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On Some Properties of Resistance Functions*

By

Tadao INAMI**

Introduction

Although convexity and concavity are mathematical notions, the theorems of this thesis
are concerned with examining certain resistance functions which arise from the study of
electrical networks. Certain concepts from physics will be used 'without definition, among
these are the concept of an electrical network, the concept of potential at a point (and also
potential difference between points) of the network, and the concept of a loop and of a nodal
point of the network.

The two basic laws due to Kirchhoff concerning currents and potentials in an electrical
network will be assumed.

Kirchhoff's La\vs

1. The sum of the currents flowing into a point of a network is zero.
2. The sum of the potential differences around a closed loop of a network is zero.
Before theorems are presented and proved, several definitions must be given.
DEFINITION 1. Power. If N is a network and x is an element of N, the statement that

P is the power consumed in x means that P is the rate with respect to time at which the
external energy is consumed, Le., absorbed or transformed, by x; and the statement that
P' is the power consumed in N means that p' is the rate at which the external energy is
consumed by N.

DEFINITION 2. Resistance. If N is a network, x is an element of N, I is the current
through x, and P is the power consumed by x, the statement that R is the resistance of x
means that

PR=p.
DEFINITION 3. Impepance. If N is a network, x is an element of N, I is the current

through x, and E is the potential difference across x, the statement that Z is the impedance
of x means that

Z-~- I'

DEFINITION 4. Conductance. If N is a network, x is an element of N, E is the potential
difference across x, and P is the power consumed in x, the statement that G is the conduc
tance of x means that

P
G=EZ·

DEFINITION 5. Admittance. If N is a network, x is an element of N, I is the current
through x, and E is the potential difference across x, the statement that Y is the admittance

* This paper is based on the master's thesis presented by the author to the faculty of the
graduate school of the University of Texas.

** Agriculture, Home Economics and Engineering Division, University of the Ryukyus.
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of x means that
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I
Y=E·

DEFINITION 6. Linear Network. The statement that a network N is linear means that
the quantities, such as resistance, impedance, conductance and admittance, of each element
of N are not influenced by external constraints, Le., conditions imposed upon Nfrom outside.

DEFINITION 7. Duality. Suppose that M is a set of variables with range R, that M' is
a set of variables with range R', and that a relation f holds among the elements of M for
all values of the variables in R, then the stalement that M and M' are duals with respect
to f means that

1. the relation f holds among the elements of M' for all values of the valuables in R'.
2. there exists a reversible transformation T that throws each element of M into some

element of M', and
3. if K is a subset of M and a relation g holds among the elements of K for all values

of those variables in R, there is a subset K' of M' such that the relation g holds
among the elements of M' for all values of them in R';

and the statement that an element m of M and an element m' of M' are duals means that
1n' is the image of m under the transformation T. If A is a set of equations, inequalities,
or theorems expressing the relation of f among the elements of M in the range R, and B is
a corresponding set of equations, inequalities, or theorems expressing the relation f among
elements of M' in the range R', then A and B are said to be duals with respect to f.

NOTE: It may be noted that impedance of an element of a network is the reciprocal of
admittance of the element, and vice versa. Also note that resistance and impedance have the
same numerical value for an element of a network when P/I=E; and that conductance and
admittance have the same numerical value for an element of a network P/E=I. In discussions
to follow, resistance, impedance, couductance, and admittance will be assul~ed to be constants
with respect to time for a given element of a network, Le., only linear networks will be
treated.

The definition of duality given here i" a fairly general one. Several other definitions of
duality, however, are possible. For instance, under certain restricting conditions, a relation
f', distinct from f, that obtains among the elements of M' may be viewed as a dual of f·
The duality of addition and multiplication in Boolean algebra is one such example.

On the basis of the foregoing laws and definitions, it is now possible to present and prove
some theorems.

THEOREM 1. If N is either a linear network of impedances and of electromotive forces,
containing no negative resistance, or a part of such a network, the currents in branches of
N distribute themselves in such a way that the function

f= ~ Rjlj 2-2 ~ EjIj
j=l j=l

is a mInImum; where Rj is the resistan~e of .ith branch, Ij is the current through .ith
branch, Ej is the potential difference across .ith branch of N, and m is the total number of
the branches (numbered 1, 2, .... , m) of N.

