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STATISTICAL AND PROBABILISTIC MODELS
FOR STOCK PRICES: A REVIEW

CHUNHANG CHEN

1 Introduction

In 1973 Black, Scholes and Merton made an exciting breakthrough in the pricing
of financial options based on a model which has been now called the Black-Scholes
model. Among other assumptions, this model assumes that the stock prices {5t , t 2
O} follow a geometric Brownian motion which is given by the following stochastic
differential equation (SDE):

where {Bt , t 2 O} is a standard Brownian motion, J.L E IR is the drift parameter and
(J > 0 the diffusion parameter (volatility). Undoubtedly, the Black-Scholes model
has contributed enormously to the real financial world and has had huge influence
on the way that traders price and hedge options.

However, recent empirical studies show that the theoretical prices of options do
not fit the market prices very well, which indicates that the Black-Scholes model
has some imperfections. The imperfections are due to several aspects, but the main
reason is that the geometric Brownian motion assumed for the stock prices seems
to be not appropriate: It can not fit the statistical properties of many real financial
time series well. In fact it has been found that the log returns do not follow a normal
distribution, and volatilities change stochastically over time.

In order to improve away imperfections of the Black-Sholes model, many alter
native models have been proposed for stock prices since 1980s. The ARCH model
proposed by Engle (1982) has lead to the developments of a wide category of con
ditional heteroscedastic models and some non-linear time series models. Recently,
some Levy processes with non-Gaussian semi-heavy-tailed distributions have been
proposed for modeling stock prices. Clearly, whether or not we can make rational
pricing for options depends on whether or not we can find a reasonable model for our
stock prices. In this note we provide a review of recent developments in modeling of
stock prices. We try to compare properties of these models and point out merits and
demerits of the models. By doing so we expect more flexible and realistic models
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to be developed for stock prices in future studies. Our main reference materials are
Schoutens (2003), Tsay (2002), Shiryaev (1999) and references therein.

In Section 2 we summarize some significant statistical characteristics of stock
prices via an empirical study of the daily log returns of IBM stock. In Section 3 we
introduce some distributions that are suitable for stock prices. In Sections 5 and 6 we
introduce time series models and continuous-time stochastic processes, respectively,
which are relevant to, or suitable for stock prices. In Section 6 we briefly mention
recent developments in pricing of options under a Levy market. Finally, we give
some concluding remarks in Section 7.

2 Statistical properties of stock prices

Let {St, t = 0,1,2, ... } be the time series of stock prices. We can write St as

St = Soe X
, , t = 1,2, ...

where So > 0 and X t = 10g(St/So) is the t-period log return (log price) of the stock.
Now we can write X t as

X t = rl + ... + rt, t = 1,2, ...

where rt = X t - X t - 1 = 10g(St/St-l) is the one-period log return of the stock at
.period t. To describe the behavior of the stock price {Sd, it is enough to do so for
its one-period log return series {rd. As an example, we consider the time series of
daily log returns of IBM stock from July 3, 1962 to December 31, 1997 (obtained
from R.S.Tsay), which is plotted in Figure 1. By a discussion of this series, we
present some significant statistical properties of stock prices.

• Distributional characteristics
For the series {rd of daily log returns of IBM stock, we show the sample mean,

median, standard deviation, skewness and kurtosis in Table 1. We see that the
distribution has large kurtosis and negative skewness. In Figure 2 we show the
histogram, box-plot, estimated density function and QQ-plot. These show that the
distribution of the daily log returns of IBM stock is asymmetric with heavy tails,
and is non-Gaussian.

Table 1: Descriptive statistics for daily log returns of IBM stock.

mean median stan.devi. skewness kurtosis

0.0393 0.0000 1.4808 -0.3329 18.2075
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Figure 1: Time plots of daily log-returns of IBM stock from July 3, 1962 to December

31, 1997 (8938 business days) .

• Serial correlations
Figure 3 shows the sample autocorrelation functions (ACF) of the daily log re

turns {r't}, squared log returns {1' 2
} and absolute log returns {I1'tl}. We can observe

that there are weakly serial correlations at lags 2, 5 and 20 for the daily log returns.
We further observe that there are relatively large serial correlations in {1' 2 } and
{hi}' and in particular, the slowly decaying pattern in ACF of {hi} shows some
long-memory properties, Since the sample mean of the daily log returns of IBM
stock is 0.0393, we can write

rt = 0.0393 + at,

where Eat = O. The above empical results show that, even if we might ignore serial
correlations in {1'd, we should not consider {ad as an independent white noise.

• Volatility clusters
Looking at Figure 1, we observe that the log returns possess a tendency that there

are periods with low variation and periods with high variation. This phenomenon is
called volatility-clustering effect. Also, we can see that variations seem to become
large in recent years. These indicate that volatility changes stochastically over time.
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Figure 2: Distributional characteristics of IBM stock: histogram, box-plot, estimated

density and QQ-plot.

3 Distributions for stock prices

So far, many empirical studies suggest that the normal distribution is not suitable
for log returns of stock prices, and that distributions with heavy or semi-heavy tails
should be used. In this section we introduce some distributions that are useful for
log returns of stock prices.

Let f(x) be a probability density function. We say that f(x) has heavy right
hand tail if

f(x) ~ lxi-aL(x) (x -+ +00),

where a > 0 and L(x) is a slowly varying function at +00, i.e. L(>..x)jL(x) -+ 1 as
x -+ +00 for each>.. > O. And f(x) has semi-heavy right-hand tail if

f(x) ~ const.lxIPe-1Jlxl (x -+ +00),

for some p E IR and rJ > O. Heavy and semi-heavy left-hand tail is defined similarly.
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Figure 3: Sample autocorrelation functions of daily log returns of IBM stock, the

absolute log returns and squared log returns (from left to right) .

• a-stable distributions

As a non-Gaussian distribution, the a-stable distributions can be thought to be
natural generalizatiOI,s of a normal distribution, since the later is a symmetric a
stable distribution with a = 2. The distribution of a random variable X is said to
be an a-stable distribution if there are parameters °< a ~ 2, u > 0, -1 ~ (3 ~ 1
and -00 < fl. < 00 such that its characteristic function is the following form

E x C8X) = { exp{ -u"'181"'(1 - i(3(sign 8) tan "n + ifl.8}
e p t exp{ -uI81(1 + i(3~(sign 8) In 181) + ifl.8}

if a oj:. 1,
if 0'= 1,

where 8 E JR and sign = 1,0, -1 according to 8 > 0, 8 = °and 8 < 0. The
parameter a is called the index of stability of the stable distribution, u the scale
parameter, (3 the skewness parameter and fl. the shift parameter. We write this
distribution as 5",(u, (3, fl.). When (3 = °and fl. = 0, the distribution 5,,(u,0,0)

is called symmetric a-stable (So'S). An So'S rv X has a characteristic function of
the simple form Eexp(i8X) = e-uOIBIQ. When a = 2, 52 (u,0, fl.) is the normal

distribution N(fl.,2u 2 ); when a = 1, 51 (u, 0, fl.) is a Cauchy distribution; when
0'= 1/2, 5 1 / 2 (U,1,0) is the Levy-Smirnov distribution. Except for these special
cases, the probability densities of stable distributions are not known in explicit
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form. This makes it difficult to estimate parameters by using maximum likelihood
estimation (MLE) method for a time series model in which the marginal distribution
is a-stable.

If X ~ Sa(a, /3, J-l), 0 < a < 2, then X has the tail probabilities

{

lim'\-too AaP{X > A} = Ca~aa,

lim'\-too Aap{X < -A} = Ca
1;,(3aa,

where

1-",
r(2-a) cos(7Ta/2)

2/"rr

if a ::j: 1,

if a = 1.

x E JR,

Thus stable distributions have heavy tails. Note that EIXI'· = 100

P{IXIT > A}dA.

