
琉球大学学術リポジトリ

Stable non-Gaussian time series

言語: 

出版者: Department of Mathematical Science, Faculty

of Science, University of the Ryukyus

公開日: 2011-02-18

キーワード (Ja): 

キーワード (En): 

作成者: Chen, Chunhang, 陳, 春航

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/20.500.12000/18807URL



Ryukyu Math. J., 15 (2002), 1-18

Stable non-Gaussian time series

CHUNHANG CHEN

1. Introduction

Classical time series analysis is mainly concerned with the statistical analysis of
stationary linear processes

00

X t = 2: 'l/JjZt-j, t E Z,
j=-oo

with iid innovations {Zt} whose means are 0 and variances finite. The typical models
include ARMA and fractionally integrated ARMA (FARIMA) models. In practical
situations, however, many data exhibiting large fluctuations have been observed,
which suggests that the marginal distributions are non-Gaussian and have heavy
tails, so heavy that the distributions have infinite variance. In the last decade,
there have been a rapid development in the statistical analysis of time series with
infinite variance. In this report we provide a survey of these studies and give some
new results for the least squares estimator (LSE) and the least absolute deviations
(LAD) estimator of a time series regression model where the regression error term
has infinite variance.

2. Stable distributions and domain of attraction

As a non-Gaussian distribution with infinite variance, the stable distributions
have often been considered. A random variable X is said to have an a-stable distri
bution if there are parameters 0 < a :'S 2, CJ > 0, -1 :'S (3 :'S 1 and -00 < f..l < 00

such that its characteristic function has the following form

EexpiBX = { exp{ -CJoIBIO(1 - i(3(sign B) tan "2°) + if..lB}
exp{ -CJIBI(1 + i(3~(sign B) In IBI) + if..lB}

where B E IR and

if a :j:. 1,

if a = 1,

sign 0 = {

-------------
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if B > 0,
if B= 0,
if B < O.
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if a f:. 1,

if a = 1.

The parameter a is called the index of stability of the stable distribution, a the
scale parameter, (3 the skewness parameter and p the shift parameter. We write this
distribution as S,,,(a, (3, p). When (3 =°and p = 0, the distribution S,,,(a, 0, 0)
is called symmetric a-stable (SaS). An SaS rv X has a characteristic function of
the simple form EexpiBX = e-u"IIII". When a = 2, 52 (a, 0, p) is the normal
distribution N(p,2a 2 ); when a = 1, Sda,O, p) is a Cauchy distribution; when

a = 1/2, SI/2(a, 1,0) is the Levy distribution. Except for these special cases, the
probability densities of stable distributions are not known in explicit form. This
makes it impossible to estimate parameters via MLE for a time series model in
which the marginal distribution is stable.

If X", S",(a, (3, p), 0< a < 2, then X has the tail probabilities

{
limA-4oo'\"'P{X>'\}=C",~a"',

limA-4oo'\"'P{X < -,\} = C",¥a"',

where

C'" = (100
x-'" sinXdX) -1 = { ;;~-"');O~(7r"'/2)

Note that EIXlr =100
p{IXlr > '\}d,x. From the tail behavior of stable distri

butions, we see that if X '" S",(a, (3, p), °< a < 2, then EIXI'" = +00 and
EIXlr < +00 for °:::; r < a. The fact that a-stable distributions with a < 2 have
infinite second moment means that many of the techniques valid for the Gaussian
or finite-second-moment case do not apply. When a :::; 1, one also has EIXI = +00,
precluding the use of expectations. These are the main source of difficulties when
dealing the infinite-second-moment-case.

A sequence of iid rv's {Yn } is said to belong to the domain of attraction of an
a-stable distribution G", if there exist constants {an} and ibn}, bn > 0, such that

Y1 + ... + Yn
b
n

+ an => G",

as n -+ 00, where => denotes convergence in distribution. In general, bn =n 1/"'I(n),
where l (.) is a slowly varying function at infinity, that is, lim I (ux) / I (x) = 1 for all

"'-400
u> 0. In particular, if we can choose bn = en1

/"', where c is a constant, such that
(Y1 + ... + Yn)/bn + an => G"" then {Yn} is said to belong to the domain of normal
attraction of an a-stable distribution G", (write {Yn } E DNA(a)). It is well known

that {Yn} E DNA(2) if and only if EYl < 00; {Yn} E DNA(a), °< a < 2, if and
only if P{Y1 < -,x} '" Cl,x-'" and P{Y1 > ,x} '" C2,x-'" as ,x -+ 00 for non-negative
constants Cl, C2 such that Cl +C2 > 0. For more details, see Feller (1971); Ibragimov
and Linnik (1971).