PROOF. Suppose that N is a linear network of impedances and of electromotive forces,
containing no negative resistance, or a part of such a network. Let the loop currents of N
be it, i 2 , •••• , in with signs positive or negative according to whether the sense of the
currents is toward an arbitrarily chosen 'direction, say, counter-clockwise in the plane of
respective loops, or against it, respectively.

Then the current in branch j. (O<.i~m) of N is expressed as
n

Ij=aj1i 1+aj2i 2+ajaia+···· +ajnin= ~ ajkik
k=l

where, for each positive integer k not greater than n, ajk is a constant having a value of
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either 1, -1, or o.
Let the electromotive forces in the branches of N be E l , E~, .... , Em, with signs positive

or negative according that the sense of the electromotive forces are toward or against the
predetermined direction, and let the resistances in branches of N be Rt, R<:" ••.• , Rill, each
of which is nonnegative. Then

f= ~Rjlj2-2 ~ Ejlj= ~ Rj(:E ajki k)'!,-2:E Ej( ~ ajkik).
j=l j=l. j=l k=l. j=d k=J.

Assume, now, that it is possible to obtain a different arrangement of current. The
most general of such alterations that does not violate the Kirchhoff's first law consists
of superposition of loop currents Lli1, Lli2, Llin on i l , i 2 , •••• , in. Then the function
becomes

Then

= ~ ~ Rj(ajkLlik)~+2:E ±ajkL1ik(Rjlj-Ej).
j=l k:=l j=l k=l

By Kirchhoff's second law,

Therefore

since, for each positive integer j not greater than 'n, Rj is nonnegative by hypothesis, and
(ajkLl'ik):!. is nonnegotive, because ajk and Llik are real quantities. This proves that the original
distribution of currents was such that f is a minimum.

COROLLARY 1-1. If N is either a linear network of impedances containing no source of
electromotive force or no negative resistance, or a part of such a network, the currents in
the branches of N distribute themselves in such a way that the total power dissipated by N
is a minimum.

PROOF: Shppose that N is either a linear network of inlpedances containing no sourCe
of electromotive force or no negative resistance, or a part of such a network. Then, by
theorem 1,

f= ~ Rjli~-2~ Ejlj
)=1 )=1

is a minimum. Since N contains no source of electromotive force,
111

~Ejlj=O.
j=l

Hence

But

1"
~ R.J·2
j=l J J

is the total power dissipated by N.

NOTE: If, in theorem 1, we substitute admittance for impedance, conductance for
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resistance, potential difference for current, and current for electromotive force, we obtain
our next theorem, theorem 2. It is seen that theorem 2 is a dual of theorem 1, for, let

M=N. [Zj, Ej, Rj, Ij,]

M'=N2 [Yj, ij, Gj, ~ (Vj-Vk)]
k=l

f= ~ (AjBl-2CjBj)
j=1

where N 1 [Zj, (etc.)] is a set of all impedance (etc.) variables in the network of theorem 1.
Substitution of appropriate variables, first from M and then from M', for A, B, and C yields
the relations of theorem 1 and of the following theorem.

THEOLEM 2. If lV is either a linear network of admittances and of current sources
containing no negative conductance, or a part of such a network, the potentials at the nodes
of N are distributed in such a way that

711. 711

f= ~ ~ [gjk(Vj- Vk)2_2i jk(Vj- Vk)]
j=11=1

is a mInImum; where gjk is the conductance between the ;"th and leth nodes, i jk is the current
from the ;"th node to the leth node due to the current source between the }th and leth nodes,
Vj is the potential of ;"th node, of N, and m is the total number of the nodes of N,
considering each end of each branch admittance and current-source as a node.

PROOF. Suppose that N is a linear network of admittances and of current sources
containing no negative conductance or a part of such a network.