From the tail behavior of stable distributions, we see that if X ~ Sa(a, /3, J-l), 0 <
a < 2, then EIXla = +00 and EIXIT < +00 for 0 :S r < a. The fact that a
stable distributions with a < 2 have infinite second moment means that many of
the techniques that are valid for the Gaussian or finite-second-moment case do not
apply in the a-stable case. When a :S 1, one also has EIXI = +00, precluding the
use of expectations. These are the main source of difficulties for dealing with the
a-stable distributions.

Stable distributions have been popularly used in finance literature in 1960s and
1970s (see Fama (1965); Mandelbrot and Taylor (1967)). However, presently most
common opinions seem to be that using these heavy-tailed distributions with infinite
variance for log returns of stock price is in conflict with econometrics and finance
theories .

• Student's t-distributions
This well-known distribution has a density given by

1 r(~) ( x 2
) -!!.f1-

f(x;n) = yI1rn r(~) 1+~ ,

where r(.) is the Gamma function and n E N is the number of degrees of free
dom of the distribution. A t-distribution is symmetric and heavy-tailed. Both
t-distributions and a-stable distributions have Pareto-type tails, namely

P{X > x} ~ const.x-,(3 (x -+ +00)

for some /3 > O. Since a t-distribution involves only one parameter, it may be not
flexible enough for modeling stock prices .

• Mixture of normal distributions
There are two kinds of mixture of normal distributions: finite-mixture and scale

mixture. For example, the following
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is a mixture of two normal distrbutions N(J-l, aD and N(J-l, aD, where 0 < a < 1.

While a scale-mixture of normal distributions is

where {(rda) is the conditional law of rt given a, and a is itself a positive random
variable following some distribution, e.g. a Gamma law.

Mixtures of normal distributions can capture the excess kurtosis. Yet it may be
hard to to estimate the mixture parameter a in the finite-mixture case, and it is not
easy to find a suitable distribution for a in the scale-mixture case.

• Infinitely divisible distributions
a-stable distributions and t-distributions metioned in the above are both typical

infinitely divisible laws with heavy tails. Recent statistical studies suggest that
the distributions of log returns of stock prices tend to have semi-heavy tails. So
far, several semi-heavy-tailed infinitely divisible laws have been proposed in the
literature. These include:

The Variance Gamma (VG) distributions;
The Normal Inverse Gaussian (NIG) distributions;
The CGMY distributions;
The Hyperbolic (HYP) distributions;
The Generalized Hyperbolic (GH) distributions.

These distributions will be introduced in Section 5, where we consider Levy processes
whose marginal laws are precisely these semi-heavy-tailed infinitely divisible laws.

4 Time series models for stock prices

Here we introduce some time series models that are useful for financial time series
analysis. These include linear and nonlinear time series models. In the following we
use {rt} to denote the one-period log returns of our stock price {Bt}, that is,

4.1 Linear time series models

A time series {rt} is said to be linear if it can be written as

00

't = J-l + L'l/Jiat-i,
i=O

where J-l, 1/;i E ~, 1/;0 = 1 are constants, and {at} is a sequence of independent and
identically distributed (iid) random variables with mean 0 and finite variance 0

2
.

Such a series {ad is called white noise, which is denoted by {ad'" iid(O, ( 2 ).
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The main aim of linear time series analysis is to fit a suitable model by analyzing
the serial correlation structure, and then use the model to forecast the future values.

• ARMA models
A time series {rtl is said to follow an autoregressive moving-average (ARMA(p,q))

model if it satisfies

where cjJi and Bj are constants, and p, q E {O, I, ... } are called the orders of the
ARMA models. When q =0, the ARMA(p, 0) model is called an AR(p) model, and
when p = 0, the ARMA(O, q) model is called an MA(q) model.

Let B be the backward shift opeator: Brt = rt-I. Then an ARMA(p, q) model
can be expressed as

cjJ(B) = cjJo + B(B)at, (4.1)

where cjJ(B) = 1-cjJI B-·· ·-cjJpBP and B(B) = l+BI B+·· ·+BqBq, which are called
the AR polynomial and MA polynomial, respectively. If all of the zeroes of cjJ(z) = 0
lie outside the unit circle, then {rtl is stationary, and if further all of the zeroes of
B(z) = °lie outside the unit circle, then the above model is called a stationary and
causal ARMA model. It is assumed that the AR and MA polynomials do not have
common zeroes.

For a stationary time series {rtl, we define the autocorrelation function (ACF)
at lag k as

Cov(rt, rt-k)
Pk = () k = 1,2, ...Va, rt

A time series following an ARMA model has short-memory in the sense that its
ACF {pd decreases to °at an exponential rate. In finance literature, one often uses
ARMA models to handle serial correlations. However, since the volatility of a time
series following a stationary ARMA model is a constant, that is,

ARMA models are useless for describing stochastic volatility of financial time series.

• ARIMA models
A time series {rtl is said to follow an autoregressive integrated moving-average

(ARIMA(p, d, q)) model if

(4.2)

where d is a non-negative integer, cjJ(B) is an AR polynomial of order p and B(B) MA
polynomial of order q, respectively, as given in the ARMA model (4.1). d is called
the order of difference of the ARIMA model. If d > 0, then {rtl is non-stationary,
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but the differenced series (1- B)dTt is stationary and follows an ARMA(p, q) model.
If p = q = 0 and d = 1, then the avobe model is a random walk with drift:

Tt = 1/Jo + Tt-l + at, t = 1,2, ...

Although ARIMA models have extensive uses in macroeconomics and also in finance
literature, it seems that log returns of many stocks/indexes are stationary.

• ARFIM A models
In the ARIMA(p, d, q) model, if we assume that the value of the order d satisfies

dE (-0.5, 0.5), then we obtain the so called autoregressive fractionally integrated
moving-average (ARFIMA (p, d, q)) model. In this case the meaning of the operator
(1 - B)d, dE (-0.5, 0.5), must be considered in the sense of binomial expansion.

In comparison with an ARIMA model, an ARFIMA model is stationary. It can
be shown that the ACF of an ARFIMA(p, d, q) model satisfies

00

Pk ~ const.k2d
-

1 (k -+ (0); L IPkl = +00 if dE (0, 0.5).
k=l

This is called the long-memory property, and an ARFIMA(p, d, q) model with
d E (0, 0.5) has long memory. In comparison with a stationary short-memory
model, e.g. an ARMA model, the rate of decaying of the ACF of an ARFIMA
model is rather slow.

If we look at the ACF of the absolute daily log returns of IBM stock shown
in Figure 3, we find that the ACF is not large in magnitude, but it decays very
slowly. This indicates that the volatility of the daily log returns of IBM stock may
have long-memory. For more informations about the behaviors of ACF of absolute
returns, see Ding, Granger and Engle (1993) .

• Fractional Gaussian noise
Let {BH(t), t 2 O} be a fractional Brownian motion with Hurst self-similarity

exponent H E (0,1) (See Section 5.4), and define the time series {bH(t), tEN} by

Then it can be shown that the ACF of {bH(t)} satisfies

PH(k) = ~ {(k + 1)2H - 2eH + (k - 1)2H}, k = 1,2, ...
2

and

PH(k) ~ H(2H - l)k2H- 2 (k -+ (0).

