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ON THE FORECASTING ACCURACY OF THE HOLT’S
LINEAR EXPONENTIAL SMOOTHING METHOD

CHUNHANG CHEN

Abstract

The Holt’s linear exponential smoothing method has been frequently used to
forecast a time series that has a trend. In this paper, we investigate the fore-
casting accuracy of this method. We give theoretical results on the asymp-
totic prediction errors for some stochastic processes. Using real-life time
series data, we show short-range forecasting performances of this method.
Problems related to the range of the smoothing parameters are also dis-
cussed.

1. Introduction

Many time series exhibit a broad long run movement which is called
a trend. To forecast a time series that has a trend, Holt’s linear
exponential smoothing method has been widely used in application
fields. In this paper we investigate the forecasting accuracy of this
method from theoretical and empirical aspects.

Let {Y;}, where t is an integer, be a time series that has a trend.
Suppose that we have observations Y;,Ys,---,Y, of {Y;} and want
to forecast the future value Yy +x, where h > 0. Here we consider the
Holt’s linear exponential smoothing method. In this method, the time
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series {Y;} is assumed to be of the form
=T+ W, (1.1)

where W, represents the noise component and 7; the trend component,
which is treated locally as a linear trend. Denote by G; be the slope
of the trend at time point £. Then the forecast of the future value
Y.+ is obtained by extrapolating the present trend level T, with the
present slope G, Since T, and G, are unknown, they should be
estimated by using the observations Y3, Y3, - --,Y,. Denote by T, and
G, the estimates of T; and G, respectively, t = 1,2,---,n. In the
Holt’s method, the esitmates Tn and Gn are obtained recursively from
the following smoothing algorithm for t = 1,2, -- n:

T, = 6,Yi+ (1 -6)(Tie1 + Gi),

i + (1 : (12)
Gy = 0(Ty — Ti-1) + (1 — 62)Gya,

where 6, and 6, are the smoothing parameters and their values are
usually assumed 0 < 61,8, < 1. Denote by Y;(h) the h-step forecast
of Yi4» at time t. Once Y, and G, are obtained, the forecast of Y, n
is given by

Yo (k) = T, + hG,. (1.3)

In order to employ the smoothing algorithm (1.2) recursively for
t=1,2,---,n, the initial values To and Gy should be given suitably.
One way for getting these values is to fit a straight line a + bt to all
or the first part of the time series (depending on the characteristic
of variation in the trend) by using least squares estimates and take
To = a and Gp = b (see Abraham and Ledolter (1983)). Another way
is to use backcasting (see Ledolter and Abraham (1984)). A simple
way is to take T 2 = Yy and G, = Y2 — Y; and use the smoothing
algorithm recursively for t = 3,4,---,n (see Granger and Newbold
(1986)). Some valuable suggestions are given in Gardner (1985).



In the smoothing algorithm (1.2), the values of the smoothing pa-
rameters ¢, and 6, should be chosen suitably. By using the sample,
these values are usually estimated by a grid search to minimize the
mean square errors (MSE) of one-step forecasts

n

Q(61,6,) = % Y (Y; - Yima(1))? (1.4)

t=1
among the range 0 < 6,02 < 1. Here there is a problem concerning
this range. Although this range was recommended by Holt in his
original work, such a range has been criticized as arbitray. In fact,
McClain and Thomas (1973) showed that the Holt’s method is stable
over a wider range given as follows:

0<6; <2 0<6;<(4-26)/6. (1.5)

However, it has not been clear at all whether this wider range should
be used or not.

While the Holt’s method has been thought to be an ad hoc fore-
casting procedure because it bases on little mathematical arguments,
this method has turned out to be a popular tool among practition-
ers to forecast a time series that has a trend. Its popularity is due
to not only the simplicity in the forecasting procedure, but also its
forecasting performance. Some empirical studies have reported that
there is little difference in forecasting accuracy between exponential
smoothing and some mathematically sophisticated methodology such
as methods based on ARIMA models among others (see Makridakis
and Hibon (1979), Makridakis et al. (1984)).

