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INTERMEDIATE JACOBIANS OF

PROJECTIVE PLANE BUNDLES

OVER A SMOOTH PROJECTIVE SURFACE

TAKASHI MAEDA

ABSTRACT. Let V -+ X be a standard JP2-bundle (Definition below)
over a smooth projective surface X with the discriminant locus ~ and
the associated cyclic cover c/> : Li -+ ~ of degree three. The purpose
of this paper is (i) to determine the etale l-adic cohomology groups
of V (Theorem A), (ii) to give an isomorphism of the intermediate
jacobian of V and the Prym variety associated to the triple cover
c/> as polarized abelian varieties (Theorem B), and (iii) to show the
existence of a standard JP2-bundle for a given cyclic cover of degree
three over a normal crossing curve on X (Theorem D), under certain
conditions of (X, ~). An ideal basis of a standard JP2-bundle over a
regular local ring is determined (Theorem E).

1. Introduction

Let K be the function field of an algebraic variety defined over an
algebraically closed field k of characteristic different from three and
let VK be a Severi-Brauer variety of dimesion two ( a Severi-Brauer
surface, for short) over K, i.e. VK XK k is isomorphic to the projective
plane jpJ2 for an algebraic closure k of K.

Definition. A proper fiat morphism

(1.1)

is a standard jpJ2-bundle associated to the Severi-Bmuer surface VK

over a function field K if (i) V and X are smooth projective vari
eties with the generic fibre isomorphic to the given Severi-Bmuer sur
face VK --+ Spec(K) , (ii) the locus ~ over which the fibres of T are
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non-smooth is equal to the discriminant locus /A-M,p84/ of the cen
tral simple algebra over K corresponding to the generic fibre VK , and
f). is a normal crossing curve on X, (iii) the geometric fibre over a
smooth point of 6 consists of three components Yi (i = 1,2,3) with
Yi rv IF\ (one point blOW-Up of JJ?2), Yi n Yi+l (resp. Yi n Yi-l) is a
fibre (resp. the (-I)-curve) of Yi rv IF\ (where the suffix means mod
3) and Yl n Y2 n Y3 is one point, and the geometric fibre T- 1 (p) over a
singular point p of f). is non-reduced with the reduced part isomorphic
to the cone over a rational twisted cubic in JJ?3.

In [Mal] is proved that there is a standard JJ?2-bundle associated
to any Severi-Brauer surface over a function field, which is a flat con
traction morphism of an extremal ray, in particular the relative Picard
number is equal to one. In Theorem Band C we assume the non
smooth locus f). of a standard JJ?2-bundle is nonsingular. Let W be
the normalization of T- 1(6) in the function field of T- 1 (f).). The Stein
factorization of the composite W -+ T- 1(6) -+ f). is given by

- <PW -+ 6 -+ f). (1.2)

where W -+ l.. is an IF\-bundle and ¢ : l.. -+ 6 is the cyclic cover of
degree three associated to the tame symbol 3Br K -+ EB /'i,~/ 1'\,~3 [A
M,p84]. Here 3Br K is the 3-torsion part of the Brauer group Br K
of K, and /'i,v'S are the residue fields of discrete valuations of Kover
k. Since f). is equal to the discriminant locus of the central simple
algebra associated to VK and assumed nonsingular, ¢ is etale and
nontrivial over each irreducible component of f).. We call ¢ : l.. -+ 6
the associated cyclic cover of the standard JP2-bundle (1.1).

Theorem A. Assume char k is equal to neither three nor a prime
number I, and a standard JJ?2 -bundle (1.1) over a smooth irreducible
projective surface X satisfies that (i) the €lale l-adic cohomology groups
H 1(X,Zt} = H3 (X,Zz) = 0 and H2 (X,Zz) is torsion free, (ii) the
discriminant locus 6 of T consists of a disjoint union of n smooth
curves on X. Let g be the arithmetic genus of 6. Then the €lale
l-adic cohomology groups Hq(V) = Hq(V, Zl) of V (1 :::; q :::; 4) are
isomorphic to

H 1 (V) = 0, H2 (V) rv H2 (X) EB Zl

H 3 (V) rv (Zl/3Zl)n-l EB Z~(g-n)

H4 (V) ~ (ZL/3Zl)n-l EB H2 (X) EB Zr·
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Geometrically, Zr in H 4 (V) corresponds to .lFi in a fibre over a
point of D. and a subvariety X of V such that T : X -+ X is generically
finite of degree three. The torsion part of H 3 (V) (resp. H 4 (V)) is
generated by the differences of fibres of IF1 's (resp. the differences of
.lFI's) which are mapped to points on different connected components of
D.. The free part zi(g-n) of H 3 (V) is isomorphic to HI (is.)/¢* Hl(~).
In particular, if char k is differnt from three and if D. is not connected
(i.e. n 2: 2) then H 3 (V, Z3) has nontrivial torsion elements, so V
is not a rational variety (A-M,p78,Prop.1]. Assume the base field is
complex numbers C. Since T : V -+ X is a contraction morphism of an
extremal ray we see H 3 (V, Ov) = H 3 (X, Ox). Hence H 3 (X, Z) = 0
guarantees H 3 (V,C) = H 12 r;IJH21, and H12 consists of primitive forms
if HI (X, Z) = O. Therefore an ample divisor of V defines a polarization
2 v on the second intermediate jacobian J2(V) = HI2/ Hz [G,p8],
where Hz is the image in H 12 (V) under the natural homomorphism
H 3 (V,Z) -+ H3(V, C) -+ H 12 (V). We take as an ample divisor -Kv +
T* D for the anticanonical divisor - K v of V and a divisor D on X.
As in the case of quadric bundles [B,p329,Th.2.1] we show

Theorem B. Assume a standard JP2-bundle (i.i) over a smooth pro
jective surface X over C satisfies (i) HI(X,Z) = H 3(X,Z) = 0 and
H 2(X, Z) is torsion free, (ii) the discriminant locus ~ is non-empty,
nonsingular and irreducible. Then the second intermediate jacobian
(P(V), 2 v ) defined above is isomorphic to the Prym variety (P, 2 p )

of the associated cyclic cover (1.2) as polarized abelian varieties.