{bH(t)} is called fractional Gaussian noise. Thus, if H = 1/2, then PH(k) = 0 for
k f= 0 and in this case {bl(t)} is a Gaussian white noise. For H E (0, 1/2), we have

2

00

PH(k) < 0, k = 1,2,... and L IPH(k)1 < 00,

k=O
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and for H E (1/2, 1),

00

PH(k) > 0, k = 1,2,.. . and L PH(k) = +00.
k=O

Thus, for H E (0, 1/2), {bH(t)} has negative serial correlations, and for H E

(1/2, 1), {bH(t)} has positive serial correlations and long memory.
As was pointed out in the above, volatilities of log returns of many stocks seem to

have long memory with positive serial correlations. So, a fractional Gaussian noise
bH(t), with H E (1/2, 1), might be a useful model for volatility {log ad. Here we
note that, in some studies it is observed that {log -!!..L} appears to have negative

O't -1

serial correlations (Shiryaev (1999), P.234). The reason may be that, in fact {logad
is a fractional Gaussian noise with H E (1/2, 1), and over-differencing {log ad to
{log at - log at-I} makes {log -!!..L} a fractional Gaussian noise with H E (0, 1/2).

O't-l

4.2 Conditional heteroscedastic time series models

Let {rt = 10g(StiSt-d} be the log returns of a stock with prices {Sd. We write

where

where a(rj, ... ,rt-l) denotes the a-field generated by rj, ... ,rt-l. So Ilt is the
conditional mean of rt given rl, ... ,rt-l. Obviously, Ilt is the one-step ahead fore
cast of r t., and at is the forecast error. It is easy to see that {ad is a martingale
difference. Note that the volatility of {rd is given by

In 1982, Engle proposed the ARCH model. Since then, many conditional het
eroscedastic models have been introduced. Basically, these models assume that {rd

can be written formally as a linear time series model, for example, a stationary
ARMA(p, q) model:

However, here {ad is assumed to be uncorrelated, but not independent. So {rd is
in general not a linear time series. Conditional heteroscedastic time series models
are concerned with behavior of {at} by specifying the dynamic structure of volatility
{an. The manner under which az evoles over time distinguishes one model from
another. These models are reviewed in this section.
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• ARCH models
The autoregressive conditional hereroscedastic (ARCH) model assumes that, the

mean-corrected log return at = Tt - Ilt is serially uncorrelated, but dependent.
The dependence of {ad is described by a dynamic structure of its volatility {a 2 }.

Precisely, an ARCH(m) model assumes that

at atEt, {Ed rv iid(O, 1),

a; ao + a1aZ-1 + ... + amaz- m,

where ao > °and ai > 0. In addition, the coefficients need to satisfy some other
regularity conditions if {at} is required to be second-order or fourth-order stationary.
The distribution of {Ed is often assumed to be a standard normal distribution
N(O, 1) or a standardized Student's t-distribution with degree n (often n = 3 rv 6 is
prespecified) .

If we assume that {rd follows in the form an ARMA(p, q) model with {ad
following an ARCH(m) model, we say that {rd follows an ARMA(p, q)-ARCH(m)

model.
Let TIt = az - a;' Since a; = E(a;IFt-d, {TId is a martingale difference. The

ARCH model can written as

which is formally an AR(m) model for {an. However, {TId is not an iid white noise.
Here we mention some properties of ARCH models. It is easy to see that {ad is

serially uncorrelated. However, since {an follows a form of an AR(m) model, it is
serially correlated. As we have observed in the daily log returns of IBM stock, this
phenomenon has been often observed in finance indexes.

From the volatility equation in the ARCH model, we can see that the volatility
a; becomes large when the past shocks {aZ-;}~1 are large, and so the present shock
at tends to take a large value in modulus. The similar is for the case of small
values. So ARCH models are suitable for describing volatility-clusters phenomenon.
However, ARCH models have some weaknesses. The most serious one is that they
allow positive and negative shocks to have the same impects on volatility, which is
in conflict with finance theories .

• GAHCH models
Generalized ARCH (GARCH) models were proposed by Bollerslev (1986) in the

same spirit of ARMA models. As before, let at = rt - Ilt be the mean-corrected log
return. Then {ad follows a GARCH(p,q) model if

at atEt, {Ed rv iid(O, 1),
p q

a; ao + L aiaZ- i + L (3jaL j ,
i=1 j=1

where ao, ai and (3j are nonnegative, and L~:a;(p,q)(ai+ (3i) < 1.
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A GARCH(p, q) model can be put in the form of ARMA model. Let "It = az - az .
Then {"It} is a martingale difference, and we have

max(p,q) q

a; = ao + L (ai + /3i)aLi + "It - L /3j"lt-j.
i=l j=1

(4.3)

So {a;} follows formally an ARMA model. As a generalization of ARCH model,
GARCH models possess similar properties as those of ARCH models.

When the AR polynomial of the GARCH model (4.3) has a unit root, we obtain
the so-called integrated GARCH (IGARCH) model, which is similar to an ARIMA
model. For example, an IGARCH(l, 1) model is

A key feature of IGACH models is that the impact of shock "It-i' i > 0, on az is
persistent.

In some cases, the returns of a stock may depend on its volatility. For example,

where {ad follows a GARCH model and c is the risk premium parameter. Such
models are called GARCH-M models.

ARCH and GARCH models have very extensive applications in modeling of log
returns of stocks, and also other financial indexes.

• EGARCH models
This model aims at overcoming some weaknesses of GARCH models by allowing

positive and negative shocks to have asymmetric effects on volatility. Nelson (1991)
proposed the following exponential GARCH (EGARCH) model:

log a;
p q

ao + L ai [BCt-i + ,(ICt-i I - Elct-i I)] + L /3j log az_ j'
i=1 j=1

where the coefficients satisfy some conditions. Note that if {cd'" iidN(O, 1), then

Elctl = If
• CHARMA models

Tsay (1987) proposed the following coditional heteroscedastic ARMA (CHARMA)
model:

where {"Id '" iidN(O,a~), {bd = {(bit, ... ,bmt )'} is a sequence of iid random
vectors with mean 0 and nonnegative definite covariance matrix !I, and {btl is
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independent of {1Jd. It can be shown that, under such a model, the volatility

(J~ = E(azIFt-d satisfies

One of the main features of CHARMA models is that it allows the presence of
cross-products of the lagged shocks of at in the volatility equation. Tsay (1987)
argued that the cross-product terms might be useful in some applications.

• RCA models
Nicholls and Quinn (1982) introduced the random coefficient autoregressive (RCA)

model to account for variability among different subjects and to obtain a better
description of the conditional mean equation of the time series by allowing the pa
rameters to evolve with time. This model is as follows:

p

rt = <Po + :~:)<Pi + <Sit)rt-i + at>
i=l

where <PiS are constants, {bd = {(<Slt, ... ,bpt )'} is a sequence of iid random vectors
with mean 0 and nonnegative definite covariance matrix f!J, {ad'" iid(O, (J~), and
{<Sd is independent of {ad. Under this model, the conditional mean and variance
(volatility) of {rd are given by

p

Pt E(rtlFt- 1 ) = <Po + L <Pirt-i,
i=l

(JZ (J~ + (rt-l,.·' ,rt-p)f!J(rt-l,'" ,rt-p)'.

Note that (J~ is a quadratic form of rt-l, ... ,rt-p'

• SV models
A stochastic volatility (SV) model is of the following form:

rt = Pt + at, at = (JtCt, {cd'" iidN(O, 1),
(1 - O:IB _ ... - O:mBm) log(J~ = 0:0 + Vt, {vd '" iidN(O,(J~),

where {cd is independent of {vd, and the AR polynomial is assumed to be station
ary. Properties of SV models can be found in Taylor (1994), Shiryaev (1999) and
the references therein.

