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BIRATIONAL MAPS OF
STANDARD PROJECTIVE PLANE BUNDLES
OVER ALGEBRAIC SURFACES

TAKASHI MAEDA
in memory of Akira Takaku

ABSTRACT. Let X be a smooth algebraic surface with the function
field K and let 7 : V — X be a standard P2-bundle over X, i.e. T is
a flat contraction morphism of an extremal ray of a smooth projec-
tive variety V with the generic fibre isomorphic to a K-form of P2,
i.e. V xx K = P2 for the algebraic closure K of K. In this paper,
some birational maps from V to a standard P2-bundle W are rep-
resented by compositions of elementary birational morphisms, where
W is a standrd P2-bundle over the blow-up of X at a point of the
non-smooth locus A of 7. Let C be a smooth curve on X intersecting
A transeversely at one point. A birational map from V to a standard
P2-bundle over X which is isomorphic over X —C, is decomposed into
elementary birational morphisms. These are generalizations of the re-
sults about standrd conic bundles by V. G. Sarkisov (Math. USSR.
Izv. 20).

The purpose of this paper is to decompose three types of birational
maps of standard P2-bunldes over smooth algebraic surfaces into ele-
mentary birational morphisms. Let K be a function field of an alge-
braic surface defined over an algebraically closed field k of character-
istic not equal to 3 and let Vi be a K-form of P2, i.e. V xx K = P2
for the algebraic closure K of K. Then it is constructed from Vi a
standrd P?-bundle

(1) T:V o X,

(cf. [Ma]) i.e. V and X are smooth projective varieties and 7 is a
flat contraction morphism of an extremal ray with the generic fibre
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isomorphic to the given K-form Vx — Spec(K). The non-smooth
locus A of (1) is a simple normal crossing curve of X and the geometric
fibre over a smooth point of A consists of three components H; (i =
1,2,3) with H; = F, (one point blow up of P?), H; N H; (resp. H; N
H;_;) is a fibre (resp. the (—1)-curve) on H; = [F; (where the suffix
means mod 3) and H;NH;NHj is a one point. The geometric fibre over
a singular point of A is non-reduced with the reduced part isomorphic
to the cone over a rational twisted cubic in P3.

Theorem. (I) Let Y — X be the blow-up at a singular point of A.
A birational map from the standard P2-bundle V of (1) to a standard
P2-bundle W over Y is factored by elementary birational morphisms

VeV Voe VoV 5V, - Vg o W,

where V3 —«— V' (resp. V' -« V,) is a flop with the exceptional sets
F3 — P! « Fy (resp. F3 — P! « F5). There are isomorphisms of the
conormal bundles

CFa/Va = O, (s + 2f) ® Op, (s + 2f),
Cro/v' = Oro (s +2f) @ Opo (s — f),
Cryyvt = Or, (s +3f) © Op, (s — 2f),
Crs/va = Ors(s + 3f) ® Opy(s + f),

with the negative section s and a fibre f of the rational ruled surface
F,. of degree n.

(II) Let Y — X be a blow-up at a smooth point of A. A birational
map from the standard P2-bundle V of (1) to a standard P?-bundle W
over Y is factored by

V(—V]_-—N——V:;(—-—-)v‘/’

where V; —«— V3 (resp. V3 «—— W) is a flop (resp. a single blow
up-and-down) with the exceptional sets F; — P! « Fy, (resp. P?
P2 x P! — P!).

(III) Let C be a smooth curve on X intersecting transversely at one
smooth point of A. There is a birational map from the standard P2-
bundle V of (1) to a standard P?-bundle W over X, which is factored
by

VeV Vo« Vs W,



where Vi «—— V3 (resp. V3 —— V5) is a single blow up-and-doun
(resp. a flop) with the exceptional sets P! « P! xP? — P? (resp. Fy —
P! « I, ). If C is disjoint from A and V = P[€] over a neibourhood of
C with a rank three vector bundle £, then the birational map (III) is
nothing but an elementary transformation of the vector bundle £ with
center over C.

The decompositions of birational maps of standard conic bundles
corresponding to (I), (II), (III) above are appeared in [Sa,p368] (cf.
(4.3)). The statements (I), (II), (III) in Theorem are proved in §1, §2,
§3, respectively.

Throughout this paper, [F,, is the rational ruled surface of degree n
with a fibre f and the (—n)-curve s. The direct sum of line bundles is
denoted by Op, (s+ f,s+2f) = Of, (s+ f) ® Or, (s +2f), O(1,1) =
Op1(1) ® Op1(2) etc. The conormal bundle of a subvariety S in V is
denoted by Cg/v.

0. Preliminaries

(0.1) We recall the construction the standard P?-bundle over X from
the K-form Vi (cf.[Ma]). Let A be the central simple algebra of rank
9 over K corresponding to Vx which is represented by an element of
the one-dimensional Galois cohomology set H'(K, PGL3). There are
a smooth projective surface X with the function field isomorphic to
K and a maximal Ox-order A in A such that the discriminant curve
A = A(A,X) of Ain X [A-M,p84] is a simple normal crossing curve
on X, and A ® R (where R = Ox ;, is the local ring of X at a point p
of X), is isomorphic to

(0.1.1) (6,m)3,r ifpe X - A,
(0.1.2) (€,9)3,R if p € A — Sing(A),
(0.1.3) (f,9)3,r if p € Sing(A).

Here Sing(A) is the singular locus of A, {¢,n} are units of R and
g = 0 (resp. fg = 0) is a defining equation of A at p in (0.1.2)
(resp. (0.1.3)), (¢,m)3,r is the R-algebra generated by two elements
x,y with relations 22 = ¢, y® = 5, yz = wry (where w is a cube
of unity). The standard P2-bundle V over X associated to Vi is
constructed by gluing standard P2-bundles Vg over the local rings

_7_



R = Ox,p, at each point p € X, which are the intersection of P[E};] and
the grassmannian G3[AY ® R] of 3-quotients of AY ® R. Here Ep is the
(A®R)*-subspace of A3A®@R (where (A®R)* is the unit group of AQR)
with Er ® K isomorphic to the third symmetric tensor representation
space H%(Op2(3)) of (A® K)* = GL3(K) for an algebraic closure K of
K, and E}, and AV @ R are the R-duals of Er and A® R, respectively.

(0.2) The following Lemma is used to describe the flop appearing
in the birational maps (I)-(III) in Theorem.

Lemma. Let S = TF,, be a subvariety of a smooth four-fold V' with the
conormal bundle Cs/y of S in V. Assume Cg/v|f = O(1,1) for any
fibre f of ST, and S C V is flopped to St = F,, C V*t. Then

(i) For an integre a € Z,

Csyv = Or,(s+af,s+ (a —m)f),
Cs+/v+ = Of,(s+af, s+ (a—n)f).

(i) Assume there is a smooth divisor D of V' containing S with the
birational transform Dt in V*. Let Ct = Dt NS+, If Cgp =
Or, (s + (a+b)f), then (C*?)g+ = m + 2b.

(ii) Assume there is a smooth divisor F' of V such that C = FNS is
a section of the ruled surface S = Fy,. If Cg+/p+ = OF,, (s + (a+c)f),
then (C?)s = n + 2c.

Proof. (i) The flopped variety V1 is obtained by the blow-up o : W —
V along S followed by the blow-down 7 : W — V% of the excep-
tional divisor E of o to the other direction, so that £ = P[Cg/y] is
isomorphic to the fibre product S xp1 St = P[x*O(0,—m)], where
n:S = F, — P! is the projection. Hence Cg/y is isomorphic to
©*O0(0, —m) = OF, (0, —mf) modulo Pic(S). Since Cg/v|; = O(1,1),
we set Cg)y = OF, (s +af,s+ (a —m)f) for an integer a € Z. Simi-
larly, we put Cg+,v+ = OF, (s +bf,s + (b —n)f). Now we shall show
a =b. Let 8 C E be a curve which is mapped isomorphically onto the
negative sections s C S @ F,, and st C St 2 F,,, i.e. §= s xp1 st.



Then

(0.2.1) (Kv.s) = c1(Csyvls) + (Ks-8)
=(—n+a)+(-n+a—m)+ (n—2)
=2a—n—-—m-—2,

(0.2.2)

(Kv+.st) = (Cs+/v+lst) + (Ks+.s%)
=(-m+b+(—-m+b-—n)+(m-2)
=2b-n—m-—2.

