琉球大学学術りポジトリ

Intermediate Jacobians of projective plane bundles over a smooth projective surface

メタデータ	言語：
	出版者：Department of Mathematics，College of
Science，University of the Ryukyus	
	公開日：2010－03－04
	キーワード（Ja）：
	キーワード（En）： 作成者：Maeda，Takashi，前田，高士 メールアドレス： 所属：
http：／／hdl．handle．net／20．500．12000／16089	
URL	

INTERMEDIATE JACOBIANS OF PROJECTIVE PLANE BUNDLES OVER A SMOOTH PROJECTIVE SURFACE

Takashi Maeda

Abstract

Let $V \rightarrow X$ be a standard \mathbb{P}^{2}-bundle (Definition below) over a smooth projective surface X with the discriminant locus Δ and the associated cyclic cover $\phi: \tilde{\Delta} \rightarrow \Delta$ of degree three. The purpose of this paper is (i) to determine the etale l-adic cohomology groups of V (Theorem A), (ii) to give an isomorphism of the intermediate jacobian of V and the Prym variety associated to the triple cover ϕ as polarized abelian varieties (Theorem B), and (iii) to show the existence of a standard \mathbb{P}^{2}-bundle for a given cyclic cover of degree three over a normal crossing curve on X (Theorem D), under certain conditions of (X, Δ). An ideal basis of a standard \mathbb{P}^{2}-bundle over a regular local ring is determined (Theorem E).

1. Introduction

Let K be the function field of an algebraic variety defined over an algebraically closed field k of characteristic different from three and let V_{K} be a Severi-Brauer variety of dimesion two (a Severi-Brauer surface, for short) over K, i.e. $V_{K} \times_{K} \bar{K}$ is isomorphic to the projective plane \mathbb{P}^{2} for an algebraic closure \bar{K} of K.
Definition. A proper flat morphism

$$
\begin{equation*}
\tau: V \rightarrow X \tag{1.1}
\end{equation*}
$$

is a standard \mathbb{P}^{2}-bundle associated to the Severi-Brauer surface V_{K} over a function field K if (i) V and X are smooth projective varieties with the generic fibre isomorphic to the given Severi-Brauer surface $V_{K} \rightarrow \operatorname{Spec}(K)$, (ii) the locus Δ over which the fibres of τ are

[^0]non-smooth is equal to the discriminant locus [$A-M, p 84$] of the central simple algebra over K corresponding to the generic fibre V_{K}, and Δ is a normal crossing curve on X, (iii) the geometric fibre over a smooth point of Δ consists of three components $Y_{i}(i=1,2,3)$ with $Y_{i} \cong \mathbb{F}_{1}$ (one point blow-up of \mathbb{P}^{2}), $Y_{i} \cap Y_{i+1}\left(\right.$ resp. $Y_{i} \cap Y_{i-1}$) is a fibre (resp. the (-1)-curve) of $Y_{i} \cong \mathbb{F}_{1}$ (where the suffix means mod 3) and $Y_{1} \cap Y_{2} \cap Y_{3}$ is one point, and the geometric fibre $\tau^{-1}(p)$ over a singular point p of Δ is non-reduced with the reduced part isomorphic to the cone over a rational twisted cubic in \mathbb{P}^{3}.

In [Ma1] is proved that there is a standard \mathbb{P}^{2}-bundle associated to any Severi-Brauer surface over a function field, which is a flat contraction morphism of an extremal ray, in particular the relative Picard number is equal to one. In Theorem B and C we assume the nonsmooth locus Δ of a standard \mathbb{P}^{2}-bundle is nonsingular. Let W be the normalization of $\tau^{-1}(\Delta)$ in the function field of $\tau^{-1}(\Delta)$. The Stein factorization of the composite $W \rightarrow \tau^{-1}(\Delta) \rightarrow \Delta$ is given by

$$
\begin{equation*}
W \rightarrow \tilde{\Delta} \xrightarrow{\phi} \Delta \tag{1.2}
\end{equation*}
$$

where $W \rightarrow \tilde{\Delta}$ is an \mathbb{F}_{1}-bundle and $\phi: \tilde{\Delta} \rightarrow \Delta$ is the cyclic cover of degree three associated to the tame symbol ${ }_{3} \mathrm{Br} K \rightarrow \oplus \kappa_{v}^{*} / \kappa_{v}^{* 3}$ [AM,p84]. Here ${ }_{3} \mathrm{Br} K$ is the 3 -torsion part of the Brauer group $\mathrm{Br} K$ of K, and κ_{v} 's are the residue fields of discrete valuations of K over k. Since Δ is equal to the discriminant locus of the central simple algebra associated to V_{K} and assumed nonsingular, ϕ is etale and nontrivial over each irreducible component of Δ. We call $\phi: \Delta \rightarrow \Delta$ the associated cyclic cover of the standard \mathbb{P}^{2}-bundle (1.1).
Theorem A. Assume char k is equal to neither three nor a prime number l, and a standard \mathbb{P}^{2}-bundle (1.1) over a smooth irreducible projective surface X satisfies that (i) the etale l-adic cohomology groups $H^{1}\left(X, \mathbb{Z}_{l}\right)=H^{3}\left(X, \mathbb{Z}_{l}\right)=0$ and $H^{2}\left(X, \mathbb{Z}_{l}\right)$ is torsion free, (ii) the discriminant locus Δ of r consists of a disjoint union of n smooth curves on X. Let g be the arithmetic genus of Δ. Then the etale l-adic cohomology groups $H^{q}(V)=H^{q}\left(V, \mathbb{Z}_{l}\right)$ of $V(1 \leq q \leq 4)$ are isomorphic to

$$
\begin{aligned}
& H^{1}(V)=0, \quad H^{2}(V) \cong H^{2}(X) \oplus \mathbb{Z}_{l} \\
& H^{3}(V) \cong\left(\mathbb{Z}_{l} / 3 \mathbb{Z}_{l}\right)^{n-1} \oplus \mathbb{Z}_{l}^{4(g-n)} \\
& H^{4}(V) \cong\left(\mathbb{Z}_{l} / 3 \mathbb{Z}_{l}\right)^{n-1} \oplus H^{2}(X) \oplus \mathbb{Z}_{l}^{2} .
\end{aligned}
$$

Geometrically, \mathbb{Z}_{l}^{2} in $H^{4}(V)$ corresponds to \mathbb{F}_{1} in a fibre over a point of Δ and a subvariety \tilde{X} of V such that $\tau: \tilde{X} \rightarrow X$ is generically finite of degree three. The torsion part of $H^{3}(V)$ (resp. $H^{4}(V)$) is generated by the differences of fibres of \mathbb{F}_{1} 's (resp. the differences of \mathbb{F}_{1} 's) which are mapped to points on different connected components of Δ. The free part $\mathbb{Z}_{l}^{4(g-n)}$ of $H^{3}(V)$ is isomorphic to $H^{1}(\tilde{\Delta}) / \phi^{*} H^{1}(\Delta)$. In particular, if char k is differnt from three and if Δ is not connected (i.e. $n \geq 2$) then $H^{3}\left(V, \mathbb{Z}_{3}\right)$ has nontrivial torsion elements, so V is not a rational variety $[\mathrm{A}-\mathrm{M}, \mathrm{p} 78, \mathrm{Prop} .1]$. Assume the base field is complex numbers \mathbb{C}. Since $\tau: V \rightarrow X$ is a contraction morphism of an extremal ray we see $H^{3}\left(V, \mathcal{O}_{V}\right)=H^{3}\left(X, \mathcal{O}_{X}\right)$. Hence $H^{3}(X, \mathbb{Z})=0$ guarantees $H^{3}(V, \mathbb{C})=H^{12} \oplus H^{21}$, and H^{12} consists of primitive forms if $H^{1}(X, \mathbb{Z})=0$. Therefore an ample divisor of V defines a polarization Ξ_{V} on the second intermediate jacobian $J^{2}(V)=H^{12} / H_{\mathbb{Z}}[\mathrm{G}, \mathrm{p} 8]$, where $H_{\mathbb{Z}}$ is the image in $H^{12}(V)$ under the natural homomorphism $H^{3}(V, \mathbb{Z}) \rightarrow H^{3}(V, \mathbb{C}) \rightarrow H^{12}(V)$. We take as an ample divisor $-K_{V}+$ $\tau^{*} D$ for the anticanonical divisor $-K_{V}$ of V and a divisor D on X. As in the case of quadric bundles [B,p329,Th.2.1] we show

Theorem B. Assume a standard \mathbb{P}^{2}-bundle (1.1) over a smooth projective surface X over \mathbb{C} satisfies (i) $H^{1}(X, \mathbb{Z})=H^{3}(X, \mathbb{Z})=0$ and $H^{2}(X, \mathbb{Z})$ is torsion free, (ii) the discriminant locus Δ is non-empty, nonsingular and irreducible. Then the second intermediate jacobian $\left(J^{2}(V), \Xi_{V}\right)$ defined above is isomorphic to the Prym variety $\left(P, \Xi_{P}\right)$ of the associated cyclic cover (1.2) as polarized abelian varieties.

Here the Prym variety P means the abelian subvariety of the jacobian $J(\tilde{\Delta})$ of $\tilde{\Delta}$ which is equal to the image of the endomorphism $1-\iota$ of $J(\tilde{\Delta})$ for the covering automorphism ι of $\tilde{\Delta}$ over Δ and the polarization Ξ_{P} is the restriction to P of the theta divisor $\Xi_{\tilde{\Delta}}$ of $J(\tilde{\Delta})$ ([B,p316],[R,p60]). Contrary to the Prym variety associated to double covers, the polarization Ξ_{P} is not a multiple of a princiapl polarization. Indeed, if the genus of Δ is equal to g then the kernel of the polarization $\Xi_{P}: P \rightarrow \hat{P}$ is equal to $P \cap \phi_{*} J(\Delta) \cong(\mathbb{Z} / 3 \mathbb{Z})^{2 g-2}$, hence the type is equal to $(1, \ldots, 1,3, \ldots, 3)$ with 1 and 3 repeated $g-1$ times, respectively $[\mathrm{R}, \mathrm{p} 65]$. Let $A^{q}(V)$ be the group of codimension q algebraic cycles of V algebraically equivalent to zero modulo rationally equivalent to zero. By arguments almost same as in the proof of Theorem B we see

Corollary C. Assume a standard \mathbb{P}^{2}-bundle (1.1) over a smooth projective surface X over \mathbb{C} satisfies (i) $A^{q}(X)=0$ for any $q \in \mathbb{Z}$, (ii) Δ is non-empty, nonsingular and irreducible. Then there is a homomorphism θ from $A^{1}(\tilde{\Delta})=P i c^{0} \tilde{\Delta}$ to $A^{2}(V)$, which induces the exact sequence

$$
0 \rightarrow \phi^{*} \text { Pic }^{0} \Delta \rightarrow P^{0} c^{0} \tilde{\Delta} \xrightarrow{\theta} A^{2}(V) \rightarrow 0 .
$$

Combining Theorem B with Corollary C we see the Abel-Jacobi map from $A^{2}(V)$ to the intermediate jacobian $J^{2}(V)(\mathbb{C})$ is bijective. For a simply connected smooth projective surface X with the function field K there is an exact sequence $[\mathrm{A}-\mathrm{M}, \mathrm{p} 84]$:

$$
\begin{align*}
0 \rightarrow \mathrm{Br} X \rightarrow \operatorname{Br} K & \rightarrow \oplus_{x \in X^{(1)}} H^{1}(\kappa(x), \mathbb{Q} / \mathbb{Z}) \tag{1.3}\\
& \xrightarrow{\partial} \oplus_{x \in X^{(2)}} \mathbb{Q} / \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0,
\end{align*}
$$

where $\mathrm{Br} X=H^{2}\left(X, \mathbb{G}_{m}\right)$ and $X^{(i)}$ is the set of codimension i subvarieties of X. Let $\phi: \tilde{\Delta} \rightarrow \Delta$ be a double cover over a normal crossing curve Δ on X. In [Sa,p388] is proved that if ϕ is mapped to zero under the homomorphism ∂ in (1.3) then there is a standard conic bundle over X whose associated double cover is equal to ϕ. By using a result in $[\mathrm{A}, \mathrm{p} 208]$ we show the same is true for a standard \mathbb{P}^{2}-bundle.
Theorem D. Let X be a simply connected smooth projective surface over \mathbb{C} with the function field K. Let Δ be a normal crossing curve on X and let $\phi: \tilde{\Delta} \rightarrow \Delta$ be a cyclic cover of degree three which is mapped to zero by the homomorphism ∂ in (1.3). Then there is a standard \mathbb{P}^{2}-bundle over X whose associated cyclic cover is equal to ϕ.