• Long-memory SV models
These models can be written in the following form:

7', = Pt + at, at = (JtCt, {cd'" iidN(O, 1),
(JZ = (J2 eu t

, <p(B)(l- B)dUt = B(B)1Jt, {1Jd '" iidN(O, (J;),

where the AR and MA polynomials are assumed to satisfy usual conditions of an
ARFIMA model, d E (0,0.5), (J > 0, and {cd is independent of {1Jd.

Applications of long-memory SV models in finance literature can be found in
Bollerslev and Jubinski (1999) and Ray and Tsay (2000).
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4.3 Nonlinear time serIes models with nonlinear conditional

mean

The conditional heteroscedastic time series models introduced in the above section
are essentially nonlinear in the conditional variance CJZ, but linear in the conditional
mean Ilt. There are also some nonlinear time series models that let the conditional
mean Ilt evole over time according to some simple parametric nonlinear structures.
Combined with other time series models, these models may be useful for modeling
stock prices. These models are reviewed in the following.

• Bilinear models
These models were introduced by Granger and Anderson (1978), which can be

written as follows:

p q m

rt = C+ L¢irt-i + LOjat-j + LLf3ijrt-iat-j + at,
i=1 j=1 i=1 j=1

where {ad ~ iid(O, CJ~), p, q, m, s are nonnegative integers. Statistical properties
and applications of these models can be found in Subba Rao and Gabr (1984) .

• SETAR-GARCH models
A time series {Xt} is said to follow a k-regime self-exciting threshold AR (SETAR)

model with threshold variable Xt-d if the jth regime satisfies

x = A.(j) + A.(j)x + ... + A.(j)x + a(j)t '1"0 '1"1 t-l 'l"p t-p t, if Ij-l :s Xt-d < Ij,

for j = 1,2, ... ,k, where k and d are positive integers, the coefficients ¢;j)s are real
constants, the thresholds IjS are real constants such that -00 = 10 < 11 < ... <
Ik-l < Ik = +00, and {a;j)} ~ iid(O,CJ;) are mutually independent for different j.
d is called the delay parameter. A SETAR model is a piecewise linear AR model in
the threshold space.

In the finance literature, SETAR models are useful for modeling of valatility. Let
{rd be the log returns of a stock. For example, the following model are often used:

rt = Ilt + at, at = CJtCt, {cd ~ iid(O, 1),

if at-l :s 0,
if at-I> 0.

Such a model is called SEATR-GARCH model. In comparison with GARCH models,
SETAR-GARCH models are able to capture the asymmetric effects of positive and
negative shocks at-I. Some other forms of threshold volatility models have also
been proposed in the literature (See Rabemananjara and Zakoian (1993); Zakoian
(1994)).
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• Markov switching models
Hamilton (1989) introduced the following Markov switching AR model, where

the transition is driven by a hidden two-state Markov chain {sd:

_ { Cl + Lf~1 cPl,i X t-i + alt if St = 1,
Xt - ,",P2 '" 'f

C2 + 0i=1 'l'2,i X t-i + a2t 1 St = 2,

where {aid ~ iid(O, an are assumed to be independent for i = 1,2, and {sd is a
Markov chain with two states {I, 2}, and transition probabilities given by

P(St = 2lst-l = 1) = WI, P(St = I!St-l = 2) = W2.

Combined with GARCH models, Markov switching models are useful in modeling
of financial indexes. For example, we can consider the following model:

{an ~ GARCH(Pl, qd if St = I,
{an ~ GARCH(P2,q2) if St = 2,

where at = atEt, {Ed ~ iidN(O,I) and {sd is a hidden Markov chain with two
states {1,2} as described in the above. This is a Markov switching model with
GARCH-M type dynamics. Markov switching models with other type of conditional
heteroscedastic structures can also be considered. We note that statistical inferences
of Markov switching models are very involved. Recent developments in Markov
Chain Monte Carlo (MCMC) method enable us to make statistical inferences for
these models (see Tsay (2002)).

5 Continuous-time stochastic processes for stock

prIces

In the following we introduce some continuous-time stochastic processes that are
suitable for, or relevant to stock prices. These include some diffusion processes, Levy
processes, stochastically time-changed Levy processes and self-similar processes.

Let {Se, t ~ O} denote the stock price. We write

St = Soex
t , So > O.

So {Xt , t ~ O} is the log price of the stock. In the following, the models are specified
ether for{Sd or for {Xd.

5.1 Diffusion models

• Brownian motion with drift
This is given by
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where {Bt , t ~ O} is a standard Brownian motion, f.l E lR is the drift parameter
and a > 0 the diffusion (volatility) parameter, which are assumed to be constants.
Writing in the form of SDE, it becomes

dSt = f.ldt + adBt ·

This model was originally developed by Bachelier (1990) for modeling stock prices.
Note that the discrete-time version of a Browinan motion with drift is a random
walk with drift. These models had been widely accepted and used as models of
stock prices until 1950s. However, this model has many defficiencies. For example,
under such a model, the stock price {Sd may take negative values, which can not
take place in practice .

• Geometric Brownian motion
Samuelson (1965) proposed a model for log stock prices as follows:

or in another form

where {Bd is a standard Brownian motion. It can be written in the form of SDE
as

This diffusion model is called a geometric Brownian motion.
Let rt = log(St/St-l) be the log return of {Sd. Then we have

a 2

rt = (f.l- 2) + aCt =: m + aCt,

where {cd'" iidN(O, 1). Under a geometric Brownian motion, we have

rt '" iidN(m, ( 2
).

However, as was discussed in Section 2, many empirical studies show that, in general,
the time series {rtl is neither independent nor Gaussian. Common opinions now
seem to be that geometric Brownian motions are not suitable for describing behaviors
of stock prices.

• Diffusion models with time-varying drift and volatility
Another imperfection of geometric Brownian motions is that volatility is assumed

to be unchanged, which is in conflict with empirical evidences. To overcome these
weaknesses of geometric Brownian motions, a natural idea is to let the drift and
volatility evolve with time. This leads to the following model:
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where {Bd is a standard Brownian motion, and p,(t), 0-( t) are deterministic fucntions
of time satisfying certain conditions. In this case, the solution of the SDE is given
by

where

it( 0-2(S)) itX t = a p,(s) - -2- ds + a o-(s)dB•.

It may be more reasonable to make the function o-(t) change stochastically over time.
For example, Dupire (1993, 1994) introduced the following model:

In financial applications, these models would be useless unless the functional forms
of p,(t) and o-(St, t) could be specified suitably, which is not easy at all. In fact,
different forms of the functions correspond to different models for stock price.

Another way for improving away those weaknesses of geometric Brownian mo
tions is to make the volatility change stochastically according to a diffusion model,
and this leads to the following model (see Hull and White (1988)):

(1)
dSt = St(p,(t,St,o-ddt + o-tdBt ),

(2)
dVt = a(t, Vt)dt + b(t, Vt)dBt ,

where Vt = log 01, {Bi l
)} and {Bi 2

)} are two independent standard Brownian mo
tions, and the drift and diffusion terms in the equations are assumed to satisfy
certain measurability and integrability conditions. Under such a model, we arrive
at an incomplete financial market.

5.2 Levy processes for stock prIces

The non-Gaussian characteristics of the distributions of log returns of stocks leads
to considerations of using non-Gaussian processes for modeling of stock prices. Since
Levy processes are the most natural generalization of Brownian motions, and their
marginal distributions involve a wide class of infinitely divisible laws that are non
Gaussian, Levy processes are thought to be more flexible for modeling stock prices.
Recently, many Levy processes with distributions that seem to match the empirical
distributions of log returns have been proposed. These are introduced in this section.