On the other hand, (Ky.s) = (Ky+.s) because the canonical divisors
are equalto Ky = 0*Ky+F = 7*Ky++FE and (E.0*s) = (E.t*st) =
0. Hence (0.2.1) = (0.2.2) implies a = b.

(ii) The intersection in W of E and the proper transform of D, is
equal to P[Cg/p] in E = P[Cs/v]. Then C* C S* is isomorphic to
P[Cs/pls] C P[Cs/vls]. Since Csyv|s = O(-n + a,—n +a —m) —
Cs/pls = O(—n +a+b), ie. O0,—-m) — O(b), we see (C1?)g4+ =
m + 2b.

(iii) The flopped surface S* is the exceptional divisor of the blow-up
F* — F along C, so that (S*.f)p+ = —1 for a fibre f of ST = F,,.
Hence we put Cg+/p+ = OF,, (s + (a +c)f) for an integre c € Z. The
intersection in W of E and the proper transform of F, is equal to
P[Cs+/p+] in P[Cg+,y+]. Then C C S is isomorphic to P[Cs+/p+|s] C
P[Cs+ /v +|s|- Since Cg+/v+|s 2 O(—m+a,—m+a—n) — Cg+/p+|s &
O(-m+a+c), ie. O0,—n) — O(c), we see (C?)g=n+2c. O

(0.3) Let T' = P2 be a subvariety of a smooth 4-fold V with Cr/y =
Op2(1,1). Then there are birational maps

- Vl g V2$

where o, is the blow-up along 7' with the exceptional divisor £ =
P? x P!, and o is the blow-down of E onto P! (the projection to
the second factor). Assume there is a smooth subvariety S of V' of
dimension 2 intersectiong 7' transeversely at one point p. Then

(i) the birational transform S; in V5 of S is the blow up of S at the
point p = SN T with the exceptional line e = 03(F),

(ii) Cs, /v, = 02401Cs/v ® Og;, (—e).



Conversely, let S’ be a smooth subvariety of a smooth four-fold W
with Cs /wle = O(1,1) for a (—1)-curve e on S’. Then, from the exact
sequence 0 — CS'/WIe — Leg/w — Ce/S’ — 0, we see Ce/W = 0(1’ 1, 1)
Hence there are birational maps

W w3 Ww,,

where o, is the blow-up along e with the exceptional divisor £ 2
P! x P2, and o3 is the blow-down of E onto P? (the projection to
the second factor). The birational transform S5 in Wy of S’ is the
blow-down of S’ along e with 01.03Cs; /w, = Csyw @ Os (€).

1. The birational map (I)

(1.1) In this section we consider the birational map (I) in Theorem.
Let 7 : V — Spec(R) be the standard P2-bundle over the local ring R
of X at a singular point of A constructed from the R-order (f,9)s r
of (0.1.3) (cf.§4). For the blow-up o : Y = Yo UY; — Spec(R) at
the origin with Yy = Spec(R|[g/f]) and Y7 = Spec(R[f/g]), there is a
standard P2-bundle 7; : W — Y constructed from a maximal Oy -order
A with Ay, = (f,9/f)sy, and Ay, = (f/g,9)3v,. In this section we
decompose a birational map from V' to W over Spec(R) into elementary
birational morphisms.

(1.2) Let 0, : Vi3 — V be the blow-up at the vertex of the central
fibre 771(0) (the cone over the rational twisted cubic in P3, i.e. the
surface contracted along the (—3)-curve on F3). Let 05 : Vo — V; be
the blow-up along the proper transform @Q; =2 F3 of 77!(0). We will
prove the following Lemma in (4.2).

Lemma. Co,q)/v = O(2,0, 1) for any fibre I of Q, = F.

Assume the above Lemma. Since o, is the blow-up at a point on
01(l), Lemma implies C; /v, = Co,1),v ® O(1) = O(3,1,0). From the
exact sequence 0 — Cq, /v, 1 = Ciyv, — Cyq, = O — 0, we see

(1.2.1) Cq./vilh 2 0(3,1).

(1.3) Let H; C V5 be the exceptional divisor of 03. From (1.2.1),
the restriction H; = a{l(l) of o5 : Hy — @, to a fibre [ of Q; 2 F3 is



isomorphic to Fy. Let b; be the (—2)-curve on H; and let )2 = F3 be
the section of o9 : Hy — @), defined by

(1.3.1) ()2 = the union of 4;’s for all fibres | of Q; = F3.

We define o3 as the blow up along Q2 = Fj.

Lemma. The exact sequence

(1.3.2) 0= CHg/Vngz — Cqy/v, = Cqy/a; — 0

splits with isomorphisms Cy, /v, |Q, = Oy (s — f) and Cq, /p, =

Or, (25 + 4f).

Proof. We will show the two isomorphisms in (1.3.2), i.e. (Hz.8)y, =
4, (Hae.f)v, = -1, (Q2.8)u, = 2, (Q2.f)n, = —2. Then Lemma
follows from Ext!(Of,(2s + 4f), Or,(s — f)) = HY(Op,(—s — 5f)) =
H'(Or,(—s)) = 0 by Serre duality. We see (Ha.f)v, = On,(—1)|f =
—1 because the (—2)-curve f = b, on H; = P[O(3,1)] is defined by the
surjection O(3a 1) S 0(1)1 and (Q?-f)Hz = (QZ'H; ‘bl)HL = (blz)IF2 =
—2 because Q, N H; = b;. Let E; = P2 be the exceptional divisor of o,
and let F5 be the proper transform of F; by 5. Then the restriction of
o3 to Fy is the blow-up of E; = P? along the twisted cubic C; = Q:NE;
with the exceptional divisor So = Hj N E5 isomorphic to Fy because
Cey /e, = O(—-5,-5). We will show in Lemma(1.5)(ii),

(1.3.3) the (—3)-curve Cy = Q2N Sz on Q2 = F3 is a (+2)-curve on
Sy =2 TFy.

If we assume (1.3.3), then (Q2.8)n, = (Q2|s,-8)s, = (C3)s, = 2
and (H3.8)y, = On,(—1)|s = Os,(—1)|c, = 4 because the (+2)-curve
Cy on Sy 2 Fy is defined by a surjection O(—5, —5) — O(—4). O

(1.4) For the twisted cubic C in E; = P3| let ¢ : C; — P! be the
cyclic cover of degree three ramified at two points {pg, peo } C P!, and
let fp0U fp,1 U fp2 C E; be the three lines joining the three points
¢~ (p) for each point p € P! — {pg, po }- Let

M; = the closure in E; of Upep— {po.po0} Yoo fp,i-

We see the tangent lines at pp and po, to C; are contained in M;.



Lemma. (i) M; C E; 2 P? is a non-normal quartic surface with
multiplicity two along the twisted cubic C;.
(i1) The proper transform Mz of My in V3 is isomorphic to Fa.

Proof. (i) Let F(z, ..., 23) = 0 be the defining equation of M; in P3.
For a point p = (g : 1) € P!, we assume ¢~ !(p) = {po, p1,p2} with
pi=(g9:w*p%:0iB:1), (i=0,1,2) for 32 = g. Then the three lines
fp.i (3= 0,1,2) are contained in the plane {zp = gz3} = P2, where the
line f, ; is defined by the equation I; = 2, +wBz; +w? (%23 = 0. This
means F(gz3, 21, 22, 23) is divided by the product

lolily =23 + 923 + g?28 — 39212323

=z‘i’ -+ (zo/zg)zg + (20/23)%23 — 32021 25.
Hence F(zp, ..., 23) is equal to
(1.4.1) F(20,...,23) = 2323 + 2023 + 2222 — 3202123 23.

We see easily the singular locus of {F' = 0} is equal to the twisted
cubic Cy = {2022 — 22 = 2923 — 2122 = 2123 — 22 = 0} with multiplicity
two.

(ii) The quartic surface M; = {F = 0} contains the line s = {29 =
23 = 0}, so the conormal sheaf C,/ps, is isomorphic to O(2) by the
exact sequence 0 — Cpy, /p3|s — C,/p3 — C,/ar, — 0. Since s is disjoint
from the singular locus C; of M; and since M, is nonsingular, we
conclude M, is isomorphic to Fy. [

(1.5) Next we investigate the 1-dimensional subscheme M; N H; in
Vs.
Lemma. (i) M2N Hy consists of two sections Cy and C of o : Sg =
Fo — C4,

(i) Cy is linearly equivalent to C5 on both Sy and on M,, and
(C%)Sz = (Cg)Mz =2.