Let each end of each branch admittance and of each branch current-source be considered
a node, numbered 1, 2, .... , m. Let the node potentials at nodes 1, 2, .... , 111" be VI, V~,

•••• , V m , respectively, with respect to an arbitrarily chosen potential. Then the potential at
a node }(O<;"~n) is expressed as

m
Vj=ajlvl+aj2v2+aj3v3+···· +ajnVm= ~ ajkVk

k=l

where, for each positive integer Ie not greater than m, ajk is a constant having a value of
either 1, -1, or o.

For each pair of positive integers ;" and Ie both not greater than m, let gjk be the
conductance between nodes ;" and Ie and let ijk be the current from node;" to node Ie, due
to a current source between the nodes. Then

f= ~ :E [(Vj-v,J 2gjk- 2i jk(vj- v k)].
j=1 k=l

Assume, now, that it is possible to obtain a different arrangement of potentials. The most
general rearrangement which does not violate Kirchhoff's second law consists of superposition
of potentials Llvt, Llv~, .... , Llv m at each node of the loops of N.

Then the new value of the function becomes

1+L11= i3 ~ ~ [vj-vk+Llvl(ajl-akl)]2gjk-2 ~ ~ ~ [Vj- Vk+L1v l(ajl-akl)]i jk .
j=l k=1 l=1 j=l k=l l=l

Thus

Llf= ~ ~ :E [(ajl-akl)Llvlr~gjk+2L1vl(ajk-akl)[(Vj-Vk)gjk-'ijk].
j=l k=l l= 1

By Kirchhoff's first law

Therefore
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since, for each set of positive integers :i, k, and l all not greater than m, gkj is nonnegative
and [(ajl-akl)LlvlJ2 is nonnegative, because ajl, akl, and LlVl are real quantities.

CORROLLARY 2-1. If N is either a linear network of electrical admittances containing
no source of electric current nor a negative conductance, or a part of such a network, the
potentials at nodes on N are such that the power dissipated in N is a minimum.

THEOREM 3. If two points A, B are connected by a linear network of conductors, a de
crease in the resistance of anyone of these conductors will not increase the resistance between
A and B.

PROOF: Suppose that two points A, B are connected by a network of conductors, that
I is the current from A to B, and that R is the resistance between A and B.

The power consumed by the network is
P=I2R.

Suppose that the resistance of any single conductor j in the network is reduced from Rj to
R' j and let Ij be the current flowing through Rj before the reduction. Assume that the
currents flowing in the branches of the network remain unaltered in spite of this reduction
in the resistance Rj. There will be a decrease in power consumed by the network equal to

LIP=(Rj-R'j)Ij 2.

The currents which are assumed to exist in the network after the reduction in the resistance
are not the ones that are possible but the ones that were imagined. Suppose that the currents
are allowed to distribute themselves in a manner that is possible in nature. By theorem 1,
there is a further reduction in power consumed by the network.

Thus a decrease in the resistance of any single conductor results in the reduction of power
consumed, Le., if we denote the new resistance between A and B by R',

R'I2~RI2

or
R'~R.

CORROLLARY 3-1. In a linear t\VO terminal resistance network, closing a switch in any
branch of the network does not increase the resistance between terminals.

PROOF: In a linear two terminal resistance network, closing a s,vitch in any branch of
the network represents a reduction of resistance in the switch-circuit from infinite value to
a finite value. By theorem 3, this does not increase the resistance between terminals.

NOTE: This is an extension of the second theorem presented by C. E. Shannon and D.
w. Hagelbarger. (See the primary reference at the end of this paper.) They proved that
this theorem obtains when only the direct-current constraints are to be applied at the termi
nals of a passive network. Here, however, it is proved that the theorem is true for alter
nating-current resistance and that the restrictions imposed by Shannon and Hagelbarger are
quite unnecessary.

COROLLARY 3-2. In a linear four-terminal resistance network, a reduction in the resis
tance of anyone section of the network does not increase the input resistance of the network.

PROOF: An input resistance of a four-terminal network is the resistance between two
input terminals. Therefore, by theorem 3, a reduction in the resistance of anyone section
of the network does not increase the input resistance of the network.