At first, we introduce some basic results on Levy processes. Assume that we have
a filtered probability space (0, {Ft , t 2 O}, F, P) satisfying the usual conditions.
Let X = {Xt , t 2 O} be a IR-valued stochastic process adapted to the filtration
{Ft , t 2 A}, with X o = 0 (a.s.). Then X is a Levy process if

(i) X has independent increments; that is, X t - X. is independent of F., O:S s <
t < 00; and
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(ii) X has stationary increments; that is, X t - X s has the same distribution as
X t - s , 0:::; s < t < 00; and

(iii) X is continuous in probability; that is, X s ~ X t as s -t t for every t 2: O.

Every Levy process has a unique dtdlag modification which is itself a Levy process.
It can be shown that marginal distributions of Levy processes are infinitely divis

ible. Inversely, for each infinitely divisible distribution J..L there exists a Levy process
X such that J..L is the distribution of Xl.

Let ¢du) = EeiuXt be the characteristic function of X t . It can be shown that,
there exists a continuous function 1jJ(u) with 1jJ(0) = 0 such that

for every t > 0 and u E JR. Note that ¢du) = e1/J(u). Thus marginal distributions of

a Levy process are completely determined by the marginal distribution of Xl. The
function 1jJ(u) is called the characteristic exponent of the Levy process X = {X t , t 2:
O}, which satisfies the following Levy-Khintchine formula:

where r E JR, (J2 2: 0 and v is a measure on JR\{O} such that

Therefore, a Levy process is completely determined by the triplet [r, (J2, v(dx)],
which is often called Levy triplet. The measure v is called the Levy measure, and
if v(dx) = u(x)dx for some function u(x), then u(x) is called the Levy density. The
Levy density must have zero mass at the origin, but does not need to be integrable.

The Levy-Khintchine formula shows that, a Levy process consists of three inde
pendent parts: a linear deterministic part, a Brownian motion part and a pure jump
part. If X has no Brownian motion part ((J2 = 0), we say that the Levy process
is of pure jump. The Levy measure v(dx) dictates how the jumps occur: jumps of
sizes in a set A occur according to a Poisson process with intensity fA v(dx).

5.2.1 Levy models with constant volatility

Now we introduce some Levy processes that are proposed recently for modeling
stock prices. Let {St} be the stock price. Write

Recall that in the case of a geometric Brownian motion, we have
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which is a Brownian motion with drift. In the following Levy models the log stock
price {Xd is assumed to be some Levy processes whose marginal distributions are
some special infinitely divisible laws having semi-heavy tails and excess kurtosis .

• VG Levy processes
{Xt, t 2': O} is a Variance Gamma (VG) Levy process if it is a Levy process such

that the distribution of Xl is a VG distribution VG(O", //, (}), whose characteristic
function (ch.f) ¢VG (u; 0", //, (}) = Ee iuX

I is

This distribution is infinitely divisible. However, its density is not known explicitly.

Its Levy triplet is b, 0, VVG (dx) J, where

-C(G(e- M - 1) - M(e- G - 1)),=
MG

where

x < 0,
x> 0,

(
(

C

G

M

1/// > 0,

)

-1
1 1 1
_B2//2 + -0"2// - -(}// > 0
4 2 2 '

)

-1
111
_{}2//2 + -0"2// + -B// > O.
4 2 2

A VG Levy process has no Browian motion part.
If the distribution VG (0", //, B) is reparameterized in terms of C, G and M, then

the ch.f of VG(C, G, M) is

(
GM )C

¢VG(u; C, G, M) = GM + (M _ C)iu + u2

A VG Levy process is a Gamma time-changed Brownian motion with drift. Here
we introduce the Gamma distributions and Gamma Levy processes. The Gamma

distribution Gamma(a, b) has a density of the form

ba
, (b) a-I - bx 1
JGamma X; a, = f(a) x e {x>O},

where a, b > O. A Gamma distribution Gamma(a, b) is infinitely divisible with
Levy triplet b, 0, //(dx)] given by

, = a(l - e-b)/b, //(dx) = ae- bx x- 1 1{x>o}dx.
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A Gamma distribution is also self-decomposable, where the self-decomposability is
defined as follows: A distribution with ch.f ¢(u) is called to be self-decomposable if

¢(u) = ¢(cu)¢c(u), Vu E IR, Vc E (0,1),

for some family of characteristic functions {¢c(u): c E (0, I)}. In this case we
also say that the corresponding distribution belongs to Levy's class L, which is a
subclass of infinitely divisible distributions. For details of self-decomposability, see
Sato (1999).

A Gamma Levy process {G t , t ~ O} is a Levy process whose marginal distribu
tions are Gamma laws. Let X(VG) = {XIVG), t ~ O} be a VG Levy process such
that X~VG) "" VG(a, v, ()). Also let {Gt , t ~ O} be a Gamma Levy process such
that G1 "" Gamma(a, b) with a = b = l/v. Then it can be shown that, there exists
a stadard Brownian motion such that

(VG)X t =()Gt+aBct ·

VG Levy processes were introduced and studied by Madan and Seneta (1987,
1990). Applica.tions of VG Levy processes in finance can be found in Madan and
Miline (1991) and Madan, Carr and Chang (1998) .

• NIG Levy processes
{Xt , t ~ O} is a Normal Inverse Gaussian (NIG) Levy process if it is a Levy pro

cess such that the distribution of Xl is a NIG distribution NIG(O', (3, 0), where a>
0, -a < {3 < a and 0 > 0, whose characteristic function (ch.f) ¢NIG(u; a, (3, 0) =

EeiuX, is

¢NIG(U; a, (3, 0) = exp (-o( VO'2 - ({3 + iU)2 - vO'2 - (32)).

This distribution is infinitely divisible. Its Levy triplet is [T, 0, VNlc(dx)], where

200'11

"( = - sinh({3x)K1 (O'x)dx,
'Tr 0

where sinh (x) = e% -2e
- % and K)., (x) denotes the modified Bessel function of the third

kind with index oX (See Schoutens (2003); Abramowitz and Stegun (1968)). The Levy
measure is given by

A NIG Levy process has no Brownian motion part.
A NIG distribution NIG(O', (3, 0) is infinitely divisible. Its density is given by
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This distribution has semi-heavy tails:

A NIG Levy process is an Inverse Gaussian time-changed Brownian motion. A
Inverse Gaussian (IG) distribution IG(a, b) has a ch.f of the form

¢rG(U; a, b) = exp (-a(/b2 - 2iu - b)),

where a, b> O. This distribution is self-decomposable with Levy triplet [r, 0, vrG(dx)]
given by

a
1= b(2N(b) - 1),

where N(-) is the distribution function of N(O, 1), and

1
vrc(dx) = (21r)-1/2 ax -3/2 exp( -"2b2x)l{x>o}dx.

An IG Levy process {It, t 2 O} is a Levy process such that II follows an IG(a, b)
law.

Let X(NIG) = {Xt IGl
, t 2 O} be a NIG Levy process such that xiNIG

)

NIG(a, (3, b). Then it can be shown that

xtrG ) = (315 2 It + bBlt ,

where {Bd is a standard Brownian motion, and {Id is an IG Levy process such
that II ~ IG(a, b) with a = 1 and b = 15/a2 - (32.

The NIG distributions and Levy processes were introduced by Barndorff-Nielsen
(1995). Their applications in finance can be found in Barndorff-Nielsen (1995, 1997,
1998); Barndorff-Nielsen and Shephard (2001) .

• HYP /GH Levy processes
The GH Levy process is generated by the Generalized Hyperbolic (GH) distri

bution GH(a, (3, 15, v), whose ch.f is

where K v (-) is the modified I3essel function of the third kind with iudex v. Its
density is given by

where
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where b > 0, 1,81 < a and v E JR. The Generalized Hyperbolic (GH) distribution
GH(a, ,8, b, v) is infinitely divisible. Its Levy measure is rather involved. The
GH(a, ,8, b, v) has semi-heavy tails:

fGH(X; a, ,8, b, v) ~ const·lxl v - 1e('f Q
+!3)x as x -t ±oo.

