琉球大学学術りポジトリ

Birational maps of standard projective plane bundles over algebraic surfaces

メタデータ	言語：
	出版者：Department of Mathematics，College of Science，University of the Ryukyus 公開日：2010－03－04 キーワード（Ja）： キーワード（En）： 作成者：Maeda，Takashi，前田，高士 メールアドレス： 所属： http：／／hdl．handle．net／20．500．12000／16088

BIRATIONAL MAPS OF STANDARD PROJECTIVE PLANE BUNDLES OVER ALGEBRAIC SURFACES

Takashi MAEDA
in memory of Akira Takaku

Abstract

Let X be a smooth algebraic surface with the function field K and let $\tau: V \rightarrow X$ be a standard \mathbb{P}^{2}-bundle over X, i.e. τ is a flat contraction morphism of an extremal ray of a smooth projective variety V with the generic fibre isomorphic to a K-form of \mathbb{P}^{2}, i.e. $V \times_{X} \bar{K}=\mathbb{P}^{2}$ for the algebraic closure \bar{K} of K. In this paper, some birational maps from V to a standard \mathbb{P}^{2}-bundle W are represented by compositions of elementary birational morphisms, where W is a standrd \mathbb{P}^{2}-bundle over the blow-up of X at a point of the non-smooth locus Δ of τ. Let C be a smooth curve on X intersecting Δ transeversely at one point. A birational map from V to a standard \mathbb{P}^{2}-bundle over X which is isomorphic over $X-C$, is decomposed into elementary birational morphisms. These are generalizations of the results about standrd conic bundles by V. G. Sarkisov (Math. USSR. Izv. 20).

The purpose of this paper is to decompose three types of birational maps of standard \mathbb{P}^{2}-bunldes over smooth algebraic surfaces into elementary birational morphisms. Let K be a function field of an algebraic surface defined over an algebraically closed field k of characteristic not equal to 3 and let V_{K} be a K-form of \mathbb{P}^{2}, i.e. $V \times_{K} \bar{K} \cong \mathbb{P}^{2}$ for the algebraic closure \bar{K} of K. Then it is constructed from V_{K} a standrd \mathbb{P}^{2}-bundle

$$
\begin{equation*}
\tau: V \rightarrow X, \tag{1}
\end{equation*}
$$

(cf. [Ma]) i.e. V and X are smooth projective varieties and τ is a flat contraction morphism of an extremal ray with the generic fibre
isomorphic to the given K-form $V_{K} \rightarrow \operatorname{Spec}(K)$. The non-smooth locus Δ of (1) is a simple normal crossing curve of X and the geometric fibre over a smooth point of Δ consists of three components $H_{i}(i=$ $1,2,3$) with $H_{i} \cong \mathbb{F}_{1}$ (one point blow up of \mathbb{P}^{2}), $H_{i} \cap H_{i+1}$ (resp. $H_{i} \cap$ H_{i-1}) is a fibre (resp. the (-1)-curve) on $H_{i} \cong \mathbb{F}_{1}$ (where the suffix means $\bmod 3$) and $H_{1} \cap H_{2} \cap H_{3}$ is a one point. The geometric fibre over a singular point of Δ is non-reduced with the reduced part isomorphic to the cone over a rational twisted cubic in \mathbb{P}^{3}.

Theorem. (I) Let $Y \rightarrow X$ be the blow-up at a singular point of Δ. A birational map from the standard \mathbb{P}^{2}-bundle V of (1) to a standard \mathbb{P}^{2}-bundle W over Y is factored by elementary birational morphisms

$$
V \leftarrow V_{1} \leftarrow V_{2} \leftarrow V_{3} \rightarrow \leftarrow V^{\prime} \rightarrow \leftarrow V_{4} \rightarrow V_{5} \rightarrow W,
$$

where $V_{3} \rightarrow \leftarrow V^{\prime}$ (resp. $V^{\prime} \rightarrow \leftarrow V_{4}$) is a flop with the exceptional sets $\mathbb{F}_{3} \rightarrow \mathbb{P}^{1} \leftarrow \mathbb{F}_{0}$ (resp. $\mathbb{F}_{2} \rightarrow \mathbb{P}^{1} \leftarrow \mathbb{F}_{5}$). There are isomorphisms of the conormal bundles

$$
\begin{aligned}
& \mathcal{C}_{\mathbb{F}_{3} / V_{3}} \cong \mathcal{O}_{\mathbb{F}_{3}}(s+2 f) \oplus \mathcal{O}_{\mathbb{F}_{3}}(s+2 f), \\
& \mathcal{C}_{\mathbb{F}_{0} / V^{\prime}} \cong \mathcal{O}_{\mathbb{F}_{0}}(s+2 f) \oplus \mathcal{O}_{\mathbb{F}_{0}}(s-f), \\
& \mathcal{C}_{\mathbb{F}_{2} / V^{\prime}} \cong \mathcal{O}_{\mathbb{F}_{2}}(s+3 f) \oplus \mathcal{O}_{\mathbb{F}_{2}}(s-2 f), \\
& \mathcal{C}_{\mathbb{F}_{5} / V_{4}} \cong \mathcal{O}_{\mathbb{F}_{5}}(s+3 f) \oplus \mathcal{O}_{\mathbb{F}_{5}}(s+f),
\end{aligned}
$$

with the negative section s and a fibre f of the rational ruled surface \mathbb{F}_{n} of degree n.
(II) Let $Y \rightarrow X$ be a blow-up at a smooth point of Δ. A birational map from the standard \mathbb{P}^{2}-bundle V of (1) to a standard \mathbb{P}^{2}-bundle W over Y is factored by

$$
V \leftarrow V_{1} \rightarrow \leftarrow V_{3} \leftarrow W,
$$

where $V_{1} \rightarrow \leftarrow V_{3}$ (resp. $V_{3} \leftarrow W$) is a flop (resp. a single blow up-and-down) with the exceptional sets $\mathbb{F}_{1} \rightarrow \mathbb{P}^{1} \leftarrow \mathbb{F}_{1}$, (resp. $\mathbb{P}^{2} \leftarrow$ $\mathbb{P}^{2} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$).
(III) Let C be a smooth curve on X intersecting transversely at one smooth point of Δ. There is a birational map from the standard \mathbb{P}^{2} bundle V of (1) to a standard \mathbb{P}^{2}-bundle W over X, which is factored by

$$
V \leftarrow V_{1} \leftarrow V_{3} \rightarrow \leftarrow V_{5} \rightarrow W,
$$

where $V_{1} \longleftrightarrow V_{3}$ (resp. $V_{3} \rightarrow \leftarrow V_{5}$) is a single blow up-and-down (resp. a flop) with the exceptional sets $\mathbb{P}^{1} \leftarrow \mathbb{P}^{1} \times \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ (resp. $\mathbb{F}_{0} \rightarrow$ $\mathbb{P}^{1} \leftarrow \mathbb{F}_{1}$). If C is disjoint from Δ and $V=\mathbb{P}[\mathcal{E}]$ over a neibourhood of C with a rank three vector bundle \mathcal{E}, then the birational map (III) is nothing but an elementary transformation of the vector bundle \mathcal{E} with center over C.

The decompositions of birational maps of standard conic bundles corresponding to (I), (II), (III) above are appeared in [Sa,p368] (cf. (4.3)). The statements (I), (II), (III) in Theorem are proved in $\S 1, \S 2$, $\S 3$, respectively.

Throughout this paper, \mathbb{F}_{n} is the rational ruled surface of degree n with a fibre f and the $(-n)$-curve s. The direct sum of line bundles is denoted by $\mathcal{O}_{\mathbb{F}_{n}}(s+f, s+2 f)=\mathcal{O}_{\mathbb{F}_{n}}(s+f) \oplus \mathcal{O}_{\mathbb{F}_{n}}(s+2 f), \mathcal{O}(1,1)=$ $\mathcal{O}_{\mathbb{P}^{1}}(1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(2)$ etc. The conormal bundle of a subvariety S in V is denoted by $\mathcal{C}_{S / V}$.

0. Preliminaries

(0.1) We recall the construction the standard \mathbb{P}^{2}-bundle over X from the K-form V_{K} (cf.[Ma]). Let A be the central simple algebra of rank 9 over K corresponding to V_{K} which is represented by an element of the one-dimensional Galois cohomology set $H^{1}\left(K, P G L_{3}\right)$. There are a smooth projective surface X with the function field isomorphic to K and a maximal \mathcal{O}_{X}-order Λ in A such that the discriminant curve $\Delta=\Delta(A, X)$ of A in $X[\mathrm{~A}-\mathrm{M}, \mathrm{p} 84]$ is a simple normal crossing curve on X, and $\Lambda \otimes R$ (where $R=\mathcal{O}_{X, p}$ is the local ring of X at a point p of X), is isomorphic to

$$
\begin{array}{ll}
(\epsilon, \eta)_{3, R} & \text { if } p \in X-\Delta \\
(\epsilon, g)_{3, R} & \text { if } p \in \Delta-\operatorname{Sing}(\Delta) \\
(f, g)_{3, R} & \text { if } p \in \operatorname{Sing}(\Delta) \tag{0.1.3}
\end{array}
$$

Here $\operatorname{Sing}(\Delta)$ is the singular locus of $\Delta,\{\epsilon, \eta\}$ are units of R and $g=0$ (resp. $f g=0$) is a defining equation of Δ at p in (0.1.2) (resp. (0.1.3)), $(\epsilon, \eta)_{3, R}$ is the R-algebra generated by two elements x, y with relations $x^{3}=\epsilon, y^{3}=\eta, y x=\omega x y$ (where ω is a cube of unity). The standard \mathbb{P}^{2}-bundle V over X associated to V_{K} is constructed by gluing standard \mathbb{P}^{2}-bundles V_{R} over the local rings
$R=\mathcal{O}_{X, p}$ at each point $p \in X$, which are the intersection of $\mathbb{P}\left[E_{R}^{\vee}\right]$ and the grassmannian $G_{3}\left[\Lambda^{\vee} \otimes R\right]$ of 3-quotients of $\Lambda^{\vee} \otimes R$. Here E_{R} is the $(\Lambda \otimes R)^{*}$-subspace of $\wedge^{3} \Lambda \otimes R$ (where $(\Lambda \otimes R)^{*}$ is the unit group of $\Lambda \otimes R$) with $E_{R} \otimes \bar{K}$ isomorphic to the third symmetric tensor representation space $H^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(3)\right)$ of $(\Lambda \otimes \bar{K})^{*} \cong G L_{3}(\bar{K})$ for an algebraic closure \bar{K} of K, and E_{R}^{\vee} and $\Lambda^{\vee} \otimes R$ are the R-duals of E_{R} and $\Lambda \otimes R$, respectively.
(0.2) The following Lemma is used to describe the flop appearing in the birational maps (I)-(III) in Theorem.

Lemma. Let $S \cong \mathbb{F}_{n}$ be a subvariety of a smooth four-fold V with the conormal bundle $\mathcal{C}_{S / V}$ of S in V. Assume $\left.\mathcal{C}_{S / V}\right|_{f} \cong \mathcal{O}(1,1)$ for any fibre f of $S \cong \mathbb{F}_{n}$, and $S \subset V$ is flopped to $S^{+} \cong \mathbb{F}_{m} \subset V^{+}$. Then
(i) For an integre $a \in \mathbb{Z}$,

$$
\begin{aligned}
& \mathcal{C}_{S / V} \cong \mathcal{O}_{\mathbb{F}_{n}}(s+a f, s+(a-m) f), \\
& \mathcal{C}_{S^{+} / V^{+}} \cong \mathcal{O}_{\mathbb{F}_{m}}(s+a f, s+(a-n) f) .
\end{aligned}
$$

(ii) Assume there is a smooth divisor D of V containing S with the birational transform D^{+}in V^{+}. Let $C^{+}=D^{+} \cap S^{+}$. If $\mathcal{C}_{S / D} \cong$ $\mathcal{O}_{\mathbb{F}_{n}}(s+(a+b) f)$, then $\left(C^{+2}\right)_{S^{+}}=m+2 b$.
(iii) Assume there is a smooth divisor F of V such that $C=F \cap S$ is a section of the ruled surface $S=\mathbb{F}_{n}$. If $\mathcal{C}_{S^{+} / F^{+}} \cong \mathcal{O}_{\mathbb{F}_{m}}(s+(a+c) f)$, then $\left(C^{2}\right)_{S}=n+2 c$.

Proof. (i) The flopped variety V^{+}is obtained by the blow-up $\sigma: W \rightarrow$ V along S followed by the blow-down $\tau: W \rightarrow V^{+}$of the exceptional divisor E of σ to the other direction, so that $E=\mathbb{P}\left[\mathcal{C}_{S / V}\right]$ is isomorphic to the fibre product $S \times_{\mathbb{P}^{1}} S^{+} \cong \mathbb{P}\left[\pi^{*} \mathcal{O}(0,-m)\right]$, where $\pi: S=\mathbb{F}_{n} \rightarrow \mathbb{P}^{1}$ is the projection. Hence $\mathcal{C}_{S / V}$ is isomorphic to $\pi^{*} \mathcal{O}(0,-m)=\mathcal{O}_{\mathbb{F}_{n}}(0,-m f)$ modulo $\operatorname{Pic}(S)$. Since $\left.\mathcal{C}_{S / V}\right|_{f} \cong \mathcal{O}(1,1)$, we set $\mathcal{C}_{S / V} \cong \mathcal{O}_{\mathbb{F}_{n}}(s+a f, s+(a-m) f)$ for an integer $a \in \mathbb{Z}$. Similarly, we put $\mathcal{C}_{S^{+} / V^{+}} \cong \mathcal{O}_{\mathbb{F}_{m}}(s+b f, s+(b-n) f)$. Now we shall show $a=b$. Let $\tilde{s} \subset E$ be a curve which is mapped isomorphically onto the negative sections $s \subset S \cong \mathbb{F}_{n}$ and $s^{+} \subset S^{+} \cong \mathbb{F}_{m}$, i.e. $\tilde{s}=s \times_{\mathbb{P}^{1}} s^{+}$.

Then

$$
\begin{align*}
\left(K_{V . s}\right) & =c_{1}\left(\left.\mathcal{C}_{S / V}\right|_{s}\right)+\left(K_{S} \cdot s\right) \tag{0.2.1}\\
& =(-n+a)+(-n+a-m)+(n-2) \\
& =2 a-n-m-2
\end{align*}
$$

$$
\begin{align*}
\left(K_{V^{+} . s^{+}}\right) & =c_{1}\left(\left.\mathcal{C}_{S^{+} / V^{+}}\right|_{s^{+}}\right)+\left(K_{S^{+} . s^{+}}\right) \tag{0.2.2}\\
& =(-m+b)+(-m+b-n)+(m-2) \\
& =2 b-n-m-2
\end{align*}
$$

On the other hand, $\left(K_{V} . s\right)=\left(K_{V^{+} . s^{+}}\right)$because the canonical divisors are equal to $K_{W}=\sigma^{*} K_{V}+E=\tau^{*} K_{V^{+}}+E$ and $\left(E . \sigma^{*} s\right)=\left(E . \tau^{*} s^{+}\right)=$ 0 . Hence (0.2.1) $=(0.2 .2)$ implies $a=b$.
(ii) The intersection in W of E and the proper transform of D, is equal to $\mathbb{P}\left[\mathcal{C}_{S / D}\right]$ in $E=\mathbb{P}\left[\mathcal{C}_{S / V}\right]$. Then $C^{+} \subset S^{+}$is isomorphic to $\mathbb{P}\left[\left.\mathcal{C}_{S / D}\right|_{s}\right] \subset \mathbb{P}\left[\left.\mathcal{C}_{S / V}\right|_{s}\right]$. Since $\left.\mathcal{C}_{S / V}\right|_{s} \cong \mathcal{O}(-n+a,-n+a-m) \rightarrow$ $\left.\mathcal{C}_{S / D}\right|_{s} \cong \mathcal{O}(-n+a+b)$, i.e. $\mathcal{O}(0,-m) \rightarrow \mathcal{O}(b)$, we see $\left(C^{+2}\right)_{S^{+}}=$ $m+2 b$.
(iii) The flopped surface S^{+}is the exceptional divisor of the blow-up $F^{+} \rightarrow F$ along C, so that $\left(S^{+} . f\right)_{F^{+}}=-1$ for a fibre f of $S^{+}=\mathbb{F}_{\boldsymbol{m}}$. Hence we put $\mathcal{C}_{S^{+} / F^{+}} \cong \mathcal{O}_{\mathbb{F}_{m}}(s+(a+c) f)$ for an integre $c \in \mathbb{Z}$. The intersection in W of E and the proper transform of F, is equal to $\mathbb{P}\left[\mathcal{C}_{S^{+} / F^{+}}\right]$in $\mathbb{P}\left[\mathcal{C}_{S^{+} / V^{+}}\right]$. Then $C \subset S$ is isomorphic to $\mathbb{P}\left[\left.\mathcal{C}_{S^{+} / F^{+}}\right|_{s}\right] \subset$ $\mathbb{P}\left[\left.\mathcal{C}_{S^{+} / V^{+}}\right|_{s}\right]$. Since $\left.\left.\mathcal{C}_{S^{+} / V^{+}}\right|_{s} \cong \mathcal{O}(-m+a,-m+a-n) \rightarrow \mathcal{C}_{S^{+} / F^{+}}\right|_{s} \cong$ $O(-m+a+c)$, i.e. $\mathcal{O}(0,-n) \rightarrow \mathcal{O}(c)$, we see $\left(C^{2}\right)_{S}=n+2 c$.
(0.3) Let $T \cong \mathbb{P}^{2}$ be a subvariety of a smooth 4 -fold V with $\mathcal{C}_{T / V} \cong$ $\mathcal{O}_{\mathbb{P}^{2}}(1,1)$. Then there are birational maps

$$
V{ }^{\frac{\sigma_{1}}{\leftarrow}} V_{1} \xrightarrow{\sigma_{2}} V_{2},
$$

where σ_{1} is the blow-up along T with the exceptional divisor $E \cong$ $\mathbb{P}^{2} \times \mathbb{P}^{1}$, and σ_{2} is the blow-down of E onto \mathbb{P}^{1} (the projection to the second factor). Assume there is a smooth subvariety S of V of dimension 2 intersectiong T transeversely at one point p. Then
(i) the birational transform S_{2} in V_{2} of S is the blow up of S at the point $p=S \cap T$ with the exceptional line $e=\sigma_{2}(E)$,
(ii) $\mathcal{C}_{S_{2} / V_{2}} \cong \sigma_{2 *} \sigma_{1}^{*} \mathcal{C}_{S / V} \otimes \mathcal{O}_{S_{2}}(-e)$.