COROLLARY 3-3. In a linear four-terminal resistance network, a decrease in the resis
tance of anyone section of the network does not increase the output resistance of the net
work.

CORROLLARY 3-4. In a linear four-terminal resistance network, closing a switch in any
branch of the network does not increase the input nor out-put resistance.

DEFINITION 8. Concave (downward) function. If I is a function of n nonnegative real
variables, the statement that I is a concave (downward) function means that, for any two
sets of values Xl, X2, •••• , X n and Xl', X,:-', •••• , xn' in the range of I,

f( Xt+

2
Xt', X2+X~' •••• xn+xn' »1..[+,( (' ,2' , 2 - 2 J. Xl, X~, •••• , xu) +ji Xl, X2, Xn')J.
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DEFINITION 9. Convex (downward) function. If! is a function of n nonnegative real
variables, the statement that! is a convex (downward) function means that, for any two
sets of values Xl, X~, .... , Xn and Xl', X2', •.•• , xn' in the range of I,

!( Xl +Xt' X2+ XZ' Xn+xn') 1 - 'I;' ,--2-' --2-' .... , --2-- S:2[!(xt, X~, • ••• , Xn)+!,Xl, X2, ••.. , xu)].

DEFINITION 10. Linear function. If! is a function of n nonnegative real variables, the
statement that f is a linear function means that, for any two sets of values Xl, X~, •••• , Xu

and Xl', X2', •... , xn' in the range of i,

(
Xl +XI' X2+ X2' Xn+xn') 1 ",! --2-' --2-' .... , --2-- =2[!(xt, X2, •••• , Xn)+!(Xt, X2, •••• , x n)].

NOTE: It should be obvious that, if ! is a convex function, then -! is a concave
function, and vice-versa. For other elementary properties of convex and concave functions,
a book l by Hardy, et al., gffers a good summary.

With the preliminary theorems and definitions, we can now proceed to prove several
other theorems, one of which is an extension of a theorem by C. E. Shannon and D. H.
Hagelbarger.

LEMMA 1. If N is a linear network of nonnegative resistancesR1, R 2 , R a, •••• , R n in
series, and R is the resistance between terminals of N, then R is a linear function of R t ,

R-:., .... , Rn •

PROOF: Let N I be a network of nonnegative resistances Rt, R 2, •••• , R n in series, and
ROI be the resistance between terminals of Nt. Let N 2 be a network of nonnegative resistances
R I', R 2', •••• , R n' in series and Ro2 be the resistance between the terminals of N 2• Let No
be the network of nonnegative resistances (R I +R I '), (R2 +R2'), •••• , (Rn+Rn') in series and
R o be the resistance between terminals of No. Then

R 01 =Rt +R2+·· ··+Rn= ~Ri
i=l

Rm~=Rt'+R:{+····+R,t'= ~R/
i=l

Ro =(RI +Rt')+(R2+R2')+···· +(Rn+R.,/)= :E (Ri+ R/)= :E Ri+ ±R/.
i=J. i=l i=l

Ro =ROI +Ro2 •

Therefore, if N is a network of nonnegative resistances R I , R 2, •••• , R n in series and R is
the resistance between terminals of N, then R is a linear function of Rl, R 2 , •••• , R n •

LEMMA 2. If N is a linear network of nonnegative conductances GI , G2 , •••• , Gn in
parallel, and G is the conductance between terminals of N, then G is a linear function of
Gt, G2, •••• , Gn •

PROOF: This is a dual of lemma 1. The proof may be given in exactly similar manner
as in lemma 1.

THEOREM 4. If N is a two-terminal linear network of nonnegative resistances, Rt, R,:-,
.... , R n and R is the resistance between terminals of N,-- then R is a concave (downward)
function of Rl, R 2 , •••• , R n •

PROOF: Suppose that N is a linear two-terminal network of nonnegative resistances R I ,

R z, •••• , R n and that R is the resistance between terminals of N. Form a network N' of
similar configuration by replacing R t by R I ', R 2 by R 2', •••• , R n by Rn', where R I ' R</,
.... , R n' are arbitrary linear nonnegative resistances and let R' be the resistance between

terminals of N'. Form a similar network N(l with RI+~ _R2+R2
' Rn+Rn' and

2 2 2 '
let Ro be the resistance between terminals of No.