When v = 1, the GH(a, ,8, b, 1) distribution is called a Hyperbolic distribution
HYP(a, ,8, b), which was introduced by Eberlein and Keller (1995). The GH distri
bution was introduced by Eberlein and Prause (1998). Also, the GH distributions
include the VG and NIG distributions as special cases. The VG(er, v, 0) law can be
obtained from the GH(a, ,8, b, v) law by letting v = er 2 lv, a = J(2/v) + (0 2 ler4 ),

,8 = 01er2 and b -t O. For the NIG laws, it holds that

NIG(a, ,8, b) = GH(a, ,8, b, -1/2).

Financial applications of GH Levy models can be found in Eberlein and Keller
(1995), Eberlein and Prause (1998), Eberlein, Keller and Prause (1998) and Eberlein
and Hammerstein (2002) .

• Meixner Levy processes
The Meixner Levy process was introduced by Schoutens and Teugels (1998). This

Levy process is generated by the Meixner distribution Meixner(a, ,8, b), whose ch.f
is

( )

26
cos (,812)

<PMeixner(U; a, ,8, b) = cosh((au _ i,8)/2)

This distribution is infinitely divisible and has semi-heavy tails. Its Levy triplet is
h', 0, v(dx)], where

JOO sinh(,8xla) v(dx) = J: exp(,8xla) dx.,= ab tan(,8/2) - 2b . h( I) dx, u
1 sm 7rX a x sinh(7rxla)

The Meixner Levy process has no Brownian motion part.
Financial applications of the Meixner Levy processes can be found in Schoutens

(2000, 2001, 2002) .

• CGMY Levy processes
The CGMY Levy process was introduced by Carr, Geman, Madan and Yor (2002,

2003). It is generated by the CGMY distribution CGMY(C, G, M, Y) with ch.f
given by

<PCGMY(U; C, C, M, Y) = exp(Cr(-Y)((M - iu)Y - MY + (C + iu)Y - CY )),

where C, C, M > 0 and Y E (-00, 2). It is infinitely divisible with Levy triplet

h', 0, vCGMy(dx)], where

,= C (i1

e-Mxx- Y dx - [~ eGxlxl- Y dX) ,
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{
CeGX( -X)-I-Ydx,

I/CGMy(dx) = C -Mx -l-Yde x x,
x < 0,
X> O.

The CGMY process has no Brownian motion part.
The YG distribution/process is a special case of CGMY: it holds that

YG(C, G, M) = CGMY(C, G, M, 0).

Financial applications of CGMY processes can be found in Carr et al. (2002,2003).

* Comments
The above Levy models together with the Black-Scholes model were compared by

Schoutens (2003), by fitting them into S&P500 European call options. As a result, all
the Levy models perform significantly better than the Black-Scholes model. Also,
the CGMY Levy model seems to perform some what better than the other Levy

models.

5.2.2 Levy models with stochastic volatility

Most recent studies on Levy processes in finance literature are concerned with
using Levy models with stochastic volatility. There are essentially two methods to
introduce volatility into Levy models. One way is to make the volatility parameter
in a geometric Brownian motion to evolve according to an Ornstein-Uhlenbeck (OU)
process driven by a Levy process. Another way is to make random changes in time
of the models according to some nonnegative Levy processes. The former way leads
to some BNS-SY models, which were introduced by Barndorff-Nielsen and Shephard
(2001), while the latter way leads to some stochastically time-changed Levy Models,
which were introduced by Carr et al. (2003). These models are introduced in this
section.

Here we introduce the OU processes that will be needed in the Levy models. An
OU process {Yt, t 2: O} driven by a Brownian motion satisfies

where A > 0 and {Bd is a standard Brownian motion. Recently, Barndorff-Nielsen
and Shephard (2001,2003) introduced the following OU processes driven by a Levy
process:

where {zd is a subordinator, that is, a Levy process with no Brownian motion part,
nonnegative drift and positive increments. {zd is called the background driving
Levy process (BDLP). We can see that the above OU process is strictly positive and

Yt 2: YOe->.t.
Barndorff-Nielsen and Shephard (2001) show that, if the initial value Yo is chosen

according to a self-decomposable law D on 1R+, then the OU process {Yt} is strictly
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stationary and the marginal distribution is precisely D. They call such a process
{yd as D-OU process and show that the solution of {yd is given by

r>.t
Yt = yoe->.t + e->.t Jo eSdzs '

On the other hand, if the BDLP {zd has marginal laws such that Zj ~ iJ, then
{yd is called an ou-iJ process. In finance literature, suitable self-decomposable
laws include the Gamma distribution and the inverse Gaussian (IG) distribution.
Correspondingly, the Gamma-OU and IG-OU processes are often used to handle
volatility effects.

Barndorff-Nielsen and Shephard (2001) also introduced the integrated OU (in
tOU) processes of {yd:

Yt = 1t

ysds.

The intOU process {yt, t 2: O} has continuous sample paths when .\ > O. Such an
intOU process serves as a process according to which time is changed randomly.

• BNS-SV models
Let {5t , t 2: O} be the stock-price process. Let Zt := log 5 t be the log stock

price. Under the Black-Sholes model, we have

where {Bd is a standard Brownian motion. By Ito's formula, {Zd satisfies

In order to handle stochastically changing volatility, Barndorff-Nielsen and Shep
hard (2001) assume that the volatility evolve according to an OU process driven by
a Levy process and propose the following Levy model:

dZt := dlog 5 t = (fl - ~andt + atdBt + pdz>.t, Zo = log So,

da} = -.\afdt + dZ>.t,

where fl E JR, p ::; 0, {Bd is a standard Brownian motion, {zd is a subordinator,
and {Bd is independent of {zd. In financial applications, the volatility process
{an is often taken as a Gamma-OU or IG-OU process.

The above model is arbitrage-free, but incomplete. This means that there exists
more than one equivalent martingale measure. For more details about the BNS
SV models, see Barndorff-Nielsen and Shephard (2001, 2003); Barndorff-Nielsen,
Nicolato and Shephard (2002).
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• Stochastic time changes in Levy models
A Levy model with stochastic time changes is as follows:

where {Xd is some Levy processes that are suitable for stock price, for example, the
VG, NIG, RYP /GR, Meixner or CGMY Levy processes discussed in the previous
section, and {Yd is a positive process used for random time change. In financial
applications, candidates for {yt} are Gamma-OU and IG-OU processes. Carr et al.
(2003) use as the rate of time change the Cox-Ingersoll-Ross (CIR) process - the
classical example of a mean-reverting positive process {yd, which is given by

For details on stochastic time changes in Levy models, see Carr, et al. (2003).

* Comments
Schoutens (2003) also compared the behaviours between Levy models with con

stant volatility and those with stochastic volatility, by fitting them into S&P500
European call options. All the Levy models with stochastic volatility perform signif
icantly better than the Levy models with constant volatility. Also, the Levy models
with stochastic time changes seem to perform better than the BNS-SV models.

5.3 Self-similar processes

Recent empirical studies in finance show that the log stock price processes X =

{Xd := {log ~} possess many characteristics that are typical for self-similar pro
cesses. In this section we provide a review of such processes.

