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symmetric a-stable random measures.

Key words: symmetric a-stable random measures; spectral measures; stable

integrals; stochastic processes

1. Introduction

Let (0" F, P) be the underlying probability space, (E, E, m) a a-finite

measure space, M(·) a symmetric stable random measure on (E, E)

with control measure m, {ft, t E T} a family of measurable functions

on (E, £) satisfying suitable conditions, where T is an index set. Many

real-valued non-Gaussian stable stochastic processes {X(t), t E T},

for example, sub-Gaussian processes, stable Levy motion, moving av­

erage processes, Ornstein-Uhlenbeck process and fractional stable mo­

tion, can be defined as a family of stable stochastic integrals of the

form X t = kft(x)M(dx), where M is a real-valued stable random

measure. There are, however, some non-Gaussian stable stochastic

processes, such as harmonizable processes, that are defined as sta­

ble stochastic integrals with respect to complex-valued stable random

measures. The stable integrals can be defined in several ways. If

it can be assumed that the random measure does exist, then it IS
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straightforward to construct the integral as a bona fide integral. How­

ever, showing the existence of random measures is not an easy task,

and this problem has seemed to be ignored unsuitably. The exis­

tence of real-valued stable random measures is discussed thoroughly

by Samorodnitsky and Taqqu (1994) in their excellent book. The same

authors also briefly discuss the existence of complex-valued stable ran­

dom measure, but the proof is not given. In this note we present a

detailed proof for this by using similar auguments and ideas as those

developed by Samorodnitsky and Taqqu (1994) for the proof of exis­

tence of real-valued random measures and stable stochastic integrals.

2. Definitions and notations

A random variable X is said to have a symmetric a-stable (SaS)

distribution if there are parameters °< a ::; 2 and a > °such that

its characteristic function has the form

We write X r-..J Sa(a,O,O). The parameter a is the index of stability

and a the scale parameter.

For x, y E R d, let (x,y) := XIYI +.. '+XdYd denote the usual inner

product in Rd. Let Sd := {s : Iisil = I} be the unit sphere in Rd and

B(Sd) be the Borel a-field on Sd with respect to the usual Euclidean

norm. A measure on (Sd, B(Sd)) is said to be symmetric if r( -A) =

r(A) for any A E B(Sd)' A random vector X = (Xl,' .. ,Xd) is said

to be a symmetric a-stable random vector in R d if its characteristic

function has the form

E exp{i(0, X)} = exp {- hd I(0, s) lar(ds) } ,

where °< a < 2 and r is a finite symmetric measure on the mea­

surable space (Sd, B(Sd))' It is known that the measure r in this rep­

resentation is unique (see Varadhan (1962)). r is called the spectral
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measure of X. A stochastic process {Xt , t E T} is symmetric a-stable

if all its finite-dimensional distributions are symmetric a-stable.

Let (0, F, P) be the underlying probability space. Denote by LO(O)

the set of all real-valued random variables on (0, F, P) and L~(O) the

set of all complex-valued random variables. Let (E, £, m) be a measure

space, where m is a (i-finite measure. Let £0 = {A E £: m(A) <
oo}. A set function M : Eo t--+ LO(O) is independently scattered

if M(Ad,"', M(Ak ) are independent whenever AI,"" A k E £0 are

disjoint. It is (i-additive if

V{Aj}~ c £0: disjoint, UAj E £0 ===> M( UAj ) = L M(Aj ) a.s.
j=l j=l j=l

A real-valued symmetric a-stable random measure M on (E, £) is

an independently scattered (i-additive set function M : Eo t--+ LO(O)

such that M(A) rv 5a((m(A)l fa,o,o)) for each A E £0, and such that

{M(A), A E Eo} is a symmetric a-stable stochastic process. The

measure m is called the control measure of M.

Let (52' B(52 )) be the unit sphere in R 2 equipped with the Borel

(i-field. Let (E, £) be a measurable space. Let k be a measure on the

product space (E x 52, £ ® B(52 )) satisfying the following condition:

for every A E £ such that k( A x 52) < 00, k( A x·) is a finite symmetric

measure on (52' B(52 )). Let

£0 = {A E £: k( A X 52) < oo}.