Here the Prym variety P means the abelian subvariety of the ja
cobian J(iS.) of is. which is equal to the image of the endomorphism
1 - i of J(iS.) for the covering automorphism i of is. over D. and t~e

polarization 2 p is the restriction to P of the theta divisor 3& of J(D.)
([B,p316],[R,p60)). Contrary to the Prym variety associated to double
covers, the polarization 3 p is not a multiple of a princiapl polarization.
Indeed, if the genus of ~ is equal to 9 then the kernel of the polar
ization 3 p : P -+ P is equal to P n ¢*J(D.) CY (Z/3Z)2 g-2, hence the
type is equal to (1, ... , 1,3, ... ,3) with 1 and 3 repeated g -1 times, re
spectively [R,p65]. Let Aq(V) be the group of codimension q algebraic
cycles of V algebraically equivalent to zero modulo rationally equiva
lent to zero. By arguments almost same as in the proof of Theorem B
we see
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Corollary C. Assume a standard JII>2-bundle (1.1) over a smooth pro
jective surface X over C satisfies (i) Aq(X) = 0 for any q E Z, (ii)
D. is non-empty, nonsingular and irreducible. Then there is a homo
morphism () from AI(Li) = Pico Li to A2(V), which induces the exact
sequence

0--7 ¢* Pico D. --7 Pic° Li ~ A2(V) --7 O.

Combining Theorem B with Corollary C we see the Abel-Jacobi
map from A2(V) to the intermediate jacobian J 2 (V)(C) is bijective.
For a simply connected smooth projective surface X with the function
field K there is an exact sequence [A-M,p84] :

0--7 Br X --7 Br K --7 EBxEX (1) HI (r;,(x) ,Q/Z) (1.3)

o
--7 EBxEX(2) Q/Z --7 Q/Z --7 0,

where Br X = H2(X, Gm ) and XCi) is the set of codimension i subva
rieties of X. Let ¢ : Li --7 D. be a double cover over a normal crossing
curve D. on X. In [Sa,p388] is proved that if ¢ is mapped to zero under
the homomorphism {) in (1.3) then there is a standard conic bundle
over X whose associated double cover is equal to ¢. By using a result
in [A,p208] we show the same is true for a standard JII>2-bundle.

Theorem D. Let X be a simply connected smooth projective surface
over C with the function field K. Let D. be a normal crossing curve on
X and let ¢ : Li --7 D. be a cyclic cover of degree three which is mapped
to zero by the homomorphism {) in (1.3). Then there is a standard
IP2-bundle over X whose associated cyclic cover is equal to ¢.

The paper is organized as follows. Theorem A is proved in Section
two using the trace map between HI of the associated cyclic cover
(1.2). Section three is devoted to proving Theorem B and Corollary
C by the idea in Chapter II and III of [B], respectively. Theorem D
is proved in Section four after a K-theoretic simple proof of the exact
sequence (1.3). In Section five an ideal basis of a standard JP2-bundle
over a regular local ring is determined explicitly (Theorem E), from
which the results of section 2 in [Mal] (V is a regular scheme etc.)
easily follows.
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2. The l-adic cohomology groups

In this section we prove Theorem A. We assume the discriminant
locus lJ.. is a disjoint union of n smooth curves lJ.. i with genus gi (1 ~

'i ~ n). We denote by P = 7l/(zm) for a prime number Zdifferent from
char k and

H*(S) = H;t(S, Ps ),

the etale cohomology groups of a scheme S with coefficient the constant
sheaf Ps on S. For a point p E lJ.., the fibre T-1(P) consists of three
components Yi (i = 1,2,3) with Yi ~ IF\ and YinYi+l (resp. YinYi-l)
is a fibre (resp. the (-1 )-curve) of Yi A.J IF\ (where the suffix means
mod 3) and Y1 n Y2 n Y3 consists of one point.

Lemma 1. (i) ForapointpEX-lJ.., Hq(T-1(p))=F (q=0,2,4),
o (q ~ 0,2,4).

(ii) For a point p E lJ.., Hq(T-1(P)) = F (q = 0), Fg (q = 2,4), 0
(q '" 0,2,4).

Proof. (i) follows from T- 1 (P) ~ p2 for a point p E X - lJ... Since Y1 A.J

IF\ we see Hq(y1) = F (q = 0,4), and F 2 (q = 2) and 0 (q '" 0,2,4).
Since Y1 n 1'2 ~ pI, considering the Mayer-Vietoris sequence for the
pair (Yll Y2) we see Hq(Y1U Y2 ) = F (q = 0), p3 (q = 2), F2 (q = 4)
and 0 (q ~ 0,2,4). Similarly, (Y1UY2 ) n Yg = (Yi n 1'3) U (Y2 n Yg ) is a
union of two pI'S intersecting at one point, so Hq ((Y1U Y2) n Yg ) = F
(q = 0), F2 (q = 2), 0 (q =\= 0,2). The isomorphisms in (ii) follow from
applying the Mayer-Vietoris sequence for the pair (Y1U Y2 , Yg ). 0

Since lJ.. is smooth, the associated cyc~c cover 1> : A ---+ lJ.. of (1.2)
is etale, hence the arithmetic genus 9 of lJ.. is equal to

(2.1)

by Hurwitz's formula. Let A be the kernel of the trace homomorphism
from 1>* Fis. to Fe::.. From the exact sequence

(2.2)

we see H* (A) = H* (lJ.., A) are isomorphic to

HO(A) = (F/3F)n, H2 (A) = (F/3F)n (2.3)

H1(A) = (F/3F)2n rJY p 2(g-g) = (F/3F)2n rJY F 4(g-n)
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and Hq(A) = 0 for any q > 2. By taking inverse limit we obtain the
l-adic cohomology groups.

lim HO(A) = 0, lim H 2 (A) = (Zt!3Zd n (2.4)
f- f-

lim HI (A) = (Zt!3Zdn EB zi(g-n).
f-

We use the following Lemma for the proof of Theorem A.

Lemma 2. R2T.Fv rv R4T*Fv and there are commutative diagrams
with exact rows and columns for q = 2,4:

o

o

0 0

1 1
i.A i*A

1 1
) j!Fu ) R:IT*Fv ) i.cP*Fl.

II 1 1trace

) j!Fu Fx i.F6,

1 1
0 0

-----t) 0 (2.5)

-----t) 0

where i: t::. c X (resp. j: U:= X -t::. c X) is the closed (resp. open)
immersion.

Assuming Lemma 2 we continue the proof of Theorem A. Let us
consider the Leray spectral sequence for the morphism T : V -+ X:

Er = HP(RqT.Fv ) :::} HP+q(V).