At first, we introduce some relevant results on self-similar processes. An lR-valued
process {Xt } is said to be self-similar if for any a > 0, there exists b > 0 such that

where ,~, means equality of all finite dimensional distribuions of two processes:

d
(Xatl , ... , X atm ) = b(Xt1 , ... , X tm )

for any choice of t; > 0 and mEN. It can be shown that, if {Xd is self-similar,
nontrivial and stochastically continuous at t = 0, then for a and b in the above
equation, there exists a unique H 2: 0 such that b = aH . H is called the exponent
of self-similarity of the process {Xd. In this case, {Xd is written as H-selfsimilar
(H-ss, for short).

Self-similar processes are closely related to strictly stationary processes through
a nonlinear time change, referred to as the Lamperti transformation. Precisely, if
{Yd is a strictly stationary process, and define

X t = tHYjogt, t> 0; X o = 0,
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for some H > O. Then {Xd is H-selfsimilar. Conversely, if {Xd is H-ss and we
define

then {Yi} is strictly stationary.
It is known that, self-similar processes can have independent and stationary incre

ments, or independent and non-stationary increments, or dependent and stationary
increments. III the following, some typical self-similar processes will be introduced.

• a-stable Levy motions
{Xt, t ~ O} is said to be an a-stable Levy motion if it is a Levy process such that

the law of Xl is a strictly a-stable distribution. It can be shown that an a-stable
Levy motion is H-selfsimilar with

1 1
H = ~ E [2' (0).

Conversely, if {Xd is H-selfsimilar with H E [1/2, (0) and has stationary and
independent increments, then it is an a-stable Levy motion with a = 1/H (see Em
brechts and Maejima (2002); Samorodnitsky and Taqqu (1994)). Therefore a-stable
Levy motions are the only selfsimilar processes with stationary and independent
increments.

a-stable Levy motions are natural generalizations of Brownian motions (a = 2).
Some works suggest that a-stable Levy motions should be useful for modeling of
financial indexes, e.g. Shiryaev (1999). However, these processes do not have finite
second-order moments, which is said to contradict finance and econometric theories.
Further studies on these processes should be made.

• Self-similar processes with non-stationary increments
There are many selfsimilar processes that have independent but non-stationary

increments. However, statistical properties of log stock prices often appear to have
dependent and stationary increments. So, self-similar processes with independent
and non-stationary increments may not be suitable for modeling stock prices.

• Fractional Brownian motion
Let 0 < H ::; 1. An IR-valued Gaussian process {BH(t), t > O} is called a

fractional Brownian motion if E[BH(t)] = 0 and

It is easy to show that a fractional Brownian motion {BH(t)} is H-selfsimilar with
stationary increments. If H = 1/2, it is a Brownian motion; if H :f. 1/2, the
increments are not independent. Furthermore, it can be shown that a fractional
Brownian motion is not a semimartingale unless H = 1/2.
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Fractional Brownian motions can be thought in some sense to be a generaliza
tion of Brownian motions. This suggests that it may be reasonable to replace the
Brownian motion {B 1 / 2 (t)} in the Black-Scholes model with the fractional Brownian
motion {BH(t)} to get the following stock-price model:

dS(t) = S(t) (f..ldt + adBH(t)).

However, since a fractional Brownian motion {BH(t)} is in general not a semimartin
gale, the stochastic integral Jf(s, w)dBH(S) can not be defined as an Ito integral,
and it must be defined suitably in some other ways (see Embrechts and Maejima
(2002)). Fractional Brownian motions are Gaussian, where as log stock prices have
in general non-Gaussian distributions. Furthermore, fractional Brownian motions
have special dependence structure, which may be not flexible enough to fit that of
log stock prices very well. So fractional Brownian motions might be not suitable for
modeling of stock price.

• Self-similar process with stationary and dependent increments
Here we consider some aspects and examples of general selfsimilar processes with

stationary but dependent increments. Let {Xt, t 2: O} be a H-selfsimilar processes
with stationary increments. It can be shown that (see Embrechts and Maejima
(2002); Samorodnitsky and Taqqu (1994)) the followings hold:

If EIX11'Y < 00 for some I E (0, 1), then 0 < H < lIT;
If EIX11'Y < 00 for some I 2: 1, then 0 < H ::; 1;
If H > 1, then EIX1 1

1
/

H = +00;

If EIX11 < 00 and 0 < H < 1, then EXt = 0 for all t 2: 0;
If H > 0, then Xo = 0 (a.s.);
If EIX11 < 00 and H = 1, then X t = tX1 (a.s.).
Now we consider the dependence structure of H-selfsimilar processes {Xd with

stationary increments (H-sssi, for short) and finite variances Exl < 00. Let 0 <
H < 1, and define the time series {rd by

Then it can be shown that the ACF {pd of {rd satisfies

Pk ~ H(2H - 1)k2lf
-

2 (k -+ (0).

Thus, if H = 1/2, {rd is serially uncorrelated; If H E (0, 1/2), then {rd is
negatively correlated and 2::~1 IPkl < 00; If H E (1/2, 1), then {rd is positively
correlated and 2::::"=1 Pk = 00, which means that {rd has long memory.

o a-stable processes
Fractional Brownian motions {BH(t)} with H =1= 1/2 are selfsimilar processes

with dependent increments. Other examples of such processes include a-stable
stochastic processes which are not Levy processes. A stochastic process {Xd is said
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to be a-stable if all its finite-dimensional distributions are a-stable. It is strictly
stable or symmetric stable if all its finite-dimensional distributions are, respectively,
strictly stable or symmetric stable. It can be shown that if {Xt } is an a-stable
H -sssi process with 0 < a < 2, then it is strictly stable.

In the following we give some examples of a-stable H -sssi processes.

o Linear fractional stable motions
A linear fractional stable motion (LFSM) {La,H (a, b; t), t E JR} is an extension

of a fractional Brownian motion, which is given by

La,H(a, b; t) =I: fa,H(a, b; t, x)M(dx),

where

where x+ := max(x, 0), x_ := max( -x, 0), Os := 0 for s :::; 0, a, b are real constants,

lal + Ibl > 0, 0 < a :::; 2, 0 < H < 1, H i- l/a and M(dx) is an a-stable random
measure on JR with Lebesgue control measure and skewness intensity (3(x), x E JR,
satisfying certain conditions. Here the integral J f(x)M(dx) is defined in the sense
of stable integrals (see Samorodnitsky and Taqqu (1994)). In the special case when
a = b = 1, the LFSM is called a well-balanced LFSM. If a = 2, the LFSM reduces
to fractional Brownian motion. It can be shown that {La,H(a,b;t)} is H-sssi, and
La,H(a, b; t) '" 5a(at, (3t, 0), where at and (3t are certain functions of a, b, a, H
and t.

A fractional stable noise is defined by

Tt = La,H(a, b; t) - La,H(a, b; t - 1), t E 7l.

It is a strictly stationary time series with a-stable distributions, and possesses long
memory properties in a certain sense (see Samorodnitsky and Taqqu (1994)).

Other important a-stable and H-sssi processes include log-fractional stable mo
tions and real harmonizable fractional stable motions (see Samorodnitsky and Taqqu
(1994)) that may be useful for modeling log stock prices.

o Subordinated processes
A subordinated process {Xt } is an a-stable process with representation

X t = LY(t,x)M(dx),

where Y = {Y(t, x), t E T, xED} is a stochastic process defined on (D, F, P)
and M is an a-stable random measure with control measure P.

If M is 5a5, 0 < a < 2, and Y is Gaussian, then X is the 5a5 sub-Gaussian
processes; If Y is Sa' 5 with 0 < a < a' < 2, then X is the 5a5 sub-stable processes.
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It can be shown that if Y(t, x) is H-ssi with finite a-order moments and if M is a
SaS random measure, then the subordinated processes {Xd is SaS and H-sssi.

o Selfsimilar processes with finite variances
Except for the fractional Brownian motions, the selfsimilar processes metioned

in the above have infinite variances. However, there are also some non-Gaussian
selfsimilar processes with finite variances, which may be useful in modeling of stock
price. Some details can be found in Embrechts and Maejima (2002) and the refer

ences therein.

