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BIRATIONAL MAPS OF
STANDARD PROJECTIVE PLANE BUNDLES

OVER ALGEBRAIC SURFACES

TAKASHI MAEDA
in memory of Akim Takaku

ABSTRACT. Let X be a smooth algebraic surface with the function
field K and let 'T" : V -+ X be a standard p2-bundle over X, Le. 'T" is
a flat contraction morphism of an extremal ray of a smooth projec­
tive variety V with the generic fibre isomorphic to a K-form of p2,
Le. V x x K = p2 for the algebraic closure K of K. In this paper,
some birational maps from V to a standard p2-bundle W are rep­
resented by compositions of elementary birational morphisms, where
W is a standrd p2-bundle over the blow-up of X at a point of the
non-smooth locus A of 'T". Let C be a smooth curve on X intersecting
A transeversely at one point. A birational map from V to a standard
p2-bundle over X which is isomorphic over X - C, is decomposed into
elementary birational morphisms. These are generalizations of the re­
sults about standrd conic bundles by V. G. Sarkisov (Math. USSR.
Izv. 20).

The purpose of this paper is to decompose three types of birational
maps of standard JP'2-bunldes over smooth algebraic surfaces into ele­
mentary birational morphisms. Let K be a function field of an alge­
braic surface defined over an algebraically closed field k of character­
istic not equal to 3 and let VK be a K-form of JP'2, Le. V XK k Df JP'2
for the algebraic closure k of K. Then it is constructed from VK a
standrd JP'2-bundle

(1) T:V~X,

(cf. [Mal) Le. V and X are smooth projective varieties and T is a
flat contraction morphism of an extremal ray with the generic fibre
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isomorphic to the given K-form VK -+ Spec(K). The non-smooth
locus D.. of (1) is a simple normal crossing curve of X and the geometric
fibre over a smooth point of D.. consists of three components Hi (i =
1,2,3) with Hi c.i lFI (one point blow up of ]P2), Hi n HHI(resp. Hi n
Hi- d is a fibre (resp. the (-I)-curve) on Hi c.i IFI (where the suffix
means mod 3) and H I nH2nHa is a one point. The geometric fibre over
a singular point of D.. is non-reduced with the reduced part isomorphic
to the cone over a rational twisted cubic in p3.

Theorem. (I) Let Y -+ X be the blow-up at a singular point of D...
A birational map from the standard p2-bundle V of (1) to a standard
]p2-bundle W over Y is factored by elementary birational morphisms

where Va -+~ V' (resp. V' -+~ V4 ) is a flop with the exceptional sets
lFa -+ ]pI ~ lFo (resp. lF2 -+ ]pI ~ lFs). There are isomorphisms of the
conormal bundles

ClF3 / V3 c.i 0,3 (s + 2/) EB OF3 (s + 2/),

CFo/VI rv 0,0(8 + 2/) EB 0,0(8 - /),

CJF2 / V I c.i 0,2 (s + 3/) EB OJF2 (8 - 2/),

ClFl\/V4 rv 0,1\ (8 + 3/) EB 0,1\ (8 + /),

with the negative section 8 and a fibre f of the rational ruled surface
IFn of degree n.

(II) Let Y -+ X be a blow-up at a 8rrwoth point of D... A birational
map from the standard ]p2-bundle V of (1) to a standard ]p2-bundle W
over Y is factored by

where VI -+~ Va (resp. Va ~-+ W) is a flop (reap. a single blow
up-and-down) with the exceptional sets lFI -+ ]pI ~ lFI, (resp. p2 ~
]p2 X ]pI -+ ]PI).

(III) Let C be a smooth curve on X intersecting transversely at one
smooth point of D... There is a birational map from the standard ]p2_
bundle V of (1) to a standard ]p2-bundle W over X, which is factored
by
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where VI +-~ V3 (resp. V3 ~+- Vs) is a single blow up-and-down
(resp. aftop) with the exceptional sets]PI +-]pI xIIP2 ~]p2 (resp. IFo~
pI +- IF1). If C is disjoint from /:1 and V = P[£] over a neibourhood of
C with a rank three vector bundle £, then the birational map (III) is
nothing but an elementary transformation of the vector bundle £ with
center over C.

The decompositions of birational maps of standard conic bundles
corresponding to (I), (II), (III) above are appeared in [Sa,p368] (cf.
(4.3)). The statements (I), (II), (III) in Theorem are proved in §1, §2,
§3, respectively.

Throughout this paper, IFn is the rational ruled surface of degree n
with a fibre f and the (-n)-curve 8. The direct sum of line bundles is
denoted by OFn (8 + f, 8 + 21) = OFn (8 + I) EB OFn (8 + 21),0(1,1) =
0Jp1 (1) EB 0Jp1 (2) etc. The conormal bundle of a subvariety S in V is
denoted by CSjv .

o. Preliminaries

(0.1) We recall the construction the standard ]p2-bundle over X from
the K-form VK (cf.[Ma]). Let A be the central simple algebra of rank
9 over K corresponding to VK which is represented by an element of
the one-dimensional Galois cohomology set HI(K, PGL3 ). There are
a smooth projective surface X with the function field isomorphic to
K and a maximal Ox-order A in A such that the discriminant curve
/:1 = l:1(A, X) of A in X [A-M,p84] is a simple normal crossing curve
on X, and A 0 R (where R = OX,p is the local ring of X at a point p
of X), is isomorphic to

(0.1.1)

(0.1.2)

(0.1.3)

(f, "")3,R
(f,gh,R

(f,gh,R

if P EX -/:1,

if P E l:1 - Sing(l:1),

if p E Sing(/:1).

Here Sing(/:1) is the singular locus of /:1, {f,,,.,} are units of Rand
g = 0 (resp. fg = 0) is a defining equation of l:1 at p in (0.1.2)
(resp. (0.1.3)), (f,"")3,R is the R-algebra generated by two elements
x, y with relations x3 = f, y3 = "." yx = wxy (where w is a cube
of unity). The standard IIP2-bundle V over X associated to VK is
constructed by gluing standard ]p2-bundles VR over the local rings
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R = Ox,p at each point p E X, which are the intersection ofP[EkJ and
the grassmannian G3 [Av ® R] of 3-quotients of Av @R. Here ER is the
(A@R)*-subspaceof 1\3A@R (where (A@R)* is the unit group of A@R)
with ER@K isomorphic to the third symmetric tensor representation
space HO(0J!>2(3)) of (A@K)* rv GL3(K) for an algebraic closure K of
K, and Ek and Av @R are the R-duals of ER and A@R, respectively.

(0.2) The following Lemma is used to describe the flop appearing
in the birational maps (1)- (III) in Theorem.

Lemma. Let S :: IFn be a subvariety of a smooth four-fold V with the
conormal bundle CSjV of S in V. Assume CSjVlf C:;,I. 0(1,1) for any
fibre f of S ~ lFn , and S c V is flopped to S+ C:;,I.lFm C V+. Then

(i) For an integre a E Il,

CS/V C:;,I. OF.. (s + af, s + (a - m)f),

Cs +/V+ rv OF.,. (s + af, s + (a - n)f).

(ii) Assume there is a smooth divisor D of V containing S with the
birational transform D+ in V+. Let C+ = D+ n S+. If Cs /D rv

OF.. (s + (a + b)f), then (C+2)S+ = m + 2b.

(iii) Assume there is a smooth divisor F ofV such that C = FnS is
a section of the ruled surface S = lFn . IfCs+/F+ rv OF.,.(s+ (a+c)f),
then (C2)s = n + 2c.

Proof (i) The flopped variety V+ is obtained by the blow-up (J" : W -t

V along S followed by the blow-down T : W -t V+ of the excep­
tional divisor E of (J" to the other direction, so that E = P[Cs/v] is
isomorphic to the fibre product S XJ!>l S+ C:;,I. P[1I"*0(0, -m)], where
11" : S = IFn -t pI is the projection. Hence CS / v is isomorphic to
11"*0(0, -m) = OF.. (0, -mf) modulo Pic(S). Since Csjvl/ C:;,I. 0(1,1),
we set CS/ v ~ OF.. (s + af, s + (a - m)f) for an integer a E Il. SiIni­
lady, we put CS+/v + rv Or.,.(s + bf,s + (b - n)f). Now we shall show
a = b. Let seE be a curve which is mapped isomorphically onto the

t · t' S C:;,I. IF d + S+ C:;,I. IF . - +nega lYe sec Ions s C - n an s C - m, I.e. s = s XJ!>l S •
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Then

(0.2.1)

(0.2.2)

(Kv.s) = Cl (CS/VIs) + (Ks.s)

= (-n + a) + (-n + a - m) + (n - 2)

= 2a-n-m-2,

(Kv+·s+) = Cl(Cs+/v +ls+) + (Ks+·s+)

= (-m+b)+(-m+b-n)+(m-2)

=2b-n-m-2.