We see E~,2q+l = 0 for any q by Lemma 1, and E;P+l,O = H2P+I(X) =
o for any p by the assumption. Thus there are exact sequences:

o-+E~o _ E2_ Eg2 _ 0,

o_E3 _ E 12 _ ~o L ;:2g1_ E 22 _ 0 (2.6)
2 2 2

o_;:2g1 _ E4 -+ Er _ E~2
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From EiD = Eg1 = 0 we see E 1 = HI (V) = O. Now we calculate
E~2 = HP(R2T*Fv ). From the middle column of (2.5) we see

o ~FfJ(A) ~ Eg2~ HD(X) ~ H1(A) ~ Ei2~ H1(X) ~

~H2(A) ~ Ei2~ H2(X) ~ H3 (A) ~ E~2 ~ H3 (X),

where HD(X) = F and Hl(X) = H 3 (X) = 0 by the assumption.
Hence we see from (2.3)

Eg2 =Eg4 = (F/3F)n-l EB F,

Ei2 =(F/3F)n EB H2 (X),

Ei2 =(F/3P)2n-l EB F4(g-n),

E 32 -02 - .

Substituting these isomorphisms into (2.6) we obtain

E2 = EiDEB Eg2 = H2(X) EB F EB (F/3F)n-l (2.7)

o~ E3 ~ (F/3F)2n-l EB F4(g-n) ~

~ H4 (X) L ;:2£4 ~ (F/3F)n EB H2 (X) ~ 0, (2.8)

o~ ;:2£4 ~ E4 ~ FEB (F/3F)n-l ~ O. (2.9)

The image in E4 = H4 (V) of a generator of H4 (X) '::: F under the
homomorphism f in (2.8) is represented by the fibre T-1(P) of a closed
point p of X. If p is contained in t:J. then T-1(P) consists of three
components, hence (2.8) implies

E 3 = (F/3F)2n-2 EB p 4(g-n)

;:2£4 = (Fj3F)n-l EB H2(X) EBF.

Hence we see from (2.11)

£4 = (F/3F)2n-2 EB H2 (X) EB p2.

(2.10)

(2.11)

In view of (2.4) we obtain the isomorphisms of Theorem A by taking
inverse limit in the expressions Eq = Hq(V) (q = 2,3,4) in (2.7),
(2.10) and (2.11).

(Proof of Lemma 2) By the proper base change theorem[Mi,p225]
we have the exact sequence
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Here the locally constant sheaf RQT*Fr -l(U) is isomorphic to the con
stant sheaf Fu because T- l (U) -t U is a JP>2-bundle in etale topology.
We shall show isomorphisms RQT*Fr -l(Ll) ~ ¢*F;i for q = 2,4 and
(2.12) fits in the middle row of (2.5).

Let 8 = SingeT- l (1:::..)) be the singular locus of T- l (1:::..). If we denote
by T- l (P) = Uf=1Yi with Yi ~ IF1 for a closed point pEl:::.. then T- 1(p)n
8 = Ui:t=i (YinYj) consists of three JP>1 's intersecting at one point nr=lYi.
Let v : W -t T- l (I:::..) be the normalization in the function field of
T- l (l:::..) and ¢ : 6. -t I:::.. be the associated cyclic cover (1.2) :

8 V-I (8)

n n

V:=> T- l (l:::..) ( v
W

r1 1 ~1

X :=>1:::.. <P 6.

Here the pull back v- l (8) of 8 in W is reducible with two irreducible
components 8 1,i and 82 ,i over each irreducible component 6.i of 6..
For a point p E 6.i , 7[-I(p) n SI,i (resp. 7[-I(p) n 82,i) is a fibre (resp.
the (-1)-curve) of rr- l (p) rv IFl , and 8l,in82 ,i is a section over 6.i . Let
8 1 = Ui 8l,i and S2 = Ui S2,i, so that v- l (8) = 8 1U82, Then SI n S2
is isomorphic to 6. and v : SI n S2 -t V(SI n S2) c S is isomorphic to
the associated cyclic cover ¢ : 6. -t I:::.. of (1.2).

(Proof of R4T*Fr -l(Ll) rv ¢*F;i) We define B by the exact sequence

(2.13)

The support of B is equal to S which is of relative dimension one over
D.. Hence R 3T*B = .R4T*B = 0 and an isomorphism

(2.14)

Recall 7r : W -t 6. is an lB\-bundle (in Zariski toplogy). Since H 4 (IF1 )

= Z and H 2 (IF1) is generated by the class of a fibre and the (-1)-curve
we see the locally constant sheaf RqT* Fw is constant :

(2.15)
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Now we have isomorphisms

¢*F/i rv ¢*(R41f*Fw )

rv R4(¢1f)*Fw

rv [(!(Tv)*Fw

rv [(!T*(v*Fw )

Dl [(!T*FT-l(ll)

by (2.15)

since ¢ is a finite morphism

since v is a finite morphism

by (2.14).

(Proof of R2T.FT-l(ll) rv ¢*F;sJ For a closed point p E D. we see
H 2 (T- I (p), FT-l(ll») = F3 ~ H 2

(T- 1 (P), T*Fw ) = F 6 is injective, and
R3 T*Fr l ll = a by Lemma 1. Hence we see from the exact sequence
(2.13)

(2.16)

For the proof of an isomorphism R2T*FT-l(ll) ~ ¢*F/i we will show
R2 T*(v.Fw) ~ ¢*FX and R2T*B rv ¢*F/i' Since R 21f*Fw ~ FX by
(2.15) we see

¢*FX ~ ¢*(R21f*Fw) rv R2 (¢1f).Fw

~ R2 (TV)*Fw ~ R 2T*(v*Fw ).

(2.17)

Next we will show R2T*B ~ ¢.F/i' The restriction of v to the open
set W - v- 1 (5) of W is an isomorphism, so the exact sequence (2.13)
on T-I(D.) induces the exact sequence

(2.18)

on 5, where Fs ~ V*Fv-l(S) is injective. Let v- 1(5) = 51 U 52 and
let Uo = 5 - v(5I n 52)' Then V-I (Uo) is a disjoint union of two
components U1 and U2 , which are isomorphic to Uo by v. Restricting
V.Fv-l(S) to Uo we see j*V*FV-l(S) rv V*Fv-l(UO) ~ F&o (where j :
Uo C 5 is the open immersion), hence j*B ~ Fuo by (2.18). In the
exact sequence
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on S (where 'i : V(SI nS2) c S is the closed immersion), RqT. (i.i* B) =
o for q = 1,2 because the support ofi.i· B is equal to V(SlnS2), which
is of relative dimension one over 6. (i.e. a section of T : S --+ 6.). Hence
R2T.B ~ R2T.(j,Fuo )' For the proof of the isomorphism R2T.B ~

¢.Fii we will show R2T*(j,Fuo ) :: ¢.Fii · Since v : Ul --+ Uo is an iso
morphism we may replace Uo c 8 by Ul C SI [Milne,p227,Prop.(3.1)].
Therefore the restriction of T to Ul is factored by

with a pI (resp. Al)-_bundle Jr : 8 1 --+ Ii (resp. U1 C 8 1 --+ Ii). Let
i : Z = 8 1 - U1 :: 6. c 81 be the closed immersion. In the exact
sequence

R2T*(j!FuJ ~ R2T.Fs1 "" R2(¢Jr)*Fs1

"" ¢* (R
2
Jr*FsJ "" ¢*Fii'

Thus R2T*B:: R2T*(j!Fuo ) "" <p*Fii . Combining this with the isomor
phism R2T* (v.Fw ) :: ¢.Fl obtained in (2.17) we get the isomorphism

R2T*Fr -l(6) :: ¢*Fii by the exact sequence (2.16).

