On equivalent class of descending chains of subrings

メタデータ	言語：
	出版者：Department of Mathematical Science，Faculty
	of Science，University of the Ryukyus
	公開日：2011－02－15
	キーワード（Ja）：
	キーワード（En）：
	作成者：Yamashiro，Yasukazu，山城，康一
メールアドレス：	
	所属：
URL	http：／／hdl．handle．net／20．500．12000／18767

ON EQUIVALENT CLASS OF DESCENDING CHAINS OF SUBRINGS

Y. YAMASHIRO

Abstract

In this note we consider the generalization of vertex of finite groups to noncommutative rings. Let K be a field with characteristic p, and G a finite group. For an indecomposable $K G$-module V, a p-subgroup P of G is vertex of V if P satisfies the following conditions: (a.) V is P-projective (b) For any subgroup H of G, if V is H-projective then there exist $t \in G$ such that $P^{t} \in H$. [1]

1. Definitions

Let Λ be a ring, Ω a class of subrings of Λ with Λ and $\mathcal{C}(\Omega)$ a class of all descending chains $B_{1} \supseteq B_{2} \supseteq \cdots$ of elements of Ω. For any element B of Ω, We will identify B with $B \supseteq B \supseteq \cdots$, as the element of $\mathcal{C}(\Omega)$. So we can observe that Ω is contained in $\mathcal{C}(\Omega)$.

Let $\mathfrak{B}: B_{1} \supseteq B_{2} \supseteq \cdots, \mathfrak{B}^{\prime}: B_{1}^{\prime} \supseteq B_{2}^{\prime} \supseteq \cdots$ be elements of $\mathcal{C}(\Omega)$, we write $\mathfrak{B} \preceq \mathfrak{B}^{\prime}$ if , for any B_{i}^{\prime}, there exist B_{j} such that $B_{j} \subseteq B_{i}^{\prime}$. If $\mathfrak{B} \preceq \mathfrak{B}^{\prime}$ then there exists the map ρ of the set of all nutural numbers \mathbb{N} to \mathbb{N}, such that if $i<j$ then $\rho(i)<\rho(j)$ and $B_{\rho(i)} \subseteq B_{i}^{\prime}$. We remark that $i \leq \rho(i)$. If $\mathfrak{B} \preceq \mathfrak{B}^{\prime}$ and $\mathfrak{B}^{\prime} \preceq \mathfrak{B}$, we will write $\mathfrak{B} \sim \mathfrak{B}^{\prime}$. We can easily check that the relation " \sim " is an equivalence relation. For verifying its transitivity, suppose that $\mathfrak{B} \sim \mathfrak{B}^{\prime}, \mathfrak{B}^{\prime} \sim \mathfrak{B}^{\prime \prime}$, where $\mathfrak{B}: B_{1} \supseteq B_{2} \supseteq \cdots, \mathfrak{B}^{\prime}: B_{1}^{\prime} \supseteq B_{2}^{\prime} \supseteq \cdots$ and $\mathfrak{B}^{\prime \prime}: B_{1}^{\prime \prime} \supseteq B_{2}^{\prime \prime} \supseteq \cdots$. Then there exist two maps ρ, ρ^{\prime} of \mathbb{N} to \mathbb{N} for $\mathfrak{B} \sim \mathfrak{B}^{\prime}, \mathfrak{B}^{\prime} \sim \mathfrak{B}^{\prime \prime}$, respevtively. For any i,
$B_{\rho\left(\rho^{\prime}(i)\right)} \subseteq B_{\rho^{\prime}(i)}^{\prime} \subseteq B_{i}^{\prime \prime}$. So we obtain that $\mathfrak{B} \preceq \mathfrak{B}^{\prime \prime}$. Similarly, we obtain that $\mathfrak{B}^{\prime \prime} \preceq \mathfrak{B}$ and $\mathfrak{B} \sim \mathfrak{B}^{\prime \prime}$.

Now, we will denote the set of eqivalent classes of the reration " \sim " by $\tilde{\mathcal{C}}(\Omega)$, and the equivalent class contain \mathfrak{B} by $[\mathfrak{B}]$. Since distinct elements of Ω are contianed dinstinct eqivalent classes in $\tilde{\mathcal{C}}(\Omega)$, we can observe that Ω is contained in $\tilde{\mathcal{C}}(\Omega)$. If $\mathfrak{B}_{1} \sim \mathfrak{B}_{1}^{\prime}, \mathfrak{B}_{2} \sim \mathfrak{B}_{2}^{\prime}$ and $\mathfrak{B}_{1} \preceq \mathfrak{B}_{2}$, then $\mathfrak{B}_{1}^{\prime} \preceq \mathfrak{B}_{2}^{\prime}$. So we can difine the relation $" \leq "$ in $\tilde{\mathcal{C}}(\Omega)$ by usual way.