On the other hand, (Kv.s) = (Kv+.s+) because the canonical divisors
are equal to K w = u*Kv+E = r* Kv++E and (E.u*s) = (E.r*s+) =
O. Hence (0.2.1) = (0.2.2) implies a = b.

(ii) The intersection in W of E and the proper transform of D, is
equal to ]P[CS/ D ] in E = ]P[Cs/v]. Then C+ c 8+ is isomorphic to
]P[Cs/Dls] c P[Cs/vls]. Since Cs/vl s rv O(-n + a, -n + a - m) -~

Cs/Dls rv O(-n + a + b), Le. 0(0, -m) -t O(b), we see (C+2)S+ =
m+2b.

(iii) The flopped surface 8+ is the exceptional divisor of the blow-up
F+ -t F along C, so that (8+.f)F+ = -1 for a fibre f of 8+ = lFm .

Hence we put CS +/F + rv OFn.(s + (a + c)f) for an integre c E Z. The
intersection in W of E and the proper transform of F, is equal to
]P[CS+/F +] in P[Cs+/v+]. Then C c 8 is isomorphic to ]P[Cs+/F+ls] C

]P[Cs+/V+ Is]. Since Cs+/v+ Is !:::>! O(-m+a, -m+a - n) -t Cs+/F+ Is rv

O(-m + a + c), Le. 0(0, -n) -t O(c), we see (02)s = n + 2c. 0

(0.3) Let T!:::>!]p2 be a subvariety of a smooth 4-fold V with CT / V rv

Ojp2 (1, 1). Then there are birational maps

where (11 is the blow-up along T with the exceptional divisor E rv

]p2 X PI, and U2 is the blow-down of E onto ]pI (the projection to
the second factor). Assume there is a smooth subvariety 8 of V of
dimension 2 intersectiong T transeversely at one point p. Then

(i) the birational transform 82 in V2 of 8 is the blow up of 8 at the
point p = 8 n T with the exceptional line e = u2(E),

(ii) CS2 /V2 rv u2*uiCs/v 0 OS2(-e).
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Conversely, let S' be a smooth subvariety of a smooth four-fold W
with Cs'/wle rv 0(1,1) for a (-I)-curve eon S'. Then, from the exact
sequence °-+ Cs' /wle -+ Ce/W -+ Ce/ S' -+ 0, we see Ce/W C>I. 0(1,1,1).
Hence there are birational maps

where 0"1 is the blow-up along e with the exceptional divisor E rv

]pI X p2, and 0"2 is the blow-down of E onto ]p2 (the projection to
the second factor). The birational transform S~ in W2 of S' is the
blow-down of S' along e with O"h0"2CS~/W:~ C>I. Cs' /W ® Os' (e).

1. The birational map (I)

(1.1) In this section we consider the birational map (I) in Theorem.
Let 7 : V -+ Spec(R) be the standard ]p2-bundle over the local ring R
of X at a singular point of A constructed from the R-order (J, g)a,R
of (0.1.3) (cf.§4). For the blow-up 0" : Y = Yo U Yl -+ Spec(R) at
the origin with Yo = Spec(R[g!f]) and Y1 = Spec(R[f!g]), there is a
standard ]p2-bundle 71 : W -+ Y constructed from a maximal Oy-order
A. with A.Yo = (J,g!f)a,Yo and A.Y1 = (J!g,g)a,Y1. In this section we
decompose a birational map from V to W over Spec(R) into elementary
birational morphisms.

(1.2) Let 0"1 : VI -+ V be the blow-up at the vertex of the central
fibre 7-1(0) (the cone over the rational twisted cubic in pa, i.e. the
surface contracted along the (-3)-curve on lFa). Let 0"2 : V2 -+ VI be
the blow-up along the proper transform Ql rv lFa of 7- 1(0). We will
prove the following Lemma in (4.2).

Lemma. Cul(l)/V C>I. 0(2,0, -1) for any fibre 1 OfQl rv lFa.

Assume the above Lemma. Since 0"1 is the blow-up at a point on
0"1 (1), Lemma implies C,/VI C>I. Cul(l)/V ® 0(1) C>I. 0(3,1,0). From the
exact sequence °-+ CQdVII, -+ C,/VI -+ C

'
/Q1 C>I. 0 -+ 0, we see

(1.2.1)

(1.3) Let H2 c V2 be the exceptional divisor of 0"2' From (1.2.1),
the restriction H, = 0";1(1) of 0"2 : H2 -+ Ql to a fibre 1 of Ql ~ lFa is
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isomorphic to lF2. Let b, be the (-2)-curve on H, and let Q2 rv lF3 be
the section of a2 : H2 --+ Ql defined by

(1.3.1) Q2 = the union of b,'S for all fibres 1 of Ql rv lF3 .

We define a3 as the blow up along Q2 rv lF3 .

Lemma. The exact sequence

(1.3.2)

splits with isomorphisms CH~/v~IQ2 rv Op3(S - f) and CQ2 / H2 rv

OF3 (2s + 4f).

Proof. We will show the two isomorphisms in (1.3.2), i.e. (H2.s)V2 =
4, (H2.f)V2 = -1, (Q2.S)H2 = 2, (Q2.f) H2 = -2. Then Lemma
follows from Ext1 (OF3(2s + 4f),01F3(S - f)) = H 1 (OF3 (-s - 5f)) Ci

Hl(0F3(-s)) = 0 by Serre duality. We see (H2·f)V2 = OH2(-I)I/ =
-1 because the (-2)-curve ! = b, on H, = ]?[0(3, 1)] is defined by the
surjection 0(3,1) --+ 0(1), and (Q2.f) H2 = (Q2IH1 .b,)H1 = (b~)1F2 =
- 2 because Q2 n H, = b, . Let E1 = ]?3 be the exceptional divisor of al
and let E2 be the proper transform of E1 bya2' Then the restriction of
a2 to E2 is the blow-up of E1 = ]?3 along the twisted cubic C1 = QlnEI
with the exceptional divisor 52 = H 2 n E2 isomorphic to lFo because
CCIIE 1 rv O(-5, -5). We will show in Lemma(1.5)(ii),

(1.3.3) the (-3)-curve C2 = Q2 n 52 on Q2 rv lF3 is a (+2)-curve on
52 Ci lFo.

If we assume (1.3.3), then (Q2.S)H2 = (Q2Is2.S)S2 = (Ci)S2 = 2
and (H2.s)V2 = OH2(-1)18 = OS2(-I)l c2 = 4 because the (+2)-curve
C2 on 52 ~ lFo is defined by a surjection 0(-5, -5) --+ O(-4). 0

(1.4) For the twisted cubic C1 in E1 = ]?3, let ¢ : C1 --+ ]?1 be the
cyclic cover of degree three ramified at two points {po, Poo} C ]?1, and
let !p,o U !p,1 U !p,2 C E 1 be the three lines joining the three points
¢-I(P) for each point P E ]?1 - {Po,Poo}' Let

We see the tangent lines at Po and Poo to C1 are contained in MI'
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Lemma. (i) M1 c E1 CY. JP3 is a non-normal quartic surface with
multiplicity two along the twisted cubic C1 .

(ii) The proper tronsform M2 of M1 in V2 is isomorphic to F2 •

Proof (i) Let F(Zo, ... , Z3) = 0 be the defining equation of M 1 in JP3.
For a point P = (g : 1) E pI, we assume </>-1(p) = {PO,P1,P2} with
Pi = (g : w2i{32 : wi{3 : 1), (i = 0,1,2) for {33 = g. Then the three lines
fp,i (i = 0,1,2) are contained in the plane {zo = gZ3} CY. JP>2, where the
line fp,i is defined by the equation Ii = Zl +Wi{3Z2 +W2i{32Z3 = O. This
means F(gz3, Zl, Z2, Z3) is divided by the product

101112 =z~ + gz~ + g2z: - 3gz1z2z3

=z~ + (ZO/Z3)Z~ + (ZO/Z3)2 z: - 3Z0Z1Z2.

Hence F(zo, ... , Z3) is equal to

(1.4.1)

We see easily the singular locus of {F = O} is equal to the twisted
cubic C1 = {ZOZ2 - z~ = ZOZ3 - Zl Z2 = Zl Z3 - z~ = O} with multiplicity
two.

