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The Wake Behind a Circular Cylinder
at Low Reynolds Numbers

Giichi ARAKAKI

§1. Introduction

Concerning the wake behind a circular cylinder and other two dimensional
bluff bodies, many investigations have been developed since the time-~of Benard
and various features of the wake have been released besides a summary of the
known phenomena found in Goldstein.

In the present paper some observations developed by colour dye on the behavior
of wake behind a circular cylinder at an intermediate range of Reynolds number,
(R=Ud/v, where U is the cylinder speed, d the cylinder diameter and v kinematic
viscosity) 10< R<{150, are presented.

The aim of this paper is to observe the region of flow immediately behind
the cylinder, to find the character of the flow in the wake and to obtain some
details of the wake geometry.

§2. Experimental Method

The experiments were performed in a glass water tank of 75 cm in length, 50
cm in breadth and 35 cm in depth.

In order to move a circular cylinder uniformly, the carrier to which the cylinder
is fixed is slided on the straight rails above the tank by means of a drawing screw.

It is possible to vary the speed of the carrier continuously in the range from
0.3 cm/sec to 1.5 cm/sec using an electric motor and a slide transformer.

Dyed water is put into the water around the cylinder producing the wake with
a small injector to make it possible to observe visually the flow below the free
surface.

The dye used is Fluorescein, concentrations being so small that the properties
of the dyed water are not altered from those of the ambient water.

The horizontal layer below the free surface is illuminated from both sides of
the tank normal to the flow direction through narrow slits.

The illuminated part of the wake behind a circular cylinder is photographed
with a camera placed above the tank.

Various circular cylinders of diameter 2.37 mm, 3.02 mm, 4.21 mm, 4.71 mm,
5.33 mm, 6.65 mm, and 9.82 mm are used so that Reymolds number from about
10 to 150 can be obtained. The ratios of the diameter of the cylinder to the width
of the tank range from 1/240 to 1/51.

It is necessary to allow the water to remain at rest for two hours or more
after each run and before beginning each experiment, the experimental conditions
are carefully controlled.



2 Arakaki: The Wake Behind a Circular Cylinder at Low Reynolds Numbers

§3.0. Formation of the wake

It has long been recognized that for two-dimensional flow behind a circular
cylinder at a Reynolds number of 3~6 a pair of fixed vortices is formed immediately
behind the cylinder. The fixed vortex-pair is separated from the main flow by
the vortex layers' which are continuations of the laminar boundary layer of the
cylinder after its separation.

As the Reynolds number is increased the vortices elongate in the direction of
flow and after becoming asymmetry the vortices move away from the cylinder.

It is also commonly accepted that the wake below the vortex-pair becomes
unstable at a Reynolds number of about 40, and the first appearance of a vortex
street is a consequence of this instability. As the Reynolds number is increased
the vortex street due to vortex shedding from the cylinder is generated.

While many investigations have been made by many authors concerning the
origin of the vortex street, it seems likely that the mechanics of the formation of
periodic wakes is still an interesting problem to be studied.

In this section, some deatailed observations about the relation between the
vortex-pair and the wake below the vortex-pair are presented.

§3.1. Three stages of the wake

The process of the development of wake behind a circular cylinder with
Reynolds numbers may be discussed from three different stages in its formation.

(a) Standing vortex-pair and straight line wake.

- For Reynolds numbérs below about 30, a pair of vortices formed immediatly
behind the cylinder is quite syrhn_)etric and stable and the wake behind the
vortex-pair is a straight line as shown in the figures from Fig. 1.1 to Fig. 1.4.

These two eddies grow and become more and more elongated in the flow
direction with increasing the Reynolds number.

The straight line wake is not formed by the fluid flown out of the vortex-pair
but is formed by the flow downstreem of the cylinder.

It is often observed that, when a small amount of dyed water is attached to the
cylinder, only the standing vortex-pair which are fixed to the cylinder throughout
are formed and no line wake can be found. In order to observe the line wake, it
is always neccesary to put sufficient amount of dyed water ahead of the cylinder
so that some separated portion of it flows back into the point some distance
downstream of the cylinder.

In this stage, the flow field around the cylinder is steady.

(b) Oscillating vortex-pair and waving line wake.

As the Reynolds number is raised beyond 30, the faint periodic oscillation
begins alternately only at the rear of the vortex-pair but a large part of the
vortex-pair remains undisturbed (Fig. 1.5).