Lemma 1. For any $[\mathfrak{B}]$ in $\tilde{\mathcal{C}}(\Omega), \tilde{\mathcal{C}}(\Omega)$ has a minimal element $\left[\mathfrak{R}_{0}\right]$ such that $\left[\mathfrak{B}_{0}\right] \leq[\mathfrak{R}]$.

Proof. We consider a descending chain of elements of $\tilde{\mathcal{C}}(\Omega)$

$$
[\mathfrak{B}] \geq\left[\mathfrak{B}_{1}\right] \geq\left[\mathfrak{B}_{2}\right] \geq \cdots,
$$

where $\mathfrak{B}_{i}: B_{i, 1} \supseteq B_{i, 2} \supseteq \cdots$. Let ρ_{i} be the map of \mathbb{N} to \mathbb{N} for $\mathfrak{B}_{\mathfrak{i}} \succeq \mathfrak{B}_{\mathfrak{i}+\boldsymbol{1}}$. Set $\sigma_{i}=\rho_{i} \rho_{i-1} \cdots \rho_{1}$, and

$$
\mathfrak{B}^{\prime}: B_{1,1} \supseteq B_{2, \sigma_{1}(2)} \supseteq \cdots \supseteq B_{i, \sigma_{i-1}(i)} \supseteq \cdots
$$

For any i and j, since $j \leq \sigma_{i-1}(j), B_{i, j} \supseteq B_{i, \sigma_{i-1}(j)} \supseteq B_{k, \sigma_{k-1}(k)}$, where $k=$ $\max \{i, j\}$. So $\mathfrak{B}_{i} \succeq \mathfrak{B}^{\prime}$ and $\left[\mathfrak{B}^{\prime}\right]$ is a lower bound of $[\mathfrak{B}] \geq\left[\mathfrak{B}_{1}\right] \geq\left[\mathfrak{B}_{2}\right] \geq \cdots$. By Zorn's Lemma, $\tilde{\mathcal{C}}(\Omega)$ has minimal elements $\left[\mathfrak{B}_{0}\right]$ such that $\left[\mathfrak{R}_{0}\right] \leq[\mathfrak{B}]$.

2. Relative Projective

Let M be a left Λ-module and B a subring of $\Lambda . M$ is (Λ, B)-projective if the multiplication map of $\Lambda \otimes_{B} M$ to M splits as a left Λ-homomorphism. For any $\mathfrak{B}: B_{1} \supseteq B_{2} \supseteq \cdots$ in $\mathcal{C}(\Omega)$, we will difine that M is (Λ, \mathfrak{B})-projective if M is (Λ, B_{i})-projective, for all i. If B^{\prime} is a intermediate ring between B and Λ, then the multiplication map of $\Lambda \otimes_{B} M$ to M can be factored through $\Lambda \otimes_{B^{\prime}} M$. So, if the multiplication map of $\Lambda \otimes_{B} M$ to M splits then the multiplication map of $\Lambda \otimes_{B^{\prime}} M$ to M splits. Therefore we obtain the following lemma:

Lemma 2. Let $\mathfrak{B}, \mathfrak{B}^{\prime}$ be elements of $\mathcal{C}(\Omega)$ such that $\mathfrak{B} \sim \mathfrak{B}^{\prime}$, then M is (Λ, \mathfrak{B})-projective if and only if M is $\left(\Lambda, \mathfrak{B}^{\prime}\right)$-projective

By above lemma, for any elment $[\mathfrak{R}]$ in $\tilde{\mathcal{C}}(\Omega)$, we can define $(\Lambda,[\mathfrak{B}])$-projectivity. We will denote the set of all elements $[\mathfrak{B}]$ in $\tilde{\mathcal{C}}(\Omega)$ such that M is $(\Lambda,[\mathfrak{B}])$-projective, by $\tilde{\mathcal{C}}(\Omega)_{M}$.

Proposition 1. If $[\mathfrak{R}]$ is an element in $\tilde{\mathcal{C}}(\Omega)_{M}$ then $\tilde{\mathcal{C}}(\Omega)_{M}$ has a minimal element $\left[\mathfrak{B}_{0}\right]$, such that $\left[\mathfrak{B}_{0}\right] \leq[\mathfrak{B}]$.

Proof. Let Ω_{M} be the set of all elements B of Ω such that M is (Λ, B)-Projective. Then $\tilde{\mathcal{C}}(\Omega)_{M}=\tilde{\mathcal{C}}\left(\Omega_{M}\right)$ and $[\mathfrak{B}] \in \tilde{\mathcal{C}}\left(\Omega_{M}\right)$. By Lemma 1, we can obtain the proposion.

We denote the set of all minimal elements of $\tilde{\mathcal{C}}(\Omega)_{M}$ by $m r p_{\Omega}(M)$. If $[\mathfrak{B}]$ is a element of $\operatorname{mrp}_{\Omega}(M)$ such that $\mathfrak{B} \nsim \cap \mathfrak{B}$, then M is not ($\Lambda, \cap \mathfrak{B}$)-projective, by minimality of $[\mathfrak{B}]$.