Proof. oy : E; — E, is the blow-up of E; = P? alon the twisted cubic

C = {2023 — 22 = 2923 — 2123 = 2123 — 22 = 0}, so E is defined by
1 2

the equations
Yo
Zo 21 22 (0
ws (= 2 =) (R)=(2)



in F; x P2, where (2;) (resp. (y;)) is the homogeneous coordinates
of E; = P2 (resp. P?). The projection of E; x P? to P? defines the
Pl-bundle structure 7 : E; — P2 and E, = P[£] with the rank two
vector bundle £ on P? defined by

(1.5.2) 0 Op(-12 304 > €—0,

A— (Y n y2 O )
0 % ¥ %)’
We see £(—1) is a rank two stable vector bundle on P? with c; (£(—1))
=0 and c3(€£(—1)) = 2. Since the equation (1.4.1) is equal to

where

F(z0,...,23) = —(2022 — 21) (2123 — 23) + (2028 — 212)?,
the proper transform M, C E; of M, is equal to the P!-bundle 7~1(q)
over the conic ¢ = {yoy2 = ¥?} in P2, and &|, = Op:(3,1) because
M; = P[€|q] = F; and ¢;(€) = 2 by (1.5.2). The intersection of M,
and the exceptional divisor Sy = Ha N F5 of 05 : E3 — E; is defined
in P3 x P2 by (1.5.1) together with

rank [ 90 Y1) = 1, rank [ 0 1 %2 = 1,
Y1 Y2 21 22 23
hence we see My NSy = My N Hy consists of two sections Cy and C}
over the twisted cubic C; C F;, where

(1.5.3) Co={(A3: 22 : Mp? : p®) x (WA i whp s p?)|(A: ) € P}

and C} is equal to C; replacing w by w?. Hence C; and C} are linearly
equivalent on both S; & Fy and M; = [Fy, and intersects at two points
(A:p)=(1:0) and (0 : 1). Therefore (C%)s, = (C?)rm, = 2 and C;
is equal to P[O(3)] in M, = P[£|,] by a surjection £|, = O(3,1) —
0O(3). O

The intersection of F; and @, (see (1.3.1)) is equal to one of C;
and Cj, say C,. Let us consider the elementary transformation of £
along C; = E2 N Qy:

(1.5.4) 0—E& —E— 0y3)—0,
with C = P[Og4(3)] in M2 = P[€|,] = P[O(3,1)] and E’ = P[€’].
(1.6) In the exact sequence (1.5.4) we will show



Lemma. &'|, = O(1,-1).

Proof. Let (p1,p2) = (¥1/Y0,Y2/¥0) (resp. (go,q1) = (yo/¥2,Y1/y2))
be the affine coordinates of the openset Uy = {yo = 0} (resp. Us =

{y2 = 0}) in P2. From the exact sequence (1.5.2), we see

23 = — (Yo/y2)20 — (¥1/y2) 21,
z3 = — (Yo/y2)21 — (y1/y2)22
= — (yo/¥y2)21 + (1/y2){(¥0/y2) 20 + (y1/y2) 21},

on Fy = P[£], so £ has a free basis {22,235} (resp. {21,20}) over Uy

(resp. U;) with
22\ _ —q —q0 71
%3 @ -0 9n 20

From (1.5.2), the kernel £’ in (1.5.4) is given by

we _ (1 —wp 22
()=( nZ)(2) ot
w1 _ (1 —wiq 21
B ) () o
Therefore *(wq, w3) = A -t (wy,wp) with A equal to
(1 —WP1>( ~ —QO) (1 -wqu)_l
0 p2—P )\~ qa/)\0 -4

_(1 —w(q1/90) -1 —qo 1 —w?q -

B (0 (1/90) - (‘11/(10)2) (q%—qo ‘1041) (0 QO“‘I%)

_ (—ch +w(91/90)(g0 — 43) a2 )
—(90 — )/ a8 —w?q1(q0 — 43)/4% + (91/90)

where

(90 — ¢3)a12 ={—q1 + w(@1/q0) (90 — &) }*q1 + (—qo — wq?)
=~ (g0 — ¢3) — (¢#/40) (43 — @),

hence a;2 = —1 + (¢2/qo)- Since go = ¢? on the conic ¢, we see
— 0
Al":( 0 qfl)'



This means &'|, =2 O(1,-1). O

(1.7) Let F3 C V3 be the exceptional divisor of the blow-up o3 of
V, along Q2. From Lemma(1.3), the restriction F}; = o '(b;) of F3 to
a fibre b; of QY2 = F3 is isomorphic to IF;. Let n; be the (—1)-curve on
F; and let Q3 be the section of o3 : F3 — (), defined by

(1.7.1) Q)3 = the union of n;’s for all fibres / of ; = F3.

Since 03 : E3 — Fj is the blow-up along C; := Q3 N E, with the
exceptional divisor T3 := F3 N E3, Lemma(1.6) means T3 = P[£’|,] &
F,.

Lemma. (i) Cq,/vyln, = O(1,1),

(i1) the (—3)-curve C5 = Q3 N E3 on Q3 = F3 is the (—2)-curve
on Ty = F3N E3 & Fy, i.e. C3 C T3 is defined from the surjection
&'y 2 0(1,~1) — O(—1).

Proof. (i) In the exact sequence

(1~7-2) 0= CFa/Vslm = CQa/Valm = CQs/Falm = 0,

we see (F3.n)vy; = —Ogy(1)|n, = —1 because n; is the (—1)-curve
on F; =2 P[O(2,1)] (see Lemma(1.3)), and (Q3.7)F; = (Q3|r, ) =
(n1)Z, = —1 because Q3 N F; = .

(ii) From (C22)32 = 2, we see Cy C Sy & ]P’[CCI/EI] is defined by
a surjection Cc, /g, = O(=5,-5) — O(—4), so that (S2.C2)g, =
—0g,(1)|c, = 4. Therefore we obtain

(173) 0— cSz/Ezlcz = O(—'4) - CCz/Ez - CCz/Sn = 0(—2) — 0,
from which we have equalities
(1.7.4)

(T2)B, = —05C2 + c1(Ngy By )ra = —03C2 +6r3,  (13) g, = —6

for a fibre r3 of T3 = Fo — (3. Let S3 = H3z N E3 be the proper
transform in F3 of S, and let

m3=M3ﬂE3=M3ﬂT3, t3:H3mT3233ﬂT3



be two sections of o3 : T3 = Fy — C,. We see from (1.7.4)

(ma.t3)1y =(Ms|ry-S3|1:)13 = (M3.53.T3) B,
=(og M2 — T3)(03S2 — T3)T3
=04 (M3.82)T3 — o (M; + So)T2 + T2
=((Mz + $2)C2) g, — 6.

From (1 73) we see (M2 C2)E2 = (0’ M1 = 252)02 = (M1 Cl)El =
2(3202)——43 24 = 4. Henoe(m3t3)T3-4+4 6= 2. Onthe
other hand, (1.3.2) induces the split exact sequence

0= CHz/Vz l.f = 0(1) e CQz/Vzlf = CQQ/Hzl.f = 0(2) =3 ()

for fibres f = b; of Q2 = Fo. This implies F3 N Hj is covered by (+1)-
curves P[Cq, /n,|¢] in P[Cq, /v, |#] = F1, so F3N Hj is disjoint from Q3
(see (1.7.1)), hence (Cs.t3)1y, = 0. Thus the three sections Cj, ms,
tz of T3 — C, satisfy (mgs.t3)ny, = 2 and (Cs.t3)7, = 0. This means
C3 is (resp. mg3 and t3 are) the (—2)-curve (resp. (+2)-curves) on
T3 =2 P[O(1, —-1)] = F,. Since Q3 N M3 is contained in T3 = F3 N Ej3,
(iii) follows from the fact that Cj3 is disjoint from mz. O

(1.8) The following Lemma implies Cpz, /v, |f = O(1,1) for fibres f
of M3 2 T, so there is a flop V3 —« V1 along Mj.