(End of the proof of Lemma 2) The exact sequence (2.12) is equal
to 0 --+ j!Fu --+ RqT.Fv --+ i.¢.Fii --+ O. On the other hand, we

have the canonical homomorphism f : RqT.Fv --+ j*j* RqT*Fv ~

j*RqT*Frl(U) "" j*Fu :: Fx . Therefore we have the diagram with
exact rows

o

o
II

----t) j!Fu Fx

---t) 0

1trace

----t) O.

Here the right-hand square is commutative, from which we obtain the
diagram (2.5).
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3. Intermediate jacobians

In this section we work over C and prove Theorem B. We use the
following notations. For a point p E t:J., let Yp,i (i = 1,2,3) be the
three components of r-I(p) and set the closed subschemes

t:J.o = UpE~ nt=l Yi,p, Mo = UpE~ Ui,\:j CYi,p n Yj,p)
of r-1(t:J.) with reduced induced structures. We see t:J.o (resp. Mo) is
the singular locus of r-1(t:J.) with multiplicity three (resp. two) at its
generic point, and t:J.o is a section of rover t:J.. Let (J : VI -t V be
the blow-up along t:J.o with the exceptional divisor E I and the proper
transform D 1 of r- 1 (t:J.). Let c : V2 -t VI be the blow-up along the
proper transform M I of Mo with the exceptional divisor F and the
proper transform D 2 (resp. E 2 ) of D1 (resp. E 1 ).

V2 D 2 F E 2

1

1

1 1

1 1
V:=> r-I(L\):=> Mo-.:J t:J.o

Then D 2 + F + E2 is a simple normal crossing divisor of V2 . The
geometric fibres of D2 ~ D I ~ r- 1 (t:J.) ~ t:J. and M I ~ Mo ~ t:J.
consist of three connected components and the Stein factorizations are
given by

q - ¢ r - ¢D2 --t t:J. --t t:J., M1 -t t:J. --t t:J., (3.1)

with the associated cyclic cover 4> : 1::J. --t t:J. of (1.2) in Introduction.
Here r is a ]pI-bundle and q is a fibre bundle in Zariski topology with
fibre Y~,i isomorphic to one point blow-up of Yp,i t'.J IB\. The morphism

q : D2 -t Li is factored by

D2 ~ D3 ~ D4 -t 1::J.. (3.2)

Here ql is the blow-down of L, D3 is isomorphic to the normalization
of r- 1 (t:J.), q2 is the blow-down of ql (M), and D4 -t 1::J. is a JP>2-bundle.
We set

D 2 n E 2 = L, D2 n F = SUM (disjoint union) . (3.3)

The two-dimensional subvarieties L, S, M satisfy the following proper
ties.

-33-



Lemma 3. (i) L n Y~,i is the exceptional line of the one point blow-up

ql : Y~,i ~ Yp,i.
(ii) The image of S n Y~,i (resp. M n Y~,) by ql is the (-l)-curve

(resp. a fibre) on Yp ,i rv IB\.

We use the following notations of closed immersions.

i 1 : D 2 cV2 ,

II : L cD2 ,

l3 : L cE2 ,

i2 : F CV2 ,

81 : S cD2 ,

82 : S cF,

i 3 : E2 C V2

ml: M cD2 ,

m2: M cF.

(3.4)

Then cp 0 82 and cp 0 m2 are identities and if the diagram

S €F M
) 1

q ) t::.. =====
(3.5)

is commutative, then we assume the diagram

/OF M) 1

q ) Ii ---t) t::..,

(3.6)

is commutative with a nontrivial automorphim [, : Ii ~ Ii of degree
three over t::...

We denote by H* (V) = H* (V, Z) the integral cohomology groups of
V and define a homomorphism () : Hl(li) ~ H3(V) by the composite

H 1(1i) ~ H 1 (D2 ) ~ H3(V2 ) ~ H3 (V1 ) ~ H3 (V). (3.7)

Since TO (J 0 c 0 i 1 = ill 0 ¢ 0 q with the closed immersion ill : t::.. C X
we see for an element {3 E HI (/:).),

(}(¢* (3) = (J*c*i h Ch
2
(JD

1
Tb,{3 = T*ill .{3 = 0 (3.8)

by the assumption H3(X) = O. Here fD'J is the retriction to D 2 of
f etc. Thus, (}(¢* HI (t::..)) = O. We will show () is surjective and the
kernel is contained in </>* Hl(tl). The following Lemma is shown along
the same line as in the case of quadric bundles [B,p333,Lemma(2.5)).
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Lemma 4. (i) H 3 (V - T-I(~)) = 0, (ii) () is surjective.

Proof (i) Let U = V - T-I(~) and consider the Leray spectral se
quence for the JP2-bundle T : U ---+ X* = X -~ ; E'fl = HP(X*, RqT;ll.)
=> Ep+q = Hp+q(U). We see RqT;ll. is equal to Z for q = 0,2 and equal
to zero for q = 1,3. Hence E~q = 0 for q = 1,3 imply the exact se
quence

o ---+ E~ ---+ E3 ---+ E~ ---+ O.

In the Gysin sequence for the pair (X,~)

(3.9)

(3.10)

we see HI(X) = H3(X) = 0 by the assumption and Hi(~) = Z ---+

Hi+2(X) are injective for i = 0,2 because ~ is connected. Hence we
see from (3.10) that HI(X*) = H3(X*) = 0, i.e. EP = E~o = O.
Therefore E3 = H3 (U) = 0 by (3.9).