* R/S-analysis of self-similar processes
Now we briefly mention the R/S analysis for selfsimilar processes. Let {St, t 2 O}

be our stock price. As before, write

Here, if we assume that the log stock price process {Xt, t 2 o}, X o = 0, is some
selfsimilar process with exponent of similarity H, then it is important to estimate
the value of H. Our previous discussions show that, if HE (1/2, 1), then the time
series of log returns 7't = X t - X t - I has long memory. In order to estimate the
exponent H, Hurst (1951) proposed the so-called R/S-statistic given as follows:

S"

where f" = ~ L~=I 7't - the sample mean of {7'tl, and S" is just the sample standard
deviation of {rd. The ratio Q" := R,,/S" is called R/S-statistic.

We met ion some statistical properties of Q" here (see Embrechts and Maejima
(2002); Beran (1994)):

(1) If {Xd is t-sssi such that {rd is iid with finite variances, then

n- I / 2Q => sup B O - inf B O
" t t.'O::;t::;1 O::;t::;1

where {BP, 0 ::; t ::; I} is a Brownian bridge, and '=>' denotes convergence in
distri bu tion.

(2) If {Xd is ~-sssi such that {7'd is iid and is in the domain of attraction of an
a-stable distribution with 0 < a ::; 2, then

where ~ is a non-degenerate random variable.
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(3) If {Xd is ~-sssi such that {rd is strictly stationary, {rn is ergodic and Tt - t L rj

j=J

converges to a Brownian motion, then the conclusion of (2) also holds in this case.

(4) If {Xd is H-sssi such that {rd is strictly stationary, {rn is ergodic and
n- H L1~i rj converges to a fractional Brownian motion, then

where ~ is a non-degenerate random variable.

The above results show that, for a H -sssi process {Xd, its R/5-statistic Qn
satisfies essentially the following equation:

log Qn = a + H log Tt + (n

for sufficiently large Tt, where a E IR and (n is some non-degenerate rv. Using this
simple regression model, we can estimate H by using least squares (LS) method or
least absolute deviations (LAD) method.

Many empirical studies show that the Hurst exponents H of selfsimilarity of log
prices of many stocks and financial indexes are often larger than 1/2. For example,
it was shown in Peters (1991) that,

H(S&P500)=0.78; H(IBM)=O.72;
H(Apple Computer)=0.75; H(Consolidated Edison)=0.68.

These indicate that, stock price processes are possibly selfsimilar processes wi th
stationary increments that have long memory.

6 Pricing of European options

In most cases, the probability density functions of Levy processes are either difficult
to be known in an exact form, or much involved. The main tool for analyzing Levy
processes is the characteristic functions. Here we introduce some recent results on
pricing formulas of European options through using characteristic functions (see
Bakshi and Madan (2000); Carr and Madan (1998)). Also, Nualart and Schou tens
(2001) and Raible (2000) derive a partial differential integral equation (PDIE) for
the price of European call option.

Let B = {B t , t 2: O} be a riskless asset (the bank account) and 5 = {5 t , t 2: O}
the price of a stock/index. Assume that Bt = eTt , where r > 0 is the interest rate.
For a European call option of {5d with strike price K and expiry time T, the pay-off
function is given by max{5r - K, OJ. Then the arbitrage-free price of C(K, T; t) of
the European call option at time t E (0, T] is given by

C(K, T; t) = EQ [e-T(r-t) max{5r - K, O}[Ft] ,
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where the expectation EQ is taken with respect to an equivalent martingale measure

Q, {Ft , t ~ O} is the natural filtration of {Sd, and e-r(T-t) is the discounting factor.

If we know the density function fQ(s, T) of ST under Q, then we can price European

call options, for example, at time 0, by

C(J(, T; 0) e- rT100
fQ(s, T) max{s - J(, O}ds

e-rT /00 sfQ(s, T)ds _ J(e-7'Tlh
Jf(

where TI2 = Q{5y > J(}.

Bakshi and Madan (2000) obtain a formula for a European call option through

the characteristic function. Let ¢(u) be the ch.!' of log Sy:

¢(u) = EQeiu!ogST

The price of European call option at time 0 is given by

where

1 1 100 (e-iU!Og f( ¢(u - i))- + - Re du
2 7r a iu¢( -i) ,1 1100 (e-iU!Ogf(¢(U))- + - Re duo
2 7r a iu

Using this pricing formula, pricing of a European call option can be easily undertaken

for a Levy-market model.
Let 5 t = Soe x ,. Assume that {Xd is a Levy process with Levy triplet b, 0, vQ(dx)]

under the equivalent martingale measure Q. Denote the price of European call op

tion at time t by V(t, Xtl. Nualart and Schoutens (2001) and Raible (2000) show

that, the price V(t, Xl) can be obtained from the following PDIE:

TV(t, x)

V(T, x)

8 8
"Y~V(t, x) + '"V(t, x)

ux ut

+i: [V(t, x + y) - V(t, x) - y :x V(t, X)] vQ(dy),

F(x),

where F(XT) := max(Soe XT - J(, 0). This is an analogue of the Black-Sholes PDE.

7 Concluding remarks

In this review we have introduced a wide class of statistical and probabilistic models

that are suitable for, or relevant to modeling of stock prices, including time series

models, Brownian-motion-based diffusion models and Levy-market models. Here we

give a summarization, and also, some opinions and suggestions.
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• The semi-heavy-tailed infinitely divisible distributions such as the VG, NIG,
CGMY, HYP IGH and Meixner distributions seem to fit stock prices well.
However, other distributions such as a-stable distributions, t-distributions and
mixture of normal distributions should not be abandoned, on which more stud
ies are needed.

• Conditional heteroscedastic time series models such as GARCH, EGACH and
SV models are suitable for modeling stock prices. But these nonlinear models
should be used in combination with linear time series models such as ARMA
models to handle serial correlations, leading to models of ARMA-GARCH or
ARMA-EGARCH models, and so on.

• Log stock prices do not have independent increments. Thus continuous-time
stochastic processes having independent increments are not very suitable for
modeling log stock prices; so Brownian motions and also Levy processes are not
very satisfactory, though Levy processes can largely improve upon Brownian
motions.

• Levy processes (including Brownian motions) with stochastic time changes
seem to fit log stock prices well. Also, BNS-SV models seem to perform well.
The reason may be that making stochastic time changes in the Levy models or
introducing stochastic volatility into the BNS-SV models can simultaneously
introduce flexible serial correlation structures into the increments to make
them dependent.

• Log stock prices possess many of the typical properties of self-similar processes.
a-stable processes such as linear fractional stable motions and subordinated
processes, should be useful for modeling log stock prices. In particular, self
similar processes with stationary and dependent increments having long mem
ory and finite variances are expected to model log stock prices well, and more
self-similar processes having such properties need to be developed.

• So far, there have been few studies on comparisons of behaviors between dis
crete and continuous-time models for stock prices, and more statistical studies
on this aspect are needed.

• In some studies, unknown parameters in the models used for pricing of options
are estimated by minimizing the root-mean-square error between the market's
and the model's prices of options. However, it is possible that the market prices
of options are mis-priced, and in this case if we estimate model parameters
in the above way, it will lead to a mis-specified model for the stock prices.
From the statistical point of view, parameters should be estimated by using
maximum likelihood method or some other appropriate methods, and pricing
of options should be undertaken under the model fitted in this way. Further
studies on this aspect are needed.
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