The paper is organized as follows. Theorem A is proved in Section two using the trace map between H^{1} of the associated cyclic cover (1.2). Section three is devoted to proving Theorem B and Corollary C by the idea in Chapter II and III of [B], respectively. Theorem D is proved in Section four after a K-theoretic simple proof of the exact sequence (1.3). In Section five an ideal basis of a standard \mathbb{P}^{2}-bundle over a regular local ring is determined explicitly (Theorem E), from which the results of section 2 in [Ma 1$]$ (V is a regular scheme etc.) easily follows.

2. The l-adic cohomology groups

In this section we prove Theorem A. We assume the discriminant locus Δ is a disjoint union of n smooth curves Δ_{i} with genus $g_{i}(1 \leq$ $i \leq n)$. We denote by $F=\mathbb{Z} /\left(l^{m}\right)$ for a prime number l different from char k and

$$
H^{*}(S)=H_{e t}^{*}\left(S, F_{S}\right)
$$

the etale cohomology groups of a scheme S with coefficient the constant sheaf F_{S} on S. For a point $p \in \Delta$, the fibre $\tau^{-1}(p)$ consists of three components $Y_{i}(i=1,2,3)$ with $Y_{i} \cong \mathbb{F}_{1}$ and $Y_{i} \cap Y_{i+1}$ (resp. $\left.Y_{i} \cap Y_{i-1}\right)$ is a fibre (resp. the (-1)-curve) of $Y_{i} \cong \mathbb{F}_{1}$ (where the suffix means $\bmod 3)$ and $Y_{1} \cap Y_{2} \cap Y_{3}$ consists of one point.
Lemma 1. (i) For a point $p \in X-\Delta, H^{q}\left(\tau^{-1}(p)\right)=F(q=0,2,4)$, $0(q \neq 0,2,4)$.
(ii) For a point $p \in \Delta, H^{q}\left(\tau^{-1}(p)\right)=F(q=0), F^{3}(q=2,4), 0$ ($q \neq 0,2,4$).
Proof. (i) follows from $\tau^{-1}(p) \cong \mathbb{P}^{2}$ for a point $p \in X-\Delta$. Since $Y_{1} \cong$ \mathbb{F}_{1} we see $H^{q}\left(Y_{1}\right)=F(q=0,4)$, and $F^{2}(q=2)$ and $0(q \neq 0,2,4)$. Since $Y_{1} \cap Y_{2} \cong \mathbb{P}^{1}$, considering the Mayer-Vietoris sequence for the pair $\left(Y_{1}, Y_{2}\right)$ we see $H^{q}\left(Y_{1} \cup Y_{2}\right)=F(q=0), F^{3}(q=2), F^{2}(q=4)$ and $0(q \neq 0,2,4)$. Similarly, $\left(Y_{1} \cup Y_{2}\right) \cap Y_{3}=\left(Y_{1} \cap Y_{3}\right) \cup\left(Y_{2} \cap Y_{3}\right)$ is a union of two \mathbb{P}^{1} 's intersecting at one point, so $H^{q}\left(\left(Y_{1} \cup Y_{2}\right) \cap Y_{3}\right)=F$ $(q=0), F^{2}(q=2), 0(q \neq 0,2)$. The isomorphisms in (ii) follow from applying the Mayer-Vietoris sequence for the pair $\left(Y_{1} \cup Y_{2}, Y_{3}\right)$.

Since Δ is smooth, the associated cyclic cover $\phi: \tilde{\Delta} \rightarrow \Delta$ of (1.2) is etale, hence the arithmetic genus \tilde{g} of $\tilde{\Delta}$ is equal to

$$
\begin{equation*}
\tilde{g}=\sum_{i=1}^{n}\left(3 g_{i}-2\right)=3 g-2 n \tag{2.1}
\end{equation*}
$$

by Hurwitz's formula. Let A be the kernel of the trace homomorphism from $\phi_{*} F_{\tilde{\Delta}}$ to F_{Δ}. From the exact sequence

$$
\begin{equation*}
0 \rightarrow A \rightarrow \phi_{*} F_{\tilde{\Delta}} \xrightarrow{\text { trace }} F_{\Delta} \rightarrow 0 \tag{2.2}
\end{equation*}
$$

we see $H^{*}(A)=H^{*}(\Delta, A)$ are isomorphic to

$$
\begin{align*}
& H^{0}(A)=(F / 3 F)^{n}, \quad H^{2}(A)=(F / 3 F)^{n} \tag{2.3}\\
& H^{1}(A)=(F / 3 F)^{2 n} \oplus F^{2(\tilde{g}-g)}=(F / 3 F)^{2 n} \oplus F^{4(g-n)}
\end{align*}
$$

and $H^{q}(A)=0$ for any $q>2$. By taking inverse limit we obtain the l-adic cohomology groups.

$$
\begin{align*}
& \lim _{\leftrightarrows} H^{0}(A)=0, \quad \lim _{\leftrightarrows} H^{2}(A)=\left(\mathbb{Z}_{l} / 3 \mathbb{Z}_{l}\right)^{n} \tag{2.4}\\
& \underset{\leftrightarrows}{\lim } H^{1}(A)=\left(\mathbb{Z}_{l} / 3 \mathbb{Z}_{l}\right)^{n} \oplus \mathbb{Z}_{l}^{4(g-n)} .
\end{align*}
$$

We use the following Lemma for the proof of Theorem A.
Lemma 2. $R^{2} \tau_{*} F_{V} \cong R^{4} \tau_{*} F_{V}$ and there are commutative diagrams with exact rows and columns for $q=2,4$:

where $i: \Delta \subset X$ (resp. $j: U:=X-\Delta \subset X)$ is the closed (resp. open) immersion.

Assuming Lemma 2 we continue the proof of Theorem A. Let us consider the Leray spectral sequence for the morphism $\tau: V \rightarrow X$:

$$
E_{2}^{p q}=H^{p}\left(R^{q} \tau_{*} F_{V}\right) \Rightarrow H^{p+q}(V) .
$$

We see $E_{2}^{p, 2 q+1}=0$ for any q by Lemma 1 , and $E_{2}^{2 p+1,0}=H^{2 p+1}(X)=$ 0 for any p by the assumption. Thus there are exact sequences:

$$
\begin{align*}
& 0 \rightarrow E_{2}^{20} \rightarrow E^{2} \rightarrow E_{2}^{02} \rightarrow 0, \\
& 0 \rightarrow E^{3} \rightarrow E_{2}^{12} \rightarrow E_{2}^{40} \xrightarrow{f} \mathcal{F}^{2} E^{4} \rightarrow E_{2}^{22} \rightarrow 0 \tag{2.6}\\
& 0 \rightarrow \mathcal{F}^{2} E^{4} \rightarrow E^{4} \rightarrow E_{2}^{04} \rightarrow E_{2}^{32}
\end{align*}
$$

From $E_{2}^{10}=E_{2}^{01}=0$ we see $E^{1}=H^{1}(V)=0$. Now we calculate $E_{2}^{p 2}=H^{p}\left(R^{2} \tau_{*} F_{V}\right)$. From the middle column of (2.5) we see

$$
\begin{aligned}
0 & \rightarrow H^{0}(A) \rightarrow E_{2}^{02} \rightarrow H^{0}(X) \rightarrow H^{1}(A) \rightarrow E_{2}^{12} \rightarrow H^{1}(X) \rightarrow \\
& \rightarrow H^{2}(A) \rightarrow E_{2}^{22} \rightarrow H^{2}(X) \rightarrow H^{3}(A) \rightarrow E_{2}^{32} \rightarrow H^{3}(X)
\end{aligned}
$$

where $H^{0}(X)=F$ and $H^{1}(X)=H^{3}(X)=0$ by the assumption. Hence we see from (2.3)

$$
\begin{array}{ll}
E_{2}^{02}=E_{2}^{04}=(F / 3 F)^{n-1} \oplus F, & E_{2}^{12}=(F / 3 F)^{2 n-1} \oplus F^{4(g-n)} \\
E_{2}^{22}=(F / 3 F)^{n} \oplus H^{2}(X), & E_{2}^{32}=0
\end{array}
$$

Substituting these isomorphisms into (2.6) we obtain

$$
\begin{align*}
& E^{2}=E_{2}^{20} \oplus E_{2}^{02}=H^{2}(X) \oplus F \oplus(F / 3 F)^{n-1} \tag{2.7}\\
0 \rightarrow & E^{3} \rightarrow(F / 3 F)^{2 n-1} \oplus F^{4(g-n)} \rightarrow \\
\rightarrow & H^{4}(X) \xrightarrow{f} \mathcal{F}^{2} E^{4} \rightarrow(F / 3 F)^{n} \oplus H^{2}(X) \rightarrow 0 \tag{2.8}\\
0 \rightarrow & \mathcal{F}^{2} E^{4} \rightarrow E^{4} \rightarrow F \oplus(F / 3 F)^{n-1} \rightarrow 0 \tag{2.9}
\end{align*}
$$

The image in $E^{4}=H^{4}(V)$ of a generator of $H^{4}(X) \cong F$ under the homomorphism f in (2.8) is represented by the fibre $\tau^{-1}(p)$ of a closed point p of X. If p is contained in Δ then $\tau^{-1}(p)$ consists of three components, hence (2.8) implies

$$
\begin{align*}
E^{3} & =(F / 3 F)^{2 n-2} \oplus F^{4(g-n)} \tag{2.10}\\
\mathcal{F}^{2} E^{4} & =(F / 3 F)^{n-1} \oplus H^{2}(X) \oplus F
\end{align*}
$$

Hence we see from (2.11)

$$
\begin{equation*}
E^{4}=(F / 3 F)^{2 n-2} \oplus H^{2}(X) \oplus F^{2} \tag{2.11}
\end{equation*}
$$

In view of (2.4) we obtain the isomorphisms of Theorem A by taking inverse limit in the expressions $E^{q}=H^{q}(V)(q=2,3,4)$ in (2.7), (2.10) and (2.11).
(Proof of Lemma 2) By the proper base change theorem[Mi,p225] we have the exact sequence

$$
\begin{equation*}
0 \rightarrow j_{!}\left(R^{q} \tau_{*} F_{\tau^{-1}(U)}\right) \rightarrow R^{q} \tau_{*} F_{V} \rightarrow i_{*}\left(R^{q} \tau_{*} F_{\tau^{-1}(\Delta)}\right) \rightarrow 0 \tag{2.12}
\end{equation*}
$$

Here the locally constant sheaf $R^{q} \tau_{*} F_{\tau^{-1}(U)}$ is isomorphic to the constant sheaf F_{U} because $\tau^{-1}(U) \rightarrow U$ is a \mathbb{P}^{2}-bundle in etale topology. We shall show isomorphisms $R^{q} \tau_{*} F_{\tau^{-1}(\Delta)} \cong \phi_{*} F_{\tilde{\Delta}}$ for $q=2,4$ and (2.12) fits in the middle row of (2.5).