(ii) Recall T-I(~) is a normal crossing divisor of V and the normal
ization D3 ---+ T-I(~) of its quotien field fits in the diagram

rwith an IF\-bundle f : D3 ---+ Li (see(3.2)). Since q* : HI(Li) ---+

H I(D3) :!.i HI(D2 ) is an isomorphism it is sufficient for the surjectiv
ity of () to show ({J* : HI(Da) ---+ H3(V) is surjective, where ({J is the
composite of the normalization D3 ---+ T-I(~) with the closed imm
mersion T-I(~) C V. Let us consider the Leray spectral sequence for
the open immersion j : U = V -T-I(~) C V ; E~q = HP(V, Rqj*Z) =>
Hp+q(U). We see

Here SUM is the normalization of the closure of the locus in T-I(~)

where the multiplicity is equal to two. Now ¢* : HI (D3) ---+ H3 (V) is
given by the differential of E2-terms
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so we have to show E~o = O. The differential d2 : E~2 _ E~1 is the
Gysin homomorphism

which is injective because the images of Sand M are linearly indepen
dent in H2(D3 ). Hence ~2 = 0, so that E~o = E~, which is equal to
zero by (i). 0

We need three Lemmas for the proof of the equality Ker(())
¢* Hl(6.).

Lemma 5. c*(J*()(a) is expressed in H3(V2) by

(3.11)

Proof We show for a E Hl(ii)

(3.12)

with the closed immersion jEl : E1 C VI. Let x = c*ihq*a be the first
term of the right-hand side of (3.12). Since codim(6.o, V) = 3, by the
formula [B,p312,(0.1.3)] we see

Here h is the Chern class of 0 El (1) in HZ (E1 ) and 1'1 = h + (JE
l

Cl (N)
with the normal bundle N of 6.0 in V. The element lEl x E H 3 (E1) is
mapped to zero by (JE1*' hence

On the other hand, we see (JE l * (h· j;;l x) = ¢* 0: E HI (6.) geometrically,
so that we obtain the equality (3.12). Applying c* to (3.12) we see

* *()() * (. *) * . * ,/.,c 0" ex = c c* 'lhq ex + c )El*O"El'l"*O:

= ihq*o: + i 2*cPcF*i;(ih q*a) + i 3*CE\ O"Eh ¢*a
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(3.14)

(3.15)

(3.16)

because codim(MI , VI) = 2 and c* jEi * = i3*CE
2

on H1(E1). By the
commutativity of the diagrams (3.5) and (3.6), the second term of
(3.13) is equal to

iz*c~cp*(sz*si + m2*mi)q*a
. * ( * * * * * * *)= 'tZ*cpCF* sz*szcpr + mz*mzcpr L a

= iz*c~r*(1 + L*)a.

The last equality follows because cF 0 S2 and cp 0 m2 are identities.
Substituting (3.14) into (3.13) we obtain the equality of Lemma. 0

Let [L], (5], (M] E H2(D2) be the Poincare dual of the homology
classes of the Cartier divisors L, 5, M of D2 , respectively.

Lemma 6. In H3(D2 ), iic*er*O(a) is equal to

Proof Applying ii to the equality (3.11) we see iiE*er*O(a) is equal to

.* . * .* . * *(1 *) .* . * * rl-.'t1'lhq a+'l(l2*cP'" +L a+'ll'l3*cE2erEi,+,*a.

The first term of (3.15) is equal to iiihq* a = q* a . ii D2 with

iiD2 = ii(er;D1 - 2F) = ii{er;(er~r*6 - 3E1 ) - 2F}

because the multiplicity in r- 1(6) (resp. D 1 ) at the generic point of
6 0 (resp. Md is equal to three (resp. two). Since roeroEoi l = iD,. o¢oq
we see

q*a· iiE*er*r* 6 = q*a· q*¢*i~6 = q*(a· ¢*i~6) = 0

because a . ¢*i~6 = 0 on ii. Hence we see from the definition (3.3)

.* . * 3 * .* E 2 * .* F'l1 'thq a =- q a· 'l1 1 - q a . 'l1

= - 3q*a· [L] - 2q*a· ([5] + [MD.

By the commutativity ofthe diagrams (3.5) and (3.6), the second term
of (3.15) is equal to

iii2*E;"r*(1 + L*)a = (ShS; + Tnhm;)c;"r'*(l + L*)a (3.17)

= shs;E;"r*(1 + L*)a + mhm;E~r*(l + L*)a

= shsiq*(l + L*)a + mhmiq*(L-1)*(1 + L*)a

= q* (1 + t*)a· (5) + q*((t- l )* + l)a· [M].
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Since (YE1 0 EE2 0 l2 = ¢ 0 q 0 ll, the third term of (3.15) is equal to

iii3*E~(Y~1¢*Q = lhl;(Y~2(Y~1 ¢*Q = lhl~q* ¢* ¢*Q = q* ¢* ¢*Q . [L].
(3.18)

Substituting (3.16), (3.17) and (3.18) into (3.15) and using (/,*)-1 = /,*2
we obtain the expression of Lemma. 0

Since the contraction morphism of an extremal ray T : V ~ X sat
isfies RiT*Ov = a for any i > a we see H3(V, Ov) = H3 (X, Ox),
which is equal to zero by the assumption H 3 (X, Z) = O. Hence
H 3 (V) = H 3 (V, Z), which is torsion free since fj. is irreducible, deter
mines a lattice Hz in H12(V) by the natural homomorphism H3(V) ~
H3(V, C) ~ H I2 (V) and we get the second intermediate jacobian
P(V) = HI2(V)/Hz [G,p8]. The Picard group of V is generated
by that of X together with the anticanonical class of V; Pic(V) =
T*Pic(X) EBZ(-Kv ). For, if -Kv /3 is contained in Div(V) then V is
birationaliy equivalent to X x JP2 and the inverse images of the irre
ducible components of fj. are reducible. This contradicts the definition
of standard JP2-bundles in Introduction. Let

be the first Chern class of an ample divisor - K v + T* D on V. Let
A h be the integral skew symmetric form on H 3 (V) defined by the cup
product with h.

Ah(a, b) = -(a· b· h)v for a, b E H 3 (V). (3.19)

Let <p and ¢ be the harmonic forms of type (1,2) which are the images
of a and b under the homomorphism H 3 (V) ~ H 12 (V), respectively,
and let

H(rp,¢) = 2J=1i rpA ¢AWh

with the Kahler form Wh determined by h. Then H is the hermitian
form on H12 (V) satisfying

Ah(a, b) = -1m H(rp, ¢).

Moreover HI (V) = aguarantees H12 (V) consists of primitive forms in
the Lefshetz decomposition of H 12 (V). Therefore the hermitian form
H on H12 (V) is positive definte and (3.19) defines a polarization on
the intermediate jacobian J2(V) [G,p7J.

-38-



Lemma 7. A h (8(O'), 8(,8)) = ((1- i*)O', (1- /'*),8),Zi for 0',,8 E HI (Ii).