A complex-valued 5a5 random measure M on (E, £) is an indepen­

dently scattered (i-additive complex-valued set function

M: £0 f-t L~(O)

such that, for every A E £0, M(1)(A) := ReM(A) and M(2)(A) '­

ImM(A) are 5a5 in R 2 with spectral measure k(A x .), and such

that ((M(1)(A), M(2)(A)), A E Eo} is an R 2-valued 5a5 process. The
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latter fact means that any finite-dimensional distributions of

are SaS in R 2k . The measure k is called the circular control measure

of M.

3. Proof of the existence of complex-valued SaS random

measures

Let M be the complex-valued SaS random measure with circular

control measure k, as was defined in the previous section. To prove

the existence of M, we use the same ideas as those in Samorodnitsky

and Taqqu (1994). This will be accomplished by specifying the finite­

dimensional distributions of M, showing that they are consistent and

then applying Kolmogorov's existence theorem to conclude that M

is a well-defined stochastic process, and after this, showing that M

possesses the other properties that a complex-valued SaS random

measure must have.

At first we consider what the finite dimensional distributions of M

should be.

PROPOSITION 1 If M is a complex-valued Sas random measure on

(E, E) with circular control measure k, then for A1 , ... , Ad E Eo, the

random vector (M(1)(A 1 ), M(2)(A 1 ), ... , M(1)(Ad), M(2)(Ad)) has the

characteristic fuction

¢Al, ... ,Ad (ep), ei2
), ... , e~l), e~2))

d

:= E exp {i( 2:: (e;l) M(1)(A j ) + ey) M(2)(Aj )))}

j=l

d

= exp{ - kh21j;(Sley) +s2e;2))lAj(x)!Qk(dx,ds)},

where ey), ey) E R, s = (Sl,S2) E S2 and lAj(x) is the indicator

function.
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PROOF: We have

E exp {i(Oy) M(1)(Aj ) + oy) M(2)(Aj ))}

= exp { - r lOY) Sl + oy) S21
Q

k(Aj , ds) }
lS2

= exp { - iJoY)Sl + oy) S21
QL1Aj (x)k(dx, ds)}

= exp{ - Lh2
1

(OY)Sl +Oy)s2)lAj (x)I
Q
k(dx,ds)}.

Suppose firstly that AI, ... ,Ad E £0 are disjoint. Since the random

vectors

are independent, we have
d

E exp {i L(Oy) M(1)(A j ) + oy) M(2)(A j ))}

j=l

d

= exp { - Lh2~ 1(SlO;1) + s20y))l Aj (x)IQk(dx, ds)}

d

= exp { - Lh2
1
~(SlOY) + s20Y))l Aj (x)IQk(dx, ds)}. (3.1)

When AI, ... , Ad E £0 are not disjoint, we can decompose the sets

AI, ... , Ad into disjoint subsets B l , ... , Bm E Eo such that, for each Aj ,

there exist Bkl' ... ,Bkj C {Bl , . .. , Bm } such that Aj = B k1 U' .. UBkj .

Let

We have
d

L(Oy) M(1)(A j ) + 0;2) M(2)(A j ))

j=l

d m m

= L(OY) L M(1)(Bk)lBkcAj + oy) L M(2)(Bk)lBkCAj)
j=l k=l k=l

m d d

= L [(L 0Y)l BkcAJM(1) (Bk) + (L 0Y)lBkCAj)M(2) (Bk)] .
k=l j=l j=l
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Using this and (3.1), we have

d

E exp {i :L)Oy) M(1)(Aj ) + oy) M(2)(Aj ))}
j=l

m d d

= E exp {i L:: [(L:: OY) 1BkCAJM(1) (Bk) + (L:: oy) 1BkCAJM(2) (Bk)]}
k=l j=l j=l

m d d

= exp{ -1 J IL:: ((L::0Y)1BkCAJS1 + (L::0j2)1BkCAJS2)1Bk(X)IQ
E 82 k=l j=l j=l

k(dx,ds)}
m d

=exp{ -1 J 1L::L::(Oy)Sl+0j2)S2)1BkCAj1Bk(X)IQk(dx,ds)}
E 82 k=l j=l

d m

=exp{ - Lfs21j;(oY)Sl+0Y)S2){;1BkCAj1Bk(x)IQk(dx,dS)}

d

=exp{ - Lfs21j;(S10Y)+S20j2))1Aj(x)IQk(dx,dS)}.