For an element λ of Λ and an unit μ of Λ, we will denote $\mu^{-1} \lambda \mu$ by λ^{μ}. For a subring B of Λ, we will denote the subring of all elements b^{μ} where b is element of B, by B^{μ}. And for an element $\mathfrak{B}: B_{1} \supseteq B_{2} \supseteq \cdots$ in $\mathcal{C}(\Omega)$, we will denote $B_{1}^{\mu} \supseteq B_{2}^{\mu} \supseteq \cdots$ by \mathfrak{B}^{μ}. Let G be a group of units of Λ. We will say that G acts on Ω if B^{μ} is in Ω, for any B in Ω and any μ in G, and similarly we will define that the action of G on $m r p_{\Omega}(M)$.

Proposition 2. Let G be a group of units of Λ. If G acts on Ω then G acts on $m r p_{\Omega}(M)$.

Proof. Let B be in Ω, φ the map of $\Lambda \otimes_{B} M$ to $\Lambda \otimes_{B^{\mu}} M$ defined by $\lambda \otimes m \mapsto$ $\lambda \mu \otimes \mu^{-1} m$, and ψ the map of $\Lambda \otimes_{B^{\mu}} M$ to $\Lambda \otimes_{B} M$ defined by $\lambda \otimes m$. $\mapsto \lambda \mu^{-1} \otimes \mu m$, where $\lambda \in \Lambda, m \in M$, and $\mu \in G$. For any $b \in B$,

$$
\lambda b \mu \otimes \mu^{-1} m=\lambda \mu\left(\mu^{-1} b \mu\right) \otimes \mu^{-1} m=\lambda \mu \otimes\left(\mu^{-1} b \mu\right) \mu^{-1} m=\lambda \mu \otimes \mu^{-1} b m
$$

in $\Lambda \otimes_{B^{\mu}} M$, and

$$
\lambda\left(\mu^{-1} b \mu\right) \mu^{-1} \otimes \mu m=\lambda \mu^{-1} b \otimes \mu m=\lambda \mu^{-1} \otimes b \mu m=\lambda \mu^{-1} \otimes \mu\left(\mu^{-1} b \mu\right) m
$$

in $\Lambda \otimes_{B} M$. So φ and ψ are well-defined left Λ-homomorphism. Since $\varphi \psi$ and $\psi \varphi$ are the identity maps, $\Lambda \otimes_{B} M$ is isomorphic to $\Lambda \otimes_{B^{\mu}} M$ as left Λ-modules. Therefore M is (Λ, B)-projective if and only if M is $\left(\Lambda, B^{\mu}\right)$-projective.

Let $[\mathfrak{R}]$ be in $\operatorname{mrp}_{\Omega}(M)$ ．By the above sequence，M is $\left(\Lambda, \mathfrak{B}^{\mu}\right)$－projective． By Proposition 1，there exist $\left[\mathfrak{B}_{0}\right]$ in $m r p_{\Omega}(M)$ such that $\left[\mathfrak{B}_{0}\right] \leq\left[\mathfrak{B}^{\mu}\right]$ ．Let ρ be the map of \mathbb{N} to \mathbb{N} for $\left[\mathfrak{B}_{0}\right] \leq\left[\mathfrak{B}^{\mu}\right]$ ．Since $B_{0, \rho(i)} \subseteq B_{i}^{\mu}, B_{0, \rho(i)}^{\mu-1} \subseteq B_{i}$ ． So $\left[\mathfrak{B}_{0}^{\mu^{-1}}\right] \leq[\mathfrak{B}]$ ．Since M is $\left(\Lambda, \mathfrak{B}_{0}\right)$－projective，$M$ is $\left(\Lambda, \mathfrak{R}_{0}^{\mu^{-1}}\right)$－projective， and $\left[\mathfrak{R}_{0}^{\mu^{-1}}\right] \in \tilde{\mathcal{C}}(\Omega)_{M}$ ．For minimality of $[\mathfrak{B}]$ ，we obtain that $[\mathfrak{B}]=\left[\mathfrak{B}_{0}^{\mu^{-1}}\right]$ and $\left[\mathfrak{B}^{\mu}\right]=\left[\mathfrak{B}_{0}\right] \in \operatorname{mrp}_{\Omega}(M)$ ．

Let K be a field with characteristic p, G a finite group，and V an indecomposable $K G-$ module．Set $\Omega=\{K H \mid H$ is subgroup of $G\}$ ．Since Ω is finite set，

$$
\mathcal{C}(\Omega)=\tilde{\mathcal{C}}(\Omega)=\Omega
$$

and

$$
m r p_{\Omega}(M)=\left\{K H \mid H=\operatorname{vx}(V)^{t}, t \in G\right\}
$$

where $\mathrm{vx}(V)$ is a vertex of V ．

References

［1］長尾汎，津島行男，『有限群の表現』，裳華房，1987年8月．

Faculty of Education
University of the Ryukyus
Nishihara－cho，Okinawa 903－0213
JAPAN