Proof Since (/'*O',/'*,8),Zi = (0',,8),Zi for 0',,8 E HI(Ii) the right-hand
side of Lemma is equal to

By the projection formula we see

-Ah (8(0'), 8(,8)) = 8(O')8(,8)h = 8(0') . (J"*c*'i h q*,8· h

= i~ E* CT* 8(a) . q* ,8 . i~ E* (J"* h.

From Lemma 6 this is equal to

{q*(¢*¢* - 3)0" [L] + q*(i* - 1)0" [S] + q*((i- I )* - 1)0" [M]}

x q* {3 . i~ E* a* h

= ((¢*¢* - 3)0" {3),Zi . (~. [L)· iiE*(J"*h)D2

+ ((L* - 1)0" {3),Zi . (~. [S] . ii E*(J*h)D2

+ ((L*2) -1)0" {3),Zi . (~. [AI]· i~E*a*h)D2'

where ~ is the class in H2(D2) of the fibre q-I(p) of q : D2 -4 Ii of a
closed point p of Ii. Compairing this with (3.20) it is sufficient for the
proof of Lemma to show

(~. [L) ·iiE*(J*h)D2 = 0, (3.21)

(~. [S]· iic*(J"*h)D2 = (~. [M)· iic*(J*h)D2 = I
(3.22)

Let Yi r--J IF1 (i = 1,2,3) be the three components of the fibre 7-1 (¢(p))
over the point ¢(P) E 6.. Then we will show

(3.23)

in Pic(Y1 ) for the (-I)-curve So and a fibre 1no on YI ~ IF 1 . For, let
C be a smooth curve on X intersecting transversely with 6. at ¢(P).
Then there are exact sequences

°-47*CCjX!Yl -4 DvlYl -4 SlT-1(C)IY1 -40, (3.24)

°-4CYl/r l(C) -4 DT-l(c)!Yl -4 SlYl ---+ 0, (3.25)
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where CCjX is the cononnal sheaf of C in X. Since T*Cc/xIY1 ::: OY1
and CYt/T-1(C) ::: OT-1(C)(-Y1)!Y1 t"V OT-1(C)(Y2 + Y3)!Y1 ::: Oy1(so +
rna) we see from (3.24) and (3.25)

-KvI Y1 = - KT-l(C)jY1 = -KY1 - CYl/T-l(C)

=(2so + 3ma) - (so + rna) = So + 2rno·

Thus (3.23) is proved. Let

be the elements of H2(q-l(p)) restricted to q-l(p) of [L], [5], [M] E

H 2(D2), respectively. Since Qlq-l(p) is equal to one of Yi (see(3.2))
we see from Lemma 3

Q~ So = [s] + [l], q~mo = [m] + [l]. (3.26)

Therefore it follows from (3.23) and (3.26)

(~. [L]· 'i~c*a*h)D2 = ([L]lq-l(p) . c*a*(-Kv )lq-l(p))q-l(p)

= ([l}' q~(-KvlyJ)q-l(p)

= ([l] . q~(so + 2rnO))q-l(p) = 0,

(~ . [5] . iic*a* h)D2 = ([5] Iq-l(p) . c* a* (-KV )Iq-l(p))q-l(p)

= ([s1' q~ (so + 2rno) )q-l(p) = 1,

(~. [M] ·iic*a*h)D2 = ([MJlq-l(p) ·c*a*(-Kv)lq-l(p))q-l(p)

= ([m] . qi (so + 2rno))q-l(p) = 1.

Thus (3.21) and (3.22), hence Lemma 7, is proved. 0

From Lemma 4 and Lemma 7 we see

Lemma 8. The kernel of the homomorphism 0 : H 1 (!i) --> H 3 (V)
defined by (3.7) is equal to Ker(1 - L).

Proof. Since the bilinear form (3.19) is nondegenerate on H 3 (V) we
see O(a) = 0 iff Ah(O(a), b) = 0 for all bE H 3 (V). Hence Lemma 4 and
Lemma 7 imply O(a) = 0 iff «2-L* -L*2)a'/3);s. = 0 for all (3 E Hl(li),
Le. (2 - L* - L*2)a = 0 in H1(;s.). Now 2 - L* - L*2 = (1 - L*)(2 + L*)

-40-



and (2 + 1..*)(4- 21..* + 1..*2) = 8 + 1..*3 = 9, so that Ker(2 - 1..* - 1..*2) =
Ker(1- 1..*). 0

Let (J (A), 3zs.) be the jacobian of A with the theta divisor 3 ii and

'xzs. : J(A) - J(A) be the principal polarization defined by 3zs.. The
Prym variety P associated to the cyclic cover ¢ : A - !:l is defined by

where %is the dual of the inclusion i : </J* J (!:l) c J (A) and the polariza
tion 3 p is the restriction to P ofthe theta divisor of J(A) [B,p316]. We
see P is equal to the image of the homomorphism 1 - I.. : J (6.) - J (6.),
so that the skew symmetric form Ap associated to Sp is given by

Ap ((l - I..)a, (1- 1..)(3) = ((1 - I..)a, (1 - 1..)(3)zs. for a, (3 E H 1(A)
(3.27)

with the intersection form ( , )ii on H 1(A). Now we prove Theorem
B. By Lemma 8 there is an exact sequence

so 1 - I.. and () induce an isomorphism 1/ from P to P(V):

J(!:l)
¢*

) J(A) l-L P ) 0

II !I Iv (3.29)

J(!:l)
¢*

) J(6.) 8 ) J2(V) ) 0

Moreover, Lemma 7 and the definition(3.27) imply

Ah ((}(a),(}((3)) = Ap ((l-l..)a, (1-1..){3).

Thus (J2 (V), Sv) is isomorphic to (P, 3 p ) as polarized abelian vari
eties.

(Proof of Corollary C) As in (3.7) we define a homomorphism () :
Al(A) = picoA _ A2(V) by the composite
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The proof of Corollary C is reduced to showing that (i) B is surjective
and (li) Ker(B) = ¢* A1(D.).

(i) B is surjective: We see q* is an isomorphism because q : D2 .......,

b. is a fibre bundle with a fibre isomorphic to one point blow-up of
IF\ (cf. [B,p337,Lemma (3.1.1)]). By (B,p338] the surjectivity of B
is reduced to showing A2 (V - r-I(D.)) = O. This follows because
r: V - r-l(D.) ......., X - D. is a p2-bundle with Aq(X - D.) = 0 for any
q E Z [B,p341,3.1.7}.

