Complete noncommutative integration of Hamiltonian systems

メタデータ	言語：
	出版者：Department of Mathematical Sciences，Faculty of Science，University of the Ryukyus 公開日： $2010-03-31$ キーワード（Ja）： キーワード（En）： 作成者：Kinjo，Yoshiyuki，Miyagi，Yashushi，金城，義行 メールアドレス： 所属： http：／／hdl．handle．net／20．500．12000／16408

COMPLETE NONCOMMUTATIVE INTEGRATION OF HAMILTONIAN SYSTEMS

Yoshiyuki Kinjo+ and Yashushi Miryagi \ddagger

Abstract

We indicate a method of a complete integration of Hamiltonian system sgrad F on a symplectic maifold M when $\operatorname{dim} \boldsymbol{g}+$ $\operatorname{rank} \boldsymbol{g}<\operatorname{dim} M$, where \boldsymbol{g} is a noncommutative Lie algebra on M. Suppose that the reduced system $E(F)$ is completely integrable in the noncommutative sense. This enables us to enlarge the number of the integral functions of the initial system on M.

1. Introduction

Let M be a $2 n$-dimensional symplectic manifold with the form ω, and $v=\operatorname{sgrd} F$ a Hamiltonian field with a Hamiltonian function F on M. Suppose $f_{1}, f_{2}, \ldots, f_{k}$ are smooth functions on M, where $1 \leqq k<2(n-1)$.
In various concrete situations, Hamiltonian systems possess a set of integral functions $f_{1}, f_{2}, \ldots, f_{k}$ that do not form a commutative Lie algebra, i.e., they are not in involution. Consider the linear space \boldsymbol{g} (over real space R) spanned with functions $\left\{f_{i}, 1 \leqq i \leqq k\right\}$; then $\operatorname{dim} g=k$. Suppose that the linear space \boldsymbol{g} is closed with respect to the Poisson bracket, i.e., $\left\{f_{i}, f_{j}\right\}=\sum_{l=1}^{k} c_{l}^{i j} f_{l}$, where the coefficients $c_{l}^{i j}$ are constant real numbers. Let G be the simply connected Lie group corresponding to \boldsymbol{g}. Then $G=\exp g$. Let $f_{1}, f_{2}, \ldots, f_{k}$ be functionally independent (i.e., gradient systems grad f_{i}, where $1 \leqq i \leqq k$, are linearly independent). By the mapping $f_{i} \mapsto \operatorname{sgrad}_{i}$, we identify \boldsymbol{g} with the space spanned with Received November 30, 1998
$\left\{\operatorname{sgrad} f_{i}\right\}$. Hence, G is presented as the group of diffeomorphisms of the manifold that preserves ω. Let \boldsymbol{g}^{*} be the dual space to \boldsymbol{g}, i.e., the space of linear forms on \boldsymbol{g}. For a covector $\xi \in \dot{\boldsymbol{g}}^{*}$, let M_{ξ} be the common level surface of functions $\left\{f_{i}\right\}$,i.e., $M_{\xi}=\left\{x \in M, f_{i}(x)=\xi_{i}, 1 \leq i \leq k\right\}$,where $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right), \quad \xi_{i} \in R$. Let $A d_{\boldsymbol{g}}^{*}: \boldsymbol{g}^{*} \rightarrow \boldsymbol{g}^{*}$ be the transformation conjugate to $A d_{g}: \boldsymbol{g} \rightarrow \boldsymbol{g}$, also $a d_{f}^{*}: \boldsymbol{g}^{*} \rightarrow \boldsymbol{g}^{*}$ be the transformation conjugate to $a d_{f}: \boldsymbol{g} \rightarrow \boldsymbol{g}$. Let $\boldsymbol{\xi} \in \boldsymbol{g}^{*}$ be a covector. Consider the subspace Ann $\xi=\left\{f \in \mathbf{g} ; a d_{f}{ }^{*} \xi=0\right\}$ in \boldsymbol{g}. The subspace Ann ξ is called the annihilator of the covector ξ. The rank of g is the dimension of the annihilator of a generic covector. Let the rank g be r. The Lie group G acting on \boldsymbol{g}^{*} fibrates \boldsymbol{g}^{*} into orbits $O^{*}(\xi)=A d g^{*} \xi=\left\{A d_{f}^{*} \xi ; f \in \boldsymbol{g}\right\}$ of coadjoint representation. The tangent space $T_{\xi} O^{*}(\xi)$ is $\left\{a d_{f}{ }^{*} \xi ; f \in \boldsymbol{g}\right\}$. Then, $\operatorname{dim} T_{\xi} O^{*}(\xi)=k-r . \quad$ By the property of the alternating matrix $\left[\left(a d_{f_{i}}{ }^{*} \xi\right)\left(f_{j}\right)\right](1 \leq i, j \leq k)$, the number of $k-r$ is even. Therefore $k+r$ is also even. This is important for us. In the next section, we remember the construction that makes it possible to convert the initial Hamiltonian system into a Hamiltonian system on a symplectic manifold of smaller dimension. In the section 3, we describe Proposition 3.4 of our purpose.