Let I denote the current through terminals of No and I j denote the current in the jth

1) G. H. Hardy, J. E. Littlewood, and G. Polya, "Inequalities", Cambridge University Press,
London, 1934.
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branch Rj+R/(O<j~n) of No. Then

R == ~ (Rj+R/)Ij2 'II, RjIj2 11 R/I/!.
o ftl 2I'l. == t112JZ + ~12P·

Let i j denote the current in the jth branch Rj (0 <j~n) of N under the same constraint
as before, and let i/ denote the current in the jth branch R/(O<j~n) of N' under the
same constraint as before. Then

By Corollary 1-1,

~ R .' . .'2./~ R .'1 .~ .
";;",,J J ~J :::::=. L.j J J.
j=l j=:.1

Hence

Ro( Rl~Rl' Jl2~R2' .... , R,,~R,,')~; [R(Rt, Ro, •••• , R,,)+R'(R1', Ro', .•.. , R,.')]

Quod erat demonstrandum.

NOTE: This is an extension of the first theorem presented by C. E. Shannon and D. W.
Hagelbarger in the Journal of Applied Physics, Vol. 27, No.1, January, 1956.

COROLLARY 4-1. If N is a four-terminal network of linear nonnegative resistances R I ,

Rc:., .... , R n with input resistance R, then R is a concave (downward) function of R., R 2 ,

.... , R n •

THEOREM 5~). If N is a linear two-terminal network of nonnegative conductances G1,

G2 , •••• , Gn and if G is the conductance between the terminals of N, then G is a concave
(downward) function of GI , G2 , •••• , Gn •

PROOF: Suppose that N is a linear two-terminal network of nonnegative conductances
Gl, G2, •••• , Gn and that G is the conductance between the terminals of N. Form a lineor
network N' by similar configuration by replacing GI by GI ', G2 by G2', •••• , Gn by Gn', where
GI ', Gz', •••• , Gn' are arbitrary linear nonnegative conductances, and let G' be the conductance

. GI +G I ' G2+G2' Gn+Gn'
between the terminals of N'. Form a lInear network No of 2 2· ... , --2--

in a similar manner, and let Go be the conductance between terminals of No.

Let V denote the potential difference across the terminals of No and let V j denote the
voltage across the .ith branch Gj+G/(O<j~n) of No. Then

n (Gj+G/)Vj2 n GjVj2 n G/V/'
Go= ~ V" == ~ --2-+ ~ --0-

j=! 2" }=1 2V j=1 2V"

Let v j denote the potential differentce across the jth branch Gj(O <:i~n) of N under the
same constraint as before, and let v/ denote the potential difference across the jth branch
G/(O<:i~n) of N' under the same constraint as before. Then

G n Gjv/2

2== fd 2V2-

By corollary 2-1,

Z> This is a dual of the previous theorem.
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~ G·v .~< ~ G ·V·~....., JJ-~ J J
j=l j=l

Hence

G (
GI +Gt' G2 +G:/ Gn+G1/) 1 [ ( '( I' ,o --2--' --2--' .... , 2 ~2 G Gt, G-:., ••.• , Gn)+G G1 , G<:" .•.. , Gn)J.

COROLLARY 5-1. If N is a four-terminal network of linear nonnegative conductance
Gt, G2 , •••• , Gn with input conductance G, then G is a concave (downward) function of Gt,
Gz, •••• , Gn•

THEOREM 6. If N is a multi-terminal balanced linear network of nonnegative resistances,
the input resistance of N is a concave (downward) function of resistances in N.

COROLLARY 6-1. If N is a multi-terminal balanced net\\Tork of linear nonnegative
conductances, the input conductance of N is a concave (downward) function of conductances
of N.