Conversely, let S^{\prime} be a smooth subvariety of a smooth four-fold W with $\left.\mathcal{C}_{S^{\prime} / W}\right|_{e} \cong \mathcal{O}(1,1)$ for a (-1)-curve e on S^{\prime}. Then, from the exact sequence $\left.0 \rightarrow \mathcal{C}_{S^{\prime} / W}\right|_{e} \rightarrow \mathcal{C}_{e / W} \rightarrow \mathcal{C}_{e / S^{\prime}} \rightarrow 0$, we see $\mathcal{C}_{e / W} \cong \mathcal{O}(1,1,1)$. Hence there are birational maps

$$
W \stackrel{\sigma_{1}}{\leftarrow} W_{1} \xrightarrow{\sigma_{2}} W_{2},
$$

where σ_{1} is the blow-up along e with the exceptional divisor $E \cong$ $\mathbb{P}^{1} \times \mathbb{P}^{2}$, and σ_{2} is the blow-down of E onto \mathbb{P}^{2} (the projection to the second factor). The birational transform S_{2}^{\prime} in W_{2} of S^{\prime} is the blow-down of S^{\prime} along e with $\sigma_{1 *} \sigma_{2}^{*} \mathcal{C}_{S_{2}^{\prime} / W_{2}} \cong \mathcal{C}_{S^{\prime} / W} \otimes \mathcal{O}_{S^{\prime}}(e)$.

1. The birational map (I)

(1.1) In this section we consider the birational map (I) in Theorem. Let $\tau: V \rightarrow \operatorname{Spec}(R)$ be the standard \mathbb{P}^{2}-bundle over the local ring R of X at a singular point of Δ constructed from the R-order $(f, g)_{3, R}$ of (0.1.3) (cf.§4). For the blow-up $\sigma: Y=Y_{0} \cup Y_{1} \rightarrow \operatorname{Spec}(R)$ at the origin with $Y_{0}=\operatorname{Spec}(R[g / f])$ and $Y_{1}=\operatorname{Spec}(R[f / g])$, there is a standard \mathbb{P}^{2}-bundle $\tau_{1}: W \rightarrow Y$ constructed from a maximal \mathcal{O}_{Y}-order $\tilde{\Lambda}$ with $\tilde{\Lambda}_{Y_{0}}=(f, g / f)_{3, Y_{0}}$ and $\tilde{\Lambda}_{Y_{1}}=(f / g, g)_{3, Y_{1}}$. In this section we decompose a birational map from V to W over $\operatorname{Spec}(R)$ into elementary birational morphisms.
(1.2) Let $\sigma_{1}: V_{1} \rightarrow V$ be the blow-up at the vertex of the central fibre $\tau^{-1}(o)$ (the cone over the rational twisted cubic in \mathbb{P}^{3}, i.e. the surface contracted along the (-3)-curve on \mathbb{F}_{3}). Let $\sigma_{2}: V_{2} \rightarrow V_{1}$ be the blow-up along the proper transform $Q_{1} \cong \mathbb{F}_{3}$ of $\tau^{-1}(o)$. We will prove the following Lemma in (4.2).
Lemma. $\mathcal{C}_{\sigma_{1}(l) / V} \cong \mathcal{O}(2,0,-1)$ for any fibre l of $Q_{1} \cong \mathbb{F}_{3}$.
Assume the above Lemma. Since σ_{1} is the blow-up at a point on $\sigma_{1}(l)$, Lemma implies $\mathcal{C}_{l / V_{1}} \cong \mathcal{C}_{\sigma_{1}(l) / V} \otimes \mathcal{O}(1) \cong \mathcal{O}(3,1,0)$. From the exact sequence $\left.0 \rightarrow \mathcal{C}_{Q_{1} / V_{1}}\right|_{l} \rightarrow \mathcal{C}_{l / V_{1}} \rightarrow \mathcal{C}_{l / Q_{1}} \cong \mathcal{O} \rightarrow 0$, we see

$$
\begin{equation*}
\mathcal{C}_{Q_{1} / V_{1} \mid l} \cong \mathcal{O}(3,1) \tag{1.2.1}
\end{equation*}
$$

(1.3) Let $H_{2} \subset V_{2}$ be the exceptional divisor of σ_{2}. From (1.2.1), the restriction $H_{l}=\sigma_{2}^{-1}(l)$ of $\sigma_{2}: H_{2} \rightarrow Q_{1}$ to a fibre l of $Q_{1} \cong \mathbb{F}_{3}$ is
isomorphic to \mathbb{F}_{2}. Let b_{l} be the (-2)-curve on H_{l} and let $Q_{2} \cong \mathbb{F}_{3}$ be the section of $\sigma_{2}: H_{2} \rightarrow Q_{1}$ defined by

$$
\begin{equation*}
Q_{2}=\text { the union of } b_{l} \text { 's for all fibres } l \text { of } Q_{1} \cong \mathbb{F}_{3} . \tag{1.3.1}
\end{equation*}
$$

We define σ_{3} as the blow up along $Q_{2} \cong \mathbb{F}_{3}$.
Lemma. The exact sequence

$$
\begin{equation*}
\left.0 \rightarrow \mathcal{C}_{H_{2} / V_{2}}\right|_{Q_{2}} \rightarrow \mathcal{C}_{Q_{2} / V_{2}} \rightarrow \mathcal{C}_{Q_{2} / H_{2}} \rightarrow 0 \tag{1.3.2}
\end{equation*}
$$

splits with isomorphisms $\left.\mathcal{C}_{H_{2} / V_{2}}\right|_{Q_{2}} \cong \mathcal{O}_{F_{3}}(s-f)$ and $\mathcal{C}_{Q_{2} / H_{2}} \cong$ $\mathcal{O}_{\mathbb{F}_{3}}(2 s+4 f)$.

Proof. We will show the two isomorphisms in (1.3.2), i.e. $\left(H_{2} \cdot s\right)_{V_{2}}=$ $4,\left(H_{2} . f\right)_{V_{2}}=-1,\left(Q_{2} . s\right)_{H_{2}}=2,\left(Q_{2} . f\right)_{H_{2}}=-2$. Then Lemma follows from $\operatorname{Ext}^{1}\left(\mathcal{O}_{\mathbb{F}_{3}}(2 s+4 f), \mathcal{O}_{\mathbb{F}_{3}}(s-f)\right)=H^{1}\left(\mathcal{O}_{\mathbb{F}_{3}}(-s-5 f)\right) \cong$ $H^{1}\left(\mathcal{O}_{\mathbb{F}_{3}}(-s)\right)=0$ by Serre duality. We see $\left(H_{2} . f\right)_{V_{2}}=\left.\mathcal{O}_{H_{2}}(-1)\right|_{f}=$ -1 because the (-2 -curve $f=b_{l}$ on $H_{l}=\mathbb{P}[\mathcal{O}(3,1)]$ is defined by the surjection $\mathcal{O}(3,1) \rightarrow \mathcal{O}(1)$, and $\left(Q_{2} \cdot f\right)_{H_{2}}=\left(\left.Q_{2}\right|_{H_{l}} \cdot b_{l}\right)_{H_{l}}=\left(b_{l}^{2}\right)_{\mathbb{F}_{2}}=$ -2 because $Q_{2} \cap H_{l}=b_{l}$. Let $E_{1}=\mathbb{P}^{3}$ be the exceptional divisor of σ_{1} and let E_{2} be the proper transform of E_{1} by σ_{2}. Then the restriction of σ_{2} to E_{2} is the blow-up of $E_{1}=\mathbb{P}^{3}$ along the twisted cubic $C_{1}=Q_{1} \cap E_{1}$ with the exceptional divisor $S_{2}=H_{2} \cap E_{2}$ isomorphic to \mathbb{F}_{0} because $\mathcal{C}_{C_{1} / E_{1}} \cong \mathcal{O}(-5,-5)$. We will show in Lemma(1.5)(ii),
(1.3.3) the (-3)-curve $C_{2}=Q_{2} \cap S_{2}$ on $Q_{2} \cong \mathbb{F}_{3}$ is a (+2)-curve on $S_{2} \cong \mathbb{F}_{0}$.

If we assume (1.3.3), then $\left(Q_{2} . s\right)_{H_{2}}=\left(\left.Q_{2}\right|_{S_{2}} \cdot s\right)_{S_{2}}=\left(C_{2}^{2}\right)_{S_{2}}=2$ and $\left(H_{2} . s\right)_{V_{2}}=\left.\mathcal{O}_{H_{2}}(-1)\right|_{s}=\left.\mathcal{O}_{S_{2}}(-1)\right|_{C_{2}}=4$ because the (+2)-curve C_{2} on $S_{2} \cong \mathbb{F}_{0}$ is defined by a surjection $\mathcal{O}(-5,-5) \rightarrow \mathcal{O}(-4)$.
(1.4) For the twisted cubic C_{1} in $E_{1}=\mathbb{P}^{3}$, let $\phi: C_{1} \rightarrow \mathbb{P}^{1}$ be the cyclic cover of degree three ramified at two points $\left\{p_{0}, p_{\infty}\right\} \subset \mathbb{P}^{1}$, and let $f_{p, 0} \cup f_{p, 1} \cup f_{p, 2} \subset E_{1}$ be the three lines joining the three points $\phi^{-1}(p)$ for each point $p \in \mathbb{P}^{1}-\left\{p_{0}, p_{\infty}\right\}$. Let

$$
M_{1}=\text { the closure in } E_{1} \text { of } \cup_{p \in \mathbb{P}^{1}-\left\{p_{0}, p_{\infty}\right\}} \cup_{i=0}^{2} f_{p, i} .
$$

We see the tangent lines at p_{0} and p_{∞} to C_{1} are contained in M_{1}.

Lemma. (i) $M_{1} \subset E_{1} \cong \mathbb{P}^{3}$ is a non-normal quartic surface with multiplicity two along the twisted cubic C_{1}.
(ii) The proper transform M_{2} of M_{1} in V_{2} is isomorphic to \mathbb{F}_{2}.

Proof. (i) Let $F\left(z_{0}, \ldots, z_{3}\right)=0$ be the defining equation of M_{1} in \mathbb{P}^{3}. For a point $p=(g: 1) \in \mathbb{P}^{1}$, we assume $\phi^{-1}(p)=\left\{p_{0}, p_{1}, p_{2}\right\}$ with $p_{i}=\left(g: \omega^{2 i} \beta^{2}: \omega^{i} \beta: 1\right),(i=0,1,2)$ for $\beta^{3}=g$. Then the three lines $f_{p, i}(i=0,1,2)$ are contained in the plane $\left\{z_{0}=g z_{3}\right\} \cong \mathbb{P}^{2}$, where the line $f_{p, i}$ is defined by the equation $l_{i}=z_{1}+\omega^{i} \beta z_{2}+\omega^{2 i} \beta^{2} z_{3}=0$. This means $F\left(g z_{3}, z_{1}, z_{2}, z_{3}\right)$ is divided by the product

$$
\begin{aligned}
l_{0} l_{1} l_{2} & =z_{1}^{3}+g z_{2}^{3}+g^{2} z_{3}^{3}-3 g z_{1} z_{2} z_{3} \\
& =z_{1}^{3}+\left(z_{0} / z_{3}\right) z_{2}^{3}+\left(z_{0} / z_{3}\right)^{2} z_{3}^{3}-3 z_{0} z_{1} z_{2}
\end{aligned}
$$

Hence $F\left(z_{0}, \ldots, z_{3}\right)$ is equal to

$$
\begin{equation*}
F\left(z_{0}, \ldots, z_{3}\right)=z_{1}^{3} z_{3}+z_{0} z_{2}^{3}+z_{0}^{2} z_{3}^{2}-3 z_{0} z_{1} z_{2} z_{3} . \tag{1.4.1}
\end{equation*}
$$

We see easily the singular locus of $\{F=0\}$ is equal to the twisted cubic $C_{1}=\left\{z_{0} z_{2}-z_{1}^{2}=z_{0} z_{3}-z_{1} z_{2}=z_{1} z_{3}-z_{2}^{2}=0\right\}$ with multiplicity two.
(ii) The quartic surface $M_{1}=\{F=0\}$ contains the line $s=\left\{z_{0}=\right.$ $\left.z_{3}=0\right\}$, so the conormal sheaf $\mathcal{C}_{s / M_{1}}$ is isomorphic to $\mathcal{O}(2)$ by the exact sequence $\left.0 \rightarrow \mathcal{C}_{M_{1} / \mathbb{P}^{3}}\right|_{s} \rightarrow \mathcal{C}_{s / \mathbb{P}^{3}} \rightarrow \mathcal{C}_{s / M_{1}} \rightarrow 0$. Since s is disjoint from the singular locus C_{1} of M_{1} and since M_{2} is nonsingular, we conclude M_{2} is isomorphic to \mathbb{F}_{2}.
(1.5) Next we investigate the 1-dimensional subscheme $M_{2} \cap H_{2}$ in V_{2}.
Lemma. (i) $M_{2} \cap H_{2}$ consists of two sections C_{2} and C_{2}^{\prime} of $\sigma_{2}: S_{2} \cong$ $\mathbb{F}_{0} \rightarrow C_{1}$,
(ii) C_{2} is linearly equivalent to C_{2}^{\prime} on both S_{2} and on M_{2}, and $\left(C_{2}^{2}\right)_{S_{2}}=\left(C_{2}^{2}\right)_{M_{2}}=2$.
Proof. $\sigma_{2}: E_{2} \rightarrow E_{1}$ is the blow-up of $E_{1} \cong \mathbb{P}^{3}$ alon the twisted cubic $C=\left\{z_{0} z_{2}-z_{1}^{2}=z_{0} z_{3}-z_{1} z_{2}=z_{1} z_{3}-z_{2}^{2}=0\right\}$, so E_{2} is defined by the equations

$$
\left(\begin{array}{lll}
z_{0} & z_{1} & z_{2} \tag{1.5.1}\\
z_{1} & z_{2} & z_{3}
\end{array}\right)\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right)=\binom{0}{0}
$$

in $E_{1} \times \mathbb{P}^{2}$, where (z_{i}) (resp. $\left.\left(y_{i}\right)\right)$ is the homogeneous coordinates of $E_{1}=\mathbb{P}^{3}$ (resp. \mathbb{P}^{2}). The projection of $E_{1} \times \mathbb{P}^{2}$ to \mathbb{P}^{2} defines the \mathbb{P}^{1}-bundle structure $\pi: E_{2} \rightarrow \mathbb{P}^{2}$ and $E_{2} \cong \mathbb{P}[\mathcal{E}]$ with the rank two vector bundle \mathcal{E} on \mathbb{P}^{2} defined by

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-1)^{2} \xrightarrow{A} \mathcal{O}_{\mathbb{P}^{2}}^{4} \rightarrow \mathcal{E} \rightarrow 0, \tag{1.5.2}
\end{equation*}
$$

where

$$
A=\left(\begin{array}{cccc}
y_{0} & y_{1} & y_{2} & 0 \\
0 & y_{0} & y_{1} & y_{2}
\end{array}\right),
$$

We see $\mathcal{E}(-1)$ is a rank two stable vector bundle on \mathbb{P}^{2} with $c_{1}(\mathcal{E}(-1))$ $=0$ and $c_{2}(\mathcal{E}(-1))=2$. Since the equation (1.4.1) is equal to

$$
F\left(z_{0}, \ldots, z_{3}\right)=-\left(z_{0} z_{2}-z_{1}^{2}\right)\left(z_{1} z_{3}-z_{2}^{2}\right)+\left(z_{0} z_{3}-z_{1} z_{2}\right)^{2}
$$

the proper transform $M_{2} \subset E_{2}$ of M_{1} is equal to the \mathbb{P}^{1}-bundle $\pi^{-1}(q)$ over the conic $q=\left\{y_{0} y_{2}=y_{1}^{2}\right\}$ in \mathbb{P}^{2}, and $\left.\mathcal{E}\right|_{q} \cong \mathcal{O}_{\mathbb{P}^{1}}(3,1)$ because $M_{2}=\mathbb{P}\left[\left.\mathcal{E}\right|_{q}\right] \cong \mathbb{F}_{2}$ and $c_{1}(\mathcal{E})=2$ by (1.5.2). The intersection of M_{2} and the exceptional divisor $S_{2}=H_{2} \cap E_{2}$ of $\sigma_{2}: E_{2} \rightarrow E_{1}$ is defined in $\mathbb{P}_{z}^{3} \times \mathbb{P}_{y}^{2}$ by (1.5.1) together with

$$
\operatorname{rank}\left(\begin{array}{ll}
y_{0} & y_{1} \\
y_{1} & y_{2}
\end{array}\right)=1, \quad \operatorname{rank}\left(\begin{array}{lll}
z_{0} & z_{1} & z_{2} \\
z_{1} & z_{2} & z_{3}
\end{array}\right)=1
$$

hence we see $M_{2} \cap S_{2}=M_{2} \cap H_{2}$ consists of two sections C_{2} and C_{2}^{\prime} over the twisted cubic $C_{1} \subset E_{1}$, where

$$
\begin{equation*}
C_{2}=\left\{\left(\lambda^{3}: \lambda^{2} \mu: \lambda \mu^{2}: \mu^{3}\right) \times\left(\omega^{2} \lambda^{2}: \omega \lambda \mu: \mu^{2}\right) \mid(\lambda: \mu) \in \mathbb{P}^{1}\right\} \tag{1.5.3}
\end{equation*}
$$

and C_{2}^{\prime} is equal to C_{2} replacing ω by ω^{2}. Hence C_{2} and C_{2}^{\prime} are linearly equivalent on both $S_{2} \cong \mathbb{F}_{0}$ and $M_{2} \cong \mathbb{F}_{2}$, and intersects at two points $(\lambda: \mu)=(1: 0)$ and $(0: 1)$. Therefore $\left(C_{2}^{2}\right)_{S_{2}}=\left(C_{2}^{2}\right)_{M_{2}}=2$ and C_{2} is equal to $\mathbb{P}[\mathcal{O}(3)]$ in $M_{2}=\mathbb{P}\left[\left.\mathcal{E}\right|_{q}\right]$ by a surjection $\left.\mathcal{E}\right|_{q} \cong \mathcal{O}(3,1) \rightarrow$ $\mathcal{O}(3)$.