Lemma. The two exact sequences

(1.8.1) 0 ——+CE2/V2 |M2 — CA,I2/‘/2 =) CMQ/EQ =y 0)
(1.8.2) 0 —Cgy/valMs — Cy/vs — Cy/E; — 0

split with the isomorphisms

CEz/V2lM2 §0F2(8+3f), CM2/E2 gO]FQ(—éif),
cEa/VslMa g0111'2("34'3f)a CMa/Ea g(9113'2(2_2.f)

Proof. Cg, v, |My = CrayvsiMs = O, (s + 3f) follow from (Ej.s)y, =
(Eq.8)v, = (E1.8)v; = Og,(—1)|s = —1 (since the image o;(s) of s
in V; is a line on E; = P3), and (Es.f)v, = (E2.f)v, = (B1.f)y, =
Og,(—1)|f = —1. We saw o2(s) is disjoint from C; in the proof of



Lemma(1.4)(ii), so (M3.8)g, = (M2.8)g, = (M;.8)g, = deg(M;) = 4.
Then the isomorphisms Car, /g, = Of,(—4f) and Cagy /g, = OF, (s—2f)
follow from (M2f)E-3 = ((T;Ml == 232)f = (1\»41']’)]_:;1 — 2(Szf)E2 =
4—-4=0and (Ma.f)g, = (053Me — T3)f = (Ma.f) — (T3.f)Es =
0—1=—1. Both (1.8.1) and (1.8.2) split because H!(Of,(s+ 7f)) =
H'(Or,(5f))=0. O

(1.9) From Lemma(1.7)(i), (iii) and Lemma(1.8), we define V, as
the flopped variety of V3 along the disjoint union M3 and Q3. Since
Crs/vs = O, (s+3f,8—2f) by (1.8.2), the flopped surface M, in Vj of
Mj is isomorphic to P[Cpy, /vs|s] = Fs with Cpy, /v, = Org(s+3f, 8+ f)
by Lemma(0.2)(i). Applying Lemma(0.2)(iii) to S = M3 and F = F3
we see Cag, /F, = Oy (s + 3f) because mg = F3 N M3 is a (+2)-curve
on M3 by Lemma(1.5)(ii). Hence there is a split exact sequence
(1.9.1)

0—- CFA/V4|M4 = Op(s4+f)— CMA/V4 = CMA/Fd > Or,(s+3f) — 0.

(1.10) Let E4, Hy, Fy be the birational transforms of Ej3, H3, F3,
respectively. These are obtained as follows.

(a) Ej4 is constructed by the elementary transformation (1.5.4) and
a blow up e5:

(1.10.1) E, =PE) 2 B3 3 PE') & E,,

where

(i) o3 is the blow-up along the (+2)-curve C; = P[O,4(1)] in M3 =
P[€|,] = P[O(3,1)] with the exceptional divisor T3 2 €;(T3) = P[£’|,]
= P[O(lv —1)],

(ii) €; is the blow-down of the proper transform M3 of My = P[€|,],

(iii) €2 is the blow-up along the (—2)-curve €;(C3) = P[O4(—1)| in
P[E'|q] = P[O(1,—1)] with the birational transform 7} in E,; of T3
isomorphic to ez(Ty) = P[E’],].

(b) Hy is the blow-up of H3 2 H, along C3 = 03(C3) = C5 with the
exceptional divisor equal to the flopped surfacae My = P[Casy/v5|cy] &
Fs.

(c) Fy is obtained from F3 = F, by

(1.10.2) F & F' 3 Fy,



where

(iv) €3 is the blow-up along ms = M3 N F3 with the exceptional
divisor equal to the flopped surface My = P[Cpn, /5] = P[Casy /vs I mal,

(V) €4 is the blow-down along €3 }(Q3) = Q3 = F3.

The P!-bundle structure o3 : F3 — 9 induces a P!-bundle struc-
ture 7 : F4 —¥ M4 = F5.

(1.11) From (1.7) we see

Proposition. (i) The fibre f4 of m: Fy — My is an extremal rational
curve on V4 with (—Ky,.fs) =1,

(ii) E4 is mapped to P! x P? by the contraction morphism o4 : Vs —
‘/-5 Of f 4,

(133) The flopped surface Q4 on Vy of Q3 is isomrphically mapped to
P! x g C 04(Ey) 2 P! x P? with a conic q in P2.

Proof. In the exact sequence 0 — Cg, v |z, — Cgyvy — Cpyypy =
0(0,0) — 0, we will show Cg, /v, |f, = O(1), ie. (Fs.fa)v, = —1. The
fibre f3 of T3 = F3 N Ej3 is isomorphically transformed to the fibres
of Ty = F4 N E4, so we may assume f; is contained in F4. Hence
(Fa-fa)vy = (Fi|g,-fa) By = (T4 fa) B,. We denote by T" = P[€’|], by
(04 the exceptional divisor of €; of (1.9.1), and by f’, q4, m3 the fibre
of T, Q4, M3, respectively. Then we see

(Ts.f3)Es =(61T" — M3)(e1f' —myq) = (T".f)p — 1,
(Ts-fa)E, =(63T' — Qa)(e3f — qa) = (T".f)er — 1.

Hence (Fy.fs)v, = (Ta.fa)e, = (13.f3)E, = —1 because T3 is the
exceptional divisor of o3 : F3 — Fs.

(ii) We see from (i) that the image 04(E}4) is equal to the result of the
elementary transformation of £’ = P[£’] along €, (C3) = P[O,4(-1)]:

(1.11.1) 0 & — & — Oy(-1) -0,

where 0'4(E4) = ]P[85] and 61(03) = ]P[Oq(—l)] e T = P[S’lq] =
P[O(1, —1)]. Hence we will show &5 is isomorphic to Opz(—1)2. From
(1.5.2) and (1.5.4), we see ¢;(£') =0, cz(€’') = 2 and H°(£'(—4)) = 0,
so h%(€'(1)) > x(€'(1)) = 4. Hence (1.11.1) implies h%(Es(1)) > 2
and there is an inclusion ¢ : Opa(—1)2 — &5. On the other hand,
c1(€5(1)) = c2(€5(1)) = 0, so the inclusion ¢ is an isomorphism.



(iii) The flopped surface Q4 = P[Cq,/v;|c;] on V4 is equal to the
exceptional divisor of the blow up of P[£’] along P{O(—1)] = C3. Hence
Q4 is isomrphically mapped to P[€5|,] 22 P! x ¢ by the exact sequence
(1. O

(1.12) Let r5 =(point) X (line) in Fs = 04(E4) = P! x P2. To define
os : Vs = Vg = W we show

Lemma. (i) There is a split ezact sequence
0— cEs/V:,'"s S 0(1) = Llrs/Vs — Uy /E5 = 0(0, —1) — 0,

(1) rs is an extremal rational curve on Vs and the associated morphism
o5 : Vs — Vg contracts Es =2 P! x P? onto the first factor PL.

Proof. (i) We show Cg, /v, |rs = O(1), i.e. (Es.rs5)y; = —1. The surface
S; = Hy N Ey 22 Fy in V5 is transformed isomorphically onto S; =
H4 N E4 in V4 and the Stein fctorization of the composite Sy = S; C
Es 23 Es = P! x P2 T3 P! is given by

S B0 S,

where ¢ is the associated cyclic cover of degree three in (1.4). Let
r4 be the isomorphic image in Sy of a fibre r; of 0y : Sy = Fy —
C;. Then rs = 04(r4) is equal to (point)x(line) in Es = P! x P2
Hence (F4.rs)v, = (03Es.m4)v, = (Es.r5)v,. The left-hand side is
equal to (E4.14)v, = (P4l T4)H, = (Sa.74)n,. We recall My N Hy =
My N Sy = CaUCY (Lemma(1.5)), and Hy--- — Hy is the blow-
up along Cj with the exceptional divisor M, (see (1.10)(b)). Hence
(S4.7‘4)H4 = (0’*52 - M4)1‘4 = (82.7'2)}{2 - (1\44.’!'4)};4 =0-1= -1
because S; = Fy is a P1-bundle over the twisted cubic C; with a fibre
r9. (ii) follows from (i). O

(1.13) Let hg be the image in Vg = W of a fibre h; of the P!-bundle
o1 : Hp —» Q; = F3. To see W is a standard P2-bundle over the
blow-up Y at the origin of Spec(R), we show

Lemma. (—Kw.hg)w = 1.