Let $S=\operatorname{Sing}\left(\tau^{-1}(\Delta)\right)$ be the singular locus of $\tau^{-1}(\Delta)$. If we denote by $\tau^{-1}(p)=\cup_{i=1}^{3} Y_{i}$ with $Y_{i} \cong \mathbb{F}_{1}$ for a closed point $p \in \Delta$ then $\tau^{-1}(p) \cap$ $S=\cup_{i \neq j}\left(Y_{i} \cap Y_{j}\right)$ consists of three \mathbb{P}^{1} 's intersecting at one point $\cap_{i=1}^{3} Y_{i}$. Let $\nu: W \rightarrow \tau^{-1}(\Delta)$ be the normalization in the function field of $\tau^{-1}(\Delta)$ and $\phi: \tilde{\Delta} \rightarrow \Delta$ be the associated cyclic cover (1.2) :

Here the pull back $\nu^{-1}(S)$ of S in W is reducible with two irreducible components $S_{1, i}$ and $S_{2, i}$ over each irreducible component $\tilde{\Delta}_{i}$ of $\tilde{\Delta}$. For a point $p \in \tilde{\triangle}_{i}, \pi^{-1}(p) \cap S_{1, i}$ (resp. $\pi^{-1}(p) \cap S_{2, i}$) is a fibre (resp. the (-1)-curve) of $\pi^{-1}(p) \cong \mathbb{F}_{1}$, and $S_{1, i} \cap S_{2, i}$ is a section over $\tilde{\Delta}_{i}$. Let $S_{1}=\cup_{i} S_{1, i}$ and $S_{2}=\cup_{i} S_{2, i}$, so that $\nu^{-1}(S)=S_{1} \cup S_{2}$. Then $S_{1} \cap S_{2}$ is isomorphic to $\tilde{\Delta}$ and $\nu: S_{1} \cap S_{2} \rightarrow \nu\left(S_{1} \cap S_{2}\right) \subset S$ is isomorphic to the associated cyclic cover $\phi: \tilde{\Delta} \rightarrow \Delta$ of (1.2).
(Proof of $R^{4} \tau_{*} F_{\tau^{-1}(\Delta)} \cong \phi_{*} F_{\tilde{\Delta}}$) We define B by the exact sequence

$$
\begin{equation*}
0 \rightarrow F_{\tau^{-1}(\Delta)} \rightarrow \nu_{*} F_{W} \rightarrow B \rightarrow 0 \tag{2.13}
\end{equation*}
$$

The support of B is equal to S which is of relative dimension one over Δ. Hence $R^{3} \tau_{*} B=R^{4} \tau_{*} B=0$ and an isomorphism

$$
\begin{equation*}
R^{4} \tau_{*} F_{\tau^{-1}(\Delta)} \cong R^{4} \tau_{*}\left(\nu_{*} F_{W}\right) \tag{2.14}
\end{equation*}
$$

Recall $\pi: W \rightarrow \tilde{\Delta}$ is an \mathbb{F}_{1}-bundle (in Zariski toplogy). Since $H^{4}\left(\mathbb{F}_{1}\right)$ $=\mathbb{Z}$ and $H^{2}\left(\mathbb{F}_{1}\right)$ is generated by the class of a fibre and the (-1)-curve we see the locally constant sheaf $R^{q} \tau_{*} F_{W}$ is constant :

$$
\begin{equation*}
R^{2} \tau_{*} F_{W}=F_{\tilde{\Delta}}^{2}, \quad R^{4} \tau_{*} F_{W}=F_{\tilde{\Delta}} \tag{2.15}
\end{equation*}
$$

Now we have isomorphisms

$$
\begin{array}{rlr}
\phi_{*} F_{\tilde{\Delta}} & \cong \phi_{*}\left(R^{4} \pi_{*} F_{W}\right) \quad \text { by }(2.15) \\
& \cong R^{4}(\phi \pi)_{*} F_{W} & \text { since } \phi \text { is a finite morphism } \\
& \cong R^{4}(\tau \nu)_{*} F_{W} & \\
& \cong R^{4} \tau_{*}\left(\nu_{*} F_{W}\right) & \text { since } \nu \text { is a finite morphism } \\
& \cong R^{4} \tau_{*} F_{\tau^{-1}(\Delta)} \quad \text { by }(2.14) .
\end{array}
$$

(Proof of $R^{2} \tau_{*} F_{\tau^{-1}(\Delta)} \cong \phi_{*} F_{\tilde{\Delta}}$) For a closed point $p \in \Delta$ we see $H^{2}\left(\tau^{-1}(p), F_{\tau^{-1}(\Delta)}\right)=F^{3} \rightarrow H^{2}\left(\tau^{-1}(p), \tau_{*} F_{W}\right)=F^{6}$ is injective, and $R^{3} \tau_{*} F_{\tau^{-1} \Delta}=0$ by Lemma 1 . Hence we see from the exact sequence (2.13)

$$
\begin{equation*}
0 \rightarrow R^{2} \tau_{*} F_{\tau^{-1}(\Delta)} \rightarrow R^{2} \tau_{*}\left(\nu_{*} F_{W}\right) \rightarrow R^{2} \tau_{*} B \rightarrow 0 \tag{2.16}
\end{equation*}
$$

For the proof of an isomorphism $R^{2} \tau_{*} F_{\tau^{-1}(\Delta)} \cong \phi_{*} F_{\tilde{\Delta}}$ we will show $R^{2} \tau_{*}\left(\nu_{*} F_{W}\right) \cong \phi_{*} F_{\Delta}^{2}$ and $R^{2} \tau_{*} B \cong \phi_{*} F_{\tilde{\Delta}}$. Since $R^{2} \pi_{*} F_{W} \cong F_{\Delta}^{2}$ by (2.15) we see

$$
\begin{align*}
\phi_{*} F_{\triangle}^{2} & \cong \phi_{*}\left(R^{2} \pi_{*} F_{W}\right) \cong R^{2}(\phi \pi)_{*} F_{W} \tag{2.17}\\
& \cong R^{2}(\tau \nu)_{*} F_{W} \cong R^{2} \tau_{*}\left(\nu_{*} F_{W}\right) .
\end{align*}
$$

Next we will show $R^{2} \tau_{*} B \cong \phi_{*} F_{\tilde{\Delta}}$. The restriction of ν to the open set $W-\nu^{-1}(S)$ of W is an isomorphism, so the exact sequence (2.13) on $\tau^{-1}(\Delta)$ induces the exact sequence

$$
\begin{equation*}
0 \rightarrow F_{S} \rightarrow \nu_{*} F_{\nu^{-1}(S)} \rightarrow B \rightarrow 0 \tag{2.18}
\end{equation*}
$$

on S, where $F_{S} \rightarrow \nu_{*} F_{\nu^{-1}(S)}$ is injective. Let $\nu^{-1}(S)=S_{1} \cup S_{2}$ and let $U_{0}=S-\nu\left(S_{1} \cap S_{2}\right)$. Then $\nu^{-1}\left(U_{0}\right)$ is a disjoint union of two components U_{1} and U_{2}, which are isomorphic to U_{0} by ν. Restricting $\nu_{*} F_{\nu^{-1}(S)}$ to U_{0} we see $j^{*} \nu_{*} F_{\nu^{-1}(S)} \cong \nu_{*} F_{\nu^{-1}\left(U_{0}\right)} \cong F_{U_{0}}^{2}$ (where j : $U_{0} \subset S$ is the open immersion), hence $j^{*} B \cong F_{U_{0}}$ by (2.18). In the exact sequence

$$
0 \rightarrow j_{!} j^{*} B \cong j_{!} F_{U_{1}} \rightarrow B \rightarrow i_{*} i^{*} B \rightarrow 0
$$

on S (where $i: \nu\left(S_{1} \cap S_{2}\right) \subset S$ is the closed immersion), $R^{q} \tau_{*}\left(i_{*} i^{*} B\right)=$ 0 for $q=1,2$ because the support of $i_{*} i^{*} B$ is equal to $\nu\left(S_{1} \cap S_{2}\right)$, which is of relative dimension one over Δ (i.e. a section of $\tau: S \rightarrow \Delta$). Hence $R^{2} \tau_{*} B \cong R^{2} \tau_{*}\left(j!F_{U_{0}}\right)$. For the proof of the isomorphism $R^{2} \tau_{*} B \cong$ $\phi_{*} F_{\tilde{\Delta}}$ we will show $R^{2} \tau_{*}\left(j_{!} F_{U_{0}}\right) \cong \phi_{*} F_{\tilde{\Delta}}$. Since $\nu: U_{1} \rightarrow U_{0}$ is an isomorphism we may replace $U_{0} \subset S$ by $U_{1} \subset S_{1}$ [Milne,p227,Prop.(3.1)]. Therefore the restriction of τ to U_{1} is factored by

$$
\tau: U_{1} \subset S_{1} \xrightarrow{\pi} \tilde{\Delta} \xrightarrow{\phi} \Delta
$$

with a $\mathbb{P}^{1}\left(\right.$ resp. $\left.\mathbb{A}^{1}\right)$-bundle $\pi: S_{1} \rightarrow \tilde{\Delta}$ (resp. $\left.U_{1} \subset S_{1} \rightarrow \tilde{\Delta}\right)$. Let $i: Z=S_{1}-U_{1} \cong \tilde{\Delta} \subset S_{1}$ be the closed immersion. In the exact sequence

$$
0 \rightarrow j_{!} F_{U_{1}} \rightarrow F_{S_{1}} \rightarrow i_{*} F_{Z} \rightarrow 0
$$

we see $R^{q} \tau_{*}\left(i_{*} F_{Z}\right)=0$ for $q=1,2$, hence

$$
\begin{aligned}
R^{2} \tau_{*}\left(j_{1} F_{U_{1}}\right) & \cong R^{2} \tau_{*} F_{S_{1}} \cong R^{2}(\phi \pi)_{*} F_{S_{1}} \\
& \cong \phi_{*}\left(R^{2} \pi_{*} F_{S_{1}}\right) \cong \phi_{*} F_{\tilde{\Delta}} .
\end{aligned}
$$

Thus $R^{2} \tau_{*} B \cong R^{2} \tau_{*}\left(j_{1} F_{U_{0}}\right) \cong \phi_{*} F_{\tilde{\Delta}}$. Combining this with the isomorphism $R^{2} \tau_{*}\left(\nu_{*} F_{W}\right) \cong \phi_{*} F_{\Delta}^{2}$ obtained in (2.17) we get the isomorphism $R^{2} \tau_{*} F_{\tau^{-1}(\Delta)} \cong \phi_{*} F_{\tilde{\Delta}}$ by the exact sequence (2.16).
(End of the proof of Lemma 2) The exact sequence (2.12) is equal to $0 \rightarrow j_{!} F_{U} \rightarrow R^{q} \tau_{*} F_{V} \rightarrow i_{*} \phi_{*} F_{\tilde{\Delta}} \rightarrow 0$. On the other hand, we have the canonical homomorphism $f: R^{q} \tau_{*} F_{V} \rightarrow j_{*} j^{*} R^{q} \tau_{*} F_{V} \cong$ $j_{*} R^{q} \tau_{*} F_{\tau^{-1}(U)} \cong j_{*} F_{U} \cong F_{X}$. Therefore we have the diagram with exact rows

Here the right-hand square is commutative, from which we obtain the diagram (2.5).

3. Intermediate jacobians

In this section we work over \mathbb{C} and prove Theorem B. We use the following notations. For a point $p \in \Delta$, let $Y_{p, i}(i=1,2,3)$ be the three components of $\tau^{-1}(p)$ and set the closed subschemes

$$
\Delta_{0}=\cup_{p \in \Delta} \cap_{i=1}^{3} Y_{i, p}, \quad M_{0}=\cup_{p \in \Delta} \cup_{i \neq j}\left(Y_{i, p} \cap Y_{j, p}\right)
$$

of $\tau^{-1}(\Delta)$ with reduced induced structures. We see Δ_{0} (resp. M_{0}) is the singular locus of $\tau^{-1}(\Delta)$ with multiplicity three (resp. two) at its generic point, and Δ_{0} is a section of τ over Δ. Let $\sigma: V_{1} \rightarrow V$ be the blow-up along Δ_{0} with the exceptional divisor E_{1} and the proper transform D_{1} of $\tau^{-1}(\Delta)$. Let $\epsilon: V_{2} \rightarrow V_{1}$ be the blow-up along the proper transform M_{1} of M_{0} with the exceptional divisor F and the proper transform $D_{2}\left(\right.$ resp. $\left.E_{2}\right)$ of D_{1} (resp. E_{1}).

Then $D_{2}+F+E_{2}$ is a simple normal crossing divisor of V_{2}. The geometric fibres of $D_{2} \xrightarrow{\epsilon} D_{1} \xrightarrow{\sigma} \tau^{-1}(\Delta) \xrightarrow{\tau} \Delta$ and $M_{1} \xrightarrow{\sigma} M_{0} \xrightarrow{\tau} \Delta$ consist of three connected components and the Stein factorizations are given by

$$
\begin{equation*}
D_{2} \xrightarrow{q} \tilde{\Delta} \xrightarrow{\phi} \Delta, \quad M_{1} \xrightarrow{r} \tilde{\Delta} \xrightarrow{\phi} \Delta, \tag{3.1}
\end{equation*}
$$

with the associated cyclic cover $\phi: \tilde{\Delta} \rightarrow \Delta$ of (1.2) in Introduction. Here r is a \mathbb{P}^{1}-bundle and q is a fibre bundle in Zariski topology with fibre $Y_{p, i}^{\prime}$ isomorphic to one point blow-up of $Y_{p, i} \cong \mathbb{F}_{1}$. The morphism $q: D_{2} \rightarrow \tilde{\Delta}$ is factored by

$$
\begin{equation*}
D_{2} \xrightarrow{q_{1}} D_{3} \xrightarrow{q_{2}} D_{4} \rightarrow \tilde{\Delta} \tag{3.2}
\end{equation*}
$$

Here q_{1} is the blow-down of L, D_{3} is isomorphic to the normalization of $\tau^{-1}(\Delta), q_{2}$ is the blow-down of $q_{1}(M)$, and $D_{4} \rightarrow \tilde{\Delta}$ is a \mathbb{P}^{2}-bundle. We set

$$
\begin{equation*}
D_{2} \cap E_{2}=L, \quad D_{2} \cap F=S \cup M \text { (disjoint union) . } \tag{3.3}
\end{equation*}
$$

The two-dimensional subvarieties L, S, M satisfy the following properties.