3. How to measure the bivariate dependence for a time series with infinite
variance?

The covariance function is an extremely powerful tool in time domain analysis
of time series which is Gaussian or has finite variance, but it is not defined in the
a-stable case when a < 2. How do we measure the bivariate dependence for a time
series with infinite variance? To do this, we need to consider the bivariate marginal
distributions.

We introduce some definitions and notations. A d-dimensional random vector
X = (Xl,'" ,Xd )' in lRd is said to be symmetric a-stable (the rv's Xl, ... ,Xn is
said to be jointly SaS) if each linear combination z=t=l bkXk is SaS. A necessary
and sufficient condition for X to be SaS is that there exists unique symmetric finite
measure f on the unit sphere Sd in lRd (i.e., f( --'A) = r(A) for any Borel set A of
Sd) such that

Eexp{i(O,X)} = exp {-ld I(O,X)ICT(dS)}.

Here (.,.) is the usual inner product on lRd . f is called the spectral measure of X.
Let a and p be real numbers. Define the signed power a<P> as

if a ~ 0,
if a < O.

Let Xl and X 2 be jointly SaS with spectral measure f. When a > 1, define the
covariation of Xl and X 2 as

where s = (Sl' S2)' E S2. When a = 2, it holds that

The covariation is not defined for 0 < a ::; 1. One can use another measure of bivaiate
dependence, called the codifference. Let Xl and X 2 be jointly SaS, 0 < a ::; 2. Let
<Jx, denote the scale parameter of Xl' The codifference of Xl and X 2 equals

The codifference is defined for each a E (0,2]. When a = 2, we have

The covariation and codifference share some of the properties of the covariance, but
not all - many strange facts occur when a < 2.
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Whether or not the covariation and codifference play the same role for statistical
analysis of time series with infinite variance as the covariance does in the finite
variance case has not been known. Furthermore, how to estimate the covariations
and codifferences from a finite sample has not been known at all. Many problems
deserve future studies.

4. Asymptotic behavior of the sample autocorrelation function

Consider a heavy-tailed stationary linear process {Xd:

00

X t = L '!/JjZt-j.
j=-oo

(4.1)

We assume that {Zd is a sequence of iid So (a, 0, 0) rv's. That is, EexpiBZ1 =
e-1ul"'II/I"'. The necessary and sufficient for the series (4.1) converges a.s. is that

00

L l'!/JjlO < 00,

j=-oo

(4.2)

and we assume that this condition is satisfied. As in the classical case, the sample
autocorrelation function is defined by

~n-Ihl X X
-(h) .- L..,t=1 t t+lhl °<_ h < n.
p .- ~n X2 '

L..,t=1 t

Let

In the classical case, {p(h)} is the autocorrelation function; but in the stable case
this can not be interpreted as autocorrelation function. However, we have for each
m 2: 1,

where

(
n ) 1/0

In n (p(h) - p(h))h=I .....m :::} (Yh)h=I, ....m, (4.3)

00 G·
Yh := '"' . [p(h + j) + p(h - j) - 2p(j)p(h)) GJ

, h = 1, ... ,m, (4.4)
~J=1 0

and {Gj L~o are independent stable rv's, Go is positive a/2-stable with chf

EexpiBGo = exp {-f(l- a/2) cos(-7l'a/4)!B!",/2(1- i sign (B) tan(1ra/4))}
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and {Gj}j~1 are iid SaS rv'S with chf

E 'BG _ { exp{ -r(1 - a) cos(1Ta/2)IBI<>} if a f 1,
exp t 1 - exp{ -1TIBI/2} if a f 1.