The intersection of E_{2} and Q_{2} (see (1.3.1)) is equal to one of C_{2} and C_{2}^{\prime}, say C_{2}. Let us consider the elementary transformation of \mathcal{E} along $C_{2}=E_{2} \cap Q_{2}$:

$$
\begin{equation*}
0 \rightarrow \mathcal{E}^{\prime} \rightarrow \mathcal{E} \rightarrow \mathcal{O}_{q}(3) \rightarrow 0 \tag{1.5.4}
\end{equation*}
$$

with $C_{2}=\mathbb{P}\left[\mathcal{O}_{q}(3)\right]$ in $M_{2}=\mathbb{P}\left[\left.\mathcal{E}\right|_{q}\right] \cong \mathbb{P}[\mathcal{O}(3,1)]$ and $E^{\prime}=\mathbb{P}\left[\mathcal{E}^{\prime}\right]$.
(1.6) In the exact sequence (1.5.4) we will show

Lemma. $\left.\quad \mathcal{E}^{\prime}\right|_{q} \cong \mathcal{O}(1,-1)$.
Proof. Let $\left(p_{1}, p_{2}\right)=\left(y_{1} / y_{0}, y_{2} / y_{0}\right)$ (resp. $\left.\left(q_{0}, q_{1}\right)=\left(y_{0} / y_{2}, y_{1} / y_{2}\right)\right)$ be the affine coordinates of the openset $U_{0}=\left\{y_{0}=0\right\}$ (resp. $U_{2}=$ $\left\{y_{2}=0\right\}$) in \mathbb{P}_{y}^{2}. From the exact sequence (1.5.2), we see

$$
\begin{aligned}
z_{2} & =-\left(y_{0} / y_{2}\right) z_{0}-\left(y_{1} / y_{2}\right) z_{1} \\
z_{3} & =-\left(y_{0} / y_{2}\right) z_{1}-\left(y_{1} / y_{2}\right) z_{2} \\
& =-\left(y_{0} / y_{2}\right) z_{1}+\left(y_{1} / y_{2}\right)\left\{\left(y_{0} / y_{2}\right) z_{0}+\left(y_{1} / y_{2}\right) z_{1}\right\},
\end{aligned}
$$

on $E_{2}=\mathbb{P}[\mathcal{E}]$, so \mathcal{E} has a free basis $\left\{z_{2}, z_{3}\right\}$ (resp. $\left\{z_{1}, z_{0}\right\}$) over U_{0} (resp. U_{1}) with

$$
\binom{z_{2}}{z_{3}}=\left(\begin{array}{cc}
-q_{1} & -q_{0} \\
q_{1}^{2}-q_{0} & q_{0} q_{1}
\end{array}\right)\binom{z_{1}}{z_{0}}
$$

From (1.5.2), the kernel \mathcal{E}^{\prime} in (1.5.4) is given by

$$
\begin{aligned}
& \binom{w_{2}}{w_{3}}=\left(\begin{array}{cc}
1 & -\omega p_{1} \\
0 & p_{2}-p_{1}^{2}
\end{array}\right)\binom{z_{2}}{z_{3}} \quad \text { on } U_{0} \\
& \binom{w_{1}}{w_{0}}=\left(\begin{array}{cc}
1 & -\omega^{2} q_{1} \\
0 & q_{0}-q_{1}^{2}
\end{array}\right)\binom{z_{1}}{z_{0}} \quad \text { on } U_{2}
\end{aligned}
$$

Therefore ${ }^{t}\left(w_{2}, w_{3}\right)=A \cdot{ }^{t}\left(w_{1}, w_{0}\right)$ with A equal to

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & -\omega p_{1} \\
0 & p_{2}-p_{1}^{2}
\end{array}\right)\left(\begin{array}{cc}
-q_{1} & -q_{0} \\
q_{1}^{2}-q_{0} & q_{0} q_{1}
\end{array}\right)\left(\begin{array}{cc}
1 & -\omega^{2} q_{1} \\
0 & q_{0}-q_{1}^{2}
\end{array}\right)^{-1} \\
= & \left(\begin{array}{cc}
1 & -\omega\left(q_{1} / q_{0}\right) \\
0 & \left(1 / q_{0}\right)-\left(q_{1} / q_{0}\right)^{2}
\end{array}\right)\left(\begin{array}{cc}
-q_{1} & -q_{0} \\
q_{1}^{2}-q_{0} & q_{0} q_{1}
\end{array}\right)\left(\begin{array}{cc}
1 & -\omega^{2} q_{1} \\
0 & q_{0}-q_{1}^{2}
\end{array}\right)^{-1} \\
= & \left(\begin{array}{cc}
-q_{1}+\omega\left(q_{1} / q_{0}\right)\left(q_{0}-q_{1}^{2}\right) & -\omega^{2} q_{1}\left(q_{0}-q_{1}^{2}\right) / q_{0}^{2}+\left(q_{1} / q_{0}\right)
\end{array}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\left(q_{0}-q_{1}^{2}\right) a_{12} & =\left\{-q_{1}+\omega\left(q_{1} / q_{0}\right)\left(q_{0}-q_{1}^{2}\right)\right\} \omega^{2} q_{1}+\left(-q_{0}-\omega q_{1}^{2}\right) \\
& =-\left(q_{0}-q_{1}^{2}\right)-\left(q_{1}^{2} / q_{0}\right)\left(q_{1}^{2}-q_{0}\right),
\end{aligned}
$$

hence $a_{12}=-1+\left(q_{1}^{2} / q_{0}\right)$. Since $q_{0}=q_{1}^{2}$ on the conic q, we see

$$
\left.A\right|_{q}=\left(\begin{array}{cc}
-q_{1} & 0 \\
0 & q_{1}^{-1}
\end{array}\right) .
$$

This means $\left.\mathcal{E}^{\prime}\right|_{q} \cong \mathcal{O}(1,-1)$.
(1.7) Let $F_{3} \subset V_{3}$ be the exceptional divisor of the blow-up σ_{3} of V_{2} along Q_{2}. From Lemma(1.3), the restriction $F_{l}=\sigma_{3}^{-1}\left(b_{l}\right)$ of F_{3} to a fibre b_{l} of $Q_{2} \cong \mathbb{F}_{3}$ is isomorphic to \mathbb{F}_{1}. Let n_{l} be the (-1)-curve on F_{l} and let Q_{3} be the section of $\sigma_{3}: F_{3} \rightarrow Q_{2}$ defined by

$$
\begin{equation*}
Q_{3}=\text { the union of } n_{l} \text { 's for all fibres } l \text { of } Q_{1} \cong \mathbb{F}_{3} . \tag{1.7.1}
\end{equation*}
$$

Since $\sigma_{3}: E_{3} \rightarrow E_{2}$ is the blow-up along $C_{2}:=Q_{2} \cap E_{2}$ with the exceptional divisor $T_{3}:=F_{3} \cap E_{3}$, Lemma(1.6) means $T_{3} \cong \mathbb{P}\left[\left.\mathcal{E}^{\prime}\right|_{q}\right] \cong$ \mathbb{F}_{2}.

Lemma. (i) $\mathcal{C}_{Q_{3} / V_{3} \mid n_{l}} \cong \mathcal{O}(1,1)$,
(ii) the (-3)-curve $C_{3}=Q_{3} \cap E_{3}$ on $Q_{3} \cong \mathbb{F}_{3}$ is the (-2)-curve on $T_{3}=F_{3} \cap E_{3} \cong \mathbb{F}_{2}$, i.e. $C_{3} \subset T_{3}$ is defined from the surjection $\left.\mathcal{E}^{\prime}\right|_{q} \cong \mathcal{O}(1,-1) \rightarrow \mathcal{O}(-1)$.
(iii) Q_{3} is disjoint from M_{3} in V_{3}.

Proof. (i) In the exact sequence

$$
\begin{equation*}
\left.\left.\left.0 \rightarrow \mathcal{C}_{F_{3} / V_{3}}\right|_{n_{l}} \rightarrow \mathcal{C}_{Q_{3} / V_{3}}\right|_{n_{l}} \rightarrow \mathcal{C}_{Q_{3} / F_{3}}\right|_{n_{l}} \rightarrow 0, \tag{1.7.2}
\end{equation*}
$$

we see $\left(F_{3} \cdot n_{l}\right)_{V_{3}}=-\left.\mathcal{O}_{F_{3}}(1)\right|_{n_{l}}=-1$ because n_{l} is the (-1)-curve on $F_{l} \cong \mathbb{P}[\mathcal{O}(2,1)]$ (see Lemma(1.3)), and $\left(Q_{3} . n_{l}\right)_{F_{3}}=\left(\left.Q_{3}\right|_{F_{l}} \cdot n_{l}\right)_{F_{l}}=$ $\left(n_{l}\right)_{\mathbb{F}_{1}}^{2}=-1$ because $Q_{3} \cap F_{l}=n_{l}$.
(ii) From $\left(C_{2}^{2}\right)_{S_{2}}=2$, we see $C_{2} \subset S_{2} \cong \mathbb{P}\left[\mathcal{C}_{C_{1} / E_{1}}\right]$ is defined by a surjection $\mathcal{C}_{C_{1} / E_{1}} \cong \mathcal{O}(-5,-5) \rightarrow \mathcal{O}(-4)$, so that $\left(S_{2} . C_{2}\right)_{E_{2}}=$ $-\left.\mathcal{O}_{S_{2}}(1)\right|_{C_{2}}=4$. Therefore we obtain

$$
\begin{equation*}
\left.0 \rightarrow \mathcal{C}_{S_{2} / E_{2}}\right|_{C_{2}} \cong \mathcal{O}(-4) \rightarrow \mathcal{C}_{C_{2} / E_{2}} \rightarrow \mathcal{C}_{C_{2} / S_{2}} \cong \mathcal{O}(-2) \rightarrow 0 \tag{1.7.3}
\end{equation*}
$$

from which we have equalities

$$
\begin{equation*}
\left(T_{3}^{2}\right)_{E_{2}}=-\sigma_{3}^{*} C_{2}+c_{1}\left(\mathcal{N}_{C_{2} / E_{2}}\right) r_{3}=-\sigma_{3}^{*} C_{2}+6 r_{3}, \quad\left(T_{3}^{3}\right)_{E_{2}}=-6 \tag{1.7.4}
\end{equation*}
$$

for a fibre r_{3} of $T_{3}=\mathbb{F}_{2} \rightarrow C_{2}$. Let $S_{3}=H_{3} \cap E_{3}$ be the proper transform in E_{3} of S_{2} and let

$$
m_{3}=M_{3} \cap E_{3}=M_{3} \cap T_{3}, \quad t_{3}=H_{3} \cap T_{3}=S_{3} \cap T_{3}
$$

be two sections of $\sigma_{3}: T_{3} \cong \mathbb{F}_{2} \rightarrow C_{2}$. We see from (1.7.4)

$$
\begin{aligned}
\left(m_{3} \cdot t_{3}\right)_{T_{3}} & =\left(M_{3}\left|T_{3} \cdot S_{3}\right|_{T_{3}}\right) T_{3}=\left(M_{3} \cdot S_{3} \cdot T_{3}\right)_{E_{3}} \\
& =\left(\sigma_{3}^{*} M_{2}-T_{3}\right)\left(\sigma_{3}^{*} S_{2}-T_{3}\right) T_{3} \\
& =\sigma_{3}^{*}\left(M_{2} \cdot S_{2}\right) T_{3}-\sigma_{3}^{*}\left(M_{2}+S_{2}\right) T_{3}^{2}+T_{3}^{3} \\
& =\left(\left(M_{2}+S_{2}\right) C_{2}\right)_{E_{2}}-6 .
\end{aligned}
$$

From (1.7.3) we see $\left(M_{2} \cdot C_{2}\right)_{E_{2}}=\left(\sigma_{2}^{*} M_{1}-2 S_{2}\right) C_{2}=\left(M_{1} \cdot C_{1}\right)_{E_{1}}-$ $2\left(S_{2} . C_{2}\right)=4.3-2.4=4$. Hence $\left(m_{3} . t_{3}\right)_{T_{3}}=4+4-6=2$. On the other hand, (1.3.2) induces the split exact sequence

$$
\left.\left.\left.0 \rightarrow \mathcal{C}_{H_{2} / V_{2}}\right|_{f} \cong \mathcal{O}(1) \rightarrow \mathcal{C}_{Q_{2} / V_{2}}\right|_{f} \rightarrow \mathcal{C}_{Q_{2} / H_{2}}\right|_{f} \cong \mathcal{O}(2) \rightarrow 0,
$$

for fibres $f=b_{l}$ of $Q_{2} \cong \mathbb{F}_{2}$. This implies $F_{3} \cap H_{3}$ is covered by (+1)curves $\mathbb{P}\left[\left.\mathcal{C}_{Q_{2} / H_{2}}\right|_{f}\right]$ in $\mathbb{P}\left[\left.\mathcal{C}_{Q_{2} / V_{2}}\right|_{f}\right] \cong \mathbb{F}_{1}$, so $F_{3} \cap H_{3}$ is disjoint from Q_{3} (see (1.7.1)), hence $\left(C_{3} . t_{3}\right)_{T_{3}}=0$. Thus the three sections C_{3}, m_{3}, t_{3} of $T_{3} \rightarrow C_{2}$ satisfy $\left(m_{3} . t_{3}\right)_{T_{3}}=2$ and $\left(C_{3} \cdot t_{3}\right)_{T_{3}}=0$. This means C_{3} is (resp. m_{3} and t_{3} are) the (-2)-curve (resp. (+2)-curves) on $T_{3} \cong \mathbb{P}[\mathcal{O}(1,-1)] \cong \mathbb{F}_{2}$. Since $Q_{3} \cap M_{3}$ is contained in $T_{3}=F_{3} \cap E_{3}$, (iii) follows from the fact that C_{3} is disjoint from m_{3}.
(1.8) The following Lemma implies $\left.\mathcal{C}_{M_{3} / V_{3}}\right|_{f} \cong \mathcal{O}(1,1)$ for fibres f of $M_{3} \cong \mathbb{F}_{2}$, so there is a flop $V_{3} \rightarrow \leftarrow V^{+}$along M_{3}.

Lemma. The two exact sequences

$$
\begin{align*}
& \left.0 \rightarrow \mathcal{C}_{E_{2} / V_{2}}\right|_{M_{2}} \rightarrow \mathcal{C}_{M_{2} / V_{2}} \rightarrow \mathcal{C}_{M_{2} / E_{2}} \rightarrow 0, \tag{1.8.1}\\
& 0 \rightarrow \mathcal{C}_{E_{3} / V_{3}} M_{M_{3}} \rightarrow \mathcal{C}_{M_{3} / V_{3}} \rightarrow \mathcal{C}_{M_{3} / E_{3}} \rightarrow 0 \tag{1.8.2}
\end{align*}
$$

split with the isomorphisms

$$
\begin{array}{ll}
\left.\mathcal{C}_{E_{2} / V_{2}}\right|_{M_{2}} \cong \mathcal{O}_{\mathbb{F}_{2}}(f), & \mathcal{C}_{M_{2} / E_{2}} \cong \mathcal{O}_{\mathbb{F}_{2}}(-4 f), \\
\left.\mathcal{C}_{E_{3} / V_{3}}\right|_{M_{3}} \cong \mathcal{O}_{\mathbb{F}_{2}}(s+3 f), & \mathcal{C}_{M_{3} / E_{3}} \cong \mathcal{O}_{\mathbb{F}_{2}}(2 f) .
\end{array}
$$

Proof. $\left.\left.\mathcal{C}_{E_{2} / V_{2}}\right|_{M_{2}} \cong \mathcal{C}_{E_{3} / V_{3}}\right|_{M_{3}} \cong \mathcal{O}_{F_{2}}(s+3 f)$ follow from $\left(E_{3} . s\right)_{V_{3}}=$ $\left(E_{2} . s\right)_{V_{2}}=\left(E_{1} . s\right)_{V_{1}}=\left.\mathcal{O}_{E_{1}}(-1)\right|_{s}=-1$ (since the image $\sigma_{1}(s)$ of s in V_{1} is a line on $E_{1}=\mathbb{P}^{3}$), and $\left(E_{3} \cdot f\right)_{V_{3}}=\left(E_{2} \cdot f\right)_{V_{2}}=\left(E_{1} \cdot f\right)_{V_{1}}=$ $\left.\mathcal{O}_{E_{1}}(-1)\right|_{f}=-1$. We saw $\sigma_{2}(s)$ is disjoint from C_{1} in the proof of