Lemma 3. (i) $L \cap Y_{p, i}^{\prime}$ is the exceptional line of the one point blow-up $q_{1}: Y_{p, i}^{\prime} \rightarrow Y_{p, i}$.
(ii) The image of $S \cap Y_{p, i}^{\prime}$ (resp. $M \cap Y_{p, i}^{\prime}$) by q_{1} is the (-1)-curve (resp. a fibre) on $Y_{p, i} \cong \mathbb{F}_{1}$.

We use the following notations of closed immersions.

$$
\begin{array}{rlr}
i_{1}: D_{2} \subset V_{2}, & i_{2}: F \subset V_{2}, & i_{3}: E_{2} \subset V_{2} \\
l_{1}: L \subset D_{2}, & s_{1}: S \subset D_{2}, & m_{1}: M \subset D_{2}, \tag{3.4}\\
l_{3}: L \subset E_{2}, & s_{2}: S \subset F, & m_{2}: M \subset F .
\end{array}
$$

Then $\epsilon_{F} \circ s_{2}$ and $\epsilon_{F} \circ m_{2}$ are identities and if the diagram

is commutative, then we assume the diagram

is commutative with a nontrivial automorphim $\iota: \tilde{\Delta} \rightarrow \tilde{\Delta}$ of degree three over Δ.

We denote by $H^{*}(V)=H^{*}(V, \mathbb{Z})$ the integral cohomology groups of V and define a homomorphism $\theta: H^{1}(\tilde{\Delta}) \rightarrow H^{3}(V)$ by the composite

$$
\begin{equation*}
H^{1}(\tilde{\Delta}) \xrightarrow{q^{*}} H^{1}\left(D_{2}\right) \xrightarrow{i_{1 *}} H^{3}\left(V_{2}\right) \xrightarrow{\epsilon_{*}} H^{3}\left(V_{1}\right) \xrightarrow{\sigma_{*}} H^{3}(V) . \tag{3.7}
\end{equation*}
$$

Since $\tau \circ \sigma \circ \epsilon \circ i_{1}=i_{\Delta} \circ \phi \circ q$ with the closed immersion $i_{\Delta}: \Delta \subset X$ we see for an element $\beta \in H^{1}(\Delta)$,

$$
\begin{equation*}
\theta\left(\phi^{*} \beta\right)=\sigma_{*} \epsilon_{*} i_{1 *} \epsilon_{D_{2}}^{*} \sigma_{D_{1}}^{*} \tau_{\Delta}^{*} \beta=\tau^{*} i_{\Delta_{*}} \beta=0 \tag{3.8}
\end{equation*}
$$

by the assumption $H^{3}(X)=0$. Here $\epsilon_{D_{2}}$ is the retriction to D_{2} of ϵ etc. Thus, $\theta\left(\phi^{*} H^{1}(\Delta)\right)=0$. We will show θ is surjective and the kernel is contained in $\phi^{*} H^{1}(\Delta)$. The following Lemma is shown along the same line as in the case of quadric bundles [B,p333,Lemma(2.5)].

Lemma 4. (i) $H^{3}\left(V-\tau^{-1}(\Delta)\right)=0$, (ii) θ is surjective.
Proof. (i) Let $U=V-\tau^{-1}(\Delta)$ and consider the Leray spectral sequence for the \mathbb{P}^{2}-bundle $\tau: U \rightarrow X^{*}=X-\Delta ; E_{2}^{p q}=H^{p}\left(X^{*}, R^{q} \tau_{*} \mathbb{Z}\right)$ $\Rightarrow E^{p+q}=H^{p+q}(U)$. We see $R^{q} \tau_{*} \mathbb{Z}$ is equal to \mathbb{Z} for $q=0,2$ and equal to zero for $q=1,3$. Hence $E_{2}^{p q}=0$ for $q=1,3$ imply the exact sequence

$$
\begin{equation*}
0 \rightarrow E_{\infty}^{30} \rightarrow E^{3} \rightarrow E_{\infty}^{12} \rightarrow 0 \tag{3.9}
\end{equation*}
$$

In the Gysin sequence for the pair (X, Δ)

$$
\begin{equation*}
H^{i-2}(\Delta) \rightarrow H^{i}(X) \rightarrow H^{i}\left(X^{*}\right) \rightarrow H^{i-1}(\Delta) \tag{3.10}
\end{equation*}
$$

we see $H^{1}(X)=H^{3}(X)=0$ by the assumption and $H^{i}(\Delta)=\mathbb{Z} \rightarrow$ $H^{i+2}(X)$ are injective for $i=0,2$ because Δ is connected. Hence we see from (3.10) that $H^{1}\left(X^{*}\right)=H^{3}\left(X^{*}\right)=0$, i.e. $E_{2}^{12}=E_{2}^{30}=0$. Therefore $E^{3}=H^{3}(U)=0$ by (3.9).
(ii) Recall $\tau^{-1}(\Delta)$ is a normal crossing divisor of V and the normalization $D_{3} \rightarrow \tau^{-1}(\Delta)$ of its quotien field fits in the diagram

with an \mathbb{F}_{1}-bundle $f: D_{3} \rightarrow \tilde{\Delta}($ see $(3.2))$. Since $q^{*}: H^{1}(\tilde{\Delta}) \xrightarrow{f^{*}}$ $H^{1}\left(D_{3}\right) \xrightarrow{q_{2}^{*}} H^{1}\left(D_{2}\right)$ is an isomorphism it is sufficient for the surjectivity of θ to show $\varphi_{*}: H^{1}\left(D_{3}\right) \rightarrow H^{3}(V)$ is surjective, where φ is the composite of the normalization $D_{3} \rightarrow \tau^{-1}(\Delta)$ with the closed immmersion $\tau^{-1}(\Delta) \subset V$. Let us consider the Leray spectral sequence for the open immersion $j: U=V-\tau^{-1}(\Delta) \subset V ; E_{2}^{p q}=H^{p}\left(V, R^{q} j_{*} \mathbb{Z}\right) \Rightarrow$ $H^{p+q}(U)$. We see

$$
R^{0} j_{*} \mathbb{Z}=\mathbb{Z}_{V}, \quad R^{1} j_{*} \mathbb{Z}=\mathbb{Z}_{D_{3}}, \quad R^{2} j_{*} \mathbb{Z}=\mathbb{Z}_{S} \oplus \mathbb{Z}_{M}
$$

Here $S \cup M$ is the normalization of the closure of the locus in $\tau^{-1}(\Delta)$ where the multiplicity is equal to two. Now $\phi_{*}: H^{1}\left(D_{3}\right) \rightarrow H^{3}(V)$ is given by the differential of E_{2}-terms

$$
d_{2}: E_{2}^{11}=H^{1}\left(R^{1} j_{*} \mathbb{Z}\right) \rightarrow E_{2}^{03}=H^{3}\left(j_{*} \mathbb{Z}\right)
$$

so we have to show $E_{3}^{30}=0$. The differential $d_{2}: E_{2}^{02} \rightarrow E_{2}^{21}$ is the Gysin homomorphism

$$
H^{0}\left(R^{2} j_{*} \mathbb{Z}\right)=H^{0}(S) \oplus H^{0}(M) \rightarrow H^{2}\left(R^{1} j_{*} \mathbb{Z}\right)=H^{2}\left(D_{3}\right)
$$

which is injective because the images of S and M are linearly independent in $H^{2}\left(D_{3}\right)$. Hence $E_{3}^{02}=0$, so that $E_{3}^{30}=E_{\infty}^{30}$, which is equal to zero by (i).

We need three Lemmas for the proof of the equality $\operatorname{Ker}(\theta)=$ $\phi^{*} H^{1}(\Delta)$.
Lemma 5. $\epsilon^{*} \sigma^{*} \theta(\alpha)$ is expressed in $H^{3}\left(V_{2}\right)$ by

$$
\begin{equation*}
\epsilon^{*} \sigma^{*} \theta(\alpha)=i_{1 *} q^{*} \alpha+i_{2 *} \epsilon_{F}^{*} r^{*}\left(1+\iota^{*}\right) \alpha+i_{3 *} \epsilon_{E_{2}}^{*} \sigma_{E_{1}}^{*} \phi_{*} \alpha \tag{3.11}
\end{equation*}
$$

Proof. We show for $\alpha \in H^{1}(\tilde{\Delta})$

$$
\begin{equation*}
\sigma^{*} \theta(\alpha)=\epsilon_{*} i_{1 *} q^{*} \alpha+j_{E_{1} *} \sigma_{E_{1}}^{*} \phi_{*} \alpha \quad \text { in } H^{3}\left(V_{1}\right) \tag{3.12}
\end{equation*}
$$

with the closed immersion $j_{E_{1}}: E_{1} \subset V_{1}$. Let $x=\epsilon_{*} i_{1 *} q^{*} \alpha$ be the first term of the right-hand side of (3.12). Since $\operatorname{codim}\left(\Delta_{0}, V\right)=3$, by the formula $[\mathrm{B}, \mathrm{p} 312,(0.1 .3)]$ we see

$$
\begin{aligned}
\sigma^{*} \theta(\alpha) & =\sigma^{*} \sigma_{*} x \\
& =x+j_{E_{1} *}\left\{\sigma_{E_{1}}^{*} \sigma_{E_{1} *}\left(\gamma_{1} \cdot j_{E_{1}}^{*} x\right)+h \cdot \sigma_{E_{1}}^{*} \sigma_{E_{1} *} j_{E_{1}}^{*} x\right\}
\end{aligned}
$$

Here h is the Chern class of $\mathcal{O}_{E_{1}}(1)$ in $H^{2}\left(E_{1}\right)$ and $\gamma_{1}=h+\sigma_{E_{1}}^{*} c_{1}(\mathcal{N})$ with the normal bundle \mathcal{N} of Δ_{0} in V. The element $j_{E_{1}}^{*} x \in H^{3}\left(E_{1}\right)$ is mapped to zero by $\sigma_{E_{1} *}$, hence

$$
\begin{aligned}
& j_{E_{1} *} \sigma_{E_{1}}^{*} \sigma_{E_{1} *}\left(\sigma_{E_{1}}^{*} c_{1}(\mathcal{N}) \cdot j_{E_{1}}^{*} x\right)=j_{E_{1} *} \sigma_{E_{1}}^{*} \sigma_{E_{1} *}\left(c_{1}(\mathcal{N}) \cdot \sigma_{E_{1} *} j_{E_{1}}^{*} x\right)=0 \\
& \quad h \cdot \sigma_{E_{1}}^{*} \sigma_{E_{1} *} j_{E_{1}}^{*} x=0
\end{aligned}
$$

On the other hand, we see $\sigma_{E_{1} *}\left(h \cdot j_{E_{1}}^{*} x\right)=\phi_{*} \alpha \in H^{1}(\Delta)$ geometrically, so that we obtain the equality (3.12). Applying ϵ^{*} to (3.12) we see

$$
\begin{align*}
\epsilon^{*} \sigma^{*} \theta(\alpha) & =\epsilon^{*} \epsilon_{*}\left(i_{1 *} q^{*} \alpha\right)+\epsilon^{*} j_{E_{1 *}} \sigma_{E_{1}}^{*} \phi_{*} \alpha \tag{3.13}\\
& =i_{1 *} q^{*} \alpha+i_{2 *} \epsilon_{F}^{*} \epsilon_{F *} i_{2}^{*}\left(i_{1 *} q^{*} \alpha\right)+i_{3 *} \epsilon_{E_{1}}^{*} \sigma_{E_{1}}^{*} \phi_{*} \alpha
\end{align*}
$$

because $\operatorname{codim}\left(M_{1}, V_{1}\right)=2$ and $\epsilon^{*} j_{E_{1} *}=i_{3 *} \epsilon_{E_{2}}^{*}$ on $H^{1}\left(E_{1}\right)$. By the commutativity of the diagrams (3.5) and (3.6), the second term of (3.13) is equal to

$$
\begin{align*}
& i_{2 *} \epsilon_{F}^{*} \epsilon_{F *}\left(s_{2 *} s_{1}^{*}+m_{2 *} m_{1}^{*}\right) q^{*} \alpha \tag{3.14}\\
= & i_{2 *} \epsilon_{F}^{*} \epsilon_{F *}\left(s_{2 *} s_{2}^{*} \epsilon_{F}^{*} r^{*}+m_{2 *} m_{2}^{*} \epsilon_{F}^{*} r^{*} \iota^{*}\right) \alpha \\
= & i_{2 *} \epsilon_{F}^{*} r^{*}\left(1+\iota^{*}\right) \alpha .
\end{align*}
$$

The last equality follows because $\epsilon_{F} \circ s_{2}$ and $\epsilon_{F} \circ m_{2}$ are identities. Substituting (3.14) into (3.13) we obtain the equality of Lemma.