Notice that, (p(h) - p(h))h=I, ... ,m are asymptotically independently (normally) dis
tributed in the classical case, but this no longer holds in the stable case. For details,
see Davis and Resnick (1985, 1986).

The above results show that, although the autocorrelation function does not
exist in the stable case, the sample autocorrelation function plays a similar role
in the analysis of heavy-tailed time series as in the classical case, for example, in
model-specification.

5. Asymptotic behavior of periodogram and integrated periodogram

Let {Xd be the heavy-tailed stationary linear process given in (4.1). Define the
periodogram as

n 2

In,X()..) := n-2 /<> LXte-i>.t , ).. E [-1T,1T].
t=1

Define the power transfer function of {Xt } as

2
00

11/1()..)12 := L 1/1je-i>.j , ).. E [-1T,1T].
j=-oo

Assume that 11/1()..W > 0 for any).. E [-1T,1T]. Then for any frequencies 0 < )..1 <
... < )..m < 1T, we have

where (a()..h), ,B()..h))h=I, ... ,m is an SaS random vector in 1R2m , in which any two
00

components are dependent. Moreover, if L l1/1jl < 00, then
j=-oo

n

In,x (0) = (n- 1/<> L X t )2 => 11/1(0)12s2,
t=1

where S is an SaS rv.
Notice that, (In,X ()..h)) h=1 ,... ,m are asymptotically independently (exponentially)

distributed in the classical case, but this no longer holds in the stable case. For
details, see Kliippelberg and Mikosch (1993).
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Next consider the integrated periodogram

[Xlf In,x(>')f(>')d>', x E [-7r,7r],

where f(·) is a smooth weight function. Define the self-normalised periodogram by

n

In,x(>'):= I n,x(>.)/(n-2
/'" LX?)' >. E [-7r,7r].

t=l

Let fO be a 27r-periodic continuous function such that the Fourier coefficients of
IfOl11/lCW are absolutely summable. Then we have

[: In,x(>')f(>')d>' => Yo [Xlf 11/1(>')1 2 f(>')d>' in C(-7r,7r]

as n -+ 00, where C(-7r,7r] is the space of continuous functions on [-7r,7r] equiped
with the uniform topology, and Yo is an a/2-stable positive rv which has the Laplace
transform E exp( -OYo) exp{ _10'1'" K",O"'/2}, where K", = EINI"'/2 and N '"
N(0,2). Now define

1 jlf In x(>')
Tn := 27r -If 11/1'(>')12 d>..

If we restrict a E (1,2) and assume that g(>.) := 11/I(>'Wf(>') is continuously differ
entiable, we have

in C(-7r, 7r] as n -+ 00, where C", is the same as given before,

S(x) := 2 f= sin;tx) yt,
t=l

where {yth~l is a sequence of iid S",(2- 1/"', 0, 0) rv's with chf E exp iOYl = e-101" /2

and is independent of Yo. Note that, for a = 2, S(x) is a Brownian bridge on [-7r, 7r]'
see Hida (1980).

The above results are useful for deriving the asymptotic distributions of statistics
in goodness-of-fit test for stable time series. For example,

Grenander-Rosenblatt test:

(C",~n nr/'" _;~~~J[xlf (In,X(>') - Tn)d>.! => 0'2 -;~~~lf IS(x)l·

Cramer-von Mises test:



For details, see Kluppelberg and Mikosch (1996).

6. Parameter estimation for heavy-tailed stationary ARMA and FARIMA
models

Consider the stationary heavy-tailed ARMA(p, q) process:

Put

t E Z. (6.1)

and let (30 be the true, but unkown, parameter vector. Assume that ¢(z, (3) =
1 - ¢lZ - ... - ¢pzP f; 0 and {}(z, (3) = 1 + {}lZ + ... + {}qzq f; 0 for Izi ~ 1, and
that, ¢(z, (3) and {}(z, (3) have no common zeros, and let C be the parameter space
consisting of (3 such that all these conditions are satisfied. Put

( a) .- {}(z,(3) _. ~ (a) j I I
'l/J Z,!J .- ¢(z, (3) -. f::o'l/Jj !J z, z ~ 1.