THEOREM 7. The input conductance for an electromagnetic wave propagating through
a medium is:

(a) a concave (downward) function of the conductance encountered by the wave if
(i) the intrinsic impedance of the medium is real, and
(ii) the admittance encountered by the wave has a real value such that G G'~ 4 for

every G and G' in the range.
(b) a convex (downward) function of the conductance encountered by the wave if

(i) intrinsic impedance of the medium is real, and
(ii) the admittance encountered by the wave has a real value such that G G';;:::4 for

every G and G' in the range.
(c) a linear function of the conductance encountered by the ,vave if

(i) intrinsic impedance of the medium is real, and
(ii) the admittance encountered by the wave has a real value such that G G'=4 for

every G and G' in the range.

PROOF: If 1) is the intrinsic impedance of the medium, the input impedance for an
electromagnetic wave propagating thro'!lgh the medium is given by the following equation
as a function of impedance Z encountered by the wave at a point at the distance l from
the source of the wave :3)

Z cos kl+ j1) sin kl
1) cos kl+ jZ sin kl·

The input resistance is, then,

R. -- r;R cos2 kl+1)R sin2 kl_ _ rl'R
1,-1) 1)2 cos~ kl+R2 sin2 kl - 1)2 cos~ kl+R2 sin~ kl

1 1
Ri=· .

1 " kl R . " kl G " kl 1 . n kl- COS" +-.;- SIn'" cos'" +-'l- sIn'"
R ~ ~G

The input conductance is

Gi(G) =G cos2 kl+ 7)~G sin2 kl.

Also

Gi(G') == G' cos2 kl.+ 'l1
G

, sin2 kl
1)"

and

3) See Simon Ramo and John R. Whinnery: "Fields and Waves in Modern Radio," John
Wiley and Sons, 1953.
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G (G+G') G+G' <)kl 2 · <)

i -2- ='-2-cos" + r;2(G+G') sIn"kl

Gi(G)+Gi(G') G+G' t) GG'. <)

2 =~-2- COS" kl+ 21J2(G+G') SIn" kl.

if GG'<4 Go(G+G'» Gi(G)+Gi(G')
-, 1. 2 - 2

if GG'>4 G.(G+G')< Gi(G)+Gi(G')
_., t 2 - 2

if GG'=4, Gi(G~G')__ Gl(G)~Gi(G)

345

THEOREM 8. The input conductance of a transmission line is a
(a) concave (downward) function of the load conductance if

(i) the characteristic impedance of the line is real, and
(ii) the load admittance has a real value such that GG'~4 for every G and G' in the

range.
(b) convex (downward) function of the load conductance if

(i) the characteristic impedance of the line is real, and
(ii) the load admittance has a real value such that GG'~4 for every G and G' in the

range.
(c) linear function of the load conductance if

(i) the characteristic impedance of the line is real, and
(ii) the load admittance has a real value such that GG':=4 for every G and G' in the

range.
PROOF. If Zo is the characteristic impedance of the transmission line, the input impedance

is given by the following equation as a function of load impedance ZL placed at a distance
l from the sending end of the line :4)

Z'- ZL cos ~l+jZo sin f3l
~- Zo cos f3l+jOL sin f3l •

Thus the theorem can be proved in a similar manner as in the previous theorem.

Conclusion

Theorems 1 and 2 are examples of that Principle of Extremum which is manifested so
often in nature. (For examples of manifestations of the Principle, see, for instance D'Abro's
"The Rise of New Physics," Vol. I, Dover.) The theorems here might be called the Mini
mum Power Theorems in Electrical Circuit. If we introduce the concept of duality, theorem
2 may be stated simply as "the dual of theorem 1 is also true." If a theorem is proved, the
dual of the theorem can easily be proved in exactly similar manner as in the orlginal theorem.
Thus, the introduction of duality-concept enables us not only to simplify the statement and
the proof of theorems, but also to find out new theorems.

Corollary 3-1 and Theorem 4 are extensions of the theorems due to Shannon and Hagel
barger. Their theorems apply only to passive linear resistance networks where a direct-current
constrainst is to be applied externally. Their approach of proof makes it difficult to extend
their theorems any further.