(ii) The quartic surface M1 = {F = O} contains the line s = {zo =
Z3 = O}, so the conormal sheaf CS / M1 is isomorphic to 0(2) by the
exact sequence 0 ~ CMl/P3Is ~ Cs/P3 ~ CS / M1 ~ O. Since s is disjoint
from the singular locus C1 of M 1 and since M 2 is nonsingular, we
conclude M 2 is isomorphic to F2. 0

(1.5) Next we investigate the I-dimensional subscheme M 2 n H2 in
V2 •

Lemma. (i) M2 n H2 consists of two sections C2 and C~ of (J2 : 82 rv

Fo~ C1 ,

(ii) C2 is linearly equivalent to C~ on both 82 and on M2 , and
(~)S2 = (C~)M2 = 2.

Proof (J2 : E 2 ~ E 1 is the blow-up of E 1 CY. JP3 alon the twisted cubic
C = {ZOZ2 - z~ = ZoZ3 - ZlZ2 = ZlZ3 - z~ = O}, so E2 is defined by
the equations

(1.5.1)
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in E l X JP2, where (Zi) (resp. (Yi)) is the homogeneous coordinates
of E l = JP3 (resp. JP2). The projection of E l x p2 to JP2 defines the
pl-bundle structure 7r : E2 --t JP2 and E2 C:t. P[£] with the rank two
vector bundle £ on p2 defined by

(1.5.2) 0 --t Op:l(-1)2 ~~:l --t £ --t 0,

where
A = (YO Yl Y2 0),

o Yo Yl Y2

We see £ (-1) is a rank two stable vector bundle on p2 with Cl (£(-1))
= 0 and C2 (£(-1)) = 2. Since the equation (1.4.1) is equal to

F(zo, ... , Z3) = -(ZOZ2 - Z?)(ZlZ3 - zi) + (ZOZ3 - ZlZ2)2,

the proper transform M2 C E2 of M l is equal to the pl-bundle 7r- l (q)
over the conic q = {YoY2 = yn in p2, and £I q rv Opl (3, 1) because
M 2 = P[£lq] rv IF2 and Cl (£) = 2 by (1.5.2). The intersection of M 2
and the exceptional divisor 82 = H2 n E2 of (12 : E2 --t E l is defined
in ~ x IP; by (1.5.1) together with

rank (YO Yl) = 1, rank (zo Zl Z2) = 1,
Yl Y2 Zl Z2 Z3

hence we see M 2 n 82 = M 2 n H2 consists of two sections C2 and C~

over the twisted cubic Cl C Ell where

(1.5.3) C2 = {(A3
: A2J-L: AJ-L2 : J-L3) X (w2A2

: WAJ-L : J-L2)I(A : J-L) E pl}

and C~ is equal to C2 replacing W by w2. Hence C2 and C~ are linearly
equivalent on both 82 rv IFo and M 2 C>i IF2, and intersects at two points
(A : J-L) = (1 : 0) and (0 : 1). Therefore (~)S:l = (~)M2 = 2 and C2
is equal to P[0(3)] in M 2 = P[£lq] by a surjection £Iq C:t. 0(3,1) --t

0(3). 0

The intersection of E2 and Q2 (see (1.3.1)) is equal to one of C2
and C~, say C2 • Let us consider the elementary transformation of £
along C2 = E2 n Q2:

(1.5.4) 0 --t £' --t £ --t Oq(3) --t 0,

with C2 = P[Oq(3)] in M 2 = P[£lq] C>i P[0(3, 1)] and E' =P[£'].

(1.6) In the exact sequence (1.5.4) we will show
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Lemma. £'Iq ~ 0(1, -1).

Proof Let Wt,P2) = (yI!YO,Y2/YO) (resp. (qO,ql) = (YO/Y2,yI!Y2»
be the affine coordinates of the openset Uo = {Yo = O} (resp. U2 =
{Y2 = O}) in P;. From the exact sequence (1.5.2), we see

Z2 = - (YO/Y2)Zo - (yI!Y2)ZI,

Z3 = - (YO/Y2)Zl - (YI!Y2)Z2

= - (YO/Y2)Zl + (yI!Y2){(YO/Y2)ZO + (yI!Y2)ZI},

on E2 = P[£], so £ has a free basis {Z2,Z3} (resp. {Zl,ZO}) over Uo
(resp. UI ) with

( Z2) (-ql -qo) (ZI)
Z3 - qf - qo qOql zo·

From (1.5.2), the kernel £' in (1.5.4) is given by

on Uo,

where

(qo - q~)a12 ={ -ql +W(ql/qO)(qo - q~)}w2ql + (-qo - wq~)

= - (qo - q~) - (qVqo)(q~ - qo),

hence a12 = -1 + (qUqo). Since qo = q? on the conic q, we see
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This means £'Iq rv 0(1, -1). 0

(1.7) Let F3 C V3 be the exceptional divisor of the blow-up a3 of
V2 along Q2' From Lemma(1.3), the restriction Fl = a;l (bz) of F3 to
a fibre bl of Q2 ~ IF3 is isomorphic to IF1. Let nl be the (-1)-curve on
Fz and let Q3 be the section of a3 : F3 ---+ Q2 defined by

(1.7.1) Q3 = the union of nz's for all fibres 1 of Q1 rv lF3 .

Since a3 : E3 ---+ E2 is the blow-up along C2 := Q2 n E2 with the
exceptional divisor T3 := F3 n E3, Lemma(1.6) means T3 ~ P[£'!q] ~

lF2 •

Lemma. (i) CQ3/V3Inl rv 0(1,1),
(ii) the (-3)-curve C3 = Q3 n E3 on Q3 rv lF3 is the (-2)-curve

on T3 = F3 n E3 rv IF2, i. e. C3 C T3 is defined from the surjection
£'Iq rv 0(1, -1) ---+ O( -1).

(iii) Q3 is disjoint from M3 in V3·

Proof (i) In the exact sequence

(1.7.2)

we see (F3.nz)v3 = -OF3(1)!nl = -1 because nz is the (-1)-curve
on Fz rv P[O(2, 1)] (see Lemma(1.3)), and (Q3.nZ)F3 = (Q3!Fl.nz)FI =
(nz)~l = -1 because Q3 n Fz = nl·

(ii) From (Ci)s~ = 2, we see C2 C 82 rv P[CCt/Ell is defined by
a surjection CCt/El ~ 0(-5, -5) ---+ 0(-4), so that (82,C2)E~ =
-Os~(1)lc~ = 4. Therefore we obtain

from which we have equalities
(1.7.4)
(T;)~ = -a;C2+ c1(Nc~/~)r3 = -a;C2+ 6r3,

for a fibre r3 of T3 = lF2 ---+ C2. Let 83 = H3 n E3 be the proper
transform in E3 of 82 and let
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be two sections of aa : Ta D! lF2 --+ C2 • We see from (1.7.4)

(ma.ta)Ta =(Mal73 ·8aITa)Ta = (Ma.8a.Ta)Ea

=(ai M2 - Ta)(ai82 - Ta)Ta

=ai(M2.82)Ta - ai(M2+ 82)T; +T;

=«M2+ 82)C2)E:l - 6.

From (1.7.3) we see (M2,C2)E:l = (aiMl - 282)C2 = (M1 .C1 )Et ­
2(82.C2) = 4.3 - 2.4 = 4. Hence (ma.ta)Ta = 4 + 4 - 6 = 2. On the
other hand, (1.3.2) induces the split exact sequence

o--+ CH~/V211 D! 0(1) --+ CQ~/v211 --+ CQ~/H~ II rv 0(2) --+ 0,

for fibres f = b, of Q2 D! lF2 . This implies Fa n Ha is covered by (+1)­
curves lP[CQ2/H~I/] in lP[CQ~/v21/] ~lFl, so Fa n Ha is disjoint from Qa
(see (1.7.1)), hence (Ca.ta)Ta = O. Thus the three sections Ca, ma,
t a of Ta --+ C2 satisfy (ma.ta)Ta = 2 and (Ca.ta)Ta = O. This means
Ca is (resp. ma and ta are) the (-2)-curve (resp. (+2)-curves) on
Ta ~ lP[O(l, -1)] rv lF2 • Since Qa n Ma is contained in Ta = Fa n Ea,
(iii) follows from the fact that Ca is disjoint from ma. 0

(1.8) The following Lemma implies CMa/vall D! 0(1,1) for fibres f
of Ma D! lF2 , so there is a Hop Va --+~ V+ along Ma.