Assume that {Zd is a sequence of iid S",(a, 0, 0) rv's. Then (6.1) has a unique
00

solution X t = L'l/Jj((3)Zt-j which converges a.s.
j=O

Now consider estimation of (30' Since the explicit form of the probability density
of {Zd is in general unknown, it is difficult to construct the MLE for (30' Here we
consider the Whittle estimator:

Sn := argmina~((3),
(3EC

where

where In,x (A) is the selfnormalised periodogram. For practical purposes, the fol
lowing version of the Whittle estimator is more appropriate: define the discretised
version of a~ as

where At = 21rt/n, the Fourier frequencies. Let

/3n := argmina~((3).
{3EC



Izi ~ 1.

/3n and /3n have the same asymptotic distributions:

in IRp+q as n -+ 00, where W- I (,8o) is the inverse of the (p + q) x (p + q) matrix

bj = 2~ i: e-ij~I¢(ei\,8oW8(1¢(ei;:0)1-2) d>.., j ~ 1,

and Go and {Gjk~l are given in (4.4). For details, see Mikosch, et al. (1995).
Another possible approach to estimating ,80 is M-estimation, including the least

absolute deviations (LAD) estimator. For an AR(P) model, the M-estimator ~~M)

of <P = (<PI,. . . , <pp) is

¢~M) := argminp(Xt - <PIXt-1 - ... - <ppXt - p),
4>

where p(.) is a convex loss function satisfying certain conditions. Davis et al. (1992)
show that

where TJ is a nondenerate random vector. This means that suitably constructed M
estimators are superior to the Whittle estimator in the sense of convergence rate.
Davis (1996) shows that this is also true for heavy-tailed ARMA models.

Now consider the fractional ARIMA (FARIMA) model:

(1 - <PIB - ... - <ppBP)(l - B)dX t = (1 + (hB + ... + OqBq)Zt,

where {Zt} is a sequence ofiid 8,,(0',0,0) rv's. Assume that the polynomials <p(z)
and O(z) satisfy the same assumptions as in ARMA models described before. Assume
that 1 < a < 2 and dE (0,1- ~). Let

._ O(z) _. ~ j
¢(z) .- <p(z)(l _ z)d -.~ ¢jZ ,

J=O

Then it can be shown that ¢j = O(jd-l) as j -+ 00. So the process defined by the
FARIMA model has long-range dependence (long-memory). Let

,8= (<PI, ... ,<Pp,OI,'" ,Oq,d)',

and ,80 be the true parameter. In this case, similar results hold for the Whittle
estimator of ,80 as those in the case of ARMA models, though the arguments are
more delicate. For details, see Kokoszka and Taqqu (1996).



7. Parameter estimation for regression models with heavy-tailed errors

We consider the regression model

Yi=/30+/31Xt+Xt> tEN.

For the sake of simplicity, we restrict to consider the case Xt = t, that is, the linear
trend /30 + /31 t, although the results will hold under a rather general setting. We
assume that {Xtl is a sequence of iid Sa(O",O,O) rv's. Our aim is to investigate
asymptotic behaviors of the LSE and LAD estimator of the parameter. In a future
study we want to deal with the case when {Xtl is a heavy-tailed ARMA or FARIMA
process, and also consider the asymptotic behavior of more general M-estimators.

Let (/30' /3d denote the LSE of (/30, /3d, which can be witten as

n n n

L)nxt - LXk)Xt LCtXt

/31 + t=1 k=1 =: /31 + .:;,:t=::.:1:-.._
n n a

n LX~ - (L Xt)2 n

t=1 t=1

where an = n L:~=1 x; - (L:~=1 Xt)2, bt = L:;=1 x~ - Xt L:;=1 Xk and Ct = nXt 
L:;=1 Xk· We have

THEOREM 1. The LSE (/30' /31) has the following distribution:

n1- ~ (/30 - /30)
2 1 A

n -;;; (/31 - /31)

Sa (Cn1 0", 0, 0),

Sa (Cn2 0", 0, 0),

where Cn1 and Cn2 are positive constants depending on nand Q. Therefore, /30 is

a consistent estimtor of /30 if and only if 0 > 1; /31 is a consistent estimtor of /31 if

and only if 0 > 1/2.

