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On Some Properties of Resistance Functions®
By

Tadao INAMI**

Introduction

Although convexity and concavity are mathematical notions, the theorems of this thesis
are concerned with examining certain resistance functions which arise from the study of
electrical networks. Certain concepts from physics will be used without definition, among
these are the concept of an electrical network, the concept of potential at a point (and also
potential difference between points) of the network, and the concept of a loop and of a nodal
point of the network.

The two basic laws due to Kirchhoff concerning currents and potentials in an electrical
network will be assumed.

Kirchhoff’s Laws

1. The sum of the currents flowing into a point of a network is zero.

2. The sum of the potential differences around a closed loop of a network is zero.

Before theorems are presented and proved, several definitions must be given.

DEFINITION 1. Power. If N is a network and = is an element of N, the statement that
P is the power consumed in # means that P is the rate with respect to time at which the
external energy is consumed, i.e., absorbed or transformed, by z; and the statement that
P’ is the power consumed in N means that P’ is the rate at which the external energy is
consumed by N.

DEFINITION 2. Resistance. If N is a network, x is an element of N, I is the current
through x, and P is the power consumed by w, the statement that R is the resistance of
means that

P
'—I?.
DEFINITION 8. Impepance. If N is a network, x is an element of N, I is the current

through «, and E is the potential difference across z, the statement that Z is the impedance
of x means that

R=

E

Z= T
DEFINITION 4. Conductance. If N is a network, x is an element of N, E is the potential
difference across «, and P is the power consumed in «, the statement that G is the conduc-

tance of * means that
_P
=g
DEFINITION 5. Admittance. If N is a network, « is an element of N, I is the current
through «, and E is the potential difference across z, the statement that Y is the admittance

G

* Tﬁis papér is "bvas;ed on tﬁe fﬁaster’s thesis presented by the author to the faculty of the
graduate school of the University of Texas.
** Agriculture, Home Economics and Engineering Division, University of the Ryukyus.
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of & means that
I

5

DEFINITION 6. Linear Network. The statement that a network N is linear means that
the quantities, such as resistance, impedance, conductance and admittance, of each element
of N are not influenced by external constraints, i.e., conditions imposed upon N from outside.

DEFINITION 7. Duality. Suppose that M is a set of variables with range R, that M’ is
a set of variables with range R’, and that a relation f holds among the elements of M for
all values of the variables in R, then the stajement that M and M’ are duals with respect
to f means that

1. the relation f holds among the elements of M’ for all values of the valuables in R’

2. there exists a reversible transformation T that throws each element of M into some

element of M’, and

8. if K is a subset of M and a relation g holds among the elements of K for all values

of those variables in R, there is a subset K’ of M’ such that the relation g holds
among the elements of M’ for all values of them in R’;
and the statement that an element m of M and an element m’ of M’ are duals means that
m’ is the image of m under the transformation T. If A is a set of equations, inequalities,
or theorems expressing the relation of f among the elements of M in the range R, and B is
a corresponding set of equations, inequalities, or theorems expressing the relation f among
elements of M’ in the range R’, then A and B are said to be duals with respect to f.

NoteE: It may be noted that impedance of an element of a network is the reciprocal of
admittance of the element, and vice versa. Also note that resistance and impedance have the
same numerical value for an element of a network when P/I=FE; and that conductance and
admittance have the same numerical value for an element of a network P/E=I. In discussions
to follow, resistance, impedance, couductance, and admittance will be assumed to be constants
with respect to time for a given element of a network, i.e., only linear networks will be
treated.

The definition of duality given here is a fairly general one. Several other definitions of
duality, however, are possible. For instance, under certain restricting conditions, a relation
f, distinet from f, that obtains among the elements of M’ may be viewed as a dual of f.
The duality of addition and multiplication in Boolean algebra is one such example.

On the basis of the foregoing laws and definitions, it is now possible to present and prove
some theorems.

THEOREM 1. If N is either a linear network of impedances and of electromotive forces,
containing no negative resistance, or a part of such a network, the currents in branches of
N distribute themselves in such a way that the function '

=3 RyI#—-2 % El;
i=1 =1

is a minimum; where E; is the resistance of jth branch, I; is the current through jth
branch, E; is the potential difference across jth branch of N, and m is the total number of
the branches (numbered 1, 2, ----, m) of N.

Proo¥. Suppose that N is a linear network of impedances and of electromotive forces,
containing no negative resistance, or a part of such a network. Let the loop currents of N
be i1, 43, + -+, in With signs positive or negative according to whether the sense of the
currents is toward an arbitrarily chosen direction, say, counter-clockwise in the plane of
respective loops, or against it, respectively.

Then the current in branch j (0<j<m) of N is expressed as

n
Ii=antitajsista;sis+---- +ajn)b7;EkZlajkzk

where, for each positive integer k not greater than u, aj; is a constant having a value of
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either 1, —1, or 0.

Let the electromotive forces in the branches of N be E,, E., ----, E,, with signs positive
or negative according that the sense of the electromotive forces are toward or against the
predetermined direction, and let the resistances in branches of N be R, R, -+, Eu, each
of which is nonnegative. Then

m m. M n n
f= DRI -2 N E; L= 3 RS apinf—2 2 By D ajui).
j=1 i=1 j=1i k=1 j=1 k=1
Assume, now, that it is possible to obtain a different arrangement of current. The
most general of such alterations that does not violate the Kirchhoff’s first law consists
of superposition of loop currents iy, diz, +---, din on %y, 4z, *+--, tu. Then the function
becomes
m. n m n

Fraf= 2Ry [ Roulis+ di0 =2 31 B) [ 3 ojulist4in)].

Then

af RJ(U«JLA'LL) +2 ?‘ 2 ajidirlanRjix—Ej)

o
TMs
M=

2

I
1 l\ﬂ

n m. n
2;3 J(ajkdi/c)”+21§__.: = ajdin(Rilj—Ej).
By Kirchhoff’s second Iaw,

E(R_}Ij—Ej):O.

Therefore
Af— S‘RJ(aJLALI.) >0

since, for each positive integer j not greater than %, R; is nonnegative by hypothesis, and
(ajrdik)? is nonnegotive, because aji and 4i; are real quantities. This proves that the original
distribution of currents was such that f is a minimum.

COROLLARY 1-1. If N is either a linear network of impedances containing no source of
electromotive force or no negative resistance, or a part of such a network, the currents in
the branches of N distribute themselves in such a way that the total power dissipated by N
is a minimum.

ProoF: Shppose that N is either a linear network of impedances containing no source

of electromotive force or no negative resistance, or a part of such a network. Then, by
theorem 1,

f= DRI/ ~2 ) EI;
=1 j=L

is a minimum. Since N contains no source of electromotive force,

m

S E;I;=0.
=1
Hence
f= 2RI/
j=1
But

m

2RI
j=1
is the total power dissipated by N.

Note: If, in theorem 1, we substitute admittance for impedance, conductance for
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resistance, potential difference for current, and current for electromotive force, we obtain
our next theorem, theorem 2. It is seen that theorem 2 is a dual of theorem 1, for, let

M=N.[Z;, E;, Rj, I;,]

M'=N.[Y}, ij, Gj,kg.‘l (wj—vi)]

f= j?:i(AjBﬁ—?Cij)