2. The Reduction of Hamiltonian systems

Suppose that a Hamiltonian system $v=\operatorname{sgrad} F$ has the Lie algebra of integrals g whose additive generators are k functionally independent
smooth functions $f_{1}, f_{2}, \ldots, f_{k}$,i.e., $\left\{F, f_{i}\right\}=0, i=1,2, \ldots, k$. Thus the Hamiltonian system $v=\operatorname{sgrad} F$ is tangent to the common level surface M_{ξ}, i.e., F is invariant with respect to \boldsymbol{g}. In fact, $(\operatorname{sgrad} F(f)=\{f, \boldsymbol{F}\}$
$=0, \quad$ for $f \in \boldsymbol{g}$.
Consider the action of the Lie group G on M. Let $G(x)$ be the orbit of the point $x \in M$, and $H_{\xi}(x)$ the orbit of x under the action of $H_{\xi}=\exp A n n \xi$.

Then $T_{x} G(x)=\{\operatorname{sgrad} f ; f \in \mathrm{~g}\}, \quad T_{x} H_{\xi}(x)=\{\operatorname{sgrad} h ; h \in A n n \xi\}$. This implies that $G(x) \cap M_{\xi}=H_{\xi}(x)$. Suppose that in a small neighborhood of M_{ξ} this action has the same type of stationary subgroups, i.e., all orbits of G close to $G(x)$ are diffeomorphic. Consider the projection $p: M \rightarrow M / G$ of onto the space of orbits M / G. The space M / G is a smooth manifold of dimension $2 n-k$ in a small neighborhood of the point $p(G(x))$. Note that the space M / G must not be symplectic since, for example, it can be odddimensional. The projection p, being restricted onto M_{ξ}, maps it onto $Q_{\xi}=M_{\xi} / H_{\xi}$. Therefore, the space M / G is fibrated onto surfaces Q_{ξ}.

The dimension of the manifold Q_{ξ} is $2 n-k-r$ (even), and Q_{ξ} has a symplectic structure ρ which is defined by $\left.\omega\right|_{M_{s}}=p^{*} \rho$, where $p^{*} \rho$ is a pullback of ρ by p. And then, the following is known. Euler system $E(F)$ $=p_{*}(\operatorname{sgrad} F)=\operatorname{sgrad}_{\rho} \hat{F}$, where p_{*} is a differential map of p, \hat{F} is a smooth function on Q_{ξ}, and $\left.\quad F\right|_{M_{\xi}}=p^{*} \hat{F} . \quad\left(Q_{\xi}, E(F), \rho\right)$ is called the reduction of the initial Hamiltonian system sgradF. Moreover, the following statement holds ([1]).

Proposition 2.1

Let \boldsymbol{g} be a finite dimensional Lie algebra of integrals of $\operatorname{sgrad} F$ on M. Let $E(F)$ be the reduced system on each Q_{ξ}. Suppose that \boldsymbol{g}^{\prime} is the linear space of functions on M / G such that their restriction onto Q_{ξ} constitutes the finite dimensional Lie algebra of integrals of the vector field $E(F)$. Then, the space of functions $\boldsymbol{g} \oplus \boldsymbol{g}^{\prime \prime}$, where $\boldsymbol{g}^{\prime \prime}=p^{*} \boldsymbol{g}^{\prime}$, is the Lie algebra of integrals of the system $\operatorname{sgrad} F$, and $\left\{\boldsymbol{g}, \boldsymbol{g}^{\prime \prime}\right\}=0$.