Concerning statistical properties of the Holt’s method, however,
many aspects remain not clear. In this paper, we investigate the fore-
casting accuracy of the Holt’s method from both treoretical and em-
pirical viewpoints. In Section 2, we give theoretical results on asymp-
totic prediction errors of this method for some stochastic processes.
In Section 3, we show emprical studies on the short-range forecasting



performance of the Holt’s method by using real life time series data.
We also discuss the problem related to the range of the smoothing
parameters. Then we give some concluding remarks.

2. Theoretical Results on the Asymptotic Prediction Errors

Consider the h-step forecast error of the Holt’s method. Put
en(h, 0) = Yoin — Yu(h),

where 6 = (0,,60;)". Suppose that 6 is estimated by minimizing the
MSE of one-step forecast errors using the sample Y;,Ys, - - -, Y, among
the wider range © given by (1.5). Put

6, = arg min Q,(0). (2.1)
Oce

In this section, we give asymptotic results on the h-step forecast error
e(h, 8,,) of the Holt’s method as n tends to infinity for some stochastic
processes. It should be noted that the range © includes the usual
range (0,1] x (0,1] and the results to be given hold for the case when
0 is estimated among the usual range.

We assume that the time series {Y;} satisfies

V2, = X,, (2.2)

where V = 1 — B, B is the backward shift operator such that BX; =
Xt-1, and {X;} is a stationary process which can be expresses as

Xt = i%&-p (2.3)

3=0
where {1;} is a sequence of real numbers, > 52, |¢);| < oo, and {e;}

a sequence of independently identically distributed random variables
such that Ee; = 0, Ec? = 0% and Ee} = ko*, where 0 < k < 00. The



time series that satisfies (2.2) is a typical time series that exhibits a
local linear trend.

We assume that the smoothing algorithm (1.2) is employed for
t = 1,2,---,n, under the initial values To and Go which are suit-
ably constructed from the sample such that E(ey(1,0))? < oo and
E(e;(1,0))? < oo for 8 € 6.

In what follows, the one-step forecast error e;—;(1,0) is written as
e:(0) for simplicity. We prepare some lemmas that will be needed
later.

LEMMA 1 The one-step forecast error {e,(0)} satisfies

V2, = e(8) — g1(0)e—1(6) — g2(6)er—2(0) (2.4)
for t > 3, where g1(0) =2 — 6; — 6,05 and g2(0) = —(1 — 6,).
Proof. See Roberts (1982). O

LEMMA 2 {e/(@)} has the following representation which is unique
in the mean square sense:

t—3 2

el(8) =Y 6i(6)Xe—i + "l (0)e;(6) (2.5)
§=0 j=1
fort > 3, where
1 if 7=0,
$i(0) = { Tho1ge(0)¢;(0) if 1<j<2, (2.6)

Yie19x(0)0;k(0) if j=>3
and

oB(9) =

J

{ 6(j,1) if t=1,2 27)

i gk(0)a™™(6) if t>3
for 3 =1,2, where §(4,t) =1 ift =3 and 6(j,t) =0 ift # j.

Proof. It is easy to show that the results hold for ¢ = 3. Then Lemma
2 can be shown by induction. We omit the details. O



LEMMA 3 For any 0 € ©, there exist positive constants My, My and
r, 0 <r <1, such that

|6;(0)] < Myj*r?  for j=1,2,--

and
0P(O)] < Mat*rt for j=1,2t=12, .