Proof. We assume the birational transform h4 on Vj of hy is disjoint
from S4 = H4 N E4. Then (H4h4)v4 = (H3.h3)V3 = (UgHz = F3)h3 =



(Hz.h2)y, — 1 = —2 because H, is the exceptional divisor of o; with
the fibre h,. Hence, from the exact sequence

0— CHA/V4|h4 = 0(2) — Ch4/V4 - ch4/H4 = O(O)O) - 01

we see Cp, /v, = 0(2,0,0) and (—Ky,.hg) = 0. On the other hand,
from (F4.h4)v4 =0 and (E5.h5)v5 — 0, we see

(_KV4 'h4)V4 Z(G‘;(—er,) - F‘l)h“l = (_KV.-s 'h5)V5 -1
=(0';(—KV8) = 2E5)h5 —-1= (—Kve.hﬁ) - 1.

Therefore (—Kvy,.he) =1. O

(1.14) Next we determine the conormal bundles Cg, /v, and Cag,/v;-

Lemma. (i) There is an ezact sequence
0 Cry/vslQs = Ory(8 = f) = Cos/vs = Coa/py = Ory(s +5f) — 0,

(u} CQ3/V3 = 0F3(3+2f,8 +2f), CM5/V5 & 01["5(3 +f,2s+4f)

Proof. (i) Let f (resp. s) be a fibre (resp. the (—3)-curve) on Q3 = F3.
For the isomorphism Cg, /v;|@; = OF,(s — f), we show (F3.f)y, = —1
and (F3.s)y; = 4. By the definition (1.7.1), f is the (—1)-curve on
Fy= ]P’[C'Q,‘!/‘,/2 l[] with CQQ/V2|1 = 0(1,2) by (1.3.2). Hence (F:;.f)v3 —
Or,(—1)|f = —1. We saw in Lemma(1.7)(ii) that s = Cj3 is the (—1)-
curve on T3 = P[Cq, /v;|c,] With Cg, v,lc, = O(—4,-2) by (1.3.2).
Hence (F3.5)v; = Opy(—1)|s = Ory(—1)|c; = 4. Similarly, (Qs.f)r,
(Qalr-f)R = (2R = —1 and (Q3.5)m = (Q3|1y-Ca3)my = (C3)my
—2, hence Cq,/r, = Or,(s+ 5f).

(ii) Since Q4 = Fo by Lemma(1.10)(iii), Cq, /v, = Or,(s+af,s+af)
for an integre a € Z. The exact sequence proved in (i) implies a = 1.
The fibre f; of My = Fs is the (—1)-curve on P[Cpy, /vi|f] = F1 with
f = 04(fs), so that fy C P[Cagv;ls] is defined by the surjection
O(a,a + 1) — O(a) for an integer a € Z. Here a = Of,(1)|y, =
Cryvilfs = 1 by (1.9.1). Next we apply Lemma(0.2)(ii) to S = Ms,
D = E3 and Ct = s4 := My N E,. Then Cppy 5, = Op,(s — 2f) in
(1.8.2) implies (s2)p, = 5— 2.5 = —5. This (—5)-curve s4 on M, = Fj
is the (42)-curve on P[Chs, /vy |s] = E4 N Fy = Fa with s = 04(s4), so
that s4 C P[Cas/vils] is defined by a surjection O(b — 2,b) — O(b)



for an integer b € Z. Here b = OFf,(1)|s, = Cr,/v,|s = —4 by (1.9.1).
Thus we see

(1.14.1) CMs/Vslf = 0(1,2), CM5/V5]3 = 0(—6, —4).

Now the canonical surjection 03Cas, /v — Or,(1) induces the sur-
jection ¢ : C"ch"fzs/Vrsll‘f& = CMs/Va - Or,(D)|m, = CF4/V4|M4 =
Op,(s+ f) by (1.9.1). Then (1.14.1) implies Ker(¢) = Op,(2s + 4f)
and there is an exact sequence

(1.14.2) 0 — O, (25+4f) — Cpgy/vs L CryvalMy = Org(s+f) — 0.

Here H(Of, (s+3f)) = H}(O(3,—2)) = k, but Cpg /v |s = O(—6,—4)
means that the restriction of (1.14.2) to s splits. Hence (1.14.2) itself
splits and Cpg, /vy = Ory (s + f,25 +4f). O

(115) Let C4 = Q4 n F4, C5 = 0'4(04) and Cﬁ = 0',5(05) = 0'5(E5).
We show

Lemma. Cg, /v, = O(1,1,1).

Proof. We apply Lemma(0.2)(iii) to S = Q3 and F = Ej;. Since
C3 = Q3ﬂE3 is the (—3)-CUIV8 on Qa = ]F3, we see cQ;/E4 = OFQ (S—f).
On the other hand, Cgq, /v, Or,(s+2f,5+2f) in Lemma(1.14)(ii) means
CQu/va = Ory(s+2f,s — f) by Lemma(0.2)(i). Hence, from the exact
sequence

(1.15.1) 0= Cryviles = Cou/vi = CQu/Es — 0,

with the isomorphisms Cq, v, = OF,(s + 2f,s — f) and Cq, /g,
Or, (s — f), we obtain Cg, /v, |Q, = Or,(8+2f). Therefore Cg, /v;|cs
CE4/V4|C4 e O]F'O(S+2f)|8+3f = 0(5) We saw in (141) that 005/35
Cums/vslcs = O(—6,—4). Hence the exact sequence 0 — Cg, /v |cs
O(5) — Ccyyvs — Coy/ms = O(—6,—4) — 0 implies (Ky;.Cs)
5—10—2 = —7. Since o5 : Cs — Cg is the cyclic cover of degree three
(Cf.(1.4)), (KV5.05) = (U,;KVG + 2E5)C5 = 3(KVe.CG) + 2(E5.C5),
hence (Kvy,.Cg) = +1. We saw E5 = P[Cc, v,] is ismorphic to Fp in
Lemma(1.11)(i), so Cgy/vs = O(a,a,a) for an integre a € Z. then
(Kv,-Cs) = 1 means a = 1.

R IR R



(1.16) We write down the conormal bundles of the ruled surfaces

Q,MT,S.

cQz/V2 = Or,(s— f,25+ 4f),

CQ-&/V4 — OFO(S+2f,5-f)$
CMz/Vz = OF2(5+3f’ —4f)’

Crmyva = Ors(s+ fr8+3f),
Cry/vs = Ory(s — 2f,3f),
Csapva = Oro(3f,8 —5f),
CS4/V4 = Op,(s+3f,s— 5f).

Cqssvs = Or;(28+4f,2s + 4f),
Cas/vs = Oro(s+2f,-2f),
Crsyvs = Ory(s+3f,8—2f),
Cums/vs = Ors(28+4f,s+f),
Cryva = Or,(s —4f,5f),
Css/vs = Oy (3f,28 - 5f),

(1.17) The effective cones of V; over X = Spec(R) (1 < i < 6)
and the intersection numbers with generators of the Picard group, are
give as follows. Here g;, m;, s;,t; are the fibres of the ruled surfaces
in Mi; Si) Cn'n respectively.

(1) NE(V1/X) = R[q:]®R[m],

(_Kvl -QI) == “27
(E1.q1) = +1,

(2) NE(V2/X) = R[gz] ® R[m2] & R(sz],
Pic(Va/X) = Z(~Ky,) ® ZEy ® ZH,.

Pic(V1/X) = Z(—Kv,)®ZE;.

(—KVl.ml) = +3,
(El.ml) =-1.

q2 maz | S2 l
~Ky, =1 1 1
E, 1 2 0
Hy =] 2 =1

(3) NE(V3/X) = R[gs] ® R[m3] ® R[s3] ® R[t3],
Pic(Va/X) = Z(~Kv,) ® ZE3 ® ZH; ® ZF5.

qs mg | sz | ts |
—Kv, 0 0 0 1
Es 1 2 0 0
H, 0 1 -1 1
F3 -1 1 i -1




(4)  NE(Va/X) = Riqs] ® R[ma] & R[s4] ® R[14],

Pic(Va/X) = Z(—Kv,) ® ZE, & ZH, ® ZF}.

qa ms | sa | ta |
=K 0 0 0 1
E, =1 1 -1 0
H, 0 5 2 1
F, 1 =4, 2 =1
(5)  NE(Vs/X) = R[gs] ® R[ms] & R(ss],
Pic(Vs/X) = Z(—Kv,) ® ZEs ® Z.Hs.
as ms l S5 |
—Ky, 1 =1 2
Es -1 1 -1
Hs 1 3 2
(6)  NE(Ve/X)=Rlge] ®R[ms|, Pic(Ve/X)=Z(~Kv,)®ZHs.
g6 me |
—Kvs =1, 1
H -2 0

Here g¢ = 05(gs) is equal to Cg in (1.15), and me = o5(ms).