This proposition describes that $\boldsymbol{g}^{\prime \prime}$ is also the Lie algebra. Let F and $\boldsymbol{g}^{\prime \prime}$ satisfy the above conditions. Then $\left\{F, \boldsymbol{g}^{\prime \prime}\right\}=0$.
In fact, because the linear space g^{\prime} consists of integrals of $E(F)$, $E(F)\left(f_{i}^{\prime} \mid Q_{\xi}\right)=0$, and let $F=p^{*} \hat{F}$, where \hat{F} is a function on M / G, then

$$
\begin{aligned}
\left\{F, f^{\prime \prime}\right\} & =\left\{p^{*} \hat{F}, p^{*} f^{\prime}\right\}=p^{*}\left\{\hat{F}\left|Q_{\xi}, f^{\prime}\right| Q_{\xi}\right\}_{\rho}=-p^{*}\left(\left(\operatorname{sgrad}_{\rho} \bar{F}\right)\left(f^{\prime} \mid Q_{\xi}\right)\right) \\
& =-p^{*} 0=0, f^{\prime \prime} \in g^{\prime \prime}
\end{aligned}
$$

Furthermore, this proposition include various indication. For example, if $f \in \boldsymbol{g}, f^{\prime \prime} \in \boldsymbol{g}^{\prime \prime}$, then f is constant on M_{ξ}, and $f^{\prime \prime}$ is constant on
$G(x)$. We remember that $G(x) \cap M_{\xi}=H_{\xi}(x)$. Therefore, $f, f^{\prime \prime}$ are functionally independent.

We make a remark that the dimension of Q_{ξ} is $2 n-k-r$. If $2 n-k-r=0$, then $H_{\xi}{ }^{r}(x)=M_{\xi}{ }^{2 n-k}$. In this case, the Hamiltonian vector field sgrad F is completely integrable in the noncommutative sense ($\operatorname{dimg}+\operatorname{rank} g=\operatorname{dim} M$). In this paper, we consider the Lie algebra of integrals of sgrad F in the case of $2 n>k+r$, and suppose that the reduced system is completely
integrable in the noncommutative sense on Q_{ξ} which dimension is less than $2 n$. It may appear that we can treat simply integrals of Hamiltonian system on lower dimensional manifolds .

3. Complete integration

Let η^{\prime} be a covector on a linear space g^{\prime} defined on M / G. Uniquely we can define a covector $\eta^{\prime \prime}$ on a linear space $\boldsymbol{g}^{\prime \prime}$ defined on M such that $\eta^{\prime \prime}\left(f^{\prime \prime}\right)=\left(p^{*} \eta^{\prime}\right)\left(p^{*} f^{\prime}\right)=\eta^{\prime}\left(f^{\prime}\right)$ by a projection p from M onto M / G, where $f^{\prime \prime}=p^{*} f^{\prime}$ and $\boldsymbol{g}^{\prime \prime}=p^{*} \boldsymbol{g}^{\prime}$.

Lemma 3.1

Let η^{\prime} be a covector on \boldsymbol{g}^{\prime} and $A n n \eta^{\prime}$ be its annihilator in the Lie algebra \boldsymbol{g}^{\prime}. Similarly, let $\eta^{\prime \prime}$ be a covector on $\boldsymbol{g}^{\prime \prime}$ and $A n n \eta^{\prime \prime}$ be its annihilator in the Lie algebra $\boldsymbol{g}^{\prime \prime}$, where $\boldsymbol{g}^{\prime \prime}=p^{*} \boldsymbol{g}^{\prime}$ and $\eta^{\prime \prime}=p^{*} \eta^{\prime}$. Then, $\operatorname{dim} A n n \eta^{\prime \prime}=\operatorname{dim} A n n \eta^{\prime}$.

$$
\text { Proof. If } f_{i}^{\prime} \in A n n \eta^{\prime} \text {, we indicate that } f_{i}^{\prime \prime} \in A n n \eta^{\prime \prime}
$$

Let $f_{i}^{\prime} \in A n n \eta^{\prime}$, then $a d_{f_{i}^{\prime}}{ }^{*} \eta^{\prime}=0$. For $f^{\prime} \in \boldsymbol{g}^{\prime}$,

$$
\begin{aligned}
& 0=0\left(f^{\prime}\right)=\left(a d_{f_{i}^{\prime}}^{*} \eta^{\prime}\right)\left(f^{\prime}\right)=\eta^{\prime}\left\{f_{i}^{\prime}, f^{\prime}\right\} . \text { For } f^{\prime \prime} \in \boldsymbol{g}^{\prime \prime} \\
& \eta^{\prime \prime}\left\{f_{i}^{\prime \prime}, f^{\prime \prime}\right\}=\left(p^{*} \eta^{\prime}\right)\left\{p^{*} f_{i}^{\prime}, p^{*} f^{\prime}\right\}=\left(p^{*} \eta^{\prime}\right) p^{*}\left\{f_{i}^{\prime}, f^{\prime}\right\}=\eta^{\prime}\left\{f_{i}^{\prime}, f^{\prime}\right\}=0
\end{aligned}
$$