(ii) Ker(B) = ¢* Al (D.): The calculations of integral cohomology
groups hold almost all by replacing H2q-l (*) with Aq(*). For (3 E

Al(D.) the same equalities hold as in (3.8) because A2(X) = 0, so
B(¢* Al(D.)) = O. From Lemma 5 and Lemma 6 we have the same
formula for iic*a*B(a) in A2(D2 ). The morphism q : D2 ......., b. is

ql q2 q3 j\ . h 1m2 j\ (factored by D2 ......., D3 ......., D4 ......., L..l WIt a .u.---bundle q3 : D4 ......., L..l see
(3.2)). From Lemma 3 and Lemma 6 we see in A2(D4 )

with [M4 } = q2*qh[M] is the class of the tautological line bundle
OD,J1) E Pic(D4 ). Since A2(D4 ) = q3A1(.6.) . [M4 J r-v Al(.6.) we
see B(a) = 0 implies (1-*2 - 1)a = 0 by (3.31), Le. a is contained in
¢*Pico D..

4. Existence of standard projective plane bundles

Let X be a simply connected smooth projective surface over C with
the function field K. First we give a simple proof of the exact seqence
(1.3) using the Bloch-Ogus spectral sequence[Sr,191]

where! : X et ......., X Zar is the identity, and the fiasque resolution of the
Zariski sheaf Rq f* f-ln [ibid,p189} :

0......., [{l!*P,n"""" i*Hq(k(X),P,n)"""" EBX(l) i*Hq-l(K(X),f-ln)"""" ....
(4.2)
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Indeed, E~q = HP(X, Rq f*Mn) is the p-th cohomology group of
the complex obtained from (4.2), so that Er = 0 for p > q. Hence
E1 = E~1 and there are two exact sequences

o- Ei 1 _ E2 _ Eg2 _ 0 (4.3)

o_ E~2 _ E3 _ Eg3 _ E~2 _ E 4 . (4.4)

Since the smooth projective surface X is assumed to be simply con
nected, E3 = H3(X, Mn) = 0, hence

EJ,2 = H 1(X, R2 f*Mn) = 0

by (4.3). Now E~z = HP(X, R2 f*Mn) (p = 0,1,2) are the cohomology
groups of the complex

H2(k(X), Mn) - EBX(l) H 1(K(X), Mn) - EBX (2) HO(K(X), Mn),
which is extended to the exact sequence

0- HO(X,R2f*Mn) -H2(k(X),Mn) - EBX(l) H1 (K(X),Mn)

- EBX (2) 'L/n _H2 (X, R2f*!-Ln) - 0 (4.5)

because Ei2 = O. The exact sequence (4.3) is written by

o- Pic X/n - H2(X, Mn) - HO(X, RZf*Mn) - 0

hence HO(X, R2 f*Mn) = nH2(X, Gm ) := nBr X. Next we shall show
H2(X, RZ f*Mn) = 'L/n. Let K2 be the Zariski sheaf on X associated
to the presheaf U - K 2 (r(U, Ox )). The exact sequence

o- K2,n - K2~ K2 - KzJn - 0
provides us with the exact sequence

HZ(X, K2) - H2(X, nK2) _ H 3 (X, K2,n)

_H3 (X,Kz) - H3 (X, nK2) _ H 4 (X, K2,n)'

Here HP(X, K2) = 0 for p > 2 and HP(X, K2,n) = 0 for p > 1, so
H2(X, K2) - H2(X, nKz) is surjective and H 3 (X, nK2) = O. Hence
we get an exact sequence

H2(X,K2) ~ H2(X,K2) - H2(X,K2/n) _ H 3 (X,nK2) = O.

Here H2(X,K2) = CH2(X) = CHo(X) is the Chow group of zero
cycles on X and Kzin = R2 f*Mn by a Theorem of Merkurjev-Suslin
[Sr,p191]. Thus we have H2(X,RZf*Mn) = CHo(X)/n. The degree
homomorphism CHo(X) - 'L induces the isomorphism CHo(X)/n rv

'L/n. Taking the direct limit we obtain the exact sequence (1.3). 0

We quote a result about Azumaya algebras over C2-field in [A,p208].
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Fact. Let D be a centml division algebm over a C2 -field K with order
equal to 2a 3b in Br K. Then the index of D is equal to 2a 3b . 0

Using this fact we prove Theorem D. By the exact sequence (1.3)
there is an element ~ of Br K of order three which is mapped to ¢.
The above Fact implies ~ is represented by a division algebra D with
index three. We see D is a cyclic algebra of rank nine by a Theorem
of Wedderburn [P,p288]. The maim theorem in [Mal] implies there
are a birational morphism Y ---t X from a smooth projective surface Y
and a standard p2_bundle W over Y associated to the division algebra
D. We see W descends over X using the inverse of the elementary
transformations of type I and type II described in [Ma2]. 0

5. An ideal basis of a standard JP2-bundle

Let k be a field containig a primitive cube w of unity and let R be the
localization of the polynomial ring k[f, g] over k with indeterminates
j, 9 at the maximal ideal (f, g). We denote by A = (f, 9h,R the
cyclic algebra of rank nine over R, i.e. the R-algebra generated by two
elements {x, y} subject to the relations

x 3 =j, y3=g, yx=wxy. (5.1)

We have constructed in [Mal,§2] an irreducible regular scheme V pro
jective over R with a contraction morphism of an extremal ray

T : V ---t Spee R

such that
(i) the generic fibre VK of T is isomorphic to the Severi-Brauer

variety corresponding to the central simple algebra A 0 R K over the
quotient field K of R,

(ii) V is embedded into p~ by the anticanonical divisor -Kv of V.

In this section we determine the basis of the defining ideal of V in JP~

by realizing V as an irreducible component of the scheme of left ideals
of rank three of A. The case of a JP3-bundle is treated similarly, which
will appear in a forthcoming paper. Let (Xi, Yi, Zo, Zl ; 0 ~ i ~ 3) be
the homogeneous coordinates of p~.
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Theorem E. The closed subscheme V of JP~ with the properties (i)
(ii) , is defined by the following linearly independent 27 quadrics Fi , Gil

H j (1::; i::; 10,1::; j ::; 7).