Proof. We only consider /30, since the arguments for /31 are similar. L:~=1 (btlan)Xt
has the distribution Sa( (L:~=1 Ibtla )1/a Ian, 0, 0). Now

n n

an n LX~ - (L Xt)2
t=1 t=1

n n

= n Lt2 - (Lt)2
t=1 t=1

= n 2(n + 1)(2n + 1)/6 - (n(n + 1)/2)2

(n4
- n 2)/12 '" n 4 /12

-9-



as n -t 00.

=

(tltk2_ttklaf/a
t=1 k=1 k=1

(t In(n + 1~(2n + 1) _ t n(n2+ 1) la) l/a

t=1

n(n2+ 1) (t 1
2n; 1 _ tl a

) l/a

t=1

[~j

n(n2+ 1) ( t 1
2n

; 1 - tj" + t 1
2n

; 1 - tj"f,a
t=1 [¥J+l

[2n-2j [n-lj

n(n
2
+ 1) ( E t a + I: tar/a

t=1 t=1

C' n2n(l+a)/a
nl

C' n3+~
nl .

Combining these results completes the proof. 0

Next we consider the LAD estimator, which is defined as

n

(/30' /3r) := arg min L IYi - Uo - ul t l·
(uo,udEIR2 t=1

We have the following results.

THEOREM 2. The LAD estimator (/30' /31) has the following distribution:

1/2 -n (/30 - /30) =>
2Wo - 3W1

f(O)
3(2W1 - Wo)

f(O)

for any Q: E (0,2], where f(x) is the probability density of the regression error Xt,

and (Wo, WI) is normally distributed with mean 0 and covariance (~ :).

REMARK 1. From Theorems 1 and 2, we see that the LAD estimator is largely
superior to the LSE when the regression error has a heavy-tailed distribution.

Proof of Theorem 2. Theorem 2 will follow from Theorem 1 and Corollary 2 of
Knight (1998), provided we can show that all the assumptions in Knight (1998) are
satisfied in our case, which is not trivial at all. We note that in the proof of Theorem
1 in Knight (1998), many important details have not been given. Here we will give
a detailed proof of our Theorem 2 using the idea of Knight (1998).

-10-



By the definition the LAD estimator, we have

n

arg min L IYt - Uo - u1 t l
(uQ,udEIR2 t=l

n

arg min L (1Y't - Uo - u1 t l- IXtl).
(uQ,udEIR2 t=l

Thus

Note that

n

L (!Y't - Uo - u1 t l -IXtl)
t=l

n

L (IXt - (uo - (30) - (U1 - (3dtl - IXtI)
t=l

L
n

( 1/2 1 3/2 t )IXt - n (uo - (30)- - n (U1 - (3d-I-IXti ,
n 1/ 2 n3 / 2

t=l

so let

then (nl/2(~0 - (30), n3/2(~1 - (31)) is the minimum point of the sample path of the
stochastic process {Zn(UO' ud} in C(lR2

), which is the space of continuous functions
on lR2 equipped with the uniform metric. Therefore, if we can show that

(7.1)

as n ---+ 00, where ~ denotes weak convergence and {Z(uo, U1)} is a Gaussian process
in C(lR2 ) whose sample path has an unique minimum point a.s. with the required
normal distribution, then the proof will be completed.

Firstly let us show that (7.1) holds. Note that

Ix - yl - Ixl = -y[I(x > 0) - I(x < 0)] + 2lY

[I(x ~ s) - I(x ~ O)]ds

holds for any x f; 0, where I(A) is the indicator function of the set A. From this,
we can write

(7.2)

-ll-



where

(1) ._ ~ ( Uo Ult ) _. ~ (1)Zn (UO, UI) .- - f:t n i / 2 + n 3/ 2 [[(Xt > 0) - [(Xt < 0)] -. - f:t Znt (UO, ud

(7.3)

and

n uo/n1/ 2+ult/n3/ 2 n

Z~2)(uO,UI) := 2L 1 [[(Xt ::; S) - [(Xt ::; O)]ds =: 2L Z~~)(UO,UI)'
t=I 0 t=I

(7.4)

Now let us show that

(7.5)

as n -+ 00, where (Wo,Wd is a 2-dimensional normally distributed random vector
as given in Theorem 2. In order to show (7.5), it is enough to show that finite
dimensional distributions of {Z~I)(uo,ud, (UO,UI) E ]R2} converge to those of
{-(UOWO+UI WI), (uo, ud E ]R2} and that the probability measures of{Z~I) (uo, ud,
(uo,ud E ]R2,n E N} are tight, by Theorems 8.1 and 8.2 of Billingsley (1968). We
will only consider the univariate distributions, since multivariate case follows by
using similar arguments and making use of the Cramer-Wold device.

