_{1} \\
x_{1} & x_{0} & f x_{2} \\
x_{2} & x_{1} & x_{0}
\end{array}\right)\left(\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right) . \\
9 u_{112}^{2} & =\left(3 Y_{0}\right)^{2}=\left(\begin{array}{lll}
1 & \alpha^{2}
\end{array}\right)\left(\begin{array}{ccc}
y_{0} & f y_{2} & f y_{1} \\
y_{1} & y_{0} & f y_{2} \\
y_{2} & y_{1} & y_{0}
\end{array}\right)\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right) .
\end{aligned}
$$

The remaining eight sets of the three identities are obtained by the same way from the realtions $u_{111} u_{133}=u_{113}^{2}$ and

$$
\begin{aligned}
& u_{111} u_{123}=u_{112} u_{113}, \quad u_{111} u_{222}=u_{112} u_{122} \\
& u_{111} u_{223}=u_{113} u_{122}=u_{112} u_{123} \\
& u_{111} u_{233}=u_{112} u_{133}=u_{113} u_{123} \\
& u_{112} u_{233}=u_{123}^{2}
\end{aligned}
$$

respectively.
The above calculations are generalized to those of a cyclic algebra of higher degree, e.g. it can be written by hand $465=\operatorname{dim} S_{(2)} S_{(4)} V-$ $\operatorname{dim} S_{(8)} V$ (where $\operatorname{dim} V=4$) quadrics defining the Severi-Brauer variety in \mathbb{P}^{34} associated with a cyclic algebra $(f, g)_{4, F}$ of degree four. However, if we set $f=g=0$ in the 27 quadrics in Proposition 8 then the resulting algebraic set in \mathbb{P}^{9} has dimension greater than two so these quadrics are not used for a flat fibre space with the generic fibre isomorphic to the Severi-Brauer variety of $(f, g)_{3, F}$.

References

[A1] M. Artin, Left ideals in maximal onders, in "Lecture Note in Math." 917 (1982), Springer, 182-193.
[A2] M. Artin, Brauer-Severi Varieties, in "Lecture Note in Math." 917 (1982), Springer, 194-210.
[A-B-W] K. Akin, D. Buchsbaum, J. Weyman, Schur functors and Schur complex, Advances in Math. 44 (1982), 207-278.
[B] A. Blanchet, Function fields of generalized Brauer-Severi varieties, Comm. in Alg. 19(1) (1991), 97-118.
[D-E-P] C. DeContini, D. Eisenbud, C. Procesi, Young diagrams and determinantal varieties, Inv. math. 56 (1980), 129-165.
[F-H] W. Fulton, J. Harris, Representation Theory, A first course, Springer, New York, 1991.
[H] J. Harris, Algebraic Geometry, A first course, Springer, New York, 1992.
[J] N. Jacobson, Finite dimensional division algebras over fields, Springer, New York, 1996.
[K] M-C. Kang, Construction of Brauer-Severi varieties and norm hypersurfaces, Canad. J. Math. XLII(2) (1990), 230-238.
[K-R] I. Kersten, U. Rehmann, Generic splitting of reductive groups, Tôhoku Math. J. 46 (1994), 35-70.
[M] T. Maeda, On standard projective plane bundles, J.Algebra 197 (1997), 14-48.
[R] L. Rowen, Ring Theory Vol II, Academic Press, 1988.
[S] D. Saltman, The Schur index and Moody's Theorem, K-Theory 7 (1993), 309-332.
[S-V] A. Shofield, M. Van den Bergh, Division algebra coproduct of index n, Trans. of Amer. Math. Soc. 341 (1994), 505-517.
[Ta] D. Tao, A variety associated to an algebra with involution, J. of Alg. 168 (1994), 479-520.
[Ti] J. Tits, Représentations linéaires irréductibles d'un group réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196-220.
[V] V.E. Voskresenskii, Algebraic groups and their birational invariants, AMS, 1998.

Department of Mathematical Sciences
College of Science
University of Ryukyus
Nishihara-Cho, Okinawa 903-0213
JAPAN

[^0]: Received November 301998