FI = XoYo - XIYI + w2ZoZI

F2 = X2Y2 + w2xSYI + WXIYS

F3 = XOYI - xi + ZOX2

F4 = XIYO - Y~ + WZoY2

Fs = X2YO - XIY2 + ZoYs

F6 = X2YO + ZIYI - w2zoYs

F7 = X2YI + Zl Xl + ZOXs

Fs = XOY2 + Zl Xl - w2ZoXs

Fg = XIXS + w2xoYs - WZIX2

FlO = YIYS + WXsYo - w2zlY2

HI = x2x S + f(XIYI + ZOZI) - gX5

H2 = Y2YS + jY5 - g(XIYl + WZOZl)

H3 = x~ - jZlxl - gXox2

H4 = Y~ + jYOY2 + gZlX. 0

G1 = Xlx2 + zlxO - f Z5

G2 = YIY2 + zlYOW2 + 9z6,
Gs = xoxs - X~ + fZOXl

G4 = YoYs - Y~ - wgZoYl

Gs = x2Y3 + ZlXS + w2f ZOY2

G6 = xSY2 + ZlYS - w2gZOX2

G7 = XIYS - z? - wfzoYo

G8 = x3Yl - Z~ + gzoxo

Gg = Xlx3 - xOY3 - w2fZOYl

G lO = YIYS - xsYo + w2gzoxl

Hs = zlxS - fy? + gXoxl

H6 = zlYS - fYOYl + gxi

H7 = xsYs + fYIY2 - gXlx2

We first note that if ~ : JP>2 C JP>9 = JP> HO ( - K jp2) is the Veronese em
bedding of degree three over a field then the vector space HO (- K['2) =
HO(O(3)) is regarded as the representation space of the third sym
metric tensor representation of GL(3). The second symmetric tensor
representation space 52 H O(O(3)) of H O(O(3)) is decomposed by

where {4, 2} is the irreducible representation of GL(3) with signature
(4,2), which is of dimension 27. The defining ideal of ~(JP2) in p9 is
generated by the quadrics consisting of all elements of the subspace
{4, 2}. In view of this fact, if we start from the Severi-Brauer surface
VK embedded by the anticanonical divisor -KVK of VK then we see
from descent theory that the defining ideal of v'K in JP>HO( - K vK) =
Pk, is generated by the quadrices in the subspace W of 52HO(-KvK )
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such that W Q9 K rv {4, 2} as GL3 (K)-module for an algebraic closure
K of K. Let

be an element of A = (f, gh,R' We see from (5.1)

( ;~ ) = B. t(l X xZ y xy xZy yZ xyz XZyz)
X2~

with B equal to

b1 bz b3 b4

bo b1 fb5 b3
fbz bo fb4 fbs

b5 100)
b4 0 1 0 .
b3 0 0 1

(5.2)

Since {~, x~ , xZ0 are linearly independent over R the element ~ gen
erates a rank three left ideal of 1\ iff y~ is a linear combination of
~,x~, xz~ over R iff

(5.3)

We see from the relation (5.1)

y~ = 9 + (bo + wb1 x + wZbzx 2)y + (b3wb4 x + wZbS XZ)y2.

Hence (5.3) is equivalent to the following four equations.

bo = b~ - fb4b5

wb1 = wZ(fb~ - b3b4)

wZbz = w(b~ - b2 b5 ) (5.4)

9 = bob3 + W fb2b4 + wZ fbI b5

= b3(b~ - fb4b5 ) + fb4(b~ - b3b5 ) + fb~ - b3b4 )

= b~ + fb~ + /zb~ - 3/b3b4b5 •

Under the condition (5.4) we have to calculate the PlUcker coordinates
of the rank three left ideal AE, i.e. the maximal minors of the 3 x 9
matrix (5.2). Among the (;) = 84 maximal minors there are only the
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following ten linearly independent ones over R (here (ij k) means the
3 x 3-minors fonned by the i, j, k-th columns of (5.2) (0 :'S i < j < k :'S
8).

Xo = (678) = 1

Xl = (478) = b4

X2 = (378) = b3

I3 = (348) = b~ - fb4 bs

Yo = w(258) = w(b2b4 - blbs) = b4(b~ - b3bs ) - w2bs(fb~ - b3b4)

= b~ + (w2
- 1)b3b4b5 - w2fb~ (5.5)

Yl = (458) = b~ - b3bs

Y2 = -w2(158) = -w2(b l b4 - bobs)

= - b4(fb~ - b3b4) + w2b5(b~ - fb4 b5)

= b3b~ + w2b~bs + wfb4b~

Y3 = w(256) = w(b1b3 - bob4 ) = w2b3(fb~ - b3b4) - Wb4(b~ - fb4b5 )

= b~b4 + f(w2b3b~ + wb~bs)

Zo = (578) = b5

Zl = - (358) = fb~ - b3b4 ·

We see from this that the affine 3-space Ak with the affine coordi
nates (b3,b4, b5) over R, is isomorphically embedded into JP~ with the
homogeneous coordinates (Xi, Yi, Zo, Zl ; 0 :'S i :'S 3).

Then the R-scheme V in Theorem E is obtained as the closure of Uxo

in~. In order to simplify the calculations we shall consider another
affine open subset of V by interchanging X with y. Let

be an element of A. We see
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where C is equal to

(5.6)

Since {TJ, YTJ, y2TJ} are linearly independent over R the element TJ gen
erates a rank three left ideal of A iff

(5.7)

We see from (5.1)

so that (5.7) is equivalent to the four equations.

Co = ci - gC4C6

Cg = w(g~ - ClC4)

Cs = W2(c~ - CICe) (5.8)

f = COCI + wgc4cS + w29CgC6

= cI(ci - gC4Ce) + gC4(C~ - ClCe) + gC6(gC~ - CIC4)

= c~ + 9C~ + g2c~ - 3CIC4C6'

As in (5.5) we obtain the ten maximnal minors of (5.6) which are
linearly independent over R.

Xo = (678) = w2C4CS - WCgCe = WC4(C~ - ClC6) - w2C6(gc~ - CIC4)

=w{c~ + (w - 1)CIC4C6 - wgcn

Xl = (478) = w2(c~ - CIC6) (5.9)

X2 = (378) = W2
CgC4 - WCQC6 = C4(gC~ - ClC4) - wC6(ci - gC4C6)

{ 2 2· 2 2}= - ClC4 +WClC6 +W gC4ce

Xg = (348) = W2CICg - WCQC4 = Cl (gc~ - ClC4) - wC4(ci - gC4C6)

2{ 2 ( 2 2 2 )}=W C1C4 + 9 WClCe + W C4 Ce
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Yo = w(258) = w

Yl = (458) = C4

Y2 = - w2 (158) = - w2Cl (5.9)

Y3 = w(256) = Co = cI - gC4c6

Zo = (578) = -C6

Zl = - (358) = -C3 = -w(gc~ - CIC4).

Substituting (5.5) or (5.9) in the right-hand side of the quadrics in
Theorem E we see they are all equal to zero. These 27 quadrics are
linearly independent over R and define an irreducible regular scheme
V in pt, in particular V is regular at the vertex of the closed fibre,
Le. at the closed point (f = 9 = Xi = Yi = zl = 0 ;0 ~ i ~ 3).
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