Let $[L],[S],[M] \in H^{2}\left(D_{2}\right)$ be the Poincaré dual of the homology classes of the Cartier divisors L, S, M of D_{2}, respectively.
Lemma 6. In $H^{3}\left(D_{2}\right), i_{1}^{*} \epsilon^{*} \sigma^{*} \theta(\alpha)$ is equal to
$i_{1}^{*} \epsilon^{*} \sigma^{*} \theta(\alpha)=q^{*}\left(\phi^{*} \phi_{*}-3\right) \alpha \cdot[L]+q^{*}\left(\iota^{*}-1\right) \alpha \cdot[S]+q^{*}\left(\iota^{* 2}-1\right) \alpha \cdot[M]$.
Proof. Applying i_{1}^{*} to the equality (3.11) we see $i_{1}^{*} \epsilon^{*} \sigma^{*} \theta(\alpha)$ is equal to

$$
\begin{equation*}
i_{1}^{*} i_{1 *} q^{*} \alpha+i_{1}^{*} i_{2 *} \epsilon_{F}^{*} r^{*}\left(1+\iota^{*}\right) \alpha+i_{1}^{*} i_{3 *} \epsilon_{E_{2}}^{*} \sigma_{E_{1}}^{*} \phi_{*} \alpha . \tag{3.15}
\end{equation*}
$$

The first term of (3.15) is equal to $i_{1}^{*} i_{1 *} q^{*} \alpha=q^{*} \alpha \cdot i_{1}^{*} D_{2}$ with

$$
i_{1}^{*} D_{2}=i_{1}^{*}\left(\sigma_{2}^{*} D_{1}-2 F\right)=i_{1}^{*}\left\{\sigma_{2}^{*}\left(\sigma_{1}^{*} \tau^{*} \Delta-3 E_{1}\right)-2 F\right\}
$$

because the multiplicity in $\tau^{-1}(\Delta)$ (resp. D_{1}) at the generic point of Δ_{0} (resp. M_{1}) is equal to three (resp. two). Since $\tau \circ \sigma \circ \in \circ i_{1}=i_{\Delta} \circ \phi \circ q$ we see

$$
q^{*} \alpha \cdot i_{1}^{*} \epsilon^{*} \sigma^{*} \tau^{*} \Delta=q^{*} \alpha \cdot q^{*} \phi^{*} i_{\Delta}^{*} \Delta=q^{*}\left(\alpha \cdot \phi^{*} i_{\Delta}^{*} \Delta\right)=0
$$

because $\alpha \cdot \phi^{*} i_{\Delta}^{*} \Delta=0$ on $\tilde{\Delta}$. Hence we see from the definition (3.3)

$$
\begin{align*}
i_{1}^{*} i_{1 *} q^{*} \alpha & =-3 q^{*} \alpha \cdot i_{1}^{*} E_{1}-2 q^{*} \alpha \cdot i_{1}^{*} F \tag{3.16}\\
& =-3 q^{*} \alpha \cdot[L]-2 q^{*} \alpha \cdot([S]+[M]) .
\end{align*}
$$

By the commutativity of the diagrams (3.5) and (3.6), the second term of (3.15) is equal to

$$
\begin{align*}
i_{1}^{*} i_{2 *} \epsilon_{F}^{*} r^{*}\left(1+\iota^{*}\right) \alpha & =\left(s_{1 *} s_{2}^{*}+m_{1 *} m_{2}^{*}\right) \epsilon_{F}^{*} r^{*}\left(1+\iota^{*}\right) \alpha \tag{3.17}\\
& =s_{1 *} s_{2}^{*} \epsilon_{F}^{*} r^{*}\left(1+\iota^{*}\right) \alpha+m_{1 *} m_{2}^{*} \epsilon_{F}^{*} r^{*}\left(1+\iota^{*}\right) \alpha \\
& =s_{1 *} s_{1}^{*} q^{*}\left(1+\iota^{*}\right) \alpha+m_{1 *} m_{1}^{*} q^{*}\left(\iota^{-1}\right)^{*}\left(1+\iota^{*}\right) \alpha \\
& =q^{*}\left(1+\iota^{*}\right) \alpha \cdot[S]+q^{*}\left(\left(\iota^{-1}\right)^{*}+1\right) \alpha \cdot[M] .
\end{align*}
$$

Since $\sigma_{E_{1}} \circ \epsilon_{E_{2}} \circ l_{2}=\phi \circ q \circ l_{1}$, the third term of (3.15) is equal to

$$
\begin{equation*}
i_{1}^{*} i_{3 *} \epsilon_{E_{2}}^{*} \sigma_{E_{1}}^{*} \phi_{*} \alpha=l_{1 *} l_{2}^{*} \sigma_{E_{2}}^{*} \sigma_{E_{1}}^{*} \phi_{*} \alpha=l_{1 *} l_{1}^{*} q^{*} \phi^{*} \phi_{*} \alpha=q^{*} \phi^{*} \phi_{*} \alpha \cdot[L] \tag{3.18}
\end{equation*}
$$

Substituting (3.16), (3.17) and (3.18) into (3.15) and using $\left(\iota^{*}\right)^{-1}=\iota^{* 2}$ we obtain the expression of Lemma.

Since the contraction morphism of an extremal ray $\tau: V \rightarrow X$ satisfies $R^{i} \tau_{*} \mathcal{O}_{V}=0$ for any $i>0$ we see $H^{3}\left(V, \mathcal{O}_{V}\right)=H^{3}\left(X, \mathcal{O}_{X}\right)$, which is equal to zero by the assumption $H^{3}(X, \mathbb{Z})=0$. Hence $H^{3}(V)=H^{3}(V, \mathbb{Z})$, which is torsion free since Δ is irreducible, determines a lattice $H_{\mathbb{Z}}$ in $H^{12}(V)$ by the natural homomorphism $H^{3}(V) \rightarrow$ $H^{3}(V, \mathbb{C}) \rightarrow H^{12}(V)$ and we get the second intermediate jacobian $J^{2}(V)=H^{12}(V) / H_{\mathbb{Z}}[\mathrm{G}, \mathrm{p} 8]$. The Picard group of V is generated by that of X together with the anticanonical class of $V ; \operatorname{Pic}(V)=$ $\tau^{*} \operatorname{Pic}(X) \oplus \mathbb{Z}\left(-K_{V}\right)$. For, if $-K_{V} / 3$ is contained in $\operatorname{Div}(V)$ then V is birationally equivalent to $X \times \mathbb{P}^{2}$ and the inverse images of the irreducible components of Δ are reducible. This contradicts the definition of standard \mathbb{P}^{2}-bundles in Introduction. Let

$$
h=c_{1}\left(\mathcal{O}_{V}\left(-K_{V}+\tau^{*} D\right)\right) \in H^{2}(V)
$$

be the first Chern class of an ample divisor $-K_{V}+\tau^{*} D$ on V. Let A_{h} be the integral skew symmetric form on $H^{3}(V)$ defined by the cup product with h.

$$
\begin{equation*}
A_{h}(a, b)=-(a \cdot b \cdot h)_{V} \quad \text { for } a, b \in H^{3}(V) . \tag{3.19}
\end{equation*}
$$

Let φ and ϕ be the harmonic forms of type $(1,2)$ which are the images of a and b under the homomorphism $H^{3}(V) \rightarrow H^{12}(V)$, respectively, and let

$$
H(\varphi, \phi)=2 \sqrt{-1} \int_{V} \varphi \wedge \bar{\phi} \wedge \omega_{h}
$$

with the Kähler form ω_{h} determined by h. Then H is the hermitian form on $H^{12}(V)$ satisfying

$$
A_{h}(a, b)=-\operatorname{Im} H(\varphi, \phi)
$$

Moreover $H^{1}(V)=0$ guarantees $H^{12}(V)$ consists of primitive forms in the Lefshetz decomposition of $H^{12}(V)$. Therefore the hermitian form H on $H^{12}(V)$ is positive definte and (3.19) defines a polarization on the intermediate jacobian $J^{2}(V)$ [G,p7].

Lemma 7. $A_{h}(\theta(\alpha), \theta(\beta))=\left(\left(1-\iota^{*}\right) \alpha,\left(1-\iota^{*}\right) \beta\right)_{\tilde{\Delta}}$ for $\alpha, \beta \in H^{1}(\tilde{\Delta})$. Proof. Since $\left(\iota^{*} \alpha, \iota^{*} \beta\right)_{\tilde{\Delta}}=(\alpha, \beta)_{\tilde{\Delta}}$ for $\alpha, \beta \in H^{1}(\tilde{\Delta})$ the right-hand side of Lemma is equal to

$$
\begin{equation*}
(\alpha, \beta)_{\tilde{\Delta}}-\left(\alpha, \iota^{*} \beta\right)_{\tilde{\Delta}}-\left(\iota^{*} \alpha, \beta\right)_{\tilde{\Delta}}+\left(\iota^{*} \alpha, \iota^{*} \beta\right)_{\tilde{\Delta}}=\left(\left(2-\iota^{*}-\iota^{* 2}\right) \alpha, \beta\right)_{\tilde{\Delta}} . \tag{3.20}
\end{equation*}
$$

By the projection formula we see

$$
\begin{aligned}
-A_{h}(\theta(\alpha), \theta(\beta)) & =\theta(\alpha) \theta(\beta) h=\theta(\alpha) \cdot \sigma_{*} \epsilon_{*} i_{1 *} q^{*} \beta \cdot h \\
& =i_{1}^{*} \epsilon^{*} \sigma^{*} \theta(\alpha) \cdot q^{*} \beta \cdot i_{1}^{*} \epsilon^{*} \sigma^{*} h .
\end{aligned}
$$

From Lemma 6 this is equal to

$$
\begin{aligned}
& \left\{q^{*}\left(\phi^{*} \phi_{*}-3\right) \alpha \cdot[L]+q^{*}\left(\iota^{*}-1\right) \alpha \cdot[S]+q^{*}\left(\left(\iota^{-1}\right)^{*}-1\right) \alpha \cdot[M]\right\} \\
& \quad \times q^{*} \beta \cdot i_{1}^{*} \epsilon^{*} \sigma^{*} h \\
& =\left(\left(\phi^{*} \phi_{*}-3\right) \alpha \cdot \beta\right)_{\tilde{\Delta}} \cdot\left(\xi \cdot[L] \cdot i_{1}^{*} \epsilon^{*} \sigma^{*} h\right)_{D_{2}} \\
& \quad+\left(\left(\iota^{*}-1\right) \alpha \cdot \beta\right)_{\tilde{\Delta}} \cdot\left(\xi \cdot[S] \cdot i_{1}^{*} \epsilon^{*} \sigma^{*} h\right)_{D_{2}} \\
& \left.\quad+\left(\left(\iota^{* 2}\right)-1\right) \alpha \cdot \beta\right)_{\tilde{\Delta}} \cdot\left(\xi \cdot[M] \cdot i_{1}^{*} \epsilon^{*} \sigma^{*} h\right)_{D_{2}},
\end{aligned}
$$

where ξ is the class in $H^{2}\left(D_{2}\right)$ of the fibre $q^{-1}(p)$ of $q: D_{2} \rightarrow \tilde{\Delta}$ of a closed point p of $\tilde{\Delta}$. Compairing this with (3.20) it is sufficient for the proof of Lemma to show

$$
\begin{align*}
& \left(\xi \cdot[L] \cdot i_{1}^{*} \epsilon^{*} \sigma^{*} h\right)_{D_{2}}=0, \tag{3.21}\\
& \left(\xi \cdot[S] \cdot i_{1}^{*} \epsilon^{*} \sigma^{*} h\right)_{D_{2}}=\left(\xi \cdot[M] \cdot i_{1}^{*} \epsilon^{*} \sigma^{*} h\right)_{D_{2}}=1 \tag{3.22}
\end{align*}
$$