Lemma. The two exact sequences

(1.8.1)

(1.8.2)

o--+CE:l/v2IM2 --+ CM2 /V2 --+ CM2 / E2 --+ 0,

o --+CEa/Va!Ma --+ CMa / Va --+ CMa/ Ea --+ 0

split with the isomorphisms

CEh / v2 IM 2 rv OF2 (s + 3J),

CEa/valMa rv OF2 (s + 3J),

CM2 / Eh D! OF~(-4J),

CMa/ Ea D! OF2 (2 - 2J).

Proof CEh /v2 IM2 rv CEa/valMa D! OF2 (s + 3J) follow from (Ea.s)va =
(E2.s)V2 = (E1 .s)vt = OE1 (-1)ls = -1 (since the image al(s) of s
in VI is a line on E1 = JP3), and (Ea.J)va = (E2.J)V2 = (E1.J)vt =
OEt(-l)lf = -1. We saw a2(s) is disjoint from C1 in the proof of
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Lemma(1.4)(ii), so (M3 .s)E3 = (M2.s)E2 = (M1 .s)El = deg(M1 ) = 4.
Then the isomorphisms CM2 /E'J Qi OF2 (-41) and CM3 /E3 rv OF2 (s-21)
follow from (M2.f)E-J = (U2Ml - 282)/ = (M1 .f)E1 - 2(82.f)E-J =
4 - 4 = 0 and (M3 .f)E3 = (U3M2 - T3 )/ = (M2'f) - (Ta.f)E3 =
0-1 = -1. Both (1.8.1) and (1.8.2) split because Hl(O,'J(S +7f)) =
Hl(0F2 (5f)) = O. 0

(1.9) From Lemma(1.7)(i), (iii) and Lemma(1.8) , we define V4 as
the flopped variety of Va along the disjoint union Ma and Q3' Since
CM3 /V3 rv 0,2 (s+3/, s-2f) by (1.8.2), the flopped surface M4 in V4 of
M3 is isomorphic to P[CM3 /V3 Is] ~lFs with CM4 /V4 Qi 0,1\ (s+3/, s+ f)
by Lemma(0.2)(i). Applying Lemma(0.2)(iii) to 8 = M3 and F = F3

we see CM4 /F4 Qi OFr>(s + 3f) because rn3 = F3 n M 3 is a (+2)-curve
on M3 by Lemma(1.5)(ii). Hence there is a split exact sequence
(1.9.1)
o~ CF4/V4IM4 rv OFl\(s + f) ~ CM4 /V4 ~ CM4 / F4 Qi o,l\(s + 31) ~ O.

(1.10) Let E4 , H4 , F4 be the birational transforms of E3 , Ha, F3 ,

respectively. These are obtained as follows.
(a) E4 is constructed by the elementary transformation (1.5.4) and

a blow up £2:

(1.10.1)

where
(i) U3 is the blow-up along the (+2)-curve C2 = P[Oq(I)] in M 2 =

P[Elq]~ P[O(3, 1)] with the exceptional divisor T3 Qi £1 (T3 ) = P[E'lq]
Qi P[O(I, -1)],

(ii) £1 is the blow-down of the proper transform M3 of M2 = P[Elq],
(iii) £2 is the blow-up along the (-2)-curve £1(C3 ) = P[Oq(-I)] in

P[E'lq] Qi P[O(1, -1)] with the birational transform T4 in E4 of T2

isomorphic to £2(T4 ) = P[E'lq].
(b) H4 is the blow-up of H3 ~ H2 along C~ Qi U3(C~) = C2with the

exceptional divisor equal to the flopped surfacae M 4 = P[CM3 / V3 1C3] Qi

lFs ·
(c) F4 is obtained from F3 C>l F2 by

(1.10.2)
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where
(iv) fa is the blow-up along rna = Ma n Fa with the exceptional

divisor equal to the flopped surface M4 = ]P[Cm3 /F3 ] rv ]P[CM3/V3Im3]'
(v) f4 is the blow-down along f;I(Qa) a./ Qa a./ IFa.
The ]pI-bundle structure O'a : Fa --+ Q2 induces a ]pI-bundle struc­

ture 1T : F4 --+ M4 rv IF5.

(1.11) From (1.7) we see

Proposition. (i) The fibre !4 of 1T : F4 --+ M4 is an extremal rational
curve on V4 with (-Kv4.f4) = 1,

(ii) E4 is mapped to]p1 x]p2 by the contraction morphism 0'4 : V4 --+

Vs of !4,
(iii) The flopped surface Q4 on V4 o!Qa is isomrphically mapped to

]pI X q C 0'4(E4) rv ]pI X ]p2 with a conic q in ]p2.

Proof In the exact sequence 0 --+ CF4 /V4 1!4 --+ C!4/V4 --+ C!4/F4 rv

0(0,0) --+ 0, we will show CF4 /V4 1f4 rv 0(1), Le. (F4'!4)V4 = -1. The
fibre fa of Ta = Fa n E3 is isomorphically transformed to the fibres
of T4 = F4 n E4 , so we may assume !4 is contained in E4 • Hence
(F4'!4)V4 = (F41E4 '!4)E4 = (T4'!4)E4' We denote by T' = ]P[£'lq], by
Q4 the exceptional divisor of f2 of (1.9.1), and by!', q4, rna the fibre
of T', Q4, M a, respectively. Then we see

(Ta·fa)E3 =(fiT ' - Ma)(fi!' - rn4) = (T'.!')EI - 1,

(T4.!4)E4 =(f;T' - Q4)(f;!' - q4) = (T'.!')EI - 1.

Hence (F4'!4)V4 = (T4.!4)E4 = (Ta.fa)E3 = -1 because Ta is the
exceptional divisor of 0'3 : Ea --+ E2 •

(ii) We see from (i) that the image 0'4 (E4) is equal to the result of the
elementary transformation of E' = ]P[£'] along fl(Ca) = lP[Oq(-I)]:

(1.11.1)

where 0'4(E4) = ]P[£s] and fl(C3 ) = ]P[Oq(-I)] C T' = lP[£'l q ] a./

lP[O(I,-I)]. Hence we will show £5 is isomorphic to Op2(_1)2. From
(1.5.2) and (1.5.4), we see CI(£') = 0, C2(£') = 2 and HO(£'( -4» = 0,
so hO(£'(I» ~ X(£'(I» = 4. Hence (1.11.1) implies hO(£5(1» ~ 2
and there is an inclusion t : ~2 ( -1)2 --+ £5. On the other hand,
CI(£5(1» = c2(£5(1» = 0, so the inclusion t is an isomorphism.
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(iii) The flopped surface Q4 = W[CQ3/V3Ic3] on V4 is equal to the
exceptional divisor ofthe blow up ofW[£'] along W[O( -1)] ~ C3 • Hence
Q4 is isomrphically mapped to W[£slq] Do! WI X q by the exact sequence
(1). 0

(1.12) Let rs =(point) x (line) in Es = (14(E4) Do! WI X W2. To define
(1s : Vs -+ Va = W we show

Lemma. (i) There is a split exact sequence

(ii) rs is an extremal rational curve on Vs and the associated morphism
(1s : Vs -+ Va contracts Es Do! WI X W2 onto the first factor WI.

Proof (i) WeshowCE5 / v5 1f"l1 ~ 0(1), i.e. (ES.rS)V5 = -1. The surface
82 = H2 n E2 Do! lFo in V2 is transformed isomorphically onto 84 =
H4 n E4 in V4 and the Stein fctorization of the composite 82 Do! 84 C

E4 ~ Es rv WI X w2 ~ WI is given by

where ¢ is the associated cyclic cover of degree three in (1.4). Let
r4 be the isomorphic image in 84 of a fibre r2 of (11 : 82 Do! IF0 -+

C1. Then rs = (14(r4) is equal to (point) x (line) in Es = WI X W2.
Hence (E4.r4)V4 = ((1:ES.r4)v4 = (ES.rS)V5' The left-hand side is
equal to (E4 .r4)v4 = (E4IH4.r4)H4 = (84 .r4)H4' We recall M 2 n H2 =
M 2 n 82 = C2 U C~ (Lemma(1.5)), and H4 • .. -+ H2 is the blow­
up along C~ with the exceptional divisor M 4 (see (1.lO)(b)). Hence
(84 .r4)H4 = ((1*82 - M4)r4 = (82 .r2)H2 - (M4.r4)H4 = 0 - 1 = -1
because 82 ~ lFo is a WI-bundle over the twisted cubic CI with a fibre
r2' (ii) follows from (i). 0

(1.13) Let ha be the image in Va = W of a fibre h2 of the WI-bundle
(11 : H2 -+ Ql Do! lF3 . To see W is a standard W2-bundle over the
blow-up Y at the origin of Spec(R) , we show

Lemma. (-Kw.ha)w = 1.