Lemma(1.4)(ii), so $\left(M_{3} . s\right)_{E_{3}}=\left(M_{2} . s\right)_{E_{2}}=\left(M_{1} . s\right)_{E_{1}}=\operatorname{deg}\left(M_{1}\right)=4$. Then the isomorphisms $\mathcal{C}_{M_{2} / E_{2}} \cong \mathcal{O}_{F_{2}}(-4 f)$ and $\mathcal{C}_{M_{3} / E_{3}} \cong \mathcal{O}_{F_{2}}(s-2 f)$ follow from $\left(M_{2} . f\right)_{E_{2}}=\left(\sigma_{2}^{*} M_{1}-2 S_{2}\right) f=\left(M_{1} . f\right)_{E_{1}}-2\left(S_{2} . f\right)_{E_{2}}=$ $4-4=0$ and $\left(M_{3} . f\right)_{E_{3}}=\left(\sigma_{3}^{*} M_{2}-T_{3}\right) f=\left(M_{2} . f\right)-\left(T_{3} \cdot f\right)_{E_{3}}=$ $0-1=-1$. Both (1.8.1) and (1.8.2) split because $H^{1}\left(\mathcal{O}_{\mathbb{F}_{2}}(s+7 f)\right)=$ $H^{1}\left(\mathcal{O}_{\mathbb{F}_{2}}(5 f)\right)=0$.
(1.9) From Lemma(1.7)(i), (iii) and Lemma(1.8), we define V_{4} as the flopped variety of V_{3} along the disjoint union M_{3} and Q_{3}. Since $\mathcal{C}_{M_{3} / V_{3}} \cong \mathcal{O}_{\mathbb{F}_{2}}(s+3 f, s-2 f)$ by (1.8.2), the flopped surface M_{4} in V_{4} of M_{3} is isomorphic to $\mathbb{P}\left[\left.\mathcal{C}_{M_{3} / V_{3}}\right|_{s}\right] \cong \mathbb{F}_{5}$ with $\mathcal{C}_{M_{4} / V_{4}} \cong \mathcal{O}_{\mathbb{F}_{5}}(s+3 f, s+f)$ by Lemma(0.2)(i). Applying Lemma(0.2)(iii) to $S=M_{3}$ and $F=F_{3}$ we see $\mathcal{C}_{M_{4} / F_{4}} \cong \mathcal{O}_{\mathbb{F}_{5}}(s+3 f)$ because $m_{3}=F_{3} \cap M_{3}$ is a (+2)-curve on M_{3} by Lemma(1.5)(ii). Hence there is a split exact sequence (1.9.1)
$\left.0 \rightarrow \mathcal{C}_{F_{4} / V_{4}}\right|_{M_{4}} \cong \mathcal{O}_{F_{5}}(s+f) \rightarrow \mathcal{C}_{M_{4} / V_{4}} \rightarrow \mathcal{C}_{M_{4} / F_{4}} \cong \mathcal{O}_{F_{5}}(s+3 f) \rightarrow 0$.
(1.10) Let E_{4}, H_{4}, F_{4} be the birational transforms of E_{3}, H_{3}, F_{3}, respectively. These are obtained as follows.
(a) E_{4} is constructed by the elementary transformation (1.5.4) and a blow up ϵ_{2} :

$$
\begin{equation*}
E_{2}=\mathbb{P}[\mathcal{E}] \stackrel{\sigma_{3}}{\leftarrow} E_{3} \xrightarrow{\epsilon_{1}} \mathbb{P}\left[\mathcal{E}^{\prime}\right] \stackrel{\epsilon_{2}}{\leftarrow} E_{4}, \tag{1.10.1}
\end{equation*}
$$

where
(i) σ_{3} is the blow-up along the (+2)-curve $C_{2}=\mathbb{P}\left[\mathcal{O}_{q}(1)\right]$ in $M_{2}=$ $\mathbb{P}\left[\left.\mathcal{E}\right|_{q}\right] \cong \mathbb{P}[\mathcal{O}(3,1)]$ with the exceptional divisor $T_{3} \cong \epsilon_{1}\left(T_{3}\right)=\mathbb{P}\left[\left.\mathcal{E}^{\prime}\right|_{q}\right]$ $\cong \mathbb{P}[\mathcal{O}(1,-1)]$,
(ii) ϵ_{1} is the blow-down of the proper transform M_{3} of $M_{2}=\mathbb{P}\left[\left.\mathcal{E}\right|_{q}\right]$,
(iii) ϵ_{2} is the blow-up along the (-2)-curve $\epsilon_{1}\left(C_{3}\right)=\mathbb{P}\left[\mathcal{O}_{q}(-1)\right]$ in $\mathbb{P}\left[\left.\mathcal{E}^{\prime}\right|_{q}\right] \cong \mathbb{P}[\mathcal{O}(1,-1)]$ with the birational transform T_{4} in E_{4} of T_{2} isomorphic to $\epsilon_{2}\left(T_{4}\right)=\mathbb{P}\left[\left.\mathcal{E}^{\prime}\right|_{q}\right]$.
(b) H_{4} is the blow-up of $H_{3} \cong H_{2}$ along $C_{3}^{\prime} \cong \sigma_{3}\left(C_{3}^{\prime}\right)=C_{2}^{\prime}$ with the exceptional divisor equal to the flopped surfacae $M_{4}=\mathbb{P}\left[\left.\mathcal{C}_{M_{3} / V_{3}}\right|_{C_{3}^{\prime}}\right] \cong$ \mathbb{F}_{5}.
(c) F_{4} is obtained from $F_{3} \cong F_{2}$ by

$$
\begin{equation*}
F_{3} \stackrel{\epsilon_{3}}{\leftrightarrows} F^{\prime} \xrightarrow{\epsilon_{4}} F_{4}, \tag{1.10.2}
\end{equation*}
$$

where
(iv) ϵ_{3} is the blow-up along $m_{3}=M_{3} \cap F_{3}$ with the exceptional divisor equal to the flopped surface $M_{4}=\mathbb{P}\left[\mathcal{C}_{m_{3}} / F_{3}\right] \cong \mathbb{P}\left[\mathcal{C}_{M_{3}} /\left.V_{3}\right|_{m_{3}}\right]$,
(v) ϵ_{4} is the blow-down along $\epsilon_{3}^{-1}\left(Q_{3}\right) \cong Q_{3} \cong \mathbb{F}_{3}$.

The \mathbb{P}^{1}-bundle structure $\sigma_{3}: F_{3} \rightarrow Q_{2}$ induces a \mathbb{P}^{1}-bundle structure $\pi: F_{4} \rightarrow M_{4} \cong \mathbb{F}_{5}$.
(1.11) From (1.7) we see

Proposition. (i) The fibre f_{4} of $\pi: F_{4} \rightarrow M_{4}$ is an extremal rational curve on V_{4} with $\left(-K_{V_{4}} \cdot f_{4}\right)=1$,
(ii) E_{4} is mapped to $\mathbb{P}^{1} \times \mathbb{P}^{2}$ by the contraction morphism $\sigma_{4}: V_{4} \rightarrow$ V_{5} of f_{4},
(iii) The flopped surface Q_{4} on V_{4} of Q_{3} is isomrphically mapped to $\mathbb{P}^{1} \times q \subset \sigma_{4}\left(E_{4}\right) \cong \mathbb{P}^{1} \times \mathbb{P}^{2}$ with a conic q in \mathbb{P}^{2}.

Proof. In the exact sequence $\left.0 \rightarrow \mathcal{C}_{F_{4} / V_{4}}\right|_{f_{4}} \rightarrow \mathcal{C}_{f_{4} / V_{4}} \rightarrow \mathcal{C}_{f_{4} / F_{4}} \cong$ $\mathcal{O}(0,0) \rightarrow 0$, we will show $\mathcal{C}_{F_{4} / V_{4}} \mid f_{4} \cong \mathcal{O}(1)$, i.e. $\left(F_{4} \cdot f_{4}\right)_{V_{4}}=-1$. The fibre f_{3} of $T_{3}=F_{3} \cap E_{3}$ is isomorphically transformed to the fibres of $T_{4}=F_{4} \cap E_{4}$, so we may assume f_{4} is contained in E_{4}. Hence $\left(F_{4} \cdot f_{4}\right)_{V_{4}}=\left(\left.F_{4}\right|_{E_{4}} \cdot f_{4}\right)_{E_{4}}=\left(T_{4} \cdot f_{4}\right)_{E_{4}}$. We denote by $T^{\prime}=\mathbb{P}\left[\left.\mathcal{E}^{\prime}\right|_{q}\right]$, by Q_{4} the exceptional divisor of ϵ_{2} of (1.9.1), and by f^{\prime}, q_{4}, m_{3} the fibre of T^{\prime}, Q_{4}, M_{3}, respectively. Then we see

$$
\begin{aligned}
& \left(T_{3} \cdot f_{3}\right)_{E_{3}}=\left(\epsilon_{1}^{*} T^{\prime}-M_{3}\right)\left(\epsilon_{1}^{*} f^{\prime}-m_{4}\right)=\left(T^{\prime} \cdot f^{\prime}\right)_{E^{\prime}}-1 \\
& \left(T_{4} \cdot f_{4}\right)_{E_{4}}=\left(\epsilon_{2}^{*} T^{\prime}-Q_{4}\right)\left(\epsilon_{2}^{*} f^{\prime}-q_{4}\right)=\left(T^{\prime} \cdot f^{\prime}\right)_{E^{\prime}}-1
\end{aligned}
$$

Hence $\left(F_{4} \cdot f_{4}\right)_{V_{4}}=\left(T_{4} \cdot f_{4}\right)_{E_{4}}=\left(T_{3} \cdot f_{3}\right)_{E_{3}}=-1$ because T_{3} is the exceptional divisor of $\sigma_{3}: E_{3} \rightarrow E_{2}$.
(ii) We see from (i) that the image $\sigma_{4}\left(E_{4}\right)$ is equal to the result of the elementary transformation of $E^{\prime}=\mathbb{P}\left[\mathcal{E}^{\prime}\right]$ along $\epsilon_{1}\left(C_{3}\right)=\mathbb{P}\left[\mathcal{O}_{q}(-1)\right]$:

$$
\begin{equation*}
0 \rightarrow \mathcal{E}_{5} \rightarrow \mathcal{E}^{\prime} \rightarrow \mathcal{O}_{q}(-1) \rightarrow 0 \tag{1.11.1}
\end{equation*}
$$

where $\sigma_{4}\left(E_{4}\right)=\mathbb{P}\left[\mathcal{E}_{5}\right]$ and $\epsilon_{1}\left(C_{3}\right)=\mathbb{P}\left[\mathcal{O}_{q}(-1)\right] \subset T^{\prime}=\mathbb{P}\left[\left.\mathcal{E}^{\prime}\right|_{q}\right] \cong$ $\mathbb{P}[\mathcal{O}(1,-1)]$. Hence we will show \mathcal{E}_{5} is isomorphic to $\mathcal{O}_{\mathbb{P}^{2}}(-1)^{2}$. From (1.5.2) and (1.5.4), we see $c_{1}\left(\mathcal{E}^{\prime}\right)=0, c_{2}\left(\mathcal{E}^{\prime}\right)=2$ and $H^{0}\left(\mathcal{E}^{\prime}(-4)\right)=0$, so $h^{0}\left(\mathcal{E}^{\prime}(1)\right) \geq \chi\left(\mathcal{E}^{\prime}(1)\right)=4$. Hence (1.11.1) implies $h^{0}\left(\mathcal{E}_{5}(1)\right) \geq 2$ and there is an inclusion $\iota: \mathcal{O}_{\mathbb{P}^{2}}(-1)^{2} \rightarrow \mathcal{E}_{5}$. On the other hand, $c_{1}\left(\mathcal{E}_{5}(1)\right)=c_{2}\left(\mathcal{E}_{5}(1)\right)=0$, so the inclusion ι is an isomorphism.
(iii) The flopped surface $Q_{4}=\mathbb{P}\left[\mathcal{C}_{Q_{3} / V_{3}} \mid C_{3}\right]$ on V_{4} is equal to the exceptional divisor of the blow up of $\mathbb{P}\left[\mathcal{E}^{\prime}\right]$ along $\mathbb{P}[\mathcal{O}(-1)] \cong C_{3}$. Hence Q_{4} is isomrphically mapped to $\mathbb{P}\left[\left.\mathcal{E}_{5}\right|_{q}\right] \cong \mathbb{P}^{1} \times q$ by the exact sequence (1).
(1.12) Let $r_{5}=($ point $) \times($ line $)$ in $E_{5}=\sigma_{4}\left(E_{4}\right) \cong \mathbb{P}^{1} \times \mathbb{P}^{2}$. To define $\sigma_{5}: V_{5} \rightarrow V_{6}=W$ we show

Lemma. (i) There is a split exact sequence

$$
\left.0 \rightarrow \mathcal{C}_{E_{5} / V_{5}}\right|_{r_{5}} \cong \mathcal{O}(1) \rightarrow \mathcal{C}_{r_{5} / V_{5}} \rightarrow \mathcal{C}_{r_{5} / E_{5}} \cong \mathcal{O}(0,-1) \rightarrow 0,
$$

(ii) r_{5} is an extremal rational curve on V_{5} and the associated morphism $\sigma_{5}: V_{5} \rightarrow V_{6}$ contracts $E_{5} \cong \mathbb{P}^{1} \times \mathbb{P}^{2}$ onto the first factor \mathbb{P}^{1}.

Proof. (i) We show $\left.\mathcal{C}_{E_{5} / V_{5}}\right|_{r_{5}} \cong \mathcal{O}(1)$, i.e. $\left(E_{5} \cdot r_{5}\right)_{V_{5}}=-1$. The surface $S_{2}=H_{2} \cap E_{2} \cong \mathbb{F}_{0}$ in V_{2} is transformed isomorphically onto $S_{4}=$ $H_{4} \cap E_{4}$ in V_{4} and the Stein fctorization of the composite $S_{2} \cong S_{4} \subset$ $E_{4} \xrightarrow{\sigma_{4}} E_{5} \cong \mathbb{P}^{1} \times \mathbb{P}^{2} \xrightarrow{\pi_{1}} \mathbb{P}^{1}$ is given by

$$
S_{2} \xrightarrow{\sigma_{1}} C_{1} \xrightarrow{\phi} \mathbb{P}^{1}
$$

where ϕ is the associated cyclic cover of degree three in (1.4). Let r_{4} be the isomorphic image in S_{4} of a fibre r_{2} of $\sigma_{1}: S_{2} \cong \mathbb{F}_{0} \rightarrow$ C_{1}. Then $r_{5}=\sigma_{4}\left(r_{4}\right)$ is equal to (point) $\times($ line $)$ in $E_{5}=\mathbb{P}^{1} \times \mathbb{P}^{2}$. Hence $\left(E_{4} \cdot r_{4}\right)_{V_{4}}=\left(\sigma_{4}^{*} E_{5} \cdot r_{4}\right)_{V_{4}}=\left(E_{5} \cdot r_{5}\right)_{V_{5}}$. The left-hand side is equal to $\left(E_{4} \cdot r_{4}\right)_{V_{4}}=\left(\left.E_{4}\right|_{H_{4}} \cdot r_{4}\right)_{H_{4}}=\left(S_{4} \cdot r_{4}\right)_{H_{4}}$. We recall $M_{2} \cap H_{2}=$ $M_{2} \cap S_{2}=C_{2} \cup C_{2}^{\prime}(\operatorname{Lemma}(1.5))$, and $H_{4} \cdots \rightarrow H_{2}$ is the blowup along C_{2}^{\prime} with the exceptional divisor M_{4} (see (1.10)(b)). Hence $\left(S_{4} \cdot r_{4}\right)_{H_{4}}=\left(\sigma^{*} S_{2}-M_{4}\right) r_{4}=\left(S_{2} \cdot r_{2}\right)_{H_{2}}-\left(M_{4} \cdot r_{4}\right)_{H_{4}}=0-1=-1$ because $S_{2} \cong \mathbb{F}_{0}$ is a \mathbb{P}^{1}-bundle over the twisted cubic C_{1} with a fibre r_{2}. (ii) follows from (i).
(1.13) Let h_{6} be the image in $V_{6}=W$ of a fibre h_{2} of the \mathbb{P}^{1}-bundle $\sigma_{1}: H_{2} \rightarrow Q_{1} \cong \mathbb{F}_{3}$. To see W is a standard \mathbb{P}^{2}-bundle over the blow-up Y at the origin of $\operatorname{Spec}(R)$, we show

Lemma. $\left(-K_{W} \cdot h_{B}\right)_{W}=1$.
Proof. We assume the birational transform h_{4} on V_{4} of h_{2} is disjoint from $S_{4}=H_{4} \cap E_{4}$. Then $\left(H_{4} \cdot h_{4}\right)_{V_{4}}=\left(H_{3} \cdot h_{3}\right)_{V_{3}}=\left(\sigma_{3}^{*} H_{2}-F_{3}\right) h_{3}=$
$\left(H_{2} \cdot h_{2}\right)_{V_{2}}-1=-2$ because H_{2} is the exceptional divisor of σ_{1} with the fibre h_{2}. Hence, from the exact sequence

$$
\left.0 \rightarrow \mathcal{C}_{H_{4} / V_{4}}\right|_{h_{4}} \cong \mathcal{O}(2) \rightarrow \mathcal{C}_{h_{4} / V_{4}} \rightarrow \mathcal{C}_{h_{4} / H_{4}} \cong \mathcal{O}(0,0) \rightarrow 0,
$$

we see $\mathcal{C}_{h_{4} / V_{4}} \cong \mathcal{O}(2,0,0)$ and $\left(-K_{V_{4}} \cdot h_{4}\right)=0$. On the other hand, from $\left(F_{4} \cdot h_{4}\right)_{V_{4}}=0$ and $\left(E_{5} \cdot h_{5}\right)_{V_{5}}=0$, we see

$$
\begin{aligned}
\left(-K_{V_{4}} \cdot h_{4}\right)_{V_{4}} & =\left(\sigma_{4}^{*}\left(-K_{V_{5}}\right)-F_{4}\right) h_{4}=\left(-K_{V_{5}} \cdot h_{5}\right)_{V_{5}}-1 \\
& =\left(\sigma_{5}^{*}\left(-K_{V_{6}}\right)-2 E_{5}\right) h_{5}-1=\left(-K_{V_{6}} \cdot h_{6}\right)-1 .
\end{aligned}
$$

Therefore $\left(-K_{V_{6}} \cdot h_{6}\right)=1$.
(1.14) Next we determine the conormal bundles $\mathcal{C}_{Q_{3} / V_{3}}$ and $\mathcal{C}_{M_{5} / V_{5}}$.