This completes the proof. I

PROPOSITION 2 The characteristic function <PA1, ... ,Ad given in PTOpO­

sition 1 is the characteristic function of a SaS distribution in R 2d .
d

PROOF: Let E+:= {x E E: L:: lAj(x) > O}. Define g : E+ X S2 H
j=l

( ) _ ((1)( ) (2)() (1)() (2)( ))g x,s - gl X,S ,gl X,S ,···,gd X,S ,gd X,S ,

where

We have
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d

= exp { - 11I :L(S1 0;1) + s20;2))lAj (x) I
Q

k(dx, ds) }
E+ 52 j=1

d d

= exp { - 1 11:L 0;1)g;1)(X, s) + :L 0;2) gy)(x, s)I
Q

E+ 52 j=l j=1

d /2
1:L1Aj(x)IQ k(dx,ds)} (3.2)
j=1

( (1) (2) (1) (2)) 5 d f h A B(5)where S2d:= S1 ,S1 , ... , sd ,sd E 2d an or eac E 2d ,

1
d /2

r(A) := I:L lk (x)I
Q

k(dx, ds).
g-l(A) j=1 J

Now let us show that r is a symmetric measure on 52d . For each

A E B(52 ) such that g-1(A) := U x V E £ X B(52 ), which generates

the a-filed £0B(52 ), we have g-1(_A) := U x (-V) by the definition

of g. Therefore,

r(-A)

because k(U x .) is a symmetric measure on (52, B(52 )). This com­

pletes the proof. I

REMARK 1. In the above proof of Proposition 2, we used the condition

that k(A x .) is a symmetric measure on 52. In fact, Proposition 2

holds without this condition (note that this condition is used only

in the proof of Claim 1 to be given later), and the proof is given as
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follows. From (3.2) we have

<PAl, ... ,Ad (0~1), of), ... , 0~1), 0~2))
d

= exp { - k+ h2
1
j;(S10)1) + s20)2))lAj (x)rk(dx, ds)}

d d

=exp{ -1 J (IL:O)l)gy)(X,s)+2.: oy)gy)(x,s)I
Q

E+ 52 j=l j=l
d d+1- 2.: oy)gy) (x, s) - 2.: oy)gy)(x,s)I

Q
)

j=l j=l
1 d /2
-I L 1Aj (x) I

Q

k(dx, ds) }
2 j=l

d d

=: exp { - J 1 L 0)1) S)l) + L 0)2) s)2)I
Q
t(ds2d )},

Su j=l j=l

where for A E B(S2d),

t(A) := ~ ( { + ( )It 1A (x)IQ/\(dx, ds)
2 19-1(A) 19-1(-A) j=l J

Clearly, r is symmetric. I

Now let {t.LA1, ... ,Ad : AI,.'" Ad E £0, dEN} be the probability

distributions corresponding to the characteristic functions

which are specified in Proposition 1. It is easy to see that the family

of finite dimensional distributions possesses the consistency: for any

permutation (7f(1), ... ,7f(d)) of (1, ... , d), it holds that

A. (0(1) 0(2) 0(1) 0(2))
'PA,,-(l),···,A"-(d) 71"(1)' 71"(1)"'" 71" (d) , 7I"(d)

= <PA1, ... ,Ad(0~1), 0~2), ... ,0~1), 0~2)),

and for each n :S d it holds that

<PA1, ... ,A
n
(0~1), 0~2), ... ,0~1), 0~2))

= <PA1, ...,Ad(0~1), oi2
), ... , 0~1), 0~2), 0, ... ,0).
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By Kolmogorov's existence theorem, there is an R 2-valued stochastic

process {(M(1)(A), M(2)(A)), A E Eo} whose finite dimensional distri­

butions are 5a5 as given in Propositions 1 and 2. Now we show that

{(M(1)(A), M(2)(A)), A E Eo} satisfies the other properties required

by a complex-valued 5a5 random measure.