Proof We assume the birational transform h4 on V4 of h2 is disjoint
from 84 = H4n E4. Then (H4.h4)v4 = (H3 .h3 )v3 = ((1gH2 - F3 )h3 =
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(H2 .h2 )V2 - 1 = -2 because H2 is the exceptional divisor of a1 with
the fibre h2 • Hence, from the exact sequence

we see Ch"/v,, '" 0(2,0,0) and (-Kv" .h4 ) = O. On the other hand,
from (F4.h4)v" = 0 and (Es.hs)V5 = 0, we see

(-Kv".h4)v" =(a: (-KV5 ) - F4)h4 = (-KV5 .hs)V5 -1

= (a; (-KV6 ) - 2E(j)hs -1 = (-KV6 .h6 )-1.

Therefore (-KV6 .h6 ) = 1. 0

(1.14) Next we determine the conormal bundles CQ3/V3 and CM/5/V/5'

Lemma. (i) There is an exact sequence

(ii) CQ3 /V3 '" OF3 (s + 2f, s + 2f), CM5 /V/5 C:l OF5 (s + f, 2s + 4f).

Proof (i) Let f (resp. s) be a fibre (resp. the (-3)-curve) on Q3 '" IF3 •

For the isomorphism CF3 /V3 IQ3 '" OF2(s - f), we show (F3.f)V3 = -1
and (F3.s)V3 = 4. By the definition (1.7.1), f is the (-I)-curve on
F, = lP[CQ2 /V2 1,] with CQ2 /V2 1, ~ 0(1,2) by (1.3.2). Hence (F3.f)V3 =
OF3 (-I)11 = -1. We saw in Lemma(1.7)(ii) that s = C3 is the (-1)­
curve on T3 = lP[CQ2 /V2 Ic2] with CQ2/V21c2 C:l 0(-4, -2) by (1.3.2).
Hence (F3.s)V3 = 0ur3(-I)!s = OT3(-I)lc3 = 4. Similarly, (Q3.f) F3 =
(Q3IFI·f)FI = (r)FI = -1 and (Q3. S)F3 = (Q3173·C3)73 = (C5)73 =
-2, hence CQ3/ F3 = OF3(s + 5f).

(ii) Since Q4 '" JFo by Lemma(1.10)(iii), CQ3/ V3 '" 0ur3(8+af, s+af)
for an integre a E Z. The exact sequence proved in (i) implies a = 1.
The fibre f4 of M4 '" IFS is the (-I)-curve on lP[CM5/V/51 I] = IF1 with
f = a4(f4), so that f4 C lP[CM5 /V5 1/] is defined by the surjection
O(a, a + 1) --+ O(a) for an integer a E Z. Here a = OF" (1)11" =
CF4 / V4 1/4 = 1 by (1.9.1). Next we apply Lemma(0.2)(ii) to S = M3 ,

D = E3 and C+ = 84 := M4 n E4. Then CM3 /E3 = OF2(s - 2f) in
(1.8.2) implies (S~)M" = 5-2.5 = -5. This (-5)-curve 84 on M4 = JFs
is the (+2)-curve on P[CM5 / V5 1,,] = E4 n F4 C>I JF2 with s = a4(s4), so
that S4 C lP[CM5 / V5 Is] is defined by a surjection O(b - 2, b) -+ O(b)
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for an integer b E Z. Here b = OF4 (1)ls4 = CF4 /V4 Is = -4 by (1.9.1).
Thus we see

(1.14.1)

Now the canonical surjection 0"4CM5/V5 ~ OF4 (1) induces the sur­
jection 4> : 0"4CM5/V51M4 = CM5 /V5 ~ OF4(1)I M4 rv CF4/V4IM4 =
OF5(S + J) by (1.9.1). Then (1.14.1) implies Ker(4)) = <?F5(2s + 4J)
and there is an exact sequence

Here Hl(<?F5(S+3J)) = Hl(0(3, -2)) ~ k, but CM5 /V5 Is = 0(-6, -4)
means that the restriction of (1.14.2) to s splits. Hence (1.14.2) itself
splits and CM5 /V5 ~ <?F5(s + I, 2s + 4f). 0

(1.15) Let C4 = Q4 n F4, Cs = 0"4(C4) and C6 = O"s(Cs) = O"s(Es).
We show

Lemma. CC6 /V6 ~ 0(1,1,1).

Proof. We apply Lemma(O.2)(iii) to S = Qa and F = Ea. Since
Ca = QanEa is the (-3)-curveon Qa = lFa, we see CQ4 /E4 ~ OFo(s-J).
On the other hand, CQ3/V3OF3 (8+2/, 8+2J) in Lemma(1.14)(ii) means
CQ4 /V4 ~ <?Fo (8 + 2/,8 - J) by Lemma(O.2)(i). Hence, from the exact
sequence

(1.15.1)

with the isomorphisms CQ4 /V4 ~ 0,0(8 + 2/,8 - J) and CQ4 /E4 Ci

0,0(8- J), we obtain CE4 /V4 IQ4 rv <?Fo (8+2J). Therefore CE5 /V5 1c5 rv

CE4 /V4 1c4 ~ OFo(s+2J)ls+af = 0(5). We saw in (1.4.1) that CC5 /E5 ~
CM5/V51c5 = 0(-6, -4). Hence the exact sequence 0 ~ CE5/V51c5 =
0(5) ~ CC5 /V5 ~ CC5 / E5 = 0(-6, -4) ~ 0 implies (KV5.CS) =
5 - 10 - 2 = -7. Since o"s : Cs ~ C6 is the cyclic cover of degree three
(cf.(1.4)) , (KV5 .CS) = (O"sKV6 + 2Es)Cs = 3(Kv6 .C6 ) + 2(Es.Cs),
hence (KV6 .C6 ) = +1. We saw Es = IP[CC6 /V6 ] is ismorphic to lFo in
Lemma(1.11)(i), so CC6 /V6 = O(a, a, a) for an integre a E Z. then
(KV6 .C6 ) = 1 means a = 1. 0
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(1.16) We write down the conormal bundles of the ruled surfaces
Q,M,T,S.

CQ2 /V2 = OF3 (s - I, 2s + 4/),

CQ4,/V4, = OFo(s + 2/, s - I),

CM2 /V2 = Ov2(s + 3/, -4/),

CM 4,/V4, = OFII(s + I, s + 3/),

CT3 /V3 = 0,2(S - 2/,3/),

CS2 /V2 = OFo(3/, s - 5/),

Cs./v• = OFo(s+3/,s-5/).

CQ3/V3 = OF3 (2s + 4/, 2s + 4/),

CQII / VII = o,o(s + 2/, -2/),

CM3 /V3 = OF2(s+3/,s-2/),

CMII/VII = OFl\ (2s + 4/, s + /),
~./V4, = OF2 (s - 4/, 5/),

CS3 /V3 = OFo(3/,2s - 5/),

(1.17) The effective cones of Vi over X = Spec(R) (1 ~ i :s; 6)
and the intersection numbers with generators of the Picard group, are
give as follows. Here qi, mi, Si, ti are the fibres of the ruled surfaces
Qi, Mi , Si, Ti , respectively.
(1) NE(VIfX) = IR[ql]ffilR[mlJ, Pic(VIfX) = Z(-KV1)ffiZE1 .

(-KV1.ql) = -2,

(E1.ql) = +1,
(-KV1.ml) = +3,

(E1.ml) = -1.

(2) NE(V2/ X) = lR[q2] ffi lR[m2] ffi lR[S2],
Pic(V2/X) = Z(-KV2) ffi ZE2 ffi ZH2 •

q2 m2 I S2 I
-KV2 -1 1 1

E2 1 2 0
H2 -1 2 -1

(3) NE(Va/ X) = lR[qa] ffi lR[ma] ffi IR[sa] ffi lR[ta],
Pic(Va/ X) = Z(-KV3 ) ffi ZEa ffi ZHa ffi ZFa.

qa ma I Sa I ta I
- KV3 0 0 0 1

Ea 1 2 0 0
Ha 0 1 -1 1
Fa -1 1 1 -1
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(4) NE(V4/ X) = lR[q4] mlR[m4] mlR[S4} mlR[t4],
Pic(V4/ X) = Z(-KV4 ) mZE4 mZH4 mZF4•

q4 m4 I S4 I t4 I
-KV4 0 0 0 1

E4 -1 1 -1 0
H4 0 5 2 1
F4 1 -1 2 -1

(5) NE(Vs/ X) = lR[qs] mlR[ms] mlR[ss],
Pic(Vs/ X) = Z(-KV5) mZE5 mZHs.

qs ms I S5 I
-KV5 1 -1 2

Es -1 1 -1
Hs 1 3 2

q6 m6 I
-KV6 -1 1

IH6 -2 0

Here q6 = (Js(qs) is equal to C6 in (1.15), and me = (J5(m5).