Lemma. (i) There is an exact sequence
$\left.0 \rightarrow \mathcal{C}_{F_{3} / V_{3}}\right|_{Q_{3}} \cong \mathcal{O}_{\mathbb{F}_{3}}(s-f) \rightarrow \mathcal{C}_{Q_{3} / V_{3}} \rightarrow \mathcal{C}_{Q_{3} / F_{3}} \cong \mathcal{O}_{\mathbb{F}_{3}}(s+5 f) \rightarrow 0$,
(ii) $\mathcal{C}_{Q_{3} / V_{3}} \cong \mathcal{O}_{\mathbb{F}_{3}}(s+2 f, s+2 f), \mathcal{C}_{M_{5} / V_{5}} \cong \mathcal{O}_{\mathbb{F}_{5}}(s+f, 2 s+4 f)$.

Proof. (i) Let f (resp. s) be a fibre (resp. the (-3)-curve) on $Q_{3} \cong \mathbb{F}_{3}$. For the isomorphism $\left.\mathcal{C}_{F_{3} / V_{3}}\right|_{Q_{3}} \cong \mathcal{O}_{\mathbb{F}_{2}}(s-f)$, we show $\left(F_{3} . f\right)_{V_{3}}=-1$ and $\left(F_{3} . s\right)_{V_{3}}=4$. By the definition (1.7.1), f is the (-1)-curve on $F_{l}=\mathbb{P}\left[\mathcal{C}_{Q_{2} / V_{2}} \mid l\right]$ with $\left.\mathcal{C}_{Q_{2} / V_{2}}\right|_{l} \cong \mathcal{O}(1,2)$ by (1.3.2). Hence $\left(F_{3} . f\right)_{V_{3}}=$ $\left.\mathcal{O}_{\mathbb{F}_{3}}(-1)\right|_{f}=-1$. We saw in Lemma(1.7)(ii) that $s=C_{3}$ is the (-1)curve on $T_{3}=\mathbb{P}\left[\mathcal{C}_{Q_{2} / V_{2}} \mid C_{2}\right]$ with $\left.\mathcal{C}_{Q_{2} / V_{2}}\right|_{C_{2}} \cong \mathcal{O}(-4,-2)$ by (1.3.2). Hence $\left(F_{3} . s\right)_{V_{3}}=\left.\mathcal{O}_{\mathbb{F}_{3}}(-1)\right|_{s}=\left.\mathcal{O}_{T_{3}}(-1)\right|_{C_{3}}=4$. Similarly, $\left(Q_{3} . f\right)_{F_{3}}=$ $\left(\left.Q_{3}\right|_{F_{l}} . f\right)_{F_{l}}=\left(f^{2}\right)_{F_{l}}=-1$ and $\left(Q_{3} . s\right)_{F_{3}}=\left(\left.Q_{3}\right|_{T_{3}} \cdot C_{3}\right)_{T_{3}}=\left(C_{3}^{2}\right)_{T_{3}}=$ -2 , hence $\mathcal{C}_{Q_{3} / F_{3}}=\mathcal{O}_{\mathbb{F}_{3}}(s+5 f)$.
(ii) Since $Q_{4} \cong \mathbb{F}_{0}$ by Lemma(1.10)(iii), $\mathcal{C}_{Q_{3} / V_{3}} \cong \mathcal{O}_{\mathbb{F}_{3}}(s+a f, s+a f)$ for an integre $a \in \mathbb{Z}$. The exact sequence proved in (i) implies $a=1$. The fibre f_{4} of $M_{4} \cong \mathbb{F}_{5}$ is the (-1)-curve on $\mathbb{P}\left[\mathcal{C}_{M_{5} / V_{5}} \mid f\right]=\mathbb{F}_{1}$ with $f=\sigma_{4}\left(f_{4}\right)$, so that $f_{4} \subset \mathbb{P}\left[\left.\mathcal{C}_{M_{5} / V_{5}}\right|_{f}\right]$ is defined by the surjection $\mathcal{O}(a, a+1) \rightarrow \mathcal{O}(a)$ for an integer $a \in \mathbb{Z}$. Here $a=\left.\mathcal{O}_{F_{4}}(1)\right|_{f_{4}}=$ $\left.\mathcal{C}_{F_{4} / V_{4}}\right|_{f_{4}}=1$ by (1.9.1). Next we apply Lemma(0.2)(ii) to $S=M_{3}$, $D=E_{3}$ and $C^{+}=s_{4}:=M_{4} \cap E_{4}$. Then $\mathcal{C}_{M_{3} / E_{3}}=\mathcal{O}_{\mathbb{F}_{2}}(s-2 f)$ in (1.8.2) implies $\left(s_{4}^{2}\right)_{M_{4}}=5-2.5=-5$. This (-5)-curve s_{4} on $M_{4}=\mathbb{F}_{5}$ is the (+2)-curve on $\mathbb{P}\left[\left.\mathcal{C}_{M_{5} / V_{5}}\right|_{s}\right]=E_{4} \cap F_{4} \cong \mathbb{F}_{2}$ with $s=\sigma_{4}\left(s_{4}\right)$, so that $s_{4} \subset \mathbb{P}\left[\left.\mathcal{C}_{M_{5} / V_{5}}\right|_{s}\right]$ is defined by a surjection $\mathcal{O}(b-2, b) \rightarrow \mathcal{O}(b)$
for an integer $b \in \mathbb{Z}$. Here $b=\left.\mathcal{O}_{F_{4}}(1)\right|_{s_{4}}=\left.\mathcal{C}_{F_{4} / V_{4}}\right|_{s}=-4$ by (1.9.1). Thus we see

$$
\begin{equation*}
\left.\mathcal{C}_{M_{5} / V_{5}}\right|_{f}=\mathcal{O}(1,2),\left.\quad \mathcal{C}_{M_{5} / V_{5}}\right|_{s}=\mathcal{O}(-6,-4) . \tag{1.14.1}
\end{equation*}
$$

Now the canonical surjection $\sigma_{4}^{*} \mathcal{C}_{M_{5} / V_{5}} \rightarrow \mathcal{O}_{F_{4}}(1)$ induces the surjection $\phi:\left.\sigma_{4}^{*} \mathcal{C}_{M_{5} / V_{5}}\right|_{M_{4}}=\left.\left.\mathcal{C}_{M_{5} / V_{5}} \rightarrow \mathcal{O}_{F_{4}}(1)\right|_{M_{4}} \cong \mathcal{C}_{F_{4} / V_{4}}\right|_{M_{4}}=$ $\mathcal{O}_{F_{5}}(s+f)$ by (1.9.1). Then (1.14.1) implies $\operatorname{Ker}(\phi)=\mathcal{O}_{\mathbb{F}_{5}}(2 s+4 f)$ and there is an exact sequence
(1.14.2) $\left.0 \rightarrow \mathcal{O}_{\mathbb{F}_{5}}(2 s+4 f) \rightarrow \mathcal{C}_{M_{5} / V_{5}} \xrightarrow{\phi} \mathcal{C}_{F_{4} / V_{4}}\right|_{M_{4}}=\mathcal{O}_{\mathbb{F}_{5}}(s+f) \rightarrow 0$.

Here $H^{1}\left(\mathcal{O}_{\mathbb{F}_{5}}(s+3 f)\right)=H^{1}(\mathcal{O}(3,-2)) \cong k$, but $\left.\mathcal{C}_{M_{5} / V_{5}}\right|_{s}=\mathcal{O}(-6,-4)$ means that the restriction of (1.14.2) to s splits. Hence (1.14.2) itself splits and $\mathcal{C}_{M_{5} / V_{5}} \cong \mathcal{O}_{\mathbb{F}_{5}}(s+f, 2 s+4 f)$.
(1.15) Let $C_{4}=Q_{4} \cap F_{4}, C_{5}=\sigma_{4}\left(C_{4}\right)$ and $C_{6}=\sigma_{5}\left(C_{5}\right)=\sigma_{5}\left(E_{5}\right)$. We show

Lemma. $\mathcal{C}_{C_{6} / V_{6}} \cong \mathcal{O}(1,1,1)$.
Proof. We apply Lemma(0.2)(iii) to $S=Q_{3}$ and $F=E_{3}$. Since $C_{3}=Q_{3} \cap E_{3}$ is the (-3)-curve on $Q_{3}=\mathbb{F}_{3}$, we see $\mathcal{C}_{Q_{4} / E_{4}} \cong \mathcal{O}_{\mathbb{F}_{0}}(s-f)$. On the other hand, $\mathcal{C}_{Q_{3} / V_{3}} \mathcal{O}_{\mathbb{F}_{3}}(s+2 f, s+2 f)$ in Lemma(1.14)(ii) means $\mathcal{C}_{Q_{4} / V_{4}} \cong \mathcal{O}_{\mathbb{F}_{0}}(s+2 f, s-f)$ by Lemma(0.2)(i). Hence, from the exact sequence

$$
\begin{equation*}
\left.0 \rightarrow \mathcal{C}_{E_{4} / V_{4}}\right|_{Q_{4}} \rightarrow \mathcal{C}_{Q_{4} / V_{4}} \rightarrow \mathcal{C}_{Q_{4} / E_{4}} \rightarrow 0, \tag{1.15.1}
\end{equation*}
$$

with the isomorphisms $\mathcal{C}_{Q_{4} / V_{4}} \cong \mathcal{O}_{\mathbb{F}_{0}}(s+2 f, s-f)$ and $\mathcal{C}_{Q_{4} / E_{4}} \cong$ $\mathcal{O}_{\mathbb{F}_{0}}(s-f)$, we obtain $\left.\mathcal{C}_{E_{4} / V_{4}}\right|_{Q_{4}} \cong \mathcal{O}_{\mathbb{F}_{0}}(s+2 f)$. Therefore $\mathcal{C}_{E_{5} / V_{5}} \mid C_{5} \cong$ $\left.\left.\mathcal{C}_{E_{4} / V_{4}}\right|_{C_{4}} \cong \mathcal{O}_{\mathbb{F}_{0}}(s+2 f)\right|_{s+3 f}=\mathcal{O}(5)$. We saw in (1.4.1) that $\mathcal{C}_{C_{5} / E_{5}} \cong$ $\left.\mathcal{C}_{M_{5} / V_{5}}\right|_{C_{5}}=\mathcal{O}(-6,-4)$. Hence the exact sequence $\left.0 \rightarrow \mathcal{C}_{E_{5} / V_{5}}\right|_{C_{5}}=$ $\mathcal{O}(5) \rightarrow \mathcal{C}_{C_{5} / V_{5}} \rightarrow \mathcal{C}_{C_{5} / E_{5}}=\mathcal{O}(-6,-4) \rightarrow 0$ implies $\left(K_{V_{5}} . C_{5}\right)=$ $5-10-2=-7$. Since $\sigma_{5}: C_{5} \rightarrow C_{6}$ is the cyclic cover of degree three (cf. (1.4)), $\left(K_{V_{5}} . C_{5}\right)=\left(\sigma_{5}^{*} K_{V_{6}}+2 E_{5}\right) C_{5}=3\left(K_{V_{6}} . C_{6}\right)+2\left(E_{5} . C_{5}\right)$, hence $\left(K_{V_{6}} . C_{6}\right)=+1$. We saw $E_{5}=\mathbb{P}\left[\mathcal{C}_{C_{6} / V_{6}}\right]$ is ismorphic to \mathbb{F}_{0} in Lemma(1.11)(i), so $\mathcal{C}_{C_{6} / V_{B}}=\mathcal{O}(a, a, a)$ for an integre $a \in \mathbb{Z}$. then $\left(K_{V_{6}} \cdot C_{6}\right)=1$ means $a=1$.
(1.16) We write down the conormal bundles of the ruled surfaces Q, M, T, S.

$$
\begin{array}{ll}
\mathcal{C}_{Q_{2} / V_{2}}=\mathcal{O}_{\mathbb{F}_{3}}(s-f, 2 s+4 f), & \mathcal{C}_{Q_{3} / V_{3}}=\mathcal{O}_{\mathbb{F}_{3}}(2 s+4 f, 2 s+4 f), \\
\mathcal{C}_{Q_{4} / V_{4}}=\mathcal{O}_{\mathbb{F}_{0}}(s+2 f, s-f), & \mathcal{C}_{Q_{5} / V_{5}}=\mathcal{O}_{\mathbb{F}_{0}}(s+2 f,-2 f), \\
\mathcal{C}_{M_{2} / V_{2}}=\mathcal{O}_{\mathbb{F}_{2}}(s+3 f,-4 f), & \mathcal{C}_{M_{3} / V_{3}}=\mathcal{O}_{\mathbb{F}_{2}}(s+3 f, s-2 f), \\
\mathcal{C}_{M_{4} / V_{4}}=\mathcal{O}_{\mathbb{F}_{5}}(s+f, s+3 f), & \mathcal{C}_{M_{5} / V_{5}}=\mathcal{O}_{\mathbb{F}_{5}}(2 s+4 f, s+f), \\
\mathcal{C}_{T_{3} / V_{3}}=\mathcal{O}_{\mathbb{F}_{2}}(s-2 f, 3 f), & \mathcal{C}_{T_{4} / V_{4}}=\mathcal{O}_{\mathbb{F}_{2}}(s-4 f, 5 f), \\
\mathcal{C}_{S_{2} / V_{2}}=\mathcal{O}_{\mathbb{F}_{0}}(3 f, s f), & \mathcal{C}_{S_{3} / V_{3}}=\mathcal{O}_{\mathbb{F}_{0}}(3 f, 2 s-5 f) \\
\mathcal{C}_{S_{4} / V_{4}}=\mathcal{O}_{\mathbb{F}_{0}}(s+3 f, s-5 f) . &
\end{array}
$$

(1.17) The effective cones of V_{i} over $X=\operatorname{Spec}(R)(1 \leq i \leq 6)$ and the intersection numbers with generators of the Picard group, are give as follows. Here $q_{i}, m_{i}, s_{i}, t_{i}$ are the fibres of the ruled surfaces $Q_{i}, M_{i}, S_{i}, T_{i}$, respectively.
(1) $\quad \mathrm{NE}\left(V_{1} / X\right)=\mathbb{R}\left[q_{1}\right] \oplus \mathbb{R}\left[m_{1}\right], \quad \operatorname{Pic}\left(V_{1} / X\right)=\mathbb{Z}\left(-K_{V_{1}}\right) \oplus \mathbb{Z} E_{1}$.

$$
\begin{align*}
\left(-K_{V_{1}} \cdot q_{1}\right)=-2, & \left(-K_{V_{1}} \cdot m_{1}\right)=+3 \\
\left(E_{1} \cdot q_{1}\right)=+1, & \left(E_{1} \cdot m_{1}\right)=-1 \tag{2}
\end{align*}
$$

$\mathrm{NE}\left(V_{2} / X\right)=\mathbb{R}\left[q_{2}\right] \oplus \mathbb{R}\left[m_{2}\right] \oplus \mathbb{R}\left[s_{\mathbf{2}}\right]$, $\operatorname{Pic}\left(V_{2} / X\right)=\mathbb{Z}\left(-K_{V_{2}}\right) \oplus \mathbb{Z} E_{2} \oplus \mathbb{Z} H_{2}$.

	q_{2}	m_{2}	s_{2}
$-K_{V_{2}}$	-1	1	1
E_{2}	1	2	0
H_{2}	-1	2	-1

$$
\begin{equation*}
\mathrm{NE}\left(V_{3} / X\right)=\mathbb{R}\left[q_{3}\right] \oplus \mathbb{R}\left[m_{3}\right] \oplus \mathbb{R}\left[s_{3}\right] \oplus \mathbb{R}\left[t_{3}\right] \tag{3}
\end{equation*}
$$

$$
\operatorname{Pic}\left(V_{3} / X\right)=\mathbb{Z}\left(-K_{V_{3}}\right) \oplus \mathbb{Z} E_{3} \oplus \mathbb{Z} H_{3} \oplus \mathbb{Z} F_{3}
$$

	q_{3}	m_{3}	s_{3}	t_{3}
$-K_{V_{3}}$	0	0	0	1
E_{3}	1	2	0	0
H_{3}	0	1	-1	1
F_{3}	-1	1	1	-1

(4)

$$
\begin{array}{r}
\mathrm{NE}\left(V_{4} / X\right)=\mathbb{R}\left[q_{4}\right] \oplus \mathbb{R}\left[m_{4}\right] \oplus \mathbb{R}\left[s_{4}\right] \oplus \mathbb{R}\left[t_{4}\right], \\
\operatorname{Pic}\left(V_{4} / X\right)=\mathbb{Z}\left(-K_{V_{4}}\right) \oplus \mathbb{Z} E_{4} \oplus \mathbb{Z} H_{4} \oplus \mathbb{Z} F_{4} .
\end{array}
$$

	q_{4}	m_{4}	s_{4}	t_{4}
$-K_{V_{4}}$	0	0	0	1
E_{4}	-1	1	-1	0
H_{4}	0	5	2	1
F_{4}	1	-1	2	-1

$\mathrm{NE}\left(V_{5} / X\right)=\mathbb{R}\left[q_{5}\right] \oplus \mathbb{R}\left[m_{5}\right] \oplus \mathbb{R}\left[s_{5}\right]$,

$$
\begin{equation*}
\operatorname{Pic}\left(V_{5} / X\right)=\mathbb{Z}\left(-K_{V_{5}}\right) \oplus \mathbb{Z} E_{5} \oplus \mathbb{Z} H_{5} . \tag{5}
\end{equation*}
$$

	q_{5}	m_{5}	s_{5}
$-K_{V_{5}}$	1	-1	2
E_{5}	-1	1	-1
H_{5}	1	3	2

	q_{6}	m_{6}
$-K_{V_{6}}$	-1	1
H_{6}	-2	0

Here $q_{6}=\sigma_{5}\left(q_{5}\right)$ is equal to C_{6} in (1.15), and $m_{6}=\sigma_{5}\left(m_{5}\right)$.