Therefore, $f_{i}^{\prime \prime} \in A n n \eta^{\prime \prime}$. Similarly there is the converse .

Because \boldsymbol{p} is onto, we can ascertain that $\left\{f_{i}^{\prime \prime} \in A n n \eta^{\prime \prime} ; 1 \leq i \leq r^{\prime}\right\}$ is a basis of Ann $\eta^{\prime \prime}$ if $\left\{f_{i}^{\prime} \in A n n \eta^{\prime} ; 1 \leq i \leq r^{\prime}\right\}$ is a basis of $A n n \eta^{\prime}$.
And its converse is similar. Therefore, we can introduce the result of this Lemma.

Lemma 3.2

Let p be a projection from M to M / G.
If $\boldsymbol{g}^{\prime \prime}=\boldsymbol{p}^{*} \boldsymbol{g}^{\prime}$, then $\operatorname{dim} \boldsymbol{g}^{\prime \prime}=\operatorname{dim} \boldsymbol{g}^{\prime}$ and $\operatorname{rank} \boldsymbol{g}^{\prime \prime}=\operatorname{rank} \boldsymbol{g}^{\prime}$.

Proof. Since p is a projection, if $\left\{f_{i}^{\prime} ; 1 \leq i \leq k^{\prime}\right\}$ is a basis of \boldsymbol{g}^{\prime}, then $\left\{f_{i}^{\prime \prime} ; 1 \leq i \leq k^{\prime}\right\}$ is a basis of $\boldsymbol{g}^{\prime \prime}$, and $\operatorname{dim} \boldsymbol{g}^{\prime \prime}=\operatorname{dim} \boldsymbol{g}^{\prime}$.
For the rank of the Lie algebra, let $\operatorname{rank} \boldsymbol{g}^{\prime}=m$.
Suppose that rank $g^{\prime \prime}=\min \left\{\operatorname{dim} A n n \eta^{\prime \prime} ; \eta^{\prime \prime} \in g^{\prime \prime}\right\}<m$, then there is a covector $\eta^{\prime \prime}$ such that $\operatorname{dim} A n n \eta^{\prime \prime}<m$, and so, there is a covector η^{\prime} such that dim Ann $\eta^{\prime}<m$ from Lemma 3.1. Therefore, $\operatorname{rank} \boldsymbol{g}^{\prime}=\min \left\{\operatorname{dim}\right.$ Ann $\left.\eta^{\prime} ; \eta^{\prime} \in g^{\prime}\right\}<m . \quad$ It is contradiction.

Lemma 3.3

Suppose that $\boldsymbol{g}^{\prime \prime}=p^{*} \boldsymbol{g}^{\prime}$, and $\eta^{\prime \prime}=p^{*} \eta^{\prime}$, then
$(A n n \xi) \oplus\left(A n n \eta^{\prime \prime}\right)=A n n\left(\xi \oplus \eta^{\prime \prime}\right)$, where $\xi \in \boldsymbol{g}^{*}, \quad \eta^{\prime \prime} \in\left(\boldsymbol{g}^{\prime \prime}\right)^{*}$.

Proof. Let $f+f^{\prime \prime} \in(A n n \xi) \oplus\left(A n n \eta^{\prime \prime}\right), \forall g \in g, \quad g^{\prime \prime} \in g^{\prime \prime}$.
By the use of Proposition 2.1,
$\left(a d_{f+f^{\prime \prime}}{ }^{\prime \prime}\left(\xi \oplus \eta^{\prime \prime}\right)\left(g+g^{\prime \prime}\right)\right.$
$=\left(\xi \oplus \eta^{\prime \prime}\right)\left(\{f, g\}+\left\{f, g^{\prime \prime}\right\}+\left\{f^{\prime \prime}, g\right\}+\left\{f^{\prime \prime}, g^{\prime \prime}\right\}\right)$
$=\xi\{f, g\}+\eta^{\prime \prime}\left\{f^{\prime \prime}, g^{\prime \prime}\right\}=a d_{f}{ }^{*} \xi(g)+a d_{f "}{ }^{*} \eta^{\prime \prime}\left(g^{\prime \prime}\right)=0$
$\therefore a d_{f+f^{\prime \prime}}{ }^{\prime \prime}\left(\xi \oplus \eta^{\prime \prime}\right)=0$, i.e., $f+f^{\prime \prime} \in \operatorname{Ann}\left(\xi \oplus \eta^{\prime \prime}\right)$
Similarly, there is the converse.