2. The birational map (II)

(2.1) In this section we consider the birational map (II). Let 7 :

V - Spec(R) be a standard ]p2-bundle over the local ring R of X at
a smooth point of the non-smooth locus constructed from the R-order
(0.1.2). Let 7-1(0) = R uS UT be the central fibre such that R, S, T
isomorphic to IF1, and

(2.1.1) r = RnT, s = snR,
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are the (-I)-curves on R, S, T, respectively. For the the non-smooth
locus 8 C Spec(R) we assume 7-1(8) decomposes into three divisoris
D, H, L of V such that

R = 7-1(0) n D, S = 7-1(0) n H, T = 7-1(0) n L.

Then V is obtained by twice blow-ups of~ along P1. :J~ C:J. 8:

V~Vo~~,

where ero is the blow-up along P1. with the exceptional divisor Ho, and
er is the blow-up along Lo = erol(~). Then D (resp. H) is the proper
transform of~ (resp. Ho) and L is the exceptional divisor of er.

V D H L

u1 1 II 1
Vo Do Ho :J Lo

Uo1 1/ 1 1
~:) P~:J P1.:J~ "" 8

(2.2) The center Lo = erol(~) of the blow-up er : V --+ Vo is
isomorphic to P[ClPl jlP2 IlPo ] C:J. pl .

A R ~ ~

Lemma. (i) CLo /Vo "" OlPi (1, 0), (ii) There is a split exact sequence

0--+ CLjvlT C:J. OF l (s + f) --+ CTjV --+ CTjL C>i OF l --+ o.

Proof (i) We see CHo/volLo "" OHo(I)I Lo C:J. OLo(l) "" qpi (1) and
CLo/ Ho ~ eroC~jlPi "" OLo· Hence (i) follows from the exact sequence
0--+ CHo/volLo --+ CLo/Vo --+ CLo/ Ho --+ O.

(ii) Let p =~ n 7-1(0) and let f = ero1(p) C>i Pt be the fibre of
the pI-bundle ero : Lo --+ ~ "" 8. Then Cf/Lo "" 0 and CLo /Vo II ""
0(1,0) by (i). Hence the exact sequence 0 --+ CLo/ Vo II --+ Cf/vo --+
Cf/Lo --+ 0 splits. The surjection </> : er*(CLo/vol/) ~ (er*CLo/vo)IT --+
CLjvlT induces a commutative diagram with exact rows:

0--+ er* (CLojVo II) ) er*Cf/vo ' er*Cf/Lo --+ 0

1
CT / V
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Since the first row splits, the second row also splits. Hence, for the
proof of (ii), we will show CL/vIT '" OF1 (8+ f). The exceptinal divisor
L of a is equal to IP[CLo/VoJ with CLo/ Vo DL Op~ (1,0) by (i), so that
T = JPl[CLo/volfJ ~IP[0(1, 0)) and CL/vIT ~ OL(1)IT '" OF1 (8+ f). 0

By symmetry of R, S, T, (ii) implies CRjV C>I. Cs/ v C>I. Cr/v ~

OF1 (8 + 1,0).

(2.3) Let al : VI ---t V be the blow-up along R with the exceptional
divisor E1 and the proper transforms D 1 , HI, L 1 , SI, T1 of D, H, L, S,
T, respectively. Let M 1 (resp. Nd be the exceptional divisor of the
restriction al : HI ---t H (resp. al : L1 ---t L) of al and let

Lemma. (i) M1 DL1B\, (SDMI = 1, (ii) N1 C>I. lFo, (r~)Nl = O.

Proof. We see (S.8)H = (T.r)L = 0, (82)S = -1, (r2)Nl = 0, hence we
have exact sequences

o---tCs/Hls ex 0 ---t CS / H ---t Cs / s DL 0(1) ---t 0,

o ---tCT / L I,. ~ 0 ---t C,./L ---t C,./T ~ 0 ---t O.

Lemma follows since SI C M1 (resp. rl C N1 ) is defined by the
surjection CS / H ---t Cs/ s (resp. C,.jL ---t C,./T)' 0

(2.4) For the proper transforms SI (resp. T1) of S (resp. T), we
have

Lemma. The exact sequences

(2.4.1)

(2.4.2)

o ---tCHI/v1Isl ---t CSI/V1 ---t CSI/H1 ---t 0,

o---tCLI/Vl ITI ---t CrI/Vl ---t CrI/Ll ---t O.

splits with isomorphisms CHI/VI lSI DL CLI/v1ITl '" OF1 (8+f), CSI/H1 DL
OF1 (8) and CrI/Ll '" OF1 (I).

Proof. We saw CHI/VI lSI '" CH/vls '" OF1 (8 + f) and CLI/vIITl DL
CL/vIT C>I. OF1 (s + f) in Lemma(2.2)(ii). Hence we show CSI/v1 DL
OF1 (8) and CTI/Ll ex OF1 (I), Le. (SI.f)Hl = -1, (T1.f)L1 = 0,
(SI.SI)Hl = 1 and (T1 .t1 )Ll = -1. For, (SI.f)Hl = (arS - M 1 )I =
(S.f)H - (M1.f)Hl = 0 - 1 = -1. By Lemma(2.3)(i), SI C M1 is
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defined by a surjection CR/vlf Do! 0(1, 0) ~ 0(1), so (MI .81)H1 =
OM1 (-1)181 = -1, hence (SI·SI)H1 = (aiS - MI)Sl = (S.8)H­
(MI.SI)H1 = 0 - (-1) = 1. Similarly, (T1.I)L1 = (aiT - NI)I =
(T.I)L - (N1·I)L1 = 0 - 0 = 0 and (T1.t1)L1 = (aiT - N1)t l =
(T.tl)L - (N1.tl)L1 = 0 - 1 = -1. The splitting of (2.4.1) and (2.4.2)
follows from Ext(OF1(s), OF1(s+ I)) = HI(OF1(f)) = H1 (Op1 (1)) = 0
and H1(OF1 (s)) Do! H1(01lH(0, -1)) = O. 0

(2.5) From (2.4.1) we see CSl/v11f rv 0(1,1), hence Sl C VI is
flopped, Le. there are birational maps

where a2 is the blow-up along Sl with the exceptional divisor F2 , and
aa is the blow-down of F2 to the other direction. Let Sa = aa(F2 ). Let
M2 , E2 , T2 , ••• (resp. Ma, Ea,Ta, .. . ) be the birational transforms on
V2 (resp. Va) of M 1 , E1 , T!, ... , respectively.

Lemma. Ma n Sa is the (-1) -curve on Sa = IF1.

Proof The (-I)-curve Sl = Sl n M 1 on Sl = IF1 is the (+I)-curve on
M1 = IF1 by Lemma(2.3)(i); CSl/M1 rv 0(-1). Hence, from (2.4.1), we

have a surjection CSl/E1 rv CSl/v11s1 rv 0(0, -1) ~ CSl/M1 Do! 0(-1).
This defines the closed immersion M2 n F2 = P[Cs1/M1l C E2 n F2 =
P[CSl/E1 ], which is ismorpohic to M a n Sa C Sa byaa. 0

(2.6) We apply Lemma(0.3)(iii) to S = Sl ~ IF1 and F = E1. Since
E1 intersects S1 with the (-I)-curve on Sl Do! IF!, CSl/V1 Do! OF1(8+I, s)
impilies CS3 /E3 rv OF1(s) and there is a split exact sequence
(2.6.1)

o~ CE3/V31s3 ~ OF1(8 + I) ~ CS3 /V3 ~ CS3 / E3 Do! OF1(s) ~ O.

Lemma. The exact sequences

(2.6.2)

(2.6.3)
o~CL'J/V2IT2 ~ ~2/V2 ~ CT2 /L2 ~ 0,

o~CL3/V3IT3 ~ C;'3/V3 ~ C-r3/L3 ~ O.

splits with isomorphisms CL2/v2IT'J Do! CT'J/L2 rv OF1 (8 + I) and
CL3/V3IT3 Do! C-r3/L3 Do! Op'J(I).

Proof We see CL2 /v'Jl12 ~ CL/vIT rv OF1(8 + I), hence we will show
CT2 /V2 rv OF1(8 + I), Le. (T2 .I)L2 = -1 and (T2 .t2 )L2 = O. Let Q2 =
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W[CsI/vllh] Dl W[CtI/LJ be the exceptional divisor of 0"2 : L2 ---+ L1 .