2. The birational map (II)

(2.1) In this section we consider the birational map (II). Let 7 :
V — Spec(R) be a standard P2-bundle over the local ring R of X at
a smooth point of the non-smooth locus constructed from the R-order
(0.1.2). Let 771(0) = RUS UT be the central fibre such that R, S, T
isomorphic to [F;, and
(2.1.1) = RNT,

s=SNR, t=TnN§S



are the (—1)-curves on R, S, T, respectively. For the the non-smooth
locus A C Spec(R) we assume 7~ !(A) decomposes into three divisoris
D, H, L of V such that

R=71"1(o)ND, S=r"Ha}N H, T = Moy L.
Then V is obtained by twice blow-ups of P% along P} D PQ = A:
Vv = VO 'ﬂ ]P%iy

where o is the blow-up along P}s with the exceptional divisor Hyp, and
o is the blow-up along Lo = 05 }(PQ). Then D (resp. H) is the proper
transform of P4 (resp. Hp) and L is the exceptional divisor of o.

V. D H L

R

Vo Do Hy Dl

S

BoBEoPioP, =A

(2.2) The center Ly = o5 '(PQ) of the blow-up o : V — Vj is
isomorphic to P[Cp1 /2 |pg | = PA.

Lemma. (i) Cp,/v, = Op1 (1,0), (i1) There is a split ezact sequence

0—Crivir 2O, (s+ f) = Cryv — Cryr 2 Or, — 0.

PT’OOf (1) We see cHo/VolLo = OHO(]')'LO = OLo(l) = OIP})(]-) and
CLo/Ho = 05Cpo /p1 = OL,. Hence (i) follows from the exact sequence

0— CHo/VolLo = cLo/Vo - C’Lo/Ho — 0.

(ii) Let p = PQ N 7~1(0) and let f = o5 '(p) = P} be the fibre of
the P!-bundle oo : Ly — P = A. Then Cy/r, = O and Cp, v, |y =
O(1,0) by (i). Hence the exact sequence 0 — Cr, /v lf — Cs/vp —
C¢/L, — O splits. The surjection ¢ : 0*(Cry vy lf) = (0*CLyyvp)lT —
Cr/v|r induces a commutative diagram with exact rows :

0—-0*(Cro/wlf) — *Cspvp —— 0*Cs/, 0

#| l \l

0-Crvlr —— Cprjy —— Cr/L—0.



Since the first row splits, the second row also splits. Hence, for the
proof of (ii), we will show Cp /v |r = O, (s+ f). The exceptinal divisor
L of o is equal to P[Cr,/v,] with Cr,/v, = Op1 (1,0) by (i), so that
T =P[Cro/wlf] = PO(1,0)] and Cpyv|r = OL(1)|r = O, (s+f). O

By symmetry of R,S,T, (ii) implies Cryy = Cgyy = Crv =
Or, (s + £,0).

(2.3) Let o7 : V3 — V be the blow-up along R with the exceptional
divisor E; and the proper transforms D,, Hy,L,,S;,7y of D,H, L, S,
T, respectively. Let M; (resp. N;) be the exceptional divisor of the
restriction o : Hy — H (resp. 0, : Ly — L) of 0, and let

8 ———MlﬂS] :]P[Cs/H]a (1 =N10T1 =P[C,./L]

Lemma. (i) M; &2 F,, (s¥)m, =1, (i) Ny 2 Fy, (r?)n, =0.
Proof. We see (S.8)g = (T.r)r =0, (s%)s = —1, (r®)n, = 0, hence we
have exact sequences

0 _"CS/Hla 20— C,/H — C,/S ~0(1) -0,

0—-Cr/Llr 20 —-Cryp = Cryr =20 —0.
Lemma follows since s; C M, (resp. r; C N;) is defined by the
surjection C;yg — Cy/5 (vesp. Cr/p — Cryr). O

(2.4) For the proper transforms S; (resp. 73) of S (resp. T), we
have

Lemma. The eract sequences

(2.4.1) 0 —=Chy/vils, = Csiyvi = Csyym, — 0,

(2'4'2) 0 _’cbl/Vl ITl — Lty 2y, 0.

splits with isomorphisms Cy, yv,|s, = Cr, vy Iy = O, (8+f), Cs,/m, =
OF] (S) and CI‘l/Ll = OFl (f)

Proof. We saw Cyg,/v;ls, & Cuyvls = Or,(s + f) and Cp v |1, =
Cryvlir = Or,(s + f) in Lemma(2.2)(ii). Hence we show Cg, /v, =
OFl(s) and CTl/Ll = OFl(f)1 ie. (Sl-f)Hl = -1, (Tl'f)Ll = 0,
(S1:81)m, = 1 and (T1.t1)r, = —1. For, (S1.f)m, = (015 — My)f =
(S.-f)g — M1.f)g, = 0—-1 = —1. By Lemma(2.3)(i), s; C M, is



defined by a surjection Cg/y|y = O(1,0) — O(1), so (My.51)H, =
Oum, (—1)|5, = -1, hence (S1.81)w, = (018 — My)s; = (S.8)uw —
(My.81)m, = 0—(-1) = 1. Similarly, (T1.f)z, = (o717 — M) f =
(T.f)L = (Nl'f)Ll =0-0=0 and (Tl-tl)[q = (U;T = Nl)tl =
(T.ty)L — (Ny.t1)p, = 0 — 1 = —1. The splitting of (2.4.1) and (2.4.2)
follows from Ext(Or, (s), Or, (s+/)) = H(OF, (f)) = H'(Op:1(1)) =0
and H(OF,(s)) = HY(Op:1(0,-1)) =0. O

(2.5) From (2.4.1) we see Cgs,/v; |y = O(1,1), hence S; C V; is
flopped, i.e. there are birational maps

Vi 2V, B Vs,

where o3 is the blow-up along S; with the exceptional divisor F5, and
o3 is the blow-down of F, to the other direction. Let S3 = o3(F3). Let
Mz, E3, T,, ... (resp. M3, E3,T3,...) be the birational transforms on
V, (resp. V3) of M,, Ey, 11, ..., respectively.

Lemma. M3;N S3 is the (—1)-curve on S; = ;.

Proof. The (—1)-curve s; = S; N M; on S; = [, is the (+1)-curve on
M; =T, by Lemma(2.3)(i); C,,/m, = O(—1). Hence, from (2.4.1), we
have a surjection C,, /g, = Cg,/v;ls; = O(0,-1) = Cyy/n, = O(-1).
This defines the closed immersion Mz N Fy = P(C,, /pr,] C B2 N Fp =
P[C,, /g,), Which is ismorpohic to M3 N S3 C S3 by 03. O

(2.6) We apply Lemma(0.3)(iii) to S = S; 2 F; and F = FE;. Since
E, intersects S; with the (—1)-curve on S; = Fy, Cg, /v, = Op, (s+, 8)
impilies Cg, /g, = O, (s) and there is a split exact sequence
(2.6.1)

0 — Cey/wslss 2 Or, (8 + f) = Csy/vs — Csy/Ey = Or,(8) — 0.

Lemma. The ezact sequences
(2.6.2) 0 —Cpr, /v, |1, = C1yyvy, — Cryyr, — 0,
(2.6.3) 0 —Cr;/vslTs — Cryyvs — CryyL; — 0.

splits with isomorphisms Cr, /v, |1, = Cry/1, = Or, (s + f) and
CLa/Va |, 2 cTa/Ls = Opa2(1).