2. The birational map (II)

(2.1) In this section we consider the birational map (II). Let τ : $V \rightarrow \operatorname{Spec}(R)$ be a standard \mathbb{P}^{2}-bundle over the local ring R of X at a smooth point of the non-smooth locus constructed from the R-order (0.1.2). Let $\tau^{-1}(o)=R \cup S \cup T$ be the central fibre such that R, S, T isomorphic to \mathbb{F}_{1}, and

$$
\begin{equation*}
r=R \cap T, \quad s=S \cap R, \quad t=T \cap S \tag{2.1.1}
\end{equation*}
$$

are the (-1)-curves on R, S, T, respectively. For the the non-smooth locus $\Delta \subset \operatorname{Spec}(R)$ we assume $\tau^{-1}(\Delta)$ decomposes into three divisoris D, H, L of V such that

$$
R=\tau^{-1}(o) \cap D, \quad S=\tau^{-1}(o) \cap H, \quad T=\tau^{-1}(o) \cap L
$$

Then V is obtained by twice blow-ups of \mathbb{P}_{R}^{2} along $\mathbb{P}_{\Delta}^{1} \supset \mathbb{P}_{\Delta}^{0} \cong \Delta$:

$$
V \xrightarrow{\sigma} V_{0} \xrightarrow{\sigma_{0}} \mathbb{P}_{R}^{2}
$$

where σ_{0} is the blow-up along \mathbb{P}_{Δ}^{1} with the exceptional divisor H_{0}, and σ is the blow-up along $L_{0}=\sigma_{0}^{-1}\left(\mathbb{P}_{\Delta}^{0}\right)$. Then $D($ resp. $H)$ is the proper transform of \mathbb{P}_{Δ}^{2} (resp. H_{0}) and L is the exceptional divisor of σ.

(2.2) The center $L_{0}=\sigma_{0}^{-1}\left(\mathbb{P}_{\Delta}^{0}\right)$ of the blow-up $\sigma: V \rightarrow V_{0}$ is isomorphic to $\mathbb{P}\left[\mathcal{C}_{\mathbb{P}_{\Delta}^{1} / \mathbb{P}_{R}^{2}} \mid \mathbb{P}_{\Delta}^{0}\right] \cong \mathbb{P}_{\Delta}^{1}$.
Lemma. (i) $\mathcal{C}_{L_{0} / V_{0}} \cong \mathcal{O}_{\mathbb{P}_{\Delta}^{1}}(1,0)$, (ii) There is a split exact sequence

$$
\left.0 \rightarrow \mathcal{C}_{L / V}\right|_{T} \cong \mathcal{O}_{\mathbb{F}_{1}}(s+f) \rightarrow \mathcal{C}_{T / V} \rightarrow \mathcal{C}_{T / L} \cong \mathcal{O}_{\mathbb{F}_{1}} \rightarrow 0
$$

Proof. (i) We see $\left.\left.\mathcal{C}_{H_{0} / V_{0}}\right|_{L_{0}} \cong \mathcal{O}_{H_{0}}(1)\right|_{L_{0}} \cong \mathcal{O}_{L_{0}}(1) \cong \mathcal{O}_{\mathbb{P}_{\Delta}^{1}}(1)$ and $\mathcal{C}_{L_{0} / H_{0}} \cong \sigma_{0}^{*} \mathcal{C}_{\mathbb{P}_{\Delta}^{0} / \mathbb{P}_{\Delta}^{1}} \cong \mathcal{O}_{L_{0}}$. Hence (i) follows from the exact sequence $\left.0 \rightarrow \mathcal{C}_{H_{0} / V_{0}}\right|_{L_{0}} \rightarrow \mathcal{C}_{L_{0} / V_{0}} \rightarrow \mathcal{C}_{L_{0} / H_{0}} \rightarrow 0$.
(ii) Let $p=\mathbb{P}_{\Delta}^{0} \cap \tau^{-1}(o)$ and let $f=\sigma_{0}^{-1}(p) \cong \mathbb{P}_{k}^{1}$ be the fibre of the \mathbb{P}^{1}-bundle $\sigma_{0}: L_{0} \rightarrow \mathbb{P}_{\Delta}^{0} \cong \Delta$. Then $C_{f / L_{0}} \cong \mathcal{O}$ and $\left.C_{L_{0} / V_{0}}\right|_{f} \cong$ $\mathcal{O}(1,0)$ by (i). Hence the exact sequence $\left.0 \rightarrow \mathcal{C}_{L_{0} / V_{0}}\right|_{f} \rightarrow \mathcal{C}_{f / V_{0}} \rightarrow$ $\mathcal{C}_{f / L_{0}} \rightarrow 0$ splits. The surjection $\phi:\left.\sigma^{*}\left(\left.\mathcal{C}_{L_{0} / V_{0}}\right|_{f}\right) \cong\left(\sigma^{*} \mathcal{C}_{L_{0} / V_{0}}\right)\right|_{T} \rightarrow$ $\left.\mathcal{C}_{L / V}\right|_{T}$ induces a commutative diagram with exact rows :

Since the first row splits, the second row also splits. Hence, for the proof of (ii), we will show $\left.\mathcal{C}_{L / V}\right|_{T} \cong \mathcal{O}_{\mathbb{F}_{1}}(s+f)$. The exceptinal divisor L of σ is equal to $\mathbb{P}\left[\mathcal{C}_{L_{0} / V_{0}}\right]$ with $\mathcal{C}_{L_{0} / V_{0}} \cong \mathcal{O}_{\mathbb{P}_{\Delta}^{1}}(1,0)$ by (i), so that $T=\mathbb{P}\left[\mathcal{C}_{L_{0} / V_{0}} \mid f\right] \cong \mathbb{P}[\mathcal{O}(1,0)]$ and $\left.\left.\mathcal{C}_{L / V}\right|_{T} \cong \mathcal{O}_{L}(1)\right|_{T} \cong \mathcal{O}_{\mathbb{F}_{1}}(s+f)$.

By symmetry of R, S, T, (ii) implies $\mathcal{C}_{R / V} \cong \mathcal{C}_{S / V} \cong \mathcal{C}_{T / V} \cong$ $\mathcal{O}_{\mathrm{F}_{1}}(s+f, 0)$.
(2.3) Let $\sigma_{1}: V_{1} \rightarrow V$ be the blow-up along R with the exceptional divisor E_{1} and the proper transforms $D_{1}, H_{1}, L_{1}, S_{1}, T_{1}$ of D, H, L, S, T, respectively. Let M_{1} (resp. N_{1}) be the exceptional divisor of the restriction $\sigma_{1}: H_{1} \rightarrow H$ (resp. $\sigma_{1}: L_{1} \rightarrow L$) of σ_{1} and let

$$
s_{1}=M_{1} \cap S_{1}=\mathbb{P}\left[\mathcal{C}_{s / H}\right], \quad r_{1}=N_{1} \cap T_{1}=\mathbb{P}\left[\mathcal{C}_{r / L}\right] .
$$

Lemma. (i) $M_{1} \cong \mathbb{F}_{1},\left(s_{1}^{2}\right)_{M_{1}}=1$, (ii) $N_{1} \cong \mathbb{F}_{0},\left(r_{1}^{2}\right)_{N_{1}}=0$.
Proof. We see $(S . s)_{H}=(T . r)_{L}=0,\left(s^{2}\right)_{S}=-1,\left(r^{2}\right)_{N_{1}}=0$, hence we have exact sequences

$$
\begin{aligned}
& \left.0 \rightarrow \mathcal{C}_{S / H}\right|_{s} \cong \mathcal{O} \rightarrow \mathcal{C}_{s / H} \rightarrow \mathcal{C}_{s / S} \cong \mathcal{O}(1) \rightarrow 0, \\
& \left.0 \rightarrow \mathcal{C}_{T / L}\right|_{r} \cong \mathcal{O} \rightarrow \mathcal{C}_{r / L} \rightarrow \mathcal{C}_{r / T} \cong \mathcal{O} \rightarrow 0 .
\end{aligned}
$$

Lemma follows since $s_{1} \subset M_{1}$ (resp. $r_{1} \subset N_{1}$) is defined by the surjection $\mathcal{C}_{s / H} \rightarrow \mathcal{C}_{s / S}$ (resp. $\mathcal{C}_{r / L} \rightarrow \mathcal{C}_{r / T}$).
(2.4) For the proper transforms S_{1} (resp. T_{1}) of S (resp. T), we have

Lemma. The exact sequences

$$
\begin{align*}
& \left.0 \rightarrow \mathcal{C}_{H_{1} / V_{1}}\right|_{S_{1}} \rightarrow \mathcal{C}_{S_{1} / V_{1}} \rightarrow \mathcal{C}_{S_{1} / H_{1}} \rightarrow 0, \tag{2.4.1}\\
& \left.0 \rightarrow \mathcal{C}_{L_{1} / V_{1}}\right|_{T_{1}} \rightarrow \mathcal{C}_{T_{1} / V_{1}} \rightarrow \mathcal{C}_{T_{1} / L_{1}} \rightarrow 0 . \tag{2.4.2}
\end{align*}
$$

splits with isomorphisms $\left.\left.\mathcal{C}_{H_{1} / V_{1}}\right|_{S_{1}} \cong \mathcal{C}_{L_{1} / V_{1}}\right|_{T_{1}} \cong \mathcal{O}_{\mathbb{F}_{1}}(s+f), \mathcal{C}_{S_{1} / H_{1}} \cong$ $\mathcal{O}_{\mathbb{F}_{1}}(s)$ and $\mathcal{C}_{T_{1} / L_{1}} \cong \mathcal{O}_{\mathbb{F}_{1}}(f)$.

Proof. We saw $\left.\left.\mathcal{C}_{H_{1} / V_{1}}\right|_{S_{1}} \cong \mathcal{C}_{H / V}\right|_{S} \cong \mathcal{O}_{\mathbb{F}_{1}}(s+f)$ and $\left.\mathcal{C}_{L_{1} / V_{1}}\right|_{T_{1}} \cong$ $\left.\mathcal{C}_{L / V}\right|_{T} \cong \mathcal{O}_{\mathbb{F}_{1}}(s+f)$ in Lemma(2.2)(ii). Hence we show $\mathcal{C}_{S_{1} / V_{1}} \cong$ $\mathcal{O}_{\mathbb{F}_{1}}(s)$ and $\mathcal{C}_{T_{1} / L_{1}} \cong \mathcal{O}_{\mathbb{F}_{1}}(f)$, i.e. $\left(S_{1} . f\right)_{H_{1}}=-1,\left(T_{1} \cdot f\right)_{L_{1}}=0$, $\left(S_{1} \cdot s_{1}\right)_{H_{1}}=1$ and $\left(T_{1} \cdot t_{1}\right)_{L_{1}}=-1$. For, $\left(S_{1} \cdot f\right)_{H_{1}}=\left(\sigma_{1}^{*} S-M_{1}\right) f=$ $(S . f)_{H}-\left(M_{1} . f\right)_{H_{1}}=0-1=-1$. By Lemma(2.3)(i), $s_{1} \subset M_{1}$ is
defined by a surjection $\left.\mathcal{C}_{R / V}\right|_{f} \cong \mathcal{O}(1,0) \rightarrow \mathcal{O}(1)$, so $\left(M_{1} . s_{1}\right)_{H_{1}}=$ $\left.\mathcal{O}_{M_{1}}(-1)\right|_{s_{1}}=-1$, hence $\left(S_{1} \cdot s_{1}\right)_{H_{1}}=\left(\sigma_{1}^{*} S-M_{1}\right) s_{1}=(S . s)_{H}-$ $\left(M_{1} \cdot s_{1}\right)_{H_{1}}=0-(-1)=1$. Similarly, $\left(T_{1} . f\right)_{L_{1}}=\left(\sigma_{1}^{*} T-N_{1}\right) f=$ $(T . f)_{L}-\left(N_{1} . f\right)_{L_{1}}=0-0=0$ and $\left(T_{1} . t_{1}\right)_{L_{1}}=\left(\sigma_{1}^{*} T-N_{1}\right) t_{1}=$ $\left(T . t_{1}\right)_{L}-\left(N_{1} . t_{1}\right)_{L_{1}}=0-1=-1$. The splitting of (2.4.1) and (2.4.2) follows from $\operatorname{Ext}\left(\mathcal{O}_{\mathbb{F}_{1}}(s), \mathcal{O}_{\mathbb{F}_{1}}(s+f)\right)=H^{1}\left(\mathcal{O}_{\mathbb{F}_{1}}(f)\right)=H^{1}\left(\mathcal{O}_{\mathbb{P}^{1}}(1)\right)=0$ and $H^{1}\left(\mathcal{O}_{\mathbb{F}_{1}}(s)\right) \cong H^{1}\left(\mathcal{O}_{\mathbb{P}^{1}}(0,-1)\right)=0$.
(2.5) From (2.4.1) we see $\left.\mathcal{C}_{S_{1} / V_{1}}\right|_{f} \cong \mathcal{O}(1,1)$, hence $S_{1} \subset V_{1}$ is flopped, i.e. there are birational maps

$$
V_{1} \stackrel{\sigma_{2}}{\leftarrow} V_{2} \xrightarrow{\sigma_{3}} V_{3},
$$

where σ_{2} is the blow-up along S_{1} with the exceptional divisor F_{2}, and σ_{3} is the blow-down of F_{2} to the other direction. Let $S_{3}=\sigma_{3}\left(F_{2}\right)$. Let $M_{2}, E_{2}, T_{2}, \ldots$ (resp. $M_{3}, E_{3}, T_{3}, \ldots$) be the birational transforms on V_{2} (resp. V_{3}) of $M_{1}, E_{1}, T_{1}, \ldots$, respectively.
Lemma. $M_{3} \cap S_{3}$ is the (-1)-curve on $S_{3}=\mathbb{F}_{1}$.
Proof. The (-1)-curve $s_{1}=S_{1} \cap M_{1}$ on $S_{1}=\mathbb{F}_{1}$ is the (+1)-curve on $M_{1}=\mathbb{F}_{1}$ by Lemma(2.3)(i); $\mathcal{C}_{s_{1} / M_{1}} \cong \mathcal{O}(-1)$. Hence, from (2.4.1), we have a surjection $\left.\mathcal{C}_{s_{1} / E_{1}} \cong \mathcal{C}_{S_{1} / V_{1}}\right|_{s_{1}} \cong \mathcal{O}(0,-1) \rightarrow \mathcal{C}_{s_{1} / M_{1}} \cong \mathcal{O}(-1)$. This defines the closed immersion $M_{2} \cap F_{2}=\mathbb{P}\left[\mathcal{C}_{s_{1} / M_{1}}\right] \subset E_{2} \cap F_{2}=$ $\mathbb{P}\left[\mathcal{C}_{s_{1} / E_{1}}\right]$, which is ismorpohic to $M_{3} \cap S_{3} \subset S_{3}$ by σ_{3}.
(2.6) We apply Lemma(0.3)(iii) to $S=S_{1} \cong \mathbb{F}_{1}$ and $F=E_{1}$. Since E_{1} intersects S_{1} with the (-1)-curve on $S_{1} \cong \mathbb{F}_{1}, \mathcal{C}_{S_{1} / V_{1}} \cong \mathcal{O}_{\mathbb{F}_{1}}(s+f, s)$ impilies $\mathcal{C}_{S_{3} / E_{3}} \cong \mathcal{O}_{\mathbb{F}_{1}}(s)$ and there is a split exact sequence (2.6.1)

$$
\left.0 \rightarrow \mathcal{C}_{E_{3} / V_{3}}\right|_{S_{3}} \cong \mathcal{O}_{\mathbb{T}_{1}}(s+f) \rightarrow \mathcal{C}_{S_{3} / V_{3}} \rightarrow \mathcal{C}_{S_{3} / E_{3}} \cong \mathcal{O}_{\mathbb{F}_{1}}(s) \rightarrow 0
$$