Then (T2.f)L2 = (O"iTl - Q2)1 = (T1 .f)Ll - (Q2.f) L2 = 0 - 1 = -l.
Since the (-I)-Curve t 1 on T1 rv lP\ is a fibre on 8 1 , CSI/vlltl ~

OFl (s + I, s)11 rv 0(1,1) by (2.4.1). Hence t2 = T2 n Q2 c Q2 is
defined by a surjection CtI/Ll rv CSI/vlltl Dl 0(1,1) ---+ CtI/Tl rv 0(1),
so (Q2.t2) = 0Q2(-1)!t2 = -1 and (T2·t2)L2 = (O"i Tl - Q2)t2 =
(T1 .tl)Ll - (Q2.t2) = -1- (-1) = 0 since CrI/Ll Dl OFl (f) by (2.4.2).
The exact sequence (2.6.3) follows from (T3.f)L3 = (0"3T3.f)L2 =
(T2.f)L2 -1 and (L3.f)V3 = (0"3L3.f)V2 = (L2.f)V2 = -1 by
(2.6.2). 0

(2.7) From (2.6.3) we see CT3 /V3 rv ~2 (1, 1), so there are birational
maps

where 0"4 is the blow-up along T3 C::i jp2 with the exceptional divisor
G4 = W[CT3 /V3 ] rv W2 X WI, and O"s is the blow-down of G4 onto the
second factor WI. The birational transform 8s on Vs of 8 3 Dl IF1 is the
blow-up of 83 at the point p = 83 n T3 . we recall the relative Picard
number of Vs over Spec(R) is equal to two. Let!3 be the fibre of
83 = WI intersectiong at the point p = 83 n T3 and let 14 (resp. Is)
be the birational transform of h on 84 (resp. 85 ), The two extremal
rays of Vs over X are generated by Is and the image €s = O"s(G4 ). We
see

(-KV4 ·/4)V4 =(0": (-KV3 ) - G4)/4 = (-KV3 ·!3)V3 - (G4·/4)V.. ,

=(O"~(-KvlI) - 2G4)/4 = (-KvlI ·/s)vlI - 2(G4·/4)V..

(2.7.1)

be the contraction morphism of Is.

Lemma. (Es ./s)vlI = o.
Proof From (0.3) we see the exact sequence (2.6.1) induces the split
exact sequecne

(2.7.2)
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with isomorphisms CE5/V51s5 rv OS5(S+ f -e) and CS5 / E5 ~ OS5 (s-e).
Since Ta is disjoint from Ma, Lemma(2.5) means the point P = SanTa
is not on the (-1)-curve on S3 = Jli\, so that fs =s+ f-e on Ss. Hence
we see from (2) that (Es.fs) = -CE5 / V5 1/5 = -(s + f - e)2 = O. 0

(2.8) The above Lemma(2.7) implies that any irreducible curve C
on Vs with (Es.C) = 0 is contracted by the morphism (2.7.1). We
show Es is covered by such curves. Let f be a fibre of R ::: JF1 on
V. From Lemma(2.2)(ii), we see CR/vi/ C>! 0(1,0), so that E ll/ :=

(Jll(f) = JP>[CR / v i/l is isomorphic to JFl . Let C be a section of El,f
containing the point E l ,/ n Tl (such C exists with 1-parameter family
for each fibre f of R).

Lemma. (ES ,CS )V5 = 0 for the birational transform Cs of C on Vs .

Proof For simplicity we use the same letter C for the birational trans­
forms of C on Vi (1 ~ i ~ 5). Since the (+1)-curve C c El,f is
defined by a surjection CR/vlf rv 0(1,0) -+ 0(1), we see (El.C) =
OE1 (-1)lc = -1. Then (Ea.C) = -1 because E2 = (JiEl - F2 =
(JiE3 - F2 • From E4 = (J:E3 - G4 = (Jr,Es - 2G4 together with
(G4 .C) = 1, we see (Es.C) = (E3 .C) + (G4 .C) = -1 + 1 = O. 0

By the above Lemma, there are 1-parameter family of the curves
C with (Es.C) = 0 for each point on e = (Js(G4 ), so the image of
the morphism (2.7.1) is 2-dimensional. This means 71 : Vs -+ Xl is a
standard JP>2-bundle and the structure morphism Xl -+ Spec(R) is the
blow-up at the origin. The statement (II) of Theorem is proved.

(2.9) Let X be a smooth algebraic surface and let Y -+ X be the
blow up at a point of X with the exceptional line e. Let 71 : W -+

Y be a standard JP>2-bundle with the non-smooth locus intersecting e
transeverselyat one point Po = 6. n e. If we find a smooth subvariety
Ss of 71 (e) such that

(2.9.1) Ss is a JP>l-bundle over e away from the point Po = en 6.,
(2.9.2) there is a section es on Ss over e with (e~)s5 = -1,
then we obtain a standard JP>2-bundle V over X by applying the

inverse of the birational map (II) described above. We see the existence
of such subvarieties es C S5 by the following argument. As in (2.1),
711(e) is obtained from a JP>2-bundle 72 : P -+ e by twice blow-ups
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where €l is the blow-up of P along a line l in 7i l (po) C>! p2, and €2 is
the blow-up of PI along a fibre f of the exceptional divisor €ll(l) of
€l' We write P = pre] with a rank three vector bundle e C>! 0(0, a, b)
on e rv pl. Let if> : £O(c, c+ 1) be a surjection for an integer c E Z, and
eo = lP[O(c)] C So = P[O(c, c + 1)] be the corresponding subvarieties
of P = p[e]. We choose if> : e ~ O(c, c + 1) such that

(2.9.3) the line So n 7il CPo) is not equal to the center l of €l,
(2.9.4) eon71l (po), Sonl, €lU) are distinct three points on 7i

1 (po).

Then we see the proper transforms in 711 (e) of So and eo satify
(2.9.1) and (2.9.2).

3. The birational map (III)

(3.1) In this section we consider the birational map (III). Let 7 :

V ~ X be a standard lP2-bundle over a smooth algebraic surface X
and let C c X be a curve intersecting the non-smooth locus li. of 7

transversely at one smooth point Po of li.. Let Co c V be a curve
which is isomoorphic to C by 7. Let 7- 1 (Po) = R u S uT with R, S, T
isomorphic to IF1 and assume s = S n R is the (-1)-curve on S.

Lemma. There is a split exact sequence

Proof CT-l(C)/vls C>! 7*Ox(-C)ls ~ OF1 is clear. Since R+S+T =0
on 7- l (C), we see (S'/)T-1(C) = -(R./) - (T./) = -1 - 0 = -1,
and (S,S)T-1(C) = 0 because S is a fibre of R. Hence CS/T-l(C) C>!

OF1(s+/). 0

(3.2) Let 0"1 : VI ~ V be the blow-up along Co with the excep­
tional divisor E l and let R}, S}, T l , D l be the proper transforms of
R, S, T, 7-1(C), respectively. The restriction to SI of 0"1 is the blow­
up of S at the point p = li. n Co. Let

be the exceptional line of 0"1 : SI ~ S rv IF1.
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Lemma. The exact sequence

(3.2.1)

splits with isomorphisms CDl/V1 Is1 C>i OS1 (e1) and CSi/D1 rv OS1 (81 +
h)·
Proof CDi/v11s1 rv OS1 (e1) follows from

(D1.S1)V1 =(o-rD - E1)S1 = (D.s)v - (E1.s)V1 = 0 - 0 = 0,

(D1.fdv1 =(o-rD - E1)h = (D·f)v - (E1.f)V1 = 0 - 0 = 0,

(D1.edv1 =(o-rD - E1)e1 = -(E1.e1)v1 = O.