Proof. It follows from (2.6) and (2.7) that ¢;(6) and ag-t)(O) satisfy
the following difference equations:

[1-91(6)B — g2(6) B*)¢;(6) = 0,
1~ 9:(0)B - 02(6)B*)g”(0) =0, j=1,2
It is easy to show that, for any 6 € ©,
1-g1(0)z—g2(0)22#0 for |2| <1

Then Lemma 3 follows from Corollary 3.6.1 in Brockwell and Davis
(1991). The details are omitted. O

Let y(h) = E(X+2X;). We will use ’Z, — Z a.s.” to denote that
{Z,} converges to Z almost surely as n tends to infinity.
LEMMA 4 We have

Qn(0) — Q(0) a.s. uniformly in 0 € O,

where

Q0) =33 :(0)5(0)(i — ).

i=0 j=0
Proof. Lemma 4 can be shown by using the similar arguments as in
Lemma 3 in Chen (1994). The details are omitted. 0

LEMMA 5 The h-step forecast error e;(h,0) satisfies

h-1
ee(h,0) =) v;(0)ersn—;(0),

7=0



where
1? j ~ 0’

v;(0) =
i) { 01+ 6162, j=1,2,---.
Proof. From (1.2), we have

T't = T;t—l + G't = Gt—l = (91 + 0102)6;1(0) + ét-—l-
Now consider e;(2, ). We have

et(2, 9) = Yo — Tt - ZGt
= Yo — (Tig1 + Gea) + Tig1 + Gey1 — Tt — Gy — Gy
= e2(0) + (01 + 6162)e:41(0).

Hence Lemma 5 holds for A = 2. The proof of Lemma 5 is completed
by induction. m]

Using the above lemmas, now we obtain the following results. We
use 'Z, = F’ to denote that {Z,} converges in law to the distribution
F as n tends to infinity. Denote by N(0,V) the normal distribution
with mean 0 and variance V.

THEOREM 1 Suppose that Q(0) has a minimal point 8 in © and 6
ezists uniquely. Then the followings hold:

(i) 6, — 6 a.s.

(i) If 6o € Int(®) and, in (2.8), {e} is Gaussian and {y,}
satisfies 32520 J|t;| < 0o, then

ea(h,0,) = N(0,Q(h,0;)), h=1,2, -,

where

h—1h—-1 o0 o0

Q(h,80) =" 3" > "> vi(60)v;(00)dr(B0)u(Bo) (i — j + k — 1).

=0 j=0 k=0 I=0

Proof. The results can be shown by using the similar arguments as in
Theorems 1 and 2 in Chen (1994). O



REMARK. Under suitable conditions, Theorem 1 can be used to
give an approximate h-step prediction interval for the Holt’s method
by considering the sample version of a suitably truncated form of

Q(h1 00)
3. Empirical Studies

In this section, we show short-range forecasting performance of the
Holt’s method using real time series data. We also discuss the problem
related to the range of the smoothing parameters by showing whether
the forecasting accuracy is improved or not when the wider range ©
is used.

Our emprical studies have been performed as follows. For a time se-
ries data Y3, Yz, - - -, Y, , we calculated the one-step forecasts Y, -1(1),
m =mng+1,---,n, by taking the first m — 1 observations Y}, - - -, Y1
as a sample and shifting m from ng + 1 to n. The smoothing algo-
rithm (1.2) was used for ¢t = 3,4,---,m — 1, under the initial values
Ty = Ys and Gy = Y2 - Y;. The smoothing parameters were estimated
among the usual range (0, 1] x (0, 1] and the wider range ©. Then the
forecasting accuracies of the one-step forecasts corresponding to these
two ranges were compared. The following three summary statistics
can be used as a benchmark for evaluating the forecasting accuracy:

RMSE = J ! znj [em(Om-1)]2,

n—nmng m=no+1

1 s N
MAF = EmlOm— ’
e 2, B
MAPE = —1 em(Om-1)| | 100%.
n—ng = Yo

Our empirical studies were performed for the following data and
the results are as follows:



(i) Case 1: Quarterly Iowa Nonfarm Income

This data was collected from Abraham and Ledolter (1983) (see
Series 1, pp.419), which is the quarterly Iowa nonfarm income for
1948-1979. Figure 1-1 is a plot of the data. The time series shows a
smoothly increasing trend.