Lemma. The exact sequences

$$
\begin{align*}
& 0 \rightarrow \mathcal{C}_{L_{2} / V_{2}}{\mid T_{2}} \rightarrow \mathcal{C}_{T_{2} / V_{2}} \rightarrow \mathcal{C}_{T_{2} / L_{2}} \rightarrow 0, \tag{2.6.2}\\
& \left.0 \rightarrow \mathcal{C}_{L_{3} / V_{3}}\right|_{T_{3}} \rightarrow \mathcal{C}_{T_{3} / V_{3}} \rightarrow \mathcal{C}_{T_{3} / L_{3}} \rightarrow 0 . \tag{2.6.3}
\end{align*}
$$

splits with isomorphisms $\left.\mathcal{C}_{L_{2} / V_{2}}\right|_{T_{2}} \cong \mathcal{C}_{T_{2} / L_{2}} \cong \mathcal{O}_{\mathbb{F}_{1}}(s+f)$ and $\left.\mathcal{C}_{L_{3} / V_{3}}\right|_{T_{3}} \cong \mathcal{C}_{T_{3} / L_{3}} \cong \mathcal{O}_{\mathbb{P}^{2}}(1)$.
Proof. We see $\left.\left.\mathcal{C}_{L_{2} / V_{2}}\right|_{T_{2}} \cong \mathcal{C}_{L / V}\right|_{T} \cong \mathcal{O}_{\mathbb{F}_{1}}(s+f)$, hence we will show $\mathcal{C}_{T_{2} / V_{2}} \cong \mathcal{O}_{\mathbb{F}_{1}}(s+f)$, i.e. $\left(T_{2} \cdot f\right)_{L_{2}}=-1$ and $\left(T_{2} . t_{2}\right)_{L_{2}}=0$. Let $Q_{2}=$
$\mathbb{P}\left[\mathcal{C}_{S_{1} / V_{1}} \mid t_{1}\right] \cong \mathbb{P}\left[\mathcal{C}_{t_{1} / L_{1}}\right]$ be the exceptional divisor of $\sigma_{2}: L_{2} \rightarrow L_{1}$. Then $\left(T_{2} \cdot f\right)_{L_{2}}=\left(\sigma_{2}^{*} T_{1}-Q_{2}\right) f=\left(T_{1} \cdot f\right)_{L_{1}}-\left(Q_{2} . f\right)_{L_{2}}=0-1=-1$. Since the (-1)-curve t_{1} on $T_{1} \cong \mathbb{F}_{1}$ is a fibre on $S_{1},\left.\mathcal{C}_{S_{1} / V_{1}}\right|_{t_{1}} \cong$ $\left.\mathcal{O}_{\mathbb{F}_{1}}(s+f, s)\right|_{f} \cong \mathcal{O}(1,1)$ by (2.4.1). Hence $t_{2}=T_{2} \cap Q_{2} \subset Q_{2}$ is defined by a surjection $\left.\mathcal{C}_{t_{1} / L_{1}} \cong \mathcal{C}_{S_{1} / V_{1}}\right|_{t_{1}} \cong \mathcal{O}(1,1) \rightarrow \mathcal{C}_{t_{1} / T_{1}} \cong \mathcal{O}(1)$, so $\left(Q_{2} . t_{2}\right)=\left.\mathcal{O}_{Q_{2}}(-1)\right|_{t_{2}}=-1$ and $\left(T_{2} . t_{2}\right)_{L_{2}}=\left(\sigma_{2}^{*} T_{1}-Q_{2}\right) t_{2}=$ $\left(T_{1} \cdot t_{1}\right)_{L_{1}}-\left(Q_{2} \cdot t_{2}\right)=-1-(-1)=0$ since $\mathcal{C}_{T_{1} / L_{1}} \cong \mathcal{O}_{\mathbb{F}_{1}}(f)$ by (2.4.2). The exact sequence (2.6.3) follows from ($\left.T_{3} . f\right)_{L_{3}}=\left(\sigma_{3}^{*} T_{3} . f\right)_{L_{2}}=$ $\left(T_{2} \cdot f\right)_{L_{2}}=-1$ and $\left(L_{3} . f\right)_{V_{3}}=\left(\sigma_{3}^{*} L_{3} \cdot f\right)_{V_{2}}=\left(L_{2} . f\right)_{V_{2}}=-1$ by (2.6.2).
(2.7) From (2.6.3) we see $\mathcal{C}_{T_{3} / V_{3}} \cong \mathcal{O}_{\mathbb{P}^{2}}(1,1)$, so there are birational maps

$$
V_{3} \stackrel{\sigma_{4}}{4} V_{4} \xrightarrow{\sigma_{5}} V_{5},
$$

where σ_{4} is the blow-up along $T_{3} \cong \mathbb{P}^{2}$ with the exceptional divisor $G_{4}=\mathbb{P}\left[\mathcal{C}_{T_{3} / V_{3}}\right] \cong \mathbb{P}^{2} \times \mathbb{P}^{1}$, and σ_{5} is the blow-down of G_{4} onto the second factor \mathbb{P}^{1}. The birational transform S_{5} on V_{5} of $S_{3} \cong \mathbb{F}_{1}$ is the blow-up of S_{3} at the point $p=S_{3} \cap T_{3}$. we recall the relative Picard number of V_{5} over $\operatorname{Spec}(R)$ is equal to two. Let f_{3} be the fibre of $S_{3}=\mathbb{F}_{1}$ intersectiong at the point $p=S_{3} \cap T_{3}$ and let f_{4} (resp. f_{5}) be the birational transform of f_{3} on S_{4} (resp. S_{5}). The two extremal rays of V_{5} over X are generated by f_{5} and the image $e_{5}=\sigma_{5}\left(G_{4}\right)$. We see

$$
\begin{aligned}
\left(-K_{V_{4}} \cdot f_{4}\right)_{V_{4}} & =\left(\sigma_{4}^{*}\left(-K_{V_{3}}\right)-G_{4}\right) f_{4}=\left(-K_{V_{3}} \cdot f_{3}\right)_{V_{3}}-\left(G_{4} \cdot f_{4}\right)_{V_{4}}, \\
& =\left(\sigma_{5}^{*}\left(-K_{V_{5}}\right)-2 G_{4}\right) f_{4}=\left(-K_{V_{5}} \cdot f_{5}\right)_{V_{5}}-2\left(G_{4} \cdot f_{4}\right)_{V_{4}}
\end{aligned}
$$

with $\left(-K_{V_{3}} \cdot f_{3}\right)=0$ and $\left(G_{4} \cdot f_{4}\right)=1$, hence $\left(-K_{V_{5}} \cdot f_{5}\right)_{V_{5}}=1$. Let

$$
\begin{equation*}
\tau_{1}: V_{5} \rightarrow X_{1} \tag{2.7.1}
\end{equation*}
$$

be the contraction morphism of f_{5}.
Lemma. $\left(E_{5} . f_{5}\right)_{V_{5}}=0$.
Proof. From (0.3) we see the exact sequence (2.6.1) induces the split exact sequecne

$$
\begin{equation*}
\left.0 \rightarrow \mathcal{C}_{E_{5} / V_{5}}\right|_{S_{5}} \rightarrow \mathcal{C}_{S_{5} / V_{5}} \rightarrow \mathcal{C}_{S_{5} / E_{5}} \rightarrow 0 . \tag{2.7.2}
\end{equation*}
$$

with isomorphisms $\left.\mathcal{C}_{E_{5} / V_{5}}\right|_{S_{5}} \cong \mathcal{O}_{S_{5}}(s+f-e)$ and $\mathcal{C}_{S_{5} / E_{5}} \cong \mathcal{O}_{S_{5}}(s-e)$. Since T_{3} is disjoint from M_{3}, Lemma(2.5) means the point $p=S_{3} \cap T_{3}$ is not on the (-1)-curve on $S_{3}=\mathbb{F}_{1}$, so that $f_{5} \equiv s+f-e$ on S_{5}. Hence we see from (2) that $\left(E_{5} . f_{5}\right)=-\mathcal{C}_{E_{5}} /\left.V_{5}\right|_{f_{5}}=-(s+f-e)^{2}=0$.
(2.8) The above Lemma(2.7) implies that any irreducible curve C on V_{5} with $\left(E_{5} . C\right)=0$ is contracted by the morphism (2.7.1). We show E_{5} is covered by such curves. Let f be a fibre of $R \cong \mathbb{F}_{1}$ on V. From Lemma(2.2)(ii), we see $\left.\mathcal{C}_{R / V}\right|_{f} \cong \mathcal{O}(1,0)$, so that $E_{1, f}:=$ $\sigma_{1}^{-1}(f)=\mathbb{P}\left[\left.\mathcal{C}_{R / V}\right|_{f}\right]$ is isomorphic to \mathbb{F}_{1}. Let C be a section of $E_{1, f}$ containing the point $E_{1, f} \cap T_{1}$ (such C exists with 1-parameter family for each fibre f of R).

Lemma. $\left(E_{5} . C_{5}\right)_{V_{5}}=0$ for the birational transform C_{5} of C on V_{5}.
Proof. For simplicity we use the same letter C for the birational transforms of C on $V_{i}(1 \leq i \leq 5)$. Since the (+1)-curve $C \subset E_{1, f}$ is defined by a surjection $\left.\mathcal{C}_{R / V}\right|_{f} \cong \mathcal{O}(1,0) \rightarrow \mathcal{O}(1)$, we see $\left(E_{1} \cdot C\right)=$ $\left.\mathcal{O}_{E_{1}}(-1)\right|_{C}=-1$. Then $\left(E_{3} \cdot C\right)=-1$ because $E_{2}=\sigma_{2}^{*} E_{1}-F_{2}=$ $\sigma_{3}^{*} E_{3}-F_{2}$. From $E_{4}=\sigma_{4}^{*} E_{3}-G_{4}=\sigma_{5}^{*} E_{5}-2 G_{4}$ together with $\left(G_{4} \cdot C\right)=1$, we see $\left(E_{5} \cdot C\right)=\left(E_{3} \cdot C\right)+\left(G_{4} \cdot C\right)=-1+1=0$.

By the above Lemma, there are 1-parameter family of the curves C with $\left(E_{5} . C\right)=0$ for each point on $e=\sigma_{5}\left(G_{4}\right)$, so the image of the morphism (2.7.1) is 2-dimensional. This means $\tau_{1}: V_{5} \rightarrow X_{1}$ is a standard \mathbb{P}^{2}-bundle and the structure morphism $X_{1} \rightarrow \operatorname{Spec}(R)$ is the blow-up at the origin. The statement (II) of Theorem is proved.
(2.9) Let X be a smooth algebraic surface and let $Y \rightarrow X$ be the blow up at a point of X with the exceptional line e. Let $\tau_{1}: W \rightarrow$ Y be a standard \mathbb{P}^{2}-bundle with the non-smooth locus intersecting e transeversely at one point $p_{0}=\Delta \cap e$. If we find a smooth subvariety S_{5} of $\tau_{1}(e)$ such that
(2.9.1) S_{5} is a \mathbb{P}^{1}-bundle over e away from the point $p_{0}=e \cap \Delta$,
(2.9.2) there is a section e_{5} on S_{5} over e with $\left(e_{5}^{2}\right)_{S_{5}}=-1$,
then we obtain a standard \mathbb{P}^{2}-bundle V over X by applying the inverse of the birational map (II) described above. We see the existence of such subvarieties $e_{5} \subset S_{5}$ by the following argument. As in (2.1), $\tau_{1}^{-1}(e)$ is obtained from a \mathbb{P}^{2}-bundle $\tau_{2}: P \rightarrow e$ by twice blow-ups

$$
\tau_{1}^{-1}(e) \xrightarrow{\epsilon_{2}} P_{1} \xrightarrow{\epsilon_{1}} P,
$$

where ϵ_{1} is the blow-up of P along a line l in $\tau_{2}^{-1}\left(p_{0}\right) \cong \mathbb{P}^{2}$, and ϵ_{2} is the blow-up of P_{1} along a fibre f of the exceptional divisor $\epsilon_{1}^{-1}(l)$ of ϵ_{1}. We write $P=\mathbb{P}[\mathcal{E}]$ with a rank three vector bundle $\mathcal{E} \cong \mathcal{O}(0, a, b)$ on $e \cong \mathbb{P}^{1}$. Let $\phi: \mathcal{E} \mathcal{O}(c, c+1)$ be a surjection for an integer $c \in \mathbb{Z}$, and $e_{0}=\mathbb{P}[\mathcal{O}(c)] \subset S_{0}=\mathbb{P}[\mathcal{O}(c, c+1)]$ be the corresponding subvarieties of $P=\mathbb{P}[\mathcal{E}]$. We choose $\phi: \mathcal{E} \rightarrow \mathcal{O}(c, c+1)$ such that
(2.9.3) the line $S_{0} \cap \tau_{2}^{-1}\left(p_{0}\right)$ is not equal to the center l of ϵ_{1}, (2.9.4) $e_{0} \cap \tau_{1}^{-1}\left(p_{0}\right), S_{0} \cap l, \epsilon_{1}(f)$ are distinct three points on $\tau_{2}^{-1}\left(p_{0}\right)$.

Then we see the proper transforms in $\tau_{1}^{-1}(e)$ of S_{0} and e_{0} satify (2.9.1) and (2.9.2).

3. The birational map (III)

(3.1) In this section we consider the birational map (III). Let τ : $V \rightarrow X$ be a standard \mathbb{P}^{2}-bundle over a smooth algebraic surface X and let $C \subset X$ be a curve intersecting the non-smooth locus Δ of τ transversely at one smooth point p_{0} of Δ. Let $C_{0} \subset V$ be a curve which is isomoorphic to C by τ. Let $\tau^{-1}\left(p_{0}\right)=R \cup S \cup T$ with R, S, T isomorphic to \mathbb{F}_{1} and assume $s=S \cap R$ is the (-1)-curve on S.
Lemma. There is a split exact sequence

$$
0 \rightarrow \mathcal{C}_{\tau^{-1}(C) / V} \mid S \cong \mathcal{O}_{\mathbb{F}_{1}} \rightarrow \mathcal{C}_{S / V} \rightarrow \mathcal{C}_{S / \tau^{-1}(C)} \cong \mathcal{O}_{\mathbb{F}_{1}}(s+f) \rightarrow 0
$$

Proof. $\left.\left.\mathcal{C}_{\tau^{-1}(C) / V}\right|_{S} \cong \tau^{*} \mathcal{O}_{X}(-C)\right|_{S} \cong \mathcal{O}_{\mathbb{F}_{1}}$ is clear. Since $R+S+T \equiv 0$ on $\tau^{-1}(C)$, we see $(S . f)_{\tau^{-1}(C)}=-(R . f)-(T . f)=-1-0=-1$, and $(S . s)_{\tau^{-1}(C)}=0$ because s is a fibre of R. Hence $\mathcal{C}_{S / \tau^{-1}(C)} \cong$ $\mathcal{O}_{\mathbb{F}_{1}}(s+f)$.
(3.2) Let $\sigma_{1}: V_{1} \rightarrow V$ be the blow-up along C_{0} with the exceptional divisor E_{1} and let $R_{1}, S_{1}, T_{1}, D_{1}$ be the proper transforms of $R, S, T, \tau^{-1}(C)$, respectively. The restriction to S_{1} of σ_{1} is the blowup of S at the point $p=\Delta \cap C_{0}$. Let

$$
e_{1}=S_{1} \cap E_{1}
$$

be the exceptional line of $\sigma_{1}: S_{1} \rightarrow S \cong \mathbb{F}_{1}$.

Lemma. The exact sequence

$$
\begin{equation*}
\left.0 \rightarrow \mathcal{C}_{D_{1} / V_{1}}\right|_{S_{1}} \rightarrow \mathcal{C}_{S_{1} / V_{1}} \rightarrow \mathcal{C}_{S_{1} / D_{1}} \rightarrow 0 \tag{3.2.1}
\end{equation*}
$$

splits with isomorphisms $\left.\mathcal{C}_{D_{1} / V_{1}}\right|_{S_{1}} \cong \mathcal{O}_{S_{1}}\left(e_{1}\right)$ and $\mathcal{C}_{S_{1} / D_{1}} \cong \mathcal{O}_{S_{1}}\left(s_{1}+\right.$ f_{1}).

Proof. $\left.\mathcal{C}_{D_{1} / V_{1}}\right|_{S_{1}} \cong \mathcal{O}_{S_{1}}\left(e_{1}\right)$ follows from

$$
\begin{aligned}
& \left(D_{1} \cdot s_{1}\right)_{V_{1}}=\left(\sigma_{1}^{*} D-E_{1}\right) s_{1}=(D \cdot s)_{V}-\left(E_{1} \cdot s\right)_{V_{1}}=0-0=0, \\
& \left(D_{1} \cdot f_{1}\right)_{V_{1}}=\left(\sigma_{1}^{*} D-E_{1}\right) f_{1}=(D \cdot f)_{V}-\left(E_{1} \cdot f\right)_{V_{1}}=0-0=0, \\
& \left(D_{1} \cdot e_{1}\right)_{V_{1}}=\left(\sigma_{1}^{*} D-E_{1}\right) e_{1}=-\left(E_{1} \cdot e_{1}\right)_{V_{1}}=0 .
\end{aligned}
$$