Let $Y_{i} \cong \mathbb{F}_{1}(i=1,2,3)$ be the three components of the fibre $\tau^{-1}(\phi(p))$ over the point $\phi(p) \in \Delta$. Then we will show

$$
\begin{equation*}
-\left.K_{V}\right|_{Y_{1}}=s_{0}+2 m_{0} \tag{3.23}
\end{equation*}
$$

in $\operatorname{Pic}\left(Y_{1}\right)$ for the (-1)-curve s_{0} and a fibre m_{0} on $Y_{1} \cong \mathbb{F}_{1}$. For, let C be a smooth curve on X intersecting transversely with Δ at $\phi(p)$. Then there are exact sequences

$$
\begin{align*}
& \left.\left.0 \rightarrow \tau^{*} \mathcal{C}_{C / X}\right|_{Y_{1}} \rightarrow \Omega_{V}\right|_{Y_{1}} \rightarrow \Omega_{\tau^{-1}(C)}{\mid Y_{1}} \rightarrow 0, \tag{3.24}\\
& \left.0 \rightarrow \mathcal{C}_{Y_{1} / \tau^{-1}(C)} \rightarrow \Omega_{\tau^{-1}(C)}\right|_{Y_{1}} \rightarrow \Omega_{Y_{1}} \rightarrow 0, \tag{3.25}
\end{align*}
$$

where $\mathcal{C}_{C / X}$ is the conormal sheaf of C in X. Since $\left.\tau^{*} \mathcal{C}_{C / X}\right|_{Y_{1}} \cong \mathcal{O}_{Y_{1}}$ and $\left.\left.\mathcal{C}_{Y_{1} / \tau^{-1}(C)} \cong \mathcal{O}_{\tau^{-1}(C)}\left(-Y_{1}\right)\right|_{Y_{1}} \cong \mathcal{O}_{\tau^{-1}(C)}\left(Y_{2}+Y_{3}\right)\right|_{Y_{1}} \cong \mathcal{O}_{Y_{1}}\left(s_{0}+\right.$ m_{0}) we see from (3.24) and (3.25)

$$
\begin{aligned}
-\left.K_{V}\right|_{Y_{1}} & =-K_{\tau^{-1}(C) / Y_{1}}=-K_{Y_{1}}-\mathcal{C}_{Y_{1} / \tau^{-1}}(C) \\
& =\left(2 s_{0}+3 m_{0}\right)-\left(s_{0}+m_{0}\right)=s_{0}+2 m_{0} .
\end{aligned}
$$

Thus (3.23) is proved. Let

$$
[l]=\left.[L]\right|_{q^{-1}(p)}, \quad[s]=\left.[S]\right|_{q^{-1}(p)}, \quad[m]=\left.[M]\right|_{q^{-1}(p)},
$$

be the elements of $H^{2}\left(q^{-1}(p)\right)$ restricted to $q^{-1}(p)$ of $[L],[S],[M] \in$ $H^{2}\left(D_{2}\right)$, respectively. Since $q_{1} q^{-1}(p)$ is equal to one of Y_{i} (see(3.2)) we see from Lemma 3

$$
\begin{equation*}
q_{1}^{*} s_{0}=[s]+[l], \quad q_{1}^{*} m_{0}=[m]+[l] \tag{3.26}
\end{equation*}
$$

Therefore it follows from (3.23) and (3.26)

$$
\begin{aligned}
\left(\xi \cdot[L] \cdot i_{1}^{*} \epsilon^{*} \sigma^{*} h\right)_{D_{2}} & =\left(\left.\left.[L]\right|_{q^{-1}(p)} \cdot \epsilon^{*} \sigma^{*}\left(-K_{V}\right)\right|_{q^{-1}(p)}\right)_{q^{-1}(p)} \\
& =\left([l] \cdot q_{1}^{*}\left(-K_{V} \mid Y_{1}\right)\right)_{q^{-1}(p)} \\
& =\left([l] \cdot q_{1}^{*}\left(s_{0}+2 m_{0}\right)\right)_{q^{-1}(p)}=0, \\
\left(\xi \cdot[S] \cdot i_{1}^{*} \epsilon^{*} \sigma^{*} h\right)_{D_{2}} & =\left(\left.\left.[S]\right|_{q^{-1}(p)} \cdot \epsilon^{*} \sigma^{*}\left(-K_{V}\right)\right|_{q^{-1}(p)}\right)_{q^{-1}(p)} \\
& =\left([s] \cdot q_{1}^{*}\left(s_{0}+2 m_{0}\right)\right)_{q^{-1}(p)}=1, \\
\left(\xi \cdot[M] \cdot i_{1}^{*} \epsilon^{*} \sigma^{*} h\right)_{D_{2}} & =\left(\left.\left.[M]\right|_{q^{-1}(p)} \cdot \epsilon^{*} \sigma^{*}\left(-K_{V}\right)\right|_{q^{-1}(p)}\right)_{q^{-1}(p)} \\
& =\left([m] \cdot q_{1}^{*}\left(s_{0}+2 m_{0}\right)\right)_{q^{-1}(p)}=1 .
\end{aligned}
$$

Thus (3.21) and (3.22), hence Lemma 7, is proved.

From Lemma 4 and Lemma 7 we see

Lemma 8. The kernel of the homomorphism $\theta: H^{1}(\tilde{\Delta}) \rightarrow H^{3}(V)$ defined by (3.7) is equal to $\operatorname{Ker}(1-\imath)$.
Proof. Since the bilinear form (3.19) is nondegenerate on $H^{3}(V)$ we see $\theta(\alpha)=0$ iff $A_{h}(\theta(\alpha), b)=0$ for all $b \in H^{3}(V)$. Hence Lemma 4 and Lemma 7 imply $\theta(\alpha)=0$ iff $\left(\left(2-\iota^{*}-\iota^{* 2}\right) \alpha \cdot \beta\right)_{\tilde{\Delta}}=0$ for all $\beta \in H^{1}(\tilde{\Delta})$, i.e. $\left(2-\iota^{*}-\iota^{* 2}\right) \alpha=0$ in $H^{1}(\tilde{\Delta})$. Now $2-\iota^{*}-\iota^{* 2}=\left(1-\iota^{*}\right)\left(2+\iota^{*}\right)$
and $\left(2+\iota^{*}\right)\left(4-2 \iota^{*}+\iota^{* 2}\right)=8+\iota^{* 3}=9$, so that $\operatorname{Ker}\left(2-\iota^{*}-\iota^{* 2}\right)=$ $\operatorname{Ker}\left(1-\iota^{*}\right)$.

Let $\left(J(\tilde{\Delta}), \Xi_{\tilde{\Delta}}\right)$ be the jacobian of $\tilde{\Delta}$ with the theta divisor $\Xi_{\tilde{\Delta}}$ and $\lambda_{\tilde{\Delta}}: J(\tilde{\Delta}) \rightarrow \hat{J}(\tilde{\Delta})$ be the principal polarization defined by $\Xi_{\tilde{\Delta}}$. The Prym variety P associated to the cyclic cover $\phi: \tilde{\Delta} \rightarrow \Delta$ is defined by

$$
P=\lambda_{\tilde{\Delta}}^{-1}(\operatorname{Ker}(\hat{i}))
$$

where \hat{i} is the dual of the inclusion $i: \phi^{*} J(\Delta) \subset J(\tilde{\Delta})$ and the polarization Ξ_{P} is the restriction to P of the theta divisor of $J(\tilde{\Delta})[\mathrm{B}, \mathrm{p} 316]$. We see P is equal to the image of the homomorphism $1-\iota: J(\tilde{\Delta}) \rightarrow J(\tilde{\Delta})$, so that the skew symmetric form A_{P} associated to Ξ_{P} is given by

$$
\begin{equation*}
A_{P}((1-\iota) \alpha,(1-\iota) \beta)=((1-\iota) \alpha,(1-\iota) \beta)_{\tilde{\Delta}} \quad \text { for } \alpha, \beta \in H^{1}(\tilde{\Delta}) \tag{3.27}
\end{equation*}
$$

with the intersection form $(,)_{\tilde{\Delta}}$ on $H^{1}(\tilde{\Delta})$. Now we prove Theorem B. By Lemma 8 there is an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ker}(1-\ell) \rightarrow H^{1}(\tilde{\Delta}) \xrightarrow{\theta} H^{3}(V) \rightarrow 0 \tag{3.28}
\end{equation*}
$$

so $1-\iota$ and θ induce an isomorphism ν from P to $J^{2}(V)$:

Moreover, Lemma 7 and the definition(3.27) imply

$$
A_{h}(\theta(\alpha), \theta(\beta))=A_{P}((1-\iota) \alpha,(1-\iota) \beta)
$$

Thus $\left(J_{2}(V), \Xi_{V}\right)$ is isomorphic to $\left(P, \Xi_{P}\right)$ as polarized abelian varieties.
(Proof of Corollary C) As in (3.7) we define a homomorphism θ : $A^{1}(\tilde{\Delta})=\operatorname{Pic}^{0} \tilde{\Delta} \rightarrow A^{2}(V)$ by the composite

$$
\begin{equation*}
\theta: \tilde{\Delta}=A^{1}(\tilde{\Delta}) \xrightarrow{q^{*}} A^{1}\left(D_{2}\right) \xrightarrow{i_{1 *}} A^{2}\left(V_{2}\right) \xrightarrow{\epsilon_{*}} A^{2}\left(V_{1}\right) \xrightarrow{\sigma_{*}} A^{2}(V) . \tag{3.30}
\end{equation*}
$$

The proof of Corollary C is reduced to showing that (i) θ is surjective and (ii) $\operatorname{Ker}(\theta)=\phi^{*} A^{1}(\Delta)$.
(i) θ is surjective: We see q^{*} is an isomorphism because $q: D_{2} \rightarrow$ $\tilde{\Delta}$ is a fibre bundle with a fibre isomorphic to one point blow-up of \mathbb{F}_{1} (cf. [B,p337,Lemma (3.1.1)]). By $[\mathrm{B}, \mathrm{p} 338]$ the surjectivity of θ is reduced to showing $A^{2}\left(V-\tau^{-1}(\Delta)\right)=0$. This follows because $\tau: V-\tau^{-1}(\Delta) \rightarrow X-\Delta$ is a \mathbb{P}^{2}-bundle with $A^{q}(X-\Delta)=0$ for any $q \in \mathbb{Z}[\mathrm{~B}, \mathrm{p} 341,3.1 .7]$.
(ii) $\operatorname{Ker}(\theta)=\phi^{*} A^{1}(\Delta)$: The calculations of integral cohomology groups hold almost all by replacing $H^{2 q-1}(*)$ with $A^{q}(*)$. For $\beta \in$ $A^{1}(\Delta)$ the same equalities hold as in (3.8) because $A^{2}(X)=0$, so $\theta\left(\phi^{*} A^{1}(\Delta)\right)=0$. From Lemma 5 and Lemma 6 we have the same formula for $i_{1}^{*} \epsilon^{*} \sigma^{*} \theta(\alpha)$ in $A^{2}\left(D_{2}\right)$. The morphism $q: D_{2} \rightarrow \tilde{\Delta}$ is factored by $D_{2} \xrightarrow{q_{1}} D_{3} \xrightarrow{q_{2}} D_{4} \xrightarrow{q_{3}} \tilde{\Delta}$ with a \mathbb{P}^{2}-bundle $q_{3}: D_{4} \rightarrow \tilde{\Delta}$ (see (3.2)). From Lemma 3 and Lemma 6 we see in $A^{2}\left(D_{4}\right)$

$$
\begin{equation*}
q_{2 *} q_{1 *} i_{1}^{*} \epsilon^{*} \sigma^{*} \theta(\alpha)=q_{3}^{*}\left(\iota^{* 2}-1\right) \alpha \cdot\left[M_{4}\right] \tag{3.31}
\end{equation*}
$$

with $\left[M_{4}\right]=q_{2 *} q_{1 *}[M]$ is the class of the tautological line bundle $\mathcal{O}_{D_{4}}(1) \in \operatorname{Pic}\left(D_{4}\right)$. Since $A^{2}\left(D_{4}\right)=q_{3}^{*} A^{1}(\tilde{\Delta}) \cdot\left[M_{4}\right] \cong A^{1}(\tilde{\Delta})$ we see $\theta(\alpha)=0$ implies $\left(\iota^{* 2}-1\right) \alpha=0$ by (3.31), i.e. α is contained in $\phi^{*} \mathrm{Pic}^{0} \Delta$.