There are 128 observations in the data. We calculated the one-step
forecasts of Yy, - - -, Y128 by the Holt’s method based on the usual range
and the wider range. Estimated values of the smoothing parameters
among the wider range coincide with those among the usual range. So
the forecasts based on these two ranges are the same with each other.
Figure 1-2 gives the plot of the one-step forecasts, where 'Observed’ is
the plot of the observations, 'Holt’ the plot of the one-step forecasts
by the Holt’s method. RMSE, MAFE and M APE of these forecasts
are given in Table 1. Estimated values for the smoothing parameters
6, and 0, are plotted in Figures 1-3 and 1-4 respectively. For this data,
the accuracy of one-step forecasts by the Holt’s method is very good.

(ii) Case 2: Annual Populations of Okinawa

Figure 2-1 gives a plot of the annual populations of Okinawa from
1946 to 1995. There is a missing value in the data which corresponds
to the year 1951. We treated this missing value by taking the average
of the values of 1950 and 1952. It seems that there are some structural
changes in the trend, possibly in 1971 for example.

We calculated the one-step forecasts of Yig, - - -, Yso, that is, the
forecasts of 1961-1995, by the Holt’s method using the usual range
and the wider range of the smoothing parameters. A plot of these
forecasts is given in Figure 2-2, where 'Holt (usual)’ is the plot of the
one-step forecasts using the usual range and 'Holt (wider)’ the one-
step forecasts using the wider range 8. RMSE, MAE and MAPE
are listed in Table 2. Estimated values of 6; and 6, in these fore-
casts are plotted in Figures 2-3 and 2-4 respectively. It can be seen



that, when the wider range is used, estimated values of the smooth-
ing parameter 6; go slightly beyond the usual range. While both the
one-step forecasts using the usual range and the wider range perform
very well, the latter appears to be slightly worse than the former.

(iii) Case 3: Unwversity of lowa Student Enrollments

This data was from Abraham and Ledolter (1983) (see Table 3.11,
pp.116) and was used by these authors to show the forecasting perfor-
mance of the Brown’s double exponential smoothing method. Figure
3-1 gives a plot of the data—the annual student enrollments (fall and
spring semesters combined) at the University of Iowa, from 1951/52 to
1979/80. It appears that the trend of the time series changes fiercely
over the time.

There are 29 observations in the data. We calculated the one-step
forecasts of Yy;, - - -, Y29 by the Holt’s method using the usual as well
as the wider ranges of the smoothing parameters. The forecasts are
plotted in Figure 3-2. RMSE, MAE and MAPE are listed in Table
3. The overall forecasting performance for this data set is satisfactory,
though it is somewhat worse than that for those two data sets given in
the above. The estimated values of #; and 6, among the usual range
and the wider range © are plotted in Figures 3-3 and 3-4 respectively.
In the case when the wider range is used, the estimated values of
the smoothing parameters, especially 6., largely go beyond the usual
range. In this case, there is a tendency to overshoot sudden changes
in the trend, as can be seen in Figure 3-2. Table 3 shows that the
forecasting accuracy of the Holt’s method using the wider range gets
worse than that using the usual range.

(iv) Case 4: Yearly total farm loan demand in the U.S.A.

This data was from Nazem (1988), where it was uased to show
applications of ARIMA models in forecasting (see §14.1). Figure 4-1
gives a plot of the data: yearly total farm loan demand in the U.S.A.
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Figure 1-1. Quarterly Iowa nonfarm income (in millions of dollars),

first quarter 1948 to fourth quarter 1979.
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Figure 1-2. One-step forecasts of quarterly Iowa nonfarm income,
first quarter 1958 to fourth quarter 1979.