Since the distribution of X t is symmetric, we have EZ~I)(UO,UI) = O. Further
more,

~ ( Uo UIt)2= L...J 172 + 3/2 Var(I(Xt > 0) - [(Xt < 0))
t=I n n

= ~ (n~~2 + :3
1
/2r

2 (1 1) (n + 1)(2n + 1) 2
= Uo + + - UOUI + 6 2 UIn n

2 ui-+ Uo + UOUI + 3 (7.6)

as n -+ 00. We will show that

(1) ( )
Zn Uo, UI =} N(O, 1)

Sn
(7.7)

as n -+ 00 for any Uo =!' 0, UI =!' 0 (note that Z~1)(O,O) = 0 a.s.), which, in view of
(7.6), is equivalent to

-12-



as n -+ 00. To show (7.7), we will use the Lindeberg-Feller theorem (e.g. Shiryaev
(1996); P.334). Write

where

(1) ( ) nZn UO,Ul __"c
- L...J~nt,

Sn t=1

n E N,

U /n 1
/
2+ U t/n3/2

~nt:= 0 1 (I(Xt > 0) - I(Xt < 0)), 1 ~ t ~ n.
Sn

We will show that the triangular array {~nt : n EN, 1 ~ t ~ n} satisfies the
conditions of the Lindeberg-Feller theorem. Clearly, {~nl,'" ,~nn} is independent
with E~nt = 0 and Var(l:~1 ~nt) = 1. Also, we have

E(~~t) = (uo/n1
/
2+ Ult/n3/2)2 E[(I(Xt > 0) - I(Xt < 0))2)/s;'

(uo/n1/ 2+ Ult/n3/2)2 Is;'

= O(n- 1
) uniformly in t.

Therefore

We have

as n -+ 00. This implies that the Lindeberg condition is satisfied, Le.

n

L E[~~tI(I~ntl ~ e)]-+ 0 (n -+ oo;Ve > 0).
t==1

Combining the above results, we see that {~nt : n E N, 1 ~ t ~ n} satisfies the
conditions of the Lindeberg-Feller theorem. Therefore we have proved (7.7).

-13-



Now we show that the probability measures of {Z~l)(uo,ud,(uO,Ul) E 1R2 ,n E
N} are tight. Noticing that Z~l) (0,0) = 0 a.s., in view of Theorem 8.2 of Billingsley
(1968) it is sufficient to show that

lim limsupP { sup IZ~l)(u) - Z~l)(v)1 > TJ} = 0 (7.8)
<5-+0 n-+= lIu-vll~6

for any TJ > 0, where u = (uo,ud E 1R2 , u = (va, VI) E 1R2 and 11·11 is the Euclidean
norm on 1R2 . First note that

sup IZ~l)(u) - Z~l)(v)1
Ilu-vll~6

I
~ (uo - VA (Ul - vdt) 1= sup ~ 1/2 + 3/2 [I(Xt > 0) - I(Xt < 0)]

lIu-vll~6 t=l n n

~ sup luo - vol 11/2 It [I(Xt > 0) - I(Xt < 0)] 1

lIu-vll~6 n t=l

1 n

+ sup lUI - VI 1372 L t[I(Xt > 0) - I(Xt < 0)]
lIu-vll~6 n t=l

:oS n~/2It[I(Xt > 0) - I(Xt < 0)]1 + n:/2 It t[I(Xt > 0) - I(Xt < 0)]1

~ n~/2It[I(Xt > 0) - I(Xt < 0)]1

+ :/2 2n max It[I(Xt > 0) - I(Xt < 0)]1,
n l~k~n t<=l

where the last inequality follows from making Abel's transformation of the sum in
the second term (e.g. Zygmund (1993); P.3-4). Therefore, by Kolmogrov's maximal
inequality (e.g. Shiryaev (1996); P.384) we have