4. Existence of standard projective plane bundles

Let X be a simply connected smooth projective surface over \mathbb{C} with the function field K. First we give a simple proof of the exact seqence (1.3) using the Bloch-Ogus spectral sequence[$\mathrm{Sr}, 191]$

$$
\begin{equation*}
E_{2}^{p q}=H^{p}\left(X, R^{q} f_{*} \mu_{n}\right) \Rightarrow H^{p+q}\left(X, \mu_{n}\right), \tag{4.1}
\end{equation*}
$$

where $f: X_{e t} \rightarrow X_{Z_{a r}}$ is the identity, and the flasque resolution of the Zariski sheaf $R^{q} f_{*} \mu_{n}$ [ibid, p189]:

$$
\begin{equation*}
0 \rightarrow R^{q} f_{*} \mu_{n} \rightarrow i_{*} H^{q}\left(k(X), \mu_{n}\right) \rightarrow \oplus_{X^{(1)}} i_{*} H^{q-1}\left(\kappa(x), \mu_{n}\right) \rightarrow \cdots . \tag{4.2}
\end{equation*}
$$

Indeed, $E_{2}^{p q}=H^{p}\left(X, R^{q} f_{*} \mu_{n}\right)$ is the p-th cohomology group of the complex obtained from (4.2), so that $E_{2}^{p q}=0$ for $p>q$. Hence $E^{1}=E_{2}^{01}$ and there are two exact sequences

$$
\begin{align*}
& 0 \rightarrow E_{2}^{11} \rightarrow E^{2} \rightarrow E_{2}^{02} \rightarrow 0 \tag{4.3}\\
& 0 \rightarrow E_{2}^{12} \rightarrow E^{3} \rightarrow E_{2}^{03} \rightarrow E_{2}^{22} \rightarrow E^{4} \tag{4.4}
\end{align*}
$$

Since the smooth projective surface X is assumed to be simply connected, $E^{3}=H^{3}\left(X, \mu_{n}\right)=0$, hence

$$
E_{2}^{12}=H^{1}\left(X, R^{2} f_{*} \mu_{n}\right)=0
$$

by (4.3). Now $E_{2}^{p 2}=H^{p}\left(X, R^{2} f_{*} \mu_{n}\right)(p=0,1,2)$ are the cohomology groups of the complex

$$
H^{2}\left(k(X), \mu_{n}\right) \rightarrow \oplus_{X^{(1)}} H^{1}\left(\kappa(x), \mu_{n}\right) \rightarrow \oplus_{X^{(2)}} H^{0}\left(\kappa(x), \mu_{n}\right)
$$

which is extended to the exact sequence

$$
\begin{align*}
& 0 \rightarrow H^{0}\left(X, R^{2} f_{*} \mu_{n}\right) \rightarrow H^{2}\left(k(X), \mu_{n}\right) \rightarrow \oplus_{X^{(1)}} H^{1}\left(\kappa(x), \mu_{n}\right) \\
& \rightarrow \oplus_{X^{(2)}} \mathbb{Z} / n \rightarrow H^{2}\left(X, R^{2} f_{*} \mu_{n}\right) \rightarrow 0 \tag{4.5}
\end{align*}
$$

because $E_{2}^{12}=0$. The exact sequence (4.3) is written by

$$
0 \rightarrow \operatorname{Pic} X / n \rightarrow H^{2}\left(X, \mu_{n}\right) \rightarrow H^{0}\left(X, R^{2} f_{*} \mu_{n}\right) \rightarrow 0
$$

hence $H^{0}\left(X, R^{2} f_{*} \mu_{n}\right)={ }_{n} H^{2}\left(X, \mathbb{G}_{m}\right):={ }_{n} \operatorname{Br} X$. Next we shall show $H^{2}\left(X, R^{2} f_{*} \mu_{n}\right)=\mathbb{Z} / n$. Let \mathcal{K}_{2} be the Zariski sheaf on X associated to the presheaf $U \rightarrow K_{2}\left(\Gamma\left(U, \mathcal{O}_{X}\right)\right)$. The exact sequence

$$
0 \rightarrow \mathcal{K}_{2, n} \rightarrow \mathcal{K}_{2} \xrightarrow{n} \mathcal{K}_{2} \rightarrow \mathcal{K}_{2} / n \rightarrow 0
$$

provides us with the exact sequence

$$
\begin{aligned}
& H^{2}\left(X, \mathcal{K}_{2}\right) \rightarrow H^{2}\left(X, n \mathcal{K}_{2}\right) \rightarrow H^{3}\left(X, \mathcal{K}_{2, n}\right) \\
\rightarrow & H^{3}\left(X, \mathcal{K}_{2}\right) \rightarrow H^{3}\left(X, n \mathcal{K}_{2}\right) \rightarrow H^{4}\left(X, \mathcal{K}_{2, n}\right)
\end{aligned}
$$

Here $H^{p}\left(X, \mathcal{K}_{2}\right)=0$ for $p>2$ and $H^{p}\left(X, \mathcal{K}_{2, n}\right)=0$ for $p>1$, so $H^{2}\left(X, \mathcal{K}_{2}\right) \rightarrow H^{2}\left(X, n \mathcal{K}_{2}\right)$ is surjective and $H^{3}\left(X, n \mathcal{K}_{2}\right)=0$. Hence we get an exact sequence

$$
H^{2}\left(X, \mathcal{K}_{2}\right) \xrightarrow{n} H^{2}\left(X, \mathcal{K}_{2}\right) \rightarrow H^{2}\left(X, \mathcal{K}_{2} / n\right) \rightarrow H^{3}\left(X, n \mathcal{K}_{2}\right)=0
$$

Here $H^{2}\left(X, \mathcal{K}_{2}\right)=C H^{2}(X)=C H_{0}(X)$ is the Chow group of zero cycles on X and $\mathcal{K}_{2} / n=R^{2} f_{*} \mu_{n}$ by a Theorem of Merkurjev-Suslin [Sr,p191]. Thus we have $H^{2}\left(X, R^{2} f_{*} \mu_{n}\right)=C H_{0}(X) / n$. The degree homomorphism $C H_{0}(X) \rightarrow \mathbb{Z}$ induces the isomorphism $C H_{0}(X) / n \cong$ \mathbb{Z} / n. Taking the direct limit we obtain the exact sequence (1.3).

We quote a result about Azumaya algebras over C_{2}-field in [A,p208].

Fact. Let D be a central division algebra over a C_{2}-field K with order equal to $2^{a} 3^{b}$ in $\mathrm{Br} K$. Then the index of D is equal to $2^{a} 3^{b}$.

Using this fact we prove Theorem D. By the exact sequence (1.3) there is an element ξ of $\mathrm{Br} K$ of order three which is mapped to ϕ. The above Fact implies ξ is represented by a division algebra D with index three. We see D is a cyclic algebra of rank nine by a Theorem of Wedderburn [P,p288]. The maim theorem in [Ma1] implies there are a birational morphism $Y \rightarrow X$ from a smooth projective surface Y and a standard \mathbb{P}^{2}-bundle W over Y associated to the division algebra D. We see W descends over X using the inverse of the elementary transformations of type I and type II described in [Ma2].

5. An ideal basis of a standard \mathbb{P}^{2}-bundle

Let k be a field containig a primitive cube ω of unity and let R be the localization of the polynomial ring $k[f, g]$ over k with indeterminates f, g at the maximal ideal (f, g). We denote by $\Lambda=(f, g)_{3, R}$ the cyclic algebra of rank nine over R, i.e. the R-algebra generated by two elements $\{x, y\}$ subject to the relations

$$
\begin{equation*}
x^{3}=f, \quad y^{3}=g, \quad y x=\omega x y . \tag{5.1}
\end{equation*}
$$

We have constructed in [Ma1,§2] an irreducible regular scheme V projective over R with a contraction morphism of an extremal ray

$$
\tau: V \rightarrow \operatorname{Spec} R
$$

such that
(i) the generic fibre V_{K} of τ is isomorphic to the Severi-Brauer variety corresponding to the central simple algebra $\Lambda \otimes_{R} K$ over the quotient field K of R,
(ii) V is embedded into \mathbb{P}_{R}^{9} by the anticanonical divisor $-K_{V}$ of V.

In this section we determine the basis of the defining ideal of V in \mathbb{P}_{R}^{9} by realizing V as an irreducible component of the scheme of left ideals of rank three of Λ. The case of a \mathbb{P}^{3}-bundle is treated similarly, which will appear in a forthcoming paper. Let $\left(x_{i}, y_{i}, z_{0}, z_{1} ; 0 \leq i \leq 3\right)$ be the homogeneous coordinates of \mathbb{P}_{R}^{9}.

Theorem E. The closed subscheme V of \mathbb{P}_{R}^{9} with the properties (i)(ii), is defined by the following linearly independent 27 quadrics F_{i}, G_{i}, $H_{j}(1 \leq i \leq 10,1 \leq j \leq 7)$.

$$
\begin{aligned}
F_{1} & =x_{0} y_{0}-x_{1} y_{1}+\omega^{2} z_{0} z_{1} & G_{1} & =x_{1} x_{2}+z_{1} x_{0}-f z_{0}^{2} \\
F_{2} & =x_{2} y_{2}+\omega^{2} x_{3} y_{1}+\omega x_{1} y_{3} & G_{2} & =y_{1} y_{2}+z_{1} y_{0} \omega^{2}+g z_{0}^{2} \\
F_{3} & =x_{0} y_{1}-x_{1}^{2}+z_{0} x_{2} & G_{3} & =x_{0} x_{3}-x_{2}^{2}+f z_{0} x_{1} \\
F_{4} & =x_{1} y_{0}-y_{1}^{2}+\omega z_{0} y_{2} & G_{4} & =y_{0} y_{3}-y_{2}^{2}-\omega g z_{0} y_{1} \\
F_{5} & =x_{2} y_{0}-x_{1} y_{2}+z_{0} y_{3} & G_{5} & =x_{2} y_{3}+z_{1} x_{3}+\omega^{2} f z_{0} y_{2} \\
F_{6} & =x_{2} y_{0}+z_{1} y_{1}-\omega^{2} z_{0} y_{3} & G_{6} & =x_{3} y_{2}+z_{1} y_{3}-\omega^{2} g z_{0} x_{2} \\
F_{7} & =x_{2} y_{1}+z_{1} x_{1}+z_{0} x_{3} & G_{7} & =x_{1} y_{3}-z_{1}^{2}-\omega f z_{0} y_{0} \\
F_{8} & =x_{0} y_{2}+z_{1} x_{1}-\omega^{2} z_{0} x_{3} & G_{8} & =x_{3} y_{1}-z_{1}^{2}+g z_{0} x_{0} \\
F_{9} & =x_{1} x_{3}+\omega^{2} x_{0} y_{3}-\omega z_{1} x_{2} & G_{9} & =x_{1} x_{3}-x_{0} y_{3}-\omega^{2} f z_{0} y_{1} \\
F_{10} & =y_{1} y_{3}+\omega x_{3} y_{0}-\omega^{2} z_{1} y_{2} & G_{10} & =y_{1} y_{3}-x_{3} y_{0}+\omega^{2} g z_{0} x_{1} \\
H_{1} & =x_{2} x_{3}+f\left(x_{1} y_{1}+z_{0} z_{1}\right)-g x_{0}^{2} & H_{5} & =z_{1} x_{3}-f y_{1}^{2}+g x_{0} x_{1} \\
H_{2} & =y_{2} y_{3}+f y_{0}^{2}-g\left(x_{1} y_{1}+\omega z_{0} z_{1}\right) & H_{6} & =z_{1} y_{3}-f y_{0} y_{1}+g x_{1}^{2} \\
H_{3} & =x_{3}^{2}-f z_{1} x_{1}-g x_{0} x_{2} & H_{7} & =x_{3} y_{3}+f y_{1} y_{2}-g x_{1} x_{2}
\end{aligned}
$$

$$
H_{4}=y_{3}^{2}+f y_{0} y_{2}+g z_{1} x
$$

We first note that if $\iota: \mathbb{P}^{2} \subset \mathbb{P}^{9}=\mathbb{P} H^{0}\left(-K_{\mathbb{P}^{2}}\right)$ is the Veronese embedding of degree three over a field then the vector space $H^{0}\left(-K_{\mathbb{P}^{2}}\right)=$ $H^{0}(\mathcal{O}(3))$ is regarded as the representation space of the third symmetric tensor representation of $G L(3)$. The second symmetric tensor representation space $S^{2} H^{0}(\mathcal{O}(3))$ of $H^{0}(\mathcal{O}(3))$ is decomposed by

$$
S^{2} H^{0}(\mathcal{O}(3))=H^{0}(\mathcal{O}(6)) \oplus\{4,2\}
$$

where $\{4,2\}$ is the irreducible representation of $G L(3)$ with signature $(4,2)$, which is of dimension 27. The defining ideal of $\iota\left(\mathbb{P}^{2}\right)$ in \mathbb{P}^{9} is generated by the quadrics consisting of all elements of the subspace $\{4,2\}$. In view of this fact, if we start from the Severi-Brauer surface V_{K} embedded by the anticanonical divisor $-K_{V_{K}}$ of V_{K} then we see from descent theory that the defining ideal of V_{K} in $\mathbb{P} H^{0}\left(-K_{V_{K}}\right)=$ \mathbb{P}_{K}^{9}, is generated by the quadrices in the subspace W of $S^{2} H^{0}\left(-K_{V_{K}}\right)$
such that $W \otimes \bar{K} \cong\{4,2\}$ as $G L_{3}(\bar{K})$-module for an algebraic closure \bar{K} of K. Let

$$
\xi=\left(b_{0}+b_{1} x+b_{2} x^{2}\right)+\left(b_{3}+b_{4} x+b_{5} x^{2}\right) y+y^{2}
$$

be an element of $\Lambda=(f, g)_{3, R}$. We see from (5.1)

$$
\left(\begin{array}{c}
\xi \\
x \xi \\
x^{2} \xi
\end{array}\right)=B \cdot{ }^{t}\left(1 x x^{2} y x y x^{2} y y^{2} x y^{2} x^{2} y^{2}\right)
$$

with B equal to

$$
B=\left(\begin{array}{ccccccccc}
b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & 1 & 0 & 0 \tag{5.2}\\
f b_{2} & b_{0} & b_{1} & f b_{5} & b_{3} & b_{4} & 0 & 1 & 0 \\
f b_{1} & f b_{2} & b_{0} & f b_{4} & f b_{5} & b_{3} & 0 & 0 & 1
\end{array}\right)
$$