Table 1. RMSE, MAE and MAPE of one-step forecasts in Figure 1-1.
RMSE MAE MAPE (%)
2.42 16.14 0.67

Holt’s method
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Figure 2-1. Populations of Okinawa, 1946 to 1995.




1300000 - = e —

1200000

1100000

1000000

900000 +

800000 |-

700000

Populations of Okinawa

) —0— Observed
—— Holt (usual)
—— Holt (wider)

600000

500000

400000 0 O O VO VIO GO 0 T N O OO OO O N1 0 0O O O S A O
© O A N 0 — ¢ - © N ©OW O AN O O r~
<t w0 n 0 O O O - - o D D
D DD DAY D DA D DD D DD DD DN D
- — ~ = i L Lam! — — i - i - i — — i
Year

Figure 2-2. One-step forecasts of populations of Okinawa, 1961 to 1995.

Table 2. RMSE, MAE and MAPE of one-step forecasts in Figure 2-2.

RMSE MAE MAPE (%)
Holt’s method (usual) 1727.61 7477.74 0.754
Holt's method (wider) | 1745.44 7511.27 0.760
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Figure 3-1. University of lowa student enrollment, 1951/52 to 1979/80.
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Figure 3-2. One-step forecasts for University of lowa
student enrollment, 1961/62 to 1979/80.

Table 3. RMSE, MAE and MAPE of one-step forecasts in Figure 3-2.

RMSE MAE MAPE (%)
Holt’s method (usual) 221.83 801.71 2.28
Holt’'s method (wider) | 237.60 878.94 2.51
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Figure 4-1. Yearly total farm loan demand in the U.S.A., 1929-1980.
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Figure 4-2. one-step forecasts of yearly total farm loan demand
in the U.S.A., 1939 to 1980.

Table 4. RMSE, MAE and MAPE of one-step forecasts in Figure 4-2.

RMSE MAE MAPE (%)
Holt (usual) 0.207 0.869 6.120
Holt (wider) 0.279 1.018 9.205
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from 1929 to 1980. This series shows a smooth trend except in 1946,
where the obervation appears like an outlier.

The one-step forecasts of Y, --,Yse were calculated using the
Holt’s method based on the usual range and the wider range. The fore-
casts and the actual values are shown in Figure 4-2. RMSE, MAE
and M APE are listed in Table 4. The corresponding estimated val-
ues of #; and 6, in those forecasts are shown in Figures 4-3 and 4-4
respectively. For this data, the Holt’s method provides satisfactory
one-step forecasts. However, the one-step forecast for 1947 using the
wider range largely exeeds the actual value. The reason is as follows:
when the wider range is used, the abnormal value in 1946 causes the
value of 8, used to forecast 1947 going largely beyond the usual range
(see Figure 4-4), and then the large value of 83 overshoots the sudden
change in the trend due to the abnormal value and causes the forecast
bad.

4. Concluding Remarks

e We have given theoretical results on the asymptotic forecast er-
rors of the Holt’s method for some stochastic processes. These
results are helpful for evaluating the forecasting accuracy of the
Holt’s method from a theoretical point of view.

e Our limited empirical studies show that the Holt’s method is very
satisfactory for short-range forecasting of a time series that has
a trend.

e Concerning the problem of the range of the smoothing parame-
ters, our empirical studies show that there is no effects on improv-
ing the forecasting accuracy by using the wider range suggested
by some previous works. When the series involes a smooth trend
(see Case 1), the estimated values of the smoothing parameters
do not go beyond the usual range. On the other hand, in the case



when the trend in the series involves sudden changes (see Cases
2, 3 and 4), the estimated values of the smoothing parameters go
slightly or largely beyond the usual range, depending on the char-
acteristics of changes in the trend. When the estimated values of
the smoothing parameters, especially of 62, go largely beyond the
usual range, there is a tendency to overshoot the sudden changes
in the trend and the forecasting accuracy using the wider range
gets worse than that using the usual range.
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