P { sup IZ~l)(u) - Z~1)(v)1 > TJ}
lIu-vll~6

:oS P {It[I(Xt > 0) - I(Xt < 0)]1 > n~;TJ }

+P {I~k~n 1t,[I(Xt > 0) - I(Xt < 0)]1 > n~;TJ }

(
4/52 1682) [n ]2

~ ;;:2" +~ E L(I(Xt > 0) - I(Xt < 0))
TJ TJ t=l

20/52

= 7

-14-



for each n, from which (7.8) follows. Now the proof of (7.5) is completed.
Now we consider {Z~2\u), u E ]R2}. Recall that

n uo/n 1/ 2+ult/n3/ 2 n

Z~2)(U) := 2L 1 (I(Xt ~ s) - I(Xt ~ O))ds =: 2L Z~~)(u).
t==l 0 t==l

Write
n n

Z~2)(u) = 2 L E(Zi~\u)) + 2L[Zi~\u) - E(Zi~)(u))]. (7.9)
t==l t==l

Since Xl "J 5 0 (£1,0,0) by assumption, Xl has a continuous symmetric probability
density. Let F(x) and f(x) denote the distribution function and the probability
density of Xl, respectively. We have

n

2 L E(Z~~)(u))
t==l

where

Note that

n ruo/nl/2+ult/n3/2

2~ E J
o

(I(Xt ~ s) - I(Xt ~ O))ds

2t ro/nl/2+ult/n3/2 (F(s) - F(O))ds

t==l Jo

2 n rUO+U1 tin

..;n~ J
o

(F(sjy'n) - F(O))ds

2 n rUO+ult/n

= - L In y'n(F(sjy'n) - F(O))ds
n t==l 0

2 n-. - L Wn(UO + ultjn), (7.10)
n

t==l

Wn(t) := it y'n(F(sjy'n) - F(O))ds.

y'n(F(sjy'n) - F(O)) -+ sf(O), n -+ 00,

uniformly for s E K, where K is an arbitrary compact subset of]Rl, we have

by Lebesgue's dominated convergence theorem, where, in particular, the convergence
is uniform on arbitrary compact subset of ]Rl. Thus, for any c: > 0, we can choose
no = no(c:) EN such that

-15-



from which it holds that

2 n 2 n 1(0)
- "Wn(uo + u1t/n) = - "-(uo + u 1t/n)2 + €, (n ~ no), (7.11)
n~ n~ 2

t=l t=l

where

2~ 1(0) ( /)2 ( ) ( 2 ur)nt:: -2- Uo + Ul t n ~ 1 0 Uo + UOUI + 3" ' (n ~ 00). (7.12)

Then (7.10), (7.11) and (7.12) show that

2tE(Z~~)(U))~ 1(0) (u~ +UOUI + ~r), (n ~ 00). (7.13)

Finally, we have

n

2L)Z~~)(u) - E(Z~~)(u))] ~ 0, (n ~ 00),
t=l

(7.14)

where ~ denotes convergence in probability, because (note that Z~~)(u) ~ 0 a.s.)

n

= 4 LVar(Z~~)(u))
t=l

n

~ 41~t~n(IUoI/nl /2 + IUllt/n3/
2
) L E(Z~~) (u))

- - t=l

= O(n- 1/ 2 )

as n ~ 00 by (7.13). From (7.9), (7.13) and (7.14), it follows that

(n ~ 00). (7.15)

From (7.5) and (7.15) we obtain

Zn(u) => Z(u) in C(IR2 )

-16-
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as n -t 00, where {Z(u), u E ]R2} is a Gaussian process in C(]R2) given by

Z(u) = -(uoWo+ UI WI) + f(O) (u~ + UOUI + ~i) .
Note that the sample path of {Z(u), u E ]R2} has the unique minimum point a.s.
which satisfies

whose solution is

1
2Wo - 3W1

Uo = f(O)

3(2W1 - Wo)
UI = f(O)

The proof of Theorem 2 is completed. 0
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