Proof. We see Cp,/v,|1, = CryviT = OF, (s + f), hence we will show
ch/Vg > O, (s+ f), ie. (Tz.f)L, = —1 and (Tyt2), =0. Let Q2 =



P(Cs, /i lt.] = P[Ct,/L,] be the exceptional divisor of o3 : Ly — L.
Then (T3.f)r, = (0311 — Q2)f = (T1-f)L, — (Q2-f)L, =0—-1= —1.
Since the (—1)-curve ¢, on Ty = F, is a fibre on Sy, Cs, /v lt, =
Or, (s + f,9)|f = O(1,1) by (2.4.1). Hence t = T2 N Q2 C Q2 is
defined by a surjection C;, /1, = Cs, /v le, = O(1,1) — G, /1, = O(1),
so (Q2-t2) = Og,(—1)lt, = —1 and (Ta.ta)r, = (0311 — Q2)t2 =
(Tl-tl)Ll - (Qg.tz) =-1- (—1) = 0 since CI~1/L1 = OFl (f) by (242)
The exact sequence (2.6.3) follows from (75.f)r, = (0373.f)L, =
(T2-f)r, = -1 and (Ls.f)v, = (03L3.f)v, = (L2-f), = —1 by
(2.6.2). O

(2.7) From (2.6.3) we see Cr, /v, = Op2(1, 1), so there are birational

maps
Vs &V, B,

where o4 is the blow-up along 73 = P? with the exceptional divisor
G4 = P[Cry/v,] = P2 x P!, and o5 is the blow-down of G4 onto the
second factor P!. The birational transform S5 on Vs of S3 = [F; is the
blow-up of S3 at the point p = S3 N T3. we recall the relative Picard
number of Vs over Spec(R) is equal to two. Let f3 be the fibre of
S3 = FF; intersectiong at the point p = S3 N T3 and let f; (resp. f5)
be the birational transform of f3 on S (resp. Ss). The two extremal
rays of V5 over X are generated by fs and the image es = 05(G4). We
see

(—Kvi-fa)vi =(03(—Kvy) — Ga) fa = (= Kvs-f3)vs — (Ga-fa)v,,
=(05(—Kvs) — 2G4) fs = (—Kw-f5)vs — 2(Gs-fa)v,

with (—Kv;.f3) =0 and (G4.f4) = 1, hence (—Kvy,.fs)y, = 1. Let
(2.7.1) T

be the contraction morphism of fs.
Lemma. (Es.f5)v, =0.

Proof. From (0.3) we see the exact sequence (2.6.1) induces the split
exact sequecne

(2.7.2) 0— CE5/V5|55 = CSs/Vs = CS5/E5 — 0.



with isomorphisms Cg, /v, |ss = Os;s(s+f—e) and Cg, /gy = Og,(s—e).
Since T3 is disjoint from M3, Lemma(2.5) means the point p = S3N 7T}
is not on the (—1)-curve on S3 = Iy, so that fs = s+ f—e on Ss. Hence
we see from (2) that (Es.f5s) = —Cgy vl = —(s+ f—€)?2=0. O

(2.8) The above Lemma(2.7) implies that any irreducible curve C
on V5 with (E5.C) = 0 is contracted by the morphism (2.7.1). We
show Ej is covered by such curves. Let f be a fibre of R = [F; on
V. From Lemma(2.2)(ii), we see Cr/v|s = O(1,0), so that E; ; :=
o7 '(f) = P[Cryv|y] is isomorphic to F;. Let C be a section of Fy ¢
containing the point F; f N7} (such C exists with 1-parameter family
for each fibre f of R).

Lemma. (FE5.Cs)y, = 0 for the birational transform Cs of C on V5.

Proof. For simplicity we use the same letter C' for the birational trans-
forms of C on V; (1 < ¢ < 5). Since the (+1)-curve C C Eyy is
defined by a surjection Cg/v|f = O(1,0) — O(1), we see (E,.C) =
Og,(-1)|c = —1. Then (E3.C') = —1 because Ep = 03E; — F =
o03E3 — F5. From E4; = o3;FE3 — G4 = o3Fs — 2G4 together with

By the above Lemma, there are 1-parameter family of the curves
C with (E5.C') = 0 for each point on e = 05(G4), so the image of
the morphism (2.7.1) is 2-dimensional. This means 7; : V5 — X; is a
standard P?-bundle and the structure morphism X; — Spec(R) is the
blow-up at the origin. The statement (II) of Theorem is proved.

(2.9) Let X be a smooth algebraic surface and let Y — X be the
blow up at a point of X with the exceptional line e. Let 7, : W —
Y be a standard P2-bundle with the non-smooth locus intersecting e
transeversely at one point pg = A Ne. If we find a smooth subvariety
Ss of 71(e) such that

(2.9.1) S5 is a P*-bundle over e away from the point pp = e N A,

(2.9.2) there is a section e5 on S5 over e with (e?)s, = —1,

then we obtain a standard P2-bundle V over X by applying the
inverse of the birational map (II) described above. We see the existence
of such subvarieties es C Ss by the following argument. As in (2.1),
77 (e) is obtained from a P2-bundle 7, : P — e by twice blow-ups

Tl—l(e)gplil*



where ¢, is the blow-up of P along a line [ in 75 !(po) = P2, and ¢, is
the blow-up of P, along a fibre f of the exceptional divisor €7 *(l) of
€1. We write P = P[£] with a rank three vector bundle £ = O(0, a, b)
one =P Let¢:EO(c,c+1) be a surjection for an integer ¢ € Z, and
eo = P[O(c)] € Sp = P[O(c,c + 1)] be the corresponding subvarieties
of P = P[€]. We choose ¢ : £ — O(c,c + 1) such that

(2.9.3) the line So N 75 *(po) is not equal to the center I of €,
(2.9.4) eoN7y (po), SoNl, €1(f) are distinct three points on 75 ! (py).

Then we see the proper transforms in 7, '(e) of Sy and e, satify
(2.9.1) and (2.9.2).

3. The birational map (III)

(3.1) In this section we consider the birational map (III). Let 7 :
V — X be a standard P2-bundle over a smooth algebraic surface X
and let C C X be a curve intersecting the non-smooth locus A of 7
transversely at one smooth point pg of A. Let Co C V be a curve
which is isomoorphic to C by 7. Let 771(pg) = RUSUT with R, S, T
isomorphic to F; and assume s = SN R is the (—1)-curve on S.

Lemma. There is a split exact sequence

0 — Cr-1(0)/vls = O, — Csyv — Cs/r-1(c) = Ory (s + f) — 0.

Proof. C.-1(cy/vi|s = 7*Ox(—C)|s = O, is clear. Since R+S+T =0
on 71(C), we see (S.f);-1c) = —(R.f) = (T.f) = -1-0 = -1,
and (S.8),-1(c) = 0 because s is a fibre of R. Hence Cg/,-1(c) =

Or,(s+ f). O
(3.2) Let 07 : V3 — V be the blow-up along Cp with the excep-
tional divisor E; and let R,,S;,T;,D, be the proper transforms of
R,S,T,7=1(C), respectively. The restriction to S; of o; is the blow-
up of S at the point p = AN Cpy. Let
e = Sl n E1

be the exceptional line of 7 : S; — S 2 FF,.



Lemma. The ezact sequence
(3.2.1) 00— ch/Vl ls, — Csl/vl — CS]/Dx —0

splits with isomorphisms Cp, /v, |s, = Os, (e1) and Cs,/p, = Os, (81 +
f1)-

Proof. Cp, jv,|s, = Os,(e1) follows from

(D1.51)v; =(01D — E1)s1 = (D.s)y — (F1.8)y; =0—-0=0,
(D1-fi)vy =(01D — Er) f1 = (D.f)v — (E1.f/),, =0-0=0,
(Dl.el)vl I(O';D — E1)81 = —(El.el)vl = {,

Similarly, Cg, /p, = Os, (81 + f1) follows from the equalities (S1.51)p,
= (018.51) = (5.8)r-1(c) = 0, (S1./1)w = (015./1) = (S.f)r-1(0) =
—1 and (Si.e1)p, = (0}S-e1) = 0. Since H(Og,(—s1 — f1 + €1)) =
HY(Os, (81 — 2f1)) (Serre duality) = H'(Or, (~s — 2f)) = 0, the
exact sequence (3.2.1) splits. [J

(3.3) There is a blow-down S; — [, with the exceptional line e =
f1 =1 We take

(3.3.1) s = fi, f=s1+fi—e

as the section and the fibre of S; induced from those of Fy. Then
s—e=e¢e; and s+ f — e = 51 + f1, so the exact sequence (3.2.1) is
equal to

(3.3.2) 0 — Cp,/wils; = Cs,yvy = Cs,/p, — 0.

with isomorphisms Cp, /v, |5, = Os, (s—e) and Cg, /p, = Og, (s+f—e).
Hence Cg, /v, |e = O(1, 1), so there are birational maps

VIQVZ"E"/&

where o, is the blow-up of e with the exceptional divisor Bz = P! x P2,
and o3 is the blow-down of B3 to the other direction. Let Ds, Ss, ...
be the proper transforms on V3 of Dy, S, ..., respectively. We see from
(0.3) that the exact sequence (3.3.2) induces

(3.3.3) 0 — Cpy/valss = Csayvs = Csy/ps — 0.



with isomorphisms Cp,/v;ls, = Or,(s) and Cg,/p, = OFry(s + f).
Therefore Cg, /v, |y = O(1,1), so that S3 C V3 is flopped, i.e. there
are birational maps

V3 - ‘/4 - ‘/5)

where o4 is the blow-up of S3 with the exceptional divisor Fy, and o5
is the blow-down of F to the other direction. The flopped surface Ss
on Vs is isomorphic to P[Cg, /v, |s] = P[O(—1,0)] = F; by (3.3.3), and
satisfies Cg, /v = O, (s + f, s + f) by Lemma(0.3)(i).