It would seem that a cross flow from the laminar region outside the wake
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(1.1) R=8.95 (1.6) R=42.5

(1.2) R=13.3 (1.7) R=62.0

(1.3) R=22.1 (1.8) R=84.5

(1.4) R=28.3 (1.9) " R=102"5

(1.5) R=33.2 (1.10) R=125.0

Fig. 1 Development of the vortex-pair immediately behind a circular cylinder.
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2.1 R=41.3

(2:2) R=56.6

(2.8) R=62.7

(2.5) R=72.0

Fig. 2 The downstream development of the wake behind a circular cylinder.
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begins to affect the sufficiently elongated vortex-pair which are unstable against
such forces.

Even in this transition stage, no vortex shedding occurs but the line wake
behind the vortex-pair begins to oscillate very faintly corresponding to the oscil-
lation of the vortex-pair.

As the Reynolds number is raised to about 35, a small amount of the dyed
fluid in the oscillating vortex-pair begins to be transfered periodically along the
waving line wake (Fig. 1.6). This shedding of vortices becomes more and more
conspicuous whith increasing Reynolds numbers, but no special effect can be seen
upon the oscillation of the line wake (Fig. 1.7).

In the Reynolds numbers range from 30 to 65, the amplitude of the oscillation
of line wake increases with increasing Reynolds numbers (Fig. 2.1, 2.2, 2.3).

(c) Degenerated vortex-pair and vortex street.

At a Reynolds number beyond about 65, an abrupt transition takes place in the
behaivor of the flow behind the cylinder (Fig. 1.8~1.10; Fig. 2.4~2.5).

In this stage, besides the vortices shedding from the vortex-pair along the
waving line wake, there is another fluid springing alternately from the outer side
of the vortex-pair, rolling up into vortices, and moving downstream. The vortices
arrange themselves in a double row and the typical Karman vortex street is
observed.

The amplitude of waving line wake becomes larger abruptly owing to the
influence by the rolling vortex.

With increasing the Reynolds numbers, the amount of vortices shed into the
rolling vortex increases more and more while the amount of vortices shed along
the line wake decreases.

The region of flow inside the vortex-pair between the separation points on the
cylinder and the first appearance of the periodic rolling vortex decreases in its
portion with increasing the Reynolds number.

As the Reynolds number of about 90 is reached, the rear stagnation point begins
to oscillate periodically right and left of its initial position on the cylinder.

With further increase of the Reynolds numbers, most part of the vortex-pair
moves very quickly into the rolling vortex, so in this case it is no longer possible
to speak of vortex-pair.

§3.2. Streamlines and streak lines

In order to observe the streamlines corresponding to the streak lines in the
wake, the aluminium powder method is used besides the dyed method. The
aluminium powder which is scattered on the free surface shows the streamlines in
the wake behind a moving cylinder.

Some of the photographs which show the relation between the streamlines and
the streak lines in the wake are illustrated in the figures 3.

In obtainning the picture shown in Fig. 3.2, two methods are used at the same
time, that is, the aluminium powder method in which the aluminium powder is
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(3.3 R=51.1 (3.4) R=52.2
Fig. 3. Streamlines and streak lines in the wake behind a circular cylinder.

scattered on the free surface and the dyed method in which the dyed water is put
into the water below the free surface.

It can be seen from the picture that the centres of the vortex shown by the
streamlines coincide with those of the vortex shown by the streak lines.

(4.1)

(4.2)

(4.3)

(4.4)



Bull. Arts & Sci. Div., Ryukyu Univ. (Math. & Nat. Sci.) 7

As is shown in Fig. 3.3, the row of vortices is not formed clearly, but it may
be thought that there exist the weak vortex generated by the flow downstream in
the neighborhood of the waving wake, though the positions of the centre of the
vortex are not clear.

However, it is evident from the picture shown in Fig. 3.4 that in this stage
of the Reynolds numbers no vortices are shed in the form of rolling vortex from
the vortex-pair.

§4. Evolution of the wake

Observations are made toexamine the flow phenomena behind a circular cylinder
starting from rest. Photographs of the progressive development of the wake
formed behind a circular cylinder which is accelerated from rest to a uniform
velocity were taken.