CLAIM 1. For each A E Eo, (M(1) (A), M(2)(A)) is 5a5 in R 2 with

spectral measure k(A x .).

PROOF: We have

E exp {i(O(1) M(1) (A) + 0(2) M(2) (A)) }

= exp { - r r I(O(1)sl + 0(2)s2)lolA(x)k(dx, ds)}
J E J52

=exp{ - r 10(1)sl+ 0(2)s21° r lA(x)k(dx,ds)}J52 JE

= exp { - r 10(1)sl + 0(2)s21°k(A, ds)}.
J52

Since, by assumption, k(A x·) is a symmetric measure on 52, it must be

the spectral measure of (M(1)(A), M(2)(A)) by unicity of the spectral

measure. I

CLAIM 2. {(M(l)(A), M(2)(A)), A E Eo} is independently scattered.

PROOF: For any disjoint sets AI, ... ,Ad E Eo, we have

d

E exp {i 2: (oy) M(1)(Aj ) + oy) M(2)(Aj ))}

j=l

d

= exp { - 1! I2:(s l oy) + s20Y))lA j(x) 1°k(dx, ds) }
E 52 j=l

d

=exp{ -1! 2:ls10Y)+S20Y)IOlAj(x)k(dx,ds)}
E 52 j=l

d

= JJ exp { - Lh21s10Y) + S2 0Y) 101Aj (x)k(dx, ds) }

d

= II Eexp {(oy) M(1)(A j ) + 0)2) M(2)(A j ))}. I

j=l
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CLAIM 3. {(M(1)(A), M(2)(A)), A E Eo} is finitely additive.

PROOF: It is enough to show this for M(1). For any disjoint sets

AI, ... ,Ad E Eo, by Proposition 1 we have

d d

E exp {ie( M(1)( U Aj ) - L M(1)(A j ))}
j=l j=l

d

= E exp {i(eM(1)( U Aj) - eM(1)(A1) - ... - eM(1) (Ad) )}
j=l

= exp{ - leh2IeS1(lU:=lAj(X) -lA1(X) - ... -lAd(x))lok(dx,ds)}

=1.

CLAIM 4. {(M(1)(A), M(2)(A)), A E Eo} is a-additive.

PROOF: Since this is equivalent to that both M(1) and M(2) are a­

additive, it is enough to show this for M(1). Take any disjoint sequence

{Aj}~l C Eo such that U~l Aj E Eo. Then

00 00 00

+00 > k(( U Aj ) x 52) = k( U(A j x 52)) = L k(Aj X 52).
j=l j=l j=l

We have
00 n 00

M(1)(U Aj ) - LM(1)(Aj ) = M(1)( U Aj ) rv 5o(an,O,O),
j=l j=l j=n+1

where by Propositions 1 and 2, we have

a~ leh2Is11°1U;:n+lAj(x)k(dx,ds)

h21s11° Ie lU;:n+l Aj(x)k(dx, ds)

< k (( UAj ) X 52)
j=n+1

00

L k(A j x 52) ~ °
j=n+1
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as n -+ 00. This fact, by Property 2.8.3 in Samorodnitsky and Taqqu

(1994), means that

00 n

M(1)(U A j ) - LM(1)(A j ) -+ 0 in probability
j=1 j=1

as n -+ 00, which in turn means that

00 n

M(1)( U A j ) - L M(1)(A j ) -+ 0 a.s.
j=1 j=1

n

as n -+ 00, because L M(1)(Aj ) has independent summands. I

j=1

Now combining all the above arguments completes the proof of the

existence of complex-valued SaS random measures.

REMARK 2. The arguments given here can be easily extended to show

the existence of an R n -valued symmetric a-stable random measure for

any n E N.
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