(3.4) The extremal rays on Vs over X. One is generated by the
fibre f5 of the flopped surface S5 = 1, and the other is the birational
transform Is of the line ! in 7~ 1(p) = P? with | N Cy non-empty for
a point p e C — (CNA). Wesee (—Ky,.fs) =0, (—Kvy,.ls) =1,
(Es.fs) = —1 and (Fs.ls) = 1. The birational transform Dg on Vs of
771(C) has a P'-bundle structure over the surface Ds N Es with fibre
ls, hence the contraction morphism of /5

o¢: Vs — Vs,

is the blow-up of Vs along the surface og(Ds). The structure morphism
Ve — X defines the standard P2-bundle over X.

4. Appendix

(4.1) The standard P2-bundle V over the local ring R of a singular
point of A constructed from the R-algebra (0.1.3), is described as
follows.

emma. [M,(2.4)] (i) V is covered by three open sets Uz,Ui1,Uss,
which are isomorphic to the affine space A} of dimension four with

a'.ﬁine coordinates (fa Iy1,T2, '1:3), (g, Ys, Ys, y3)’ (w12’ W, Ws, wll): re-
spectively, such that the transition functions are given by

(a) Uyy to Uya: [ =v2+9y3 + 9%y3 — 39ysysys,
ry = (ysyé — wy?ys — w2gy2ys)/vi2,
T3 = (Y2 + yays) /Y12, T3 = Y3/Y12,

with  y12 = w2y + wgyl + (w? — w)Ysysys,

(b) Usz to Uqy: g=a3+ fx3 + f2x3 — 3fz zps,
Ys = (—-”71373 - wx'f’x:; - szxzxg)/wu ’



ys = w?(z3 — z173) /211, Y3 = T3/T11,

with 13 = wzd — w2 fod + (W? — w)z1T073,

(C) Uz to Uja: f= wg = wwuw%z + (1 = w)w2w5w12
= wp(w§ — wwswyy) + wiz(Waws — wwiW12),
r = (w% — wwswi2)/wiz,

Ty = wa /w2, T3 = 1/wsa,
(d) U12 to U3.‘ Wwig = 1/1‘3, Wy = .’112/.1,'3,
ws = w”(x% — z123) /23, wy = -’1311/373,
(e) Us to Uyy: —g = wi —wiwwyy + (w — Dwowswy;,

= Wws (w% —Wawi1 ) +wwi (Waws —wwi1wWh2),
ys = (wawy — w%)/wn,

Ys = ws/wi1, ys = 1/wq,,
(f) Uy1 to Us: w12 = Y12/Ys, wa = (Y2 + Y3ys)/vs,
ws = Ys5/Ys, w1 = 1/ys,

(ii) The projection T : V — Spec(R) is given by

7(f, x1, T2, 23) =(f, 23 + fr3 + f223 — 3fx 7213) on Usa,
7(9, Y8, Y5, y3) =(vs + 9v8 — 9°¥3 + 39ysysys, 9) on Uy,

(w12, Wa, ws, w11) =(wWd — www?, + (1 — w)wawsw2,
— wi + w?w? wiy + (1 — w)wewswy;) on Us,

(iii) The central fibre 7= (p) with reduced structure is defined by the
deal

(fiz1) onUsy, (9,y8) onUn,
(wwipws — W3, Wwy w12 — Waws, Wawyy — WE) on Us,
and the vertez of T7(p)rea is the origin of Us =2 A}.

(4.2) (Proof of Lemma(1.2)) By Lemma(4.1)(iii) we assume the fibre
l is equal to I = {\(1,a,w?a2,wad)|) € k} on Uz = A%, (w12, ws, ws,
wr1), for a constant a € k. Let

why = wy — aws, wh = ws — w?aw,, w); = wy; — wadwz,



Then we see (where = means modulo the ideal (w}, w§, w};)?)

wg — WWsWi2 Z(’w; = aw12)2 = w(w's = wzaz’w]_z)‘w12
=(2awy — wwi)wiz,
waws — wipwy; =(wh + awqz) (Wi + w2a2w12) - w(wy;, + wa3w12)w12

=2 2 / /

Hence, by Lemma(4.1)(i)(c),

f =(wh + aw;2)(2awh — wwi)wiz + w2y (wa?w) + awl — wwl,)

=wh{(1 - w)a®w; + a(l — w)wg — wwy;}
z; =(w? — wwywl,)/wiz + (2awh — ww}),

T2 =(wh + awiz) /w2, T3 = 1/wi,.

Therefore, on the fibre | = {w) = w§ = wy; = 0}, !(df,dx1,d(z2 —
a),dz3) is equal to

—ww? a(l -w)wi, (1-w)w? 0 dw?,
0 —w 2a 0 dwyg
0 0 1/’lU12 0 dw’2

Then C,,y/v = O(2,0,—1) follows from the above transition matrix
of (4.2.1).

(4.3) Lastly we explain briefly the three birational maps (I)-(III) of
standard conic bundles (cf.[Sa]) corresponding to those of P2-bundles
treating in this paper. Let 7 : V' — X be a standard conic bundle over
a smooth algebraic surface X.

(I) Let p be a singular point of the discriminant locus A of V' and
o : X1 — X be the blow up at p. The reduced fibre [ = 77 1(p)reqa C V
is isomorphic to P! and the conormal bundle Cj/y 2 Op:1(2,—1). Let
o1 : Vi — V be the blow-up along ! and let s be the (—3)-curve on
the exceptional divisor E = P[C;;v] = F3. Then C,/y, = O(1,1), so
s C V; isflopped to st C W. Now W has a conic bundle structure over
X7 with the non-smooth locus equal to the union of the exceptional



divisor e and the proper transform A’ of A. The birational map (I) is
factored by

(4.3.1) V&V, s—w

The flopped curve st C W is the closure of the singulsr locus of
771(e — AY).

(IT) Let p be a smooth point of the discriminat locus A of V and
o : X1 — X be the blow-up at p. The fibre 771(p) = s Um is a union
of two distinct lines s and m. Let 0, : V3 — V be the blow-up along m
and let s; C V7 be the proper transform of s. Then C,, /v, = O(1,1),
so s; C V; is flopped to st C W. Now W has a conic bundle structure
over X; with the non-smooth locus equal to the proper transform of A.
The birational map (II) is factored as in (4.3.1). The flopped curve s+
is a section over the exceptional curve e on X; with C,+ /r-1(¢) = O(1).

(IIT) Let C C X be a smooth curve intersecting transversely at one
smooth point p of A. Let Cy C V be a curve which is isomorphic to C'
by 7. The fibre 7=1(p) = sUm is the union of two lines s and m, and
we assume Cy intersects s. Let o; : V3 — V be the blow-up along Cy
and let s; C V; be the proper transform of s. Then C,, /v, = O(1,1),
so s; C V; is flopped to s C V5. The birational transform F' C V;, of
771(C) is a P'-bundle over C and its fibre f is an extremal rational
curve. Let o3 : Vo — W be the contraction of f. Then W has a conic
bundle structure over X with the same non-smooth locus A of V. The
birational map (III) is factored by

VEaV, 5V, B W

If C is isomorphic to P! with Co/x = O(a) and Cg, /r-1(cy = O(b) for
integers a,b € Z, then CJZ(F)/TI-I(C) =~ O(a—b+1). In particular, if C'is
a (—1)—curve with cCo/'r"l(C) 2 O(b), then COQ(F)/TI_I(C) = O(—b+2)
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