Figures 4.1 to 4.8 show a typical sequence of instantaneous pictures illustrating

(4.7)

(4.8)

Fig. 4. Consecutive pictures of the evolution of the wake behind
a circular cylinder. (The final Reynolds number is 79.5)
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the development of the wake behind a circular cylinder corresponding to final
Reynolds number of 79.5.

Figure 4.1 shows a pair of axisymmetric standing vortex and the straight line
wake shortly after the boundary layer has separated from the surface of the
cylinder.

The standing vortex, after elongating more in the direction of flow for a short
time, becomes unsymmetry and the line wake begins to oscillate faintly (Fig. 4.2).

As the speed of cylinder is increased the rear portion of the vortex-pair begins
to be disturbed by the crossflow from outside the wake and is devided into inner
and outer parts (Fig. 4.3).

Up to this stage, no vortices shedding from the vortex-pair can be observed.

The oscillation of vortex-pair becomes more conspicuous and the amplitude of
waving line wake becomes larger and larger.

With further increase of the speed of cylinder, some amount of vortex element
begins to be shed along the line wake (Fig. 4.4, 4.5) and then the vortex shedding
from vortex-pair into the field outside line wake takes place in the form of rolling
vortex (Fig. 4.6, 4.7).

The amplitude of waving line wake is increased abruptly by the influence of
rolling vortex.

Then, the same periodic behavior persists and the fully developed wake
corresponding to final Reynolds number is established (Fig. 4.8).

Throughout the observations, it was found that the most of the dye leaving
the cylinder on one side of the wake flowed into the vortices on that side, but a
small amount of the dye remained within the rotational region of the fixed vortices
was transfered little by little to the other side through the rear stagnation point.

§5. The angle of separation

&0’ . T T T T T T 1T T
F v .
60° |- [ =)
40° .
Ie) © d=2.37mm
20° | B d=3.02mm 4
+ d =5.33mm
® d=9.82mm
i |
1 S b i 1 s Lo 5
10 20 ¢ 30 40 50 60 70 80 90 100 150

Fig. 5. Separation angles plotted against Reynolds numbers.
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Many photographs of the vortex-pair behind a circular cylinder were taken at
different Reynolds numbers.

The separation angles are determined by examining the photographs in the
Reynolds number range from about 10 to 150.

Below the Reynolds number of about 10, it is considerably difficult to estimate
the separation angles since the dye accumulated in the attached eddies becomes
vague probably by diffusion.

The angles of separation increase linearly with the logarithm of Reynolds
number as shown in figure 5.

§6. The wave length and amplitude

The wave length and amplitude of wake are also determined by examining the
photographs.

Both the wave length and amplitude increase with distance downstream from
the cylinder as far as the region where the regular features are fully developed.

In the fully developed stable region, both of them are found to be independent
of distance for a definite Reynolds number.

The variation of wave length with distance downstream from the cylinder for
different Reynolds numbers is illustrated in figure 6.

It is evident from this figure that the distance downstream from the cylinder
up to the stable region decreases with increasing Reynolds number.

Figure 7 shows the variation of wave length at the stable region with Reynolds
numbers.

The variation of amplitude which is determined at the stable region is shown
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Fig. 6. Wave-length plotted against distance 'downstream.
(x is the distance from the centre of the cylinder)
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Fig. 7. Wave-length plotted against Reynolds numbers.
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Fig. 8. Amplitude plotted against Reynolds numbers.

in figure 8.

As is found from the figure, the oscillation of line wake begins at the Reynolds
number of slightly lower than 30.

The amplitude of wake increases gradually with increasing Reynolds number:
suddenly there is a jump in amplitude between the Reynolds number 60 and 70,
which means the rolling vortex begins to be shed from the vortex-pair at a certain
Reynolds number in this range.
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§7. Summary

An experimental investigation was carried out for the purpose of studing certain
characteristics of the wake behind a circular cylinder at an intermediate Reynolds
number (10<R<150).

Special attention was paid to the variation of these characteristics with increa-
sing Reynolds number associating with three different stages in its development.

An illustration of wake evolution behind a circular cylinder accelerated from
rest to a uniform velocity was also presented.

Some details of the wake geometry were obtained.

Throughout the series of observations, it was found that no turbulent motion
was generated in this Reynolds number range.

In conclusion the author would like to express his sincere thanks to Professor
T. Maekawa of Hiroshima University for his suggestions and kind encouragement.
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