Similarly, CSi/D1 C>i OS1 (S1 + fd follows from the equalities (S1.S1)D1
= (o-i S.S1) = (S.s)'T- 1(C) = 0, (S1·h)v1 = (o-i S.h) = (S.f)r- 1(C) =
-1 and (S1.edD1 = (o-iS.e1) = O. Since H1(OS1(-S1 - 11 + e1)) =
H1(OS1 (-S1 - 2fd) (Serre duality) = H1(Or1(-s - 2f)) = 0, the
exact sequence (3.2.1) splits. 0

(3.3) There is a blow-down S1 ~ lFo with the exceptional line e ­
11- e1· We take

(3.3.1) s=h,

as the section and the fibre of S1 induced from those of lFo. Then
s - e = e1 and s + f - e = S1 + 11, so the exact sequence (3.2.1) is
equal to

(3.3.2)

with isomorphisms CDi/v11s1 ~ OS1 (s-e) and CSl/D1 ex OS1 (s+ f -e).
Hence CSl/v1 1e C>i 0(1,1), so there are birational maps

where 0-2 is the blow-up of e with the exceptional divisor B 3 C>i p1 X p2,
and 0-3 is the blow-down of B3 to the other direction. Let D3 , S3,'"

be the proper transforms on V3 of D1, S1, ''', respectively. We see from
(0.3) that the exact sequence (3.3.2) induces

(3.3.3)
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with isomorphisms CD3/V31s3 ~ OFo(s) and CS3 /D3 ~ OFo(s + I).
Therefore CS3 /V3 1/ rv 0(1,1), so that 83 C V3 is Hopped, Le. there
are birational maps

where 0"4 is the blow-up of 83 with the exceptional divisor F4 , and o"s
is the blow-down of F4 to the other direction. The Hopped surface 8s
on Vs is isomorphic to W[CS3 /V3 Is] rv W[O(-l,O)] = lF1 by (3.3.3), and
satisfies CSr,/vr, rv OF l (s + f, s + I) by Lemma(0.3)(i).

(3.4) The extremal rays on Vs over X. One is generated by the
fibre fs of the Hopped surface 8s ~ IF1, and the other is the birational
transform Is of the line I in r-1(p) Dl W2 with I n Co non-empty for
a point p E C - (C n A). We see (-Kvr,.fs) = 0, (-Kvr,.ls) = 1,
(Es.fs) = -1 and (Es.ls) = 1. The birational transform Ds on Vs of
r- 1 (C) has a WI-bundle structure over the surface Ds n Es with fibre
Is, hence the contraction morphism of 1s

is the blow-up of V6 along the surface 0"6(Ds). The structure morphism
V6 ----+ X defines the standard W2-bundle over X.

4. Appendix

(4.1) The standard W2-bundle V over the local ring R of a singular
point of A constructed from the R-algebra (0.1.3), is described as
follows.

emma. [M,(2.4)} (i) V is covered by three open sets U3,Un, U12 ,
which are isomorphic to the affine space At of dimension four with
affine coordinates (f,X1,X2,X3), (g,YS,YS,Y3), (W12,W2,Ws,Wn), re­
spectively, such that the tmnsition functions are given by

f - 3+ 3+ 2 3 3- Ys gys 9 Y3 - GYSYSY3,
Xl = (Y3Y~ - WY~Ys - w2gY~YS)/Y12'
X2 = (y~ +Y3YS)/Y12, X3 = Y3/Y12,

"th - 23+ 3+(2 ).'l.lJ1, Y12 - W Ys wgY3 W - W Y3YsYs,

(b) U12 to Un:
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Ys = W2(x~ - XIXa)/Xn, Ya = xa/xn,
with Xn = wx~ - w2fxg + (w2 - W)XIX2Xa,

(d) Ul2 to Ua:

(e) Ua to Un:

f = w~ - wWnw~2 + (1- W)W2WSWI2
= W2(W~ -wwswn) +WI2(W2WS -WWnWI2),

Xl = (W~ - WWSW12)/W12,
X2 = W2/WI2' Xa = 1/W12,

W12 = l/xa, W2 = X2/ Xa,
Ws = w2(x~ - XIXa)/Xa, Wn = Xn/Xa,

-g = wg - w2W~IW12 + (w - 1)w2wswn,
= Ws (wl- W2Wll) +WWll (W2WS-WWn W12),

Ys = (W2Wn - W~)/Wn,

Ys = Ws/Wn, Ya = l/wn,

(J) Un to Ua: W12 = YI2/Ya,
Ws = Ys/Ya,

W2 = (yl + YaYs)/Ya,
Wn = l/Ya,

(ii) The projection r : V -+ Spec(R) is given by

r(f, Xl, X2, Xa) =(f, X~ + fx~ + f2x~ - 3fx IX2Xa)

r(g, Ys, Ys, Ya) =(yg + gy~ - g2y: + 3gyaYsYs, g)

r(W12, W2, Ws, WIl) =(W~ - WWIIW~2 + (1 - W)W2WSW12,

- W~ + W2W~IWI2 + (1- W)W2WsWn) on Ua,

(iii) The centml fibre r- l (P) with reduced structure is defined by the
ideal

(f, Xl) on U12 , (g, Ys) on Un,

(WW12WS - W~, WWn Wl2 - W2WS, W2Wn - W~) on Ua,

and the vertex of r-l(P)red is the origin of Ua D1 At-

(4.2) (Proof of Lemma(1.2)) By Lemma(4.1)(iii) we assume the fibre
1 is equal to 1 = {>.(1,a,w2a2,waa)l>' E k} on Ua D1 A4, (W12,W2,WS,
wn), for a constant a E k. Let
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Then we see (where = means modulo the ideal (w~, w~, w~1)2)

2 ( , )2 (' 2 2 )W2 - WWSW12 = W2 + aW12 - W Ws + W a W12 W12

=(2aw~ - WW~)W12,

W2WS - W12Wn =(W~ + aW12)(W~ +w2a2w12) - W(W~l + wa3W12)W12

-w2a2w~ + aw~ - WW~l'

Hence, by Lemma(4.1)(i)(c),

f -( , )(2' ') 2 ( 2 2' , , )= W2 + aW12 aW2 - WWs W12 +W12 W a W2 + aws - WWn

-w~2{(1 - w)a2w~ + a(1- W)W~ - WW~l}

Xl =(W~ - WW~W~l)/W12 + (2aw~ - WW~),

X2 =(W~ + aW12)/W12, X3 = 1/W12'

Therefore, on the fibre 1 = {w~ = w~ = wb = O}, t (df, dxl , d(X2 ­
a), dX3) is equal to

(

-WW~2 a(l- W)W~2
o -w
o 0
o 0

(1 - W)W~2
2a

1/W12
o

o ) (dW~l)o dw's
o dw~'

-1/W~2 dW12

Then CUl (l)/v e! 0(2,0, -1) follows from the above transition matrix
of (4.2.1).

(4.3) Lastly we explain briefly the three birational maps (1)-(111) of
standard conic bundles (cf.[Sa]) corresponding to those of ]p2-bundles
treating in this paper. Let T : V -+ X be a standard conic bundle over
a smooth algebraic surface X.

(I) Let P be a singular point of the discriminant locus l:1 of V and
U : Xl -+ X be the blow up at p. The reduced fibre 1= T-l(P)red C V
is isomorphic to]P'l and the conormal bundle C,/V e! 01lH(2, -1). Let
Ul : VI -+ V be the blow-up along 1 and let s be the (-3)-curve on
the exceptional divisor E = ]P[C,/V ] C:!J. lF3 . Then Ca/ Vl C:!J. 0(1,1), so
s C VI is flopped to s+ C W. Now W has a conic bundle structure over
Xl with the non-smooth locus equal to the union of the exceptional
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divisor e and the proper transform A' of A. The birational map (I) is
factored by

(4.3.1)

The flopped curve s+ C W is the closure of the singulsr locus of
T-l{e - A').

(II) Let p be a smooth point of the discriminat locus A of V and
(1 : Xl ~ X be the blow-up at p. The fibre T-l{p) = sUm is a union
of two distinct lines s and m. Let (11 : VI ~ V be the blow-up along m
and let SI C VI be the proper transform of s. Then CSt/VI rv 0(1,1),
so Sl C VI is flopped to s+ c W. Now W has a conic bundle structure
over Xl with the non-smooth locus equal to the proper transform of A.
The birational map (II) is factored as in (4.3.1). The flopped curve s+
is a section over the exceptional curve e on Xl with Cs+ /r-I(e) ~ 0(1).

(III) Let C c X be a smooth curve intersecting transversely at one
smooth point p of A. Let Co C V be a curve which is isomorphic to C
by T. The fibre T- l (p) = sUm is the union of two lines 8 and m, and
we assume Co intersects 8. Let (11 : VI ~ V be the blow-up along Co
and let Sl C VI be the proper transform of s. Then CSt/VI ~ 0{1, 1),
so 81 C VI is flopped to s+ C V2 • The birational transform F C V2 of
T-1 {C) is a pI-bundle over C and its fibre f is an extremal rational
curve. Let (12 : V2 ~ W be the contraction of f. Then W has a conic
bundle structure over X with the same non-smooth locus A of V. The
birational map (III) is factored by

If C is isomorphic to pI with Cc/x rv O{a) and CCo/r-I(C) ~ O{b) for
integersa,b E Z, thenCu2(F)!rl-I(C)~O{a-b+l). In particular, if Cis

a (-I)-curve with CCo/r-I(C) ~ O(b), then Cu2(F)/r11(C) ~ O(-b+2).
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