But, by proving theorems 1 and 2 and their corollaries, and by adopting an entirely new
method of proof, I have extended their theorems to apply to any linear network containing
no negative resistance. My theorems apply for active as well as passive networks, when

4) See, for instance, Ramo and Whinnery, "Fields and Waves in Modern Radio."
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direct or alternating current constraints are imposed. My theorems also apply when trans
formers are involved in the networks.

In addition, several other theorems on properties of resistance functions have been pre
sented and proved (eight theorems, nine corollaries, and two lemmas in all). Theorem 7
concerns with electromagnetic waves in space, and theorem 8 with transmission lines with
distributed-constants. All other theorems concern with electrical networks with lumped
constants.
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抵抗函数の性質について (摘要)

伊 波 直 朗

たくさんの学者が,いままでに凸函数について相当な研究をしてきている｡凹函数については,し

かし,いままであまり研究されていない｡これは,一つには,おなじ理論が凸函数についても,凹函

数についても適用できるからであるoなぜなら,I(a)を凸函数とすれば,-I(a)は凹函数となるか

らである｡凹函数の研究があまりされていないもう一つの理由は,凹函数の応用性があまり発見され

ていないという点にある｡

1956年に,C.E.SHANNONとD.W.HAGELBARGERが,ある柾の抵抗函数は,直流回路網にお

いて,凹函数であるということを証明した｡この論文は,この定理が,任意の線型集中定数回路網に

適用できるということを証明しようとするものである｡ほかに,任意の線型集中定数回路網,線型分

布定数回路網又は電磁理論における抵抗函数の性質についての定理をいくつか発表し,証明してある｡

この諭文中であーたらしく証明された定理の中には,次のようなものがある｡

定 理 l Nがインピーダンスと起電力の線型回路網で負抵抗を含んでいないと普,またはそのよ

うな回路網の一部であるときは,Nの各校の電流は
7n †1&

f-≡RjIJ･2-2≡EjZj3--1 3kl
が最小となるように分布する｡

垂｣ =1 Nが起電力も負抵抗もふくまない線型のインピーダンス回路網であるときは,Nの各種
の電流は,Nによって消費される全電力が最小となるように分布する｡

葺r華j Nが負コンダクタンスを含まないアドミッタンスと電流源の線型回路網であるとき,普
たはそのような回路網の一部であるときは,N各軌託のポテンシャルは,

1TZm
f-≡≡[gJ･k(1)i- Vk)2-2ijk(vJ･-Vk)]

3'-1k=1

が最小となるように分布する｡

乳 _旦二王 N･が電流藤や負コンダクタンスを含またい線型のアドミッタンス回路網であるとき,ま
たは,このような回路網の一部であるときは,Nの各節点のポテンシャルは,Nに消費さjlる全電力

が最小となるように分布する｡

定 理 3 二点 A,Bが線酬亘瞳各網によって連結されているときは,この回路網中の-抵抗がその

抵抗値を減少することによって A,B間の抵抗値が増大することはない.

系 3-1 任意の二端子抵抗回路網において,任意のスウィッチを入れるとき,端子間の抵抗が増

大することはない｡

系 3･-2 任意の四端子抵抗回路網において,任意の抵抗の抵抗値の減少によって回路の入力また

は出力抵抗が増加することはない｡

星 塑⊥隻Nが非負抵抗Rl,R2,RB,･･･,Rnの二端子線型回路網で,RがNの両端子間の抵抗であ
るときは,RはRl,R2,Ra,-･,Rnの凹函数である｡

定 理 6 Nが非負抵抗の多端子平衝線型回路網であるとき,Nの入力抵抗はN中に含まれている

抵抗の凹函数である｡

室_壁__7_1:-r:恵の媒質中を伝播している電磁波の入力コンダクタンスは
(a) その媒質の固有インピーダンスが実で波が受けるアドミッタンスが実で且領域内のあらゆる

G,G′について GG′_<4であれば,波が遭遇するコンダクタンスのl空1函数であり

(b) その媒質の固有インピーダンスが実で波が遭遇するアドミッタンスが実で且観域内のあらゆ

るG,G′について GG′≧4であれば,波が遭遇するアドミッタンスの凸函数である｡

全部で2つの補助定理,8つの定理,9つの系が証明されている｡