Since $\left\{\xi, x \xi, x^{2} \xi\right\}$ are linearly independent over R the element ξ generates a rank three left ideal of Λ iff $y \xi$ is a linear combination of $\xi, x \xi, x^{2} \xi$ over R iff

$$
\begin{equation*}
y \xi=b_{3} \xi+\omega b_{4} x \xi+\omega^{2} b_{5} x^{2} \xi . \tag{5.3}
\end{equation*}
$$

We see from the relation (5.1)

$$
y \xi=g+\left(b_{0}+\omega b_{1} x+\omega^{2} b_{2} x^{2}\right) y+\left(b_{3} \omega b_{4} x+\omega^{2} b_{5} x^{2}\right) y^{2} .
$$

Hence (5.3) is equivalent to the following four equations.

$$
\begin{align*}
b_{0} & =b_{3}^{2}-f b_{4} b_{5} \\
\omega b_{1} & =\omega^{2}\left(f b_{5}^{2}-b_{3} b_{4}\right) \\
\omega^{2} b_{2} & =\omega\left(b_{4}^{2}-b_{2} b_{5}\right) \tag{5.4}\\
g & =b_{0} b_{3}+\omega f b_{2} b_{4}+\omega^{2} f b_{1} b_{5} \\
& \left.=b_{3}\left(b_{3}^{2}-f b_{4} b_{5}\right)+f b_{4}\left(b_{4}^{2}-b_{3} b_{5}\right)+f b_{5}^{2}-b_{3} b_{4}\right) \\
& =b_{3}^{3}+f b_{4}^{3}+f^{2} b_{5}^{3}-3 f b_{3} b_{4} b_{5} .
\end{align*}
$$

Under the condition (5.4) we have to calculate the Plücker coordinates of the rank three left ideal $\Lambda \xi$, i.e. the maximal minors of the 3×9 matrix (5.2). Among the $\binom{9}{3}=84$ maximal minors there are only the
following ten linearly independent ones over R (here ($i j k$) means the 3×3-minors formed by the i, j, k-th columns of (5.2) $(0 \leq i<j<k \leq$ 8).

$$
\begin{align*}
x_{0} & =(678)=1 \\
x_{1} & =(478)=b_{4} \\
x_{2} & =(378)=b_{3} \\
x_{3} & =(348)=b_{3}^{2}-f b_{4} b_{5} \\
y_{0} & =\omega(258)=\omega\left(b_{2} b_{4}-b_{1} b_{5}\right)=b_{4}\left(b_{4}^{2}-b_{3} b_{5}\right)-\omega^{2} b_{5}\left(f b_{5}^{2}-b_{3} b_{4}\right) \\
& =b_{4}^{3}+\left(\omega^{2}-1\right) b_{3} b_{4} b_{5}-\omega^{2} f b_{5}^{3} \tag{5.5}\\
y_{1} & =(458)=b_{4}^{2}-b_{3} b_{5} \\
y_{2} & =-\omega^{2}(158)=-\omega^{2}\left(b_{1} b_{4}-b_{0} b_{5}\right) \\
& =-b_{4}\left(f b_{5}^{2}-b_{3} b_{4}\right)+\omega^{2} b_{5}\left(b_{3}^{2}-f b_{4} b_{5}\right) \\
& =b_{3} b_{4}^{2}+\omega^{2} b_{3}^{2} b_{5}+\omega f b_{4} b_{5}^{2} \\
y_{3} & =\omega(256)=\omega\left(b_{1} b_{3}-b_{0} b_{4}\right)=\omega^{2} b_{3}\left(f b_{5}^{2}-b_{3} b_{4}\right)-\omega b_{4}\left(b_{3}^{2}-f b_{4} b_{5}\right) \\
& =b_{3}^{2} b_{4}+f\left(\omega^{2} b_{3} b_{5}^{2}+\omega b_{4}^{2} b_{5}\right) \\
z_{0} & =(578)=b_{5} \\
z_{1} & =-(358)=f b_{5}^{2}-b_{3} b_{4} .
\end{align*}
$$

We see from this that the affine 3 -space \mathbb{A}_{R}^{3} with the affine coordinates $\left(b_{3}, b_{4}, b_{5}\right)$ over R, is isomorphically embedded into \mathbb{P}_{R}^{9} with the homogeneous coordinates $\left(x_{i}, y_{i}, z_{0}, z_{1} ; 0 \leq i \leq 3\right)$.

$$
\mathbb{A}_{R}^{3} \cong U_{x_{0}} \subset \mathbb{P}_{R}^{9}
$$

Then the R-scheme V in Theorem E is obtained as the closure of $U_{x_{0}}$ in \mathbb{P}_{R}^{9}. In order to simplify the calculations we shall consider another affine open subset of V by interchanging x with y. Let

$$
\eta=\left(c_{0}+c_{3} y+c_{5} y^{2}\right)+x\left(c_{1}+c_{4} y+c_{6} y^{2}\right)+x^{2}
$$

be an element of Λ. We see

$$
\left(\begin{array}{c}
\eta \\
y \eta \\
y^{2} \eta
\end{array}\right)=C \cdot{ }^{t}\left(1 x x^{2} y x y x^{2} y y^{2} x y^{2} x^{2} y^{2}\right)
$$

where C is equal to

$$
C=\left(\begin{array}{ccccccccc}
c_{0} & c_{1} & 1 & c_{3} & c_{4} & 0 & c_{5} & c_{6} & 0 \tag{5.6}\\
g c_{5} & \omega g c_{6} & 0 & c_{0} & \omega c_{1} & \omega^{2} & c_{3} & \omega c_{4} & 0 \\
g c_{3} & \omega^{2} g c_{4} & 0 & g c_{5} & \omega^{2} g c_{6} & 0 & c_{0} & \omega^{2} c_{1} & 0
\end{array}\right)
$$

Since $\left\{\eta, y \eta, y^{2} \eta\right\}$ are linearly independent over R the element η generates a rank three left ideal of Λ iff

$$
\begin{equation*}
x \eta=c_{1} \eta+\omega c_{4} y \eta+\omega^{2} c_{6} y^{2} \eta . \tag{5.7}
\end{equation*}
$$

We see from (5.1)

$$
x \eta=f+c_{0} x+c_{1} x^{2}+\left(c_{3} x+c_{4} x^{2}\right) y+\left(c_{5} x+c_{6} x^{2}\right) y^{2}
$$

so that (5.7) is equivalent to the four equations.

$$
\begin{align*}
c_{0} & =c_{1}^{2}-g c_{4} c_{6} \\
c_{3} & =\omega\left(g c_{6}^{2}-c_{1} c_{4}\right) \\
c_{5} & =\omega^{2}\left(c_{4}^{2}-c_{1} c_{6}\right) \tag{5.8}\\
f & =c_{0} c_{1}+\omega g c_{4} c_{5}+\omega^{2} g c_{3} c_{6} \\
& =c_{1}\left(c_{1}^{2}-g c_{4} c_{6}\right)+g c_{4}\left(c_{4}^{2}-c_{1} c_{6}\right)+g c_{6}\left(g c_{6}^{2}-c_{1} c_{4}\right) \\
& =c_{1}^{3}+g c_{4}^{3}+g^{2} c_{6}^{3}-3 c_{1} c_{4} c_{6} .
\end{align*}
$$

As in (5.5) we obtain the ten maximnal minors of (5.6) which are linearly independent over R.

$$
\begin{align*}
x_{0} & =(678)=\omega^{2} c_{4} c_{5}-\omega c_{3} c_{6}=\omega c_{4}\left(c_{4}^{2}-c_{1} c_{6}\right)-\omega^{2} c_{6}\left(g c_{6}^{2}-c_{1} c_{4}\right) \\
& =\omega\left\{c_{4}^{3}+(\omega-1) c_{1} c_{4} c_{6}-\omega g c_{6}^{3}\right\} \\
x_{1} & =(478)=\omega^{2}\left(c_{4}^{2}-c_{1} c_{6}\right) \tag{5.9}\\
x_{2} & =(378)=\omega^{2} c_{3} c_{4}-\omega c_{0} c_{6}=c_{4}\left(g c_{6}^{2}-c_{1} c_{4}\right)-\omega c_{6}\left(c_{1}^{2}-g c_{4} c_{6}\right) \\
& =-\left\{c_{1} c_{4}^{2}+\omega c_{1}^{2} c_{6}+\omega^{2} g c_{4} c_{6}^{2}\right\} \\
x_{3} & =(348)=\omega^{2} c_{1} c_{3}-\omega c_{0} c_{4}=c_{1}\left(g c_{6}^{2}-c_{1} c_{4}\right)-\omega c_{4}\left(c_{1}^{2}-g c_{4} c_{6}\right) \\
& =\omega^{2}\left\{c_{1}^{2} c_{4}+g\left(\omega c_{1} c_{6}^{2}+\omega^{2} c_{4}^{2} c_{6}\right)\right\}
\end{align*}
$$

$$
\begin{align*}
& y_{0}=\omega(258)=\omega \\
& y_{1}=(458)=c_{4} \\
& y_{2}=-\omega^{2}(158)=-\omega^{2} c_{1} \tag{5.9}\\
& y_{3}=\omega(256)=c_{0}=c_{1}^{2}-g c_{4} c_{6} \\
& z_{0}=(578)=-c_{6} \\
& z_{1}=-(358)=-c_{3}=-\omega\left(g c_{6}^{2}-c_{1} c_{4}\right)
\end{align*}
$$

Substituting (5.5) or (5.9) in the right-hand side of the quadrics in Theorem E we see they are all equal to zero. These 27 quadrics are linearly independent over R and define an irreducible regular scheme V in \mathbb{P}_{R}^{9}, in particular V is regular at the vertex of the closed fibre, i.e. at the closed point $\left(f=g=x_{i}=y_{i}=z_{1}=0 ; 0 \leq i \leq 3\right)$.

References

[A] M. Artin, Brauer Severi Varieties, in "Lecture Note in Math." 917 (1982), Springer, 194-210.
[A-M] M. Artin, D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London. Math.Soc. 25 (1972), 79-95.
[B] A. Beauville, Variétés de Pryme et jacobiannes intermédiaires, Ann.Sci. Ecole norm.sup. 10 (1977), 309-391.
[G] P. Griffiths, (ed.), Topics in transcendental algebraic geometry, Princeton University Press, Princeton, 1984.
[Ma1] T. Maeda, On standard projective plane bundles, J.Algebra, to appear.
[Ma2] T. Maeda, Birational maps of standard projective plane bundles over algebraic surfaces, Ryukyu Math. J. 9 (1996), 5-35.
[Mi] J. Milne, Etale cohomology, Princeton University Press, Princeton, 1980.
[Mo] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982), 133-176.
[P] R. S. Pierce, Associative Algebra, Springer-Verlag, 1982.
[R] J. Ries, The Prym variety for a cyclic unramified cover of a hyperelliptic Riemann surface, J. reine angew.Math. 340 (1983), 59-69.
[S] V. G. Sarkisov, On conic bundle structures, Math. USSR. Izv. 20 (1982), 355-390.
[Sr] V. Srinivas, Algebraic K-theory, Birkhäuser, Boston, 1993.

Department of Mathematical Sciences
College of Science
University of the Ryukyus
Nishihara-Cho, Okinawa 903-0213
JAPAN

[^0]: Received November 30, 1997