Similarly, $\mathcal{C}_{S_{1} / D_{1}} \cong \mathcal{O}_{S_{1}}\left(s_{1}+f_{1}\right)$ follows from the equalities $\left(S_{1} . s_{1}\right)_{D_{1}}$ $=\left(\sigma_{1}^{*} S . s_{1}\right)=(S . s)_{\tau^{-1}(C)}=0,\left(S_{1} \cdot f_{1}\right)_{V_{1}}=\left(\sigma_{1}^{*} S . f_{1}\right)=(S . f)_{\tau^{-1}(C)}=$ -1 and $\left(S_{1} . e_{1}\right)_{D_{1}}=\left(\sigma_{1}^{*} S . e_{1}\right)=0$. Since $H^{1}\left(\mathcal{O}_{S_{1}}\left(-s_{1}-f_{1}+e_{1}\right)\right)=$ $H^{1}\left(\mathcal{O}_{S_{1}}\left(-s_{1}-2 f_{1}\right)\right)$ (Serre duality) $=H^{1}\left(\mathcal{O}_{\mathbb{F}_{1}}(-s-2 f)\right)=0$, the exact sequence (3.2.1) splits.
(3.3) There is a blow-down $S_{1} \rightarrow \mathbb{F}_{0}$ with the exceptional line $e \equiv$ $f_{1}-e_{1}$. We take

$$
\begin{equation*}
s=f_{1}, \quad f=s_{1}+f_{1}-e_{1} \tag{3.3.1}
\end{equation*}
$$

as the section and the fibre of S_{1} induced from those of \mathbb{F}_{0}. Then $s-e=e_{1}$ and $s+f-e=s_{1}+f_{1}$, so the exact sequence (3.2.1) is equal to

$$
\begin{equation*}
\left.0 \rightarrow \mathcal{C}_{D_{1} / V_{1}}\right|_{S_{1}} \rightarrow \mathcal{C}_{S_{1} / V_{1}} \rightarrow \mathcal{C}_{S_{1} / D_{1}} \rightarrow 0 \tag{3.3.2}
\end{equation*}
$$

with isomorphisms $\left.\mathcal{C}_{D_{1} / V_{1}}\right|_{S_{1}} \cong \mathcal{O}_{S_{1}}(s-e)$ and $\mathcal{C}_{S_{1} / D_{1}} \cong \mathcal{O}_{S_{1}}(s+f-e)$. Hence $\left.\mathcal{C}_{S_{1} / V_{1}}\right|_{e} \cong \mathcal{O}(1,1)$, so there are birational maps

$$
V_{1} \stackrel{\sigma_{2}}{\leftarrow} V_{2} \xrightarrow{\sigma_{3}} V_{3}
$$

where σ_{2} is the blow-up of e with the exceptional divisor $B_{3} \cong \mathbb{P}^{1} \times \mathbb{P}^{2}$, and σ_{3} is the blow-down of B_{3} to the other direction. Let D_{3}, S_{3}, \ldots be the proper transforms on V_{3} of D_{1}, S_{1}, \ldots, respectively. We see from (0.3) that the exact sequence (3.3.2) induces

$$
\begin{equation*}
\left.0 \rightarrow \mathcal{C}_{D_{3} / V_{3}}\right|_{S_{3}} \rightarrow \mathcal{C}_{S_{3} / V_{3}} \rightarrow \mathcal{C}_{S_{3} / D_{3}} \rightarrow 0 \tag{3.3.3}
\end{equation*}
$$

with isomorphisms $\left.\mathcal{C}_{D_{3} / V_{3}}\right|_{S_{3}} \cong \mathcal{O}_{\mathbb{F}_{0}}(s)$ and $\mathcal{C}_{S_{3} / D_{3}} \cong \mathcal{O}_{\mathbb{F}_{0}}(s+f)$. Therefore $\left.\mathcal{C}_{S_{3} / V_{3}}\right|_{f} \cong \mathcal{O}(1,1)$, so that $S_{3} \subset V_{3}$ is flopped, i.e. there are birational maps

$$
V_{3} \stackrel{\sigma_{4}}{\leftarrow} V_{4} \xrightarrow{\sigma_{5}} V_{5}
$$

where σ_{4} is the blow-up of S_{3} with the exceptional divisor F_{4}, and σ_{5} is the blow-down of F_{4} to the other direction. The flopped surface S_{5} on V_{5} is isomorphic to $\mathbb{P}\left[\left.\mathcal{C}_{S_{3} / V_{3}}\right|_{s}\right] \cong \mathbb{P}[\mathcal{O}(-1,0)]=\mathbb{F}_{1}$ by (3.3.3), and satisfies $\mathcal{C}_{S_{5} / V_{5}} \cong \mathcal{O}_{\mathbb{F}_{1}}(s+f, s+f)$ by Lemma(0.3$)$ (i).
(3.4) The extremal rays on V_{5} over X. One is generated by the fibre f_{5} of the flopped surface $S_{5} \cong \mathbb{F}_{1}$, and the other is the birational transform l_{5} of the line l in $\tau^{-1}(p) \cong \mathbb{P}^{2}$ with $l \cap C_{0}$ non-empty for a point $p \in C-(C \cap \Delta)$. We see $\left(-K_{V_{5}} \cdot f_{5}\right)=0,\left(-K_{V_{5}} \cdot l_{5}\right)=1$, $\left(E_{5} \cdot f_{5}\right)=-1$ and $\left(E_{5} \cdot l_{5}\right)=1$. The birational transform D_{5} on V_{5} of $\tau^{-1}(C)$ has a \mathbb{P}^{1}-bundle structure over the surface $D_{5} \cap E_{5}$ with fibre l_{5}, hence the contraction morphism of l_{5}

$$
\sigma_{6}: V_{5} \rightarrow V_{6},
$$

is the blow-up of V_{6} along the surface $\sigma_{6}\left(D_{5}\right)$. The structure morphism $V_{6} \rightarrow X$ defines the standard \mathbb{P}^{2}-bundle over X.

4. Appendix

(4.1) The standard \mathbb{P}^{2}-bundle V over the local ring R of a singular point of Δ constructed from the R-algebra (0.1.3), is described as follows.
emma. [$M,(2.4)]$ (i) V is covered by three open sets U_{3}, U_{11}, U_{12}, which are isomorphic to the affine space \mathbb{A}_{k}^{4} of dimension four with affine coordinates $\left(f, x_{1}, x_{2}, x_{3}\right),\left(g, y_{8}, y_{5}, y_{3}\right),\left(w_{12}, w_{2}, w_{5}, w_{11}\right)$, respectively, such that the transition functions are given by
(a) U_{11} to $U_{12}: \quad f=y_{8}^{3}+g y_{5}^{3}+g^{2} y_{3}^{3}-3 g y_{8} y_{5} y_{3}$, $x_{1}=\left(y_{3} y_{8}^{2}-\omega y_{5}^{2} y_{8}-\omega^{2} g y_{3}^{2} y_{5}\right) / y_{12}$, $x_{2}=\left(y_{5}^{2}+y_{3} y_{8}\right) / y_{12}, \quad x_{3}=y_{3} / y_{12}$, with $y_{12}=\omega^{2} y_{5}^{3}+\omega g y_{3}^{3}+\left(\omega^{2}-\omega\right) y_{3} y_{5} y_{8}$,
(b) U_{12} to $U_{11}: \quad g=x_{1}^{3}+f x_{2}^{3}+f^{2} x_{3}^{3}-3 f x_{1} x_{2} x_{3}$,

$$
y_{8}=\left(-x_{1} x_{2}^{2}-\omega x_{1}^{2} x_{3}-\omega^{2} f x_{2} x_{3}^{2}\right) / x_{11},
$$

$$
\begin{aligned}
& y_{5}=\omega^{2}\left(x_{2}^{2}-x_{1} x_{3}\right) / x_{11}, \quad y_{3}=x_{3} / x_{11} \\
& \text { with } \quad x_{11}=\omega x_{2}^{3}-\omega^{2} f x_{3}^{3}+\left(\omega^{2}-\omega\right) x_{1} x_{2} x_{3}
\end{aligned}
$$

(c) U_{3} to U_{12} :

$$
\begin{aligned}
f & =w_{2}^{3}-\omega w_{11} w_{12}^{2}+(1-\omega) w_{2} w_{5} w_{12} \\
& =w_{2}\left(w_{2}^{2}-\omega w_{5} w_{11}\right)+w_{12}\left(w_{2} w_{5}-\omega w_{11} w_{12}\right), \\
x_{1} & =\left(w_{2}^{2}-\omega w_{5} w_{12}\right) / w_{12}, \\
x_{2} & =w_{2} / w_{12}, \quad x_{3}=1 / w_{12},
\end{aligned}
$$

(d) U_{12} to U_{3} :

$$
\begin{aligned}
& w_{12}=1 / x_{3}, \quad w_{2}=x_{2} / x_{3}, \\
& w_{5}=\omega^{2}\left(x_{2}^{2}-x_{1} x_{3}\right) / x_{3}, \quad w_{11}=x_{11} / x_{3},
\end{aligned}
$$

(e) U_{3} to U_{11} :

$$
\begin{aligned}
-g & =w_{5}^{3}-\omega^{2} w_{11}^{2} w_{12}+(\omega-1) w_{2} w_{5} w_{11} \\
& =w_{5}\left(w_{5}^{2}-w_{2} w_{11}\right)+\omega w_{11}\left(w_{2} w_{5}-\omega w_{11} w_{12}\right), \\
y_{8} & =\left(w_{2} w_{11}-w_{5}^{2}\right) / w_{11} \\
y_{5} & =w_{5} / w_{11}, \quad y_{3}=1 / w_{11},
\end{aligned}
$$

(f) U_{11} to $U_{3}: \quad w_{12}=y_{12} / y_{3}, \quad w_{2}=\left(y_{5}^{2}+y_{3} y_{8}\right) / y_{3}$, $w_{5}=y_{5} / y_{3}, \quad w_{11}=1 / y_{3}$,
(ii) The projection $\tau: V \rightarrow \operatorname{Spec}(R)$ is given by

$$
\begin{array}{rlr}
\tau\left(f, x_{1}, x_{2}, x_{3}\right)= & \left(f, x_{1}^{3}+f x_{2}^{3}+f^{2} x_{3}^{3}-3 f x_{1} x_{2} x_{3}\right) \quad \text { on } U_{12}, \\
\tau\left(g, y_{8}, y_{5}, y_{3}\right)= & \left(y_{8}^{3}+g y_{5}^{3}-g^{2} y_{3}^{3}+3 g y_{3} y_{5} y_{8}, g\right) \quad \text { on } U_{11}, \\
\tau\left(w_{12}, w_{2}, w_{5}, w_{11}\right)= & \left(w_{2}^{3}-\omega w_{11} w_{12}^{2}+(1-\omega) w_{2} w_{5} w_{12},\right. \\
& \left.-w_{5}^{3}+\omega^{2} w_{11}^{2} w_{12}+(1-\omega) w_{2} w_{5} w_{11}\right) \text { on } U_{3},
\end{array}
$$

(iii) The central fibre $\tau^{-1}(p)$ with reduced structure is defined by the ideal

$$
\begin{aligned}
& \left(f, x_{1}\right) \quad \text { on } U_{12}, \quad\left(g, y_{8}\right) \quad \text { on } U_{11}, \\
& \left(\omega w_{12} w_{5}-w_{2}^{2}, \omega w_{11} w_{12}-w_{2} w_{5}, w_{2} w_{11}-w_{5}^{2}\right) \quad \text { on } U_{3} \text {, }
\end{aligned}
$$

and the vertex of $\tau^{-1}(p)_{\text {red }}$ is the origin of $U_{3} \cong \mathbb{A}_{k}^{4}$.
(4.2) (Proof of Lemma(1.2)) By Lemma(4.1)(iii) we assume the fibre l is equal to $l=\left\{\lambda\left(1, a, \omega^{2} a^{2}, \omega a^{3}\right) \mid \lambda \in k\right\}$ on $U_{3} \cong \mathbb{A}^{4},\left(w_{12}, w_{2}, w_{5}\right.$, $\left.w_{11}\right)$, for a constant $a \in k$. Let

$$
w_{2}^{\prime}=w_{2}-a w_{12}, \quad w_{5}^{\prime}=w_{5}-\omega^{2} a^{2} w_{12}, \quad w_{11}^{\prime}=w_{11}-\omega a^{3} w_{12}
$$

Then we see (where \equiv means modulo the ideal $\left.\left(w_{2}^{\prime}, w_{5}^{\prime}, w_{11}^{\prime}\right)^{2}\right)$

$$
\begin{aligned}
w_{2}^{2}-\omega w_{5} w_{12} & =\left(w_{2}^{\prime}+a w_{12}\right)^{2}-\omega\left(w_{5}^{\prime}+\omega^{2} a^{2} w_{12}\right) w_{12} \\
& \equiv\left(2 a w_{2}^{\prime}-\omega w_{5}^{\prime}\right) w_{12} \\
w_{2} w_{5}-w_{12} w_{11} & =\left(w_{2}^{\prime}+a w_{12}\right)\left(w_{5}^{\prime}+\omega^{2} a^{2} w_{12}\right)-\omega\left(w_{11}^{\prime}+\omega a^{3} w_{12}\right) w_{12} \\
& \equiv \omega^{2} a^{2} w_{2}^{\prime}+a w_{5}^{\prime}-\omega w_{11}^{\prime}
\end{aligned}
$$

Hence, by Lemma(4.1)(i)(c),

$$
\begin{aligned}
f & \equiv\left(w_{2}^{\prime}+a w_{12}\right)\left(2 a w_{2}^{\prime}-\omega w_{5}^{\prime}\right) w_{12}+w_{12}^{2}\left(\omega^{2} a^{2} w_{2}^{\prime}+a w_{5}^{\prime}-\omega w_{11}^{\prime}\right) \\
& \equiv w_{12}^{2}\left\{(1-\omega) a^{2} w_{2}^{\prime}+a(1-\omega) w_{5}^{\prime}-\omega w_{11}^{\prime}\right\} \\
x_{1} & =\left(w_{2}^{\prime 2}-\omega w_{5}^{\prime} w_{11}^{\prime}\right) / w_{12}+\left(2 a w_{2}^{\prime}-\omega w_{5}^{\prime}\right) \\
x_{2} & =\left(w_{2}^{\prime}+a w_{12}\right) / w_{12}, \quad x_{3}=1 / w_{12}
\end{aligned}
$$

Therefore, on the fibre $l=\left\{w_{2}^{\prime}=w_{5}^{\prime}=w_{11}^{\prime}=0\right\},{ }^{t}\left(d f, d x_{1}, d\left(x_{2}-\right.\right.$ $\left.a), d x_{3}\right)$ is equal to

$$
\left(\begin{array}{cccc}
-\omega w_{12}^{2} & a(1-\omega) w_{12}^{2} & (1-\omega) w_{12}^{2} & 0 \\
0 & -\omega & 2 a & 0 \\
0 & 0 & 1 / w_{12} & 0 \\
0 & 0 & 0 & -1 / w_{12}^{2}
\end{array}\right)\left(\begin{array}{c}
d w_{11}^{\prime} \\
d w_{5}^{\prime} \\
d w_{2}^{\prime} \\
d w_{12}
\end{array}\right)
$$

Then $\mathcal{C}_{\sigma_{1}(l) / V} \cong \mathcal{O}(2,0,-1)$ follows from the above transition matrix of (4.2.1).
(4.3) Lastly we explain briefly the three birational maps (I)-(III) of standard conic bundles (cf.[Sa]) corresponding to those of \mathbb{P}^{2}-bundles treating in this paper. Let $\tau: V \rightarrow X$ be a standard conic bundle over a smooth algebraic surface X.
(I) Let p be a singular point of the discriminant locus Δ of V and $\sigma: X_{1} \rightarrow X$ be the blow up at p. The reduced fibre $l=\tau^{-1}(p)_{\text {red }} \subset V$ is isomorphic to \mathbb{P}^{1} and the conormal bundle $\mathcal{C}_{l / V} \cong \mathcal{O}_{\mathbb{P}^{1}}(2,-1)$. Let $\sigma_{1}: V_{1} \rightarrow V$ be the blow-up along l and let s be the (-3)-curve on the exceptional divisor $E=\mathbb{P}\left[\mathcal{C}_{l / V}\right] \cong \mathbb{F}_{3}$. Then $\mathcal{C}_{s / V_{1}} \cong \mathcal{O}(1,1)$, so $s \subset V_{1}$ is flopped to $s^{+} \subset W$. Now W has a conic bundle structure over X_{1} with the non-smooth locus equal to the union of the exceptional
divisor e and the proper transform Δ^{\prime} of Δ. The birational map (I) is factored by

$$
\begin{equation*}
V \stackrel{\sigma_{1}}{\leftarrow} V_{1} \rightarrow \leftarrow W . \tag{4.3.1}
\end{equation*}
$$

The flopped curve $s^{+} \subset W$ is the closure of the singulsr locus of $\tau^{-1}\left(e-\Delta^{\prime}\right)$.
(II) Let p be a smooth point of the discriminat locus Δ of V and $\sigma: X_{1} \rightarrow X$ be the blow-up at p. The fibre $\tau^{-1}(p)=s \cup m$ is a union of two distinct lines s and m. Let $\sigma_{1}: V_{1} \rightarrow V$ be the blow-up along m and let $s_{1} \subset V_{1}$ be the proper transform of s. Then $\mathcal{C}_{s_{1} / V_{1}} \cong \mathcal{O}(1,1)$, so $s_{1} \subset V_{1}$ is flopped to $s^{+} \subset W$. Now W has a conic bundle structure over X_{1} with the non-smooth locus equal to the proper transform of Δ. The birational map (II) is factored as in (4.3.1). The flopped curve s^{+} is a section over the exceptional curve e on X_{1} with $\mathcal{C}_{s^{+} / \tau^{-1}(e)} \cong \mathcal{O}(1)$.
(III) Let $C \subset X$ be a smooth curve intersecting transversely at one smooth point p of Δ. Let $C_{0} \subset V$ be a curve which is isomorphic to C by τ. The fibre $\tau^{-1}(p)=s \cup m$ is the union of two lines s and m, and we assume C_{0} intersects s. Let $\sigma_{1}: V_{1} \rightarrow V$ be the blow-up along C_{0} and let $s_{1} \subset V_{1}$ be the proper transform of s. Then $\mathcal{C}_{s_{1} / V_{1}} \cong \mathcal{O}(1,1)$, so $s_{1} \subset V_{1}$ is flopped to $s^{+} \subset V_{2}$. The birational transform $F \subset V_{2}$ of $\tau^{-1}(C)$ is a \mathbb{P}^{1}-bundle over C and its fibre f is an extremal rational curve. Let $\sigma_{2}: V_{2} \rightarrow W$ be the contraction of f. Then W has a conic bundle structure over X with the same non-smooth locus Δ of V. The birational map (III) is factored by

$$
V \stackrel{\sigma_{1}}{\leftarrow} V_{1} \rightarrow \leftarrow V_{2} \xrightarrow{\sigma_{2}} W .
$$

If C is isomorphic to \mathbb{P}^{1} with $\mathcal{C}_{C / X} \cong \mathcal{O}(a)$ and $\mathcal{C}_{C_{0} / \tau^{-1}(C)} \cong \mathcal{O}(b)$ for integers $a, b \in \mathbb{Z}$, then $\mathcal{C}_{\sigma_{2}(F) / \tau_{1}^{-1}(C)} \cong \mathcal{O}(a-b+1)$. In particular, if C is a (-1)-curve with $\mathcal{C}_{C_{0} / \tau^{-1}(C)} \cong \mathcal{O}(b)$, then $\mathcal{C}_{\sigma_{2}(F) / \tau_{1}^{-1}(C)} \cong \mathcal{O}(-b+2)$.

References

[A-M] Artin, M., Mumford, D., Some elementary examples of unirational varieties which are not rational, Proc. London. Math. soc. 25 (1972), 79-95.
[Ma] Maeda, T., On standard projective plane bundles, preprint.
[Mo] Mori, S., Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982), 133-176.
[Sa] Sarkisov, V. G., On conic bundle structures, Math. USSR Izv. 20 (1982), 355-390.

Department of Mathematical Sciences College of Science University of Ryukyus Nishihara Okinawa 903-01
Japan