Proposition 3.4

Let $M^{2 n}$ be a symplectic manifold with the form ω. Let $\operatorname{sgr} \boldsymbol{F} F$ be a Hamiltonian field on M such that all elements of the Lie algebra g are integrals of sgrad F. Suppose that \boldsymbol{g}^{\prime} is the linear space of functions on M / G such that their restriction onto Q_{ξ} constitutes the finite dimensional Lie algebra of integrals of the vector field $E(F)$. Suppose that $\operatorname{dim} \boldsymbol{g}+\operatorname{rank} \boldsymbol{g}<2 \boldsymbol{n}$ and the reduced system $E(F)$ on Q_{ξ} is completely
integrable in the noncommutative sense on Q_{ξ}. Then sgrad \boldsymbol{F} is completely integrable in the noncommutative sense on $M^{2 n}$.

Proof. We constructed the Lie algebra $g \oplus g^{\prime \prime}$ by Proposition 2.1, and we could get $\left\{F, \quad g \oplus g^{\prime \prime}\right\}=0$. Therefore it is sufficient that we prove $\operatorname{dim}\left(\boldsymbol{g} \oplus g^{\prime \prime}\right)+\operatorname{rank}\left(g^{\oplus} g^{\prime \prime}\right)=2 n$.
Let $\operatorname{dim} \boldsymbol{g}^{\prime}=k^{\prime}, \operatorname{rank} \boldsymbol{g}^{\prime}=r^{\prime}$,then $\operatorname{dim} \boldsymbol{g}^{\prime \prime}=\boldsymbol{k}^{\prime}, \operatorname{rank} \boldsymbol{g}^{\prime \prime}=r^{\prime}$ from Lemma 3.2. Let $\xi \oplus \eta^{\prime \prime}$ be the covector of $g \oplus g^{\prime \prime}$. From Lemma 3.3, $\operatorname{rank}\left(g \oplus g^{\prime \prime}\right)=\min \left\{\operatorname{dim}\left(\operatorname{Ann}\left(\xi \oplus \eta^{\prime \prime}\right)\right)\right\}=r+r^{\prime}$.
By the assumption of that $\operatorname{dim} \boldsymbol{g}^{\prime}+\operatorname{rank} g^{\prime}=\operatorname{dim} Q_{\xi}=2 n-k-r$,
we can get $k^{\prime}+r^{\prime}=2 n-k-r$. Therefore $\operatorname{dim}\left(g^{(} \oplus g^{\prime \prime}\right)+\operatorname{rank}\left(g^{\oplus} \oplus g^{\prime \prime}\right)$ $=\left(k+k^{\prime}\right)+\left(r+r^{\prime}\right)=2 n$. Then the new Lie algebra $g \oplus g^{\prime \prime}$ is complete integration of Hamiltonian system sgrad F in the noncommutative sense.

For the positive integer number r, if Q_{ξ} is the certain non empty symplectic manifold in Proposition 3.4 and $2 n-k-r \geqq 2$, then $k<2(n-1)$.

References

[1] A.T.Fomenko, "Differential Geometry and Topology," Plenum Publishing Corporation, New York, translated by D.A.Leites (1987).
[2] A.S.Mishchenko and A.T.Fomenko, "A generalized Liouville method of integration of Hamiltonian systems," Funkt. Anal. Ego Prilozhen.,12, No.2, 46-56 (1978).
[3] J.Marsden and A.Weinstein, "Reduction of symplectic manifolds with symmetry," Reports Math Phys.,5, No.1, 121-130 (1974).

+ Department of Mathematics
College of Education
University of the Ryukyus
Nishihara-cho, Okinawa 903-0213
JAPAN
\ddagger Morikawa School for Handicap
Nishihara-cho ,Okinawa 903-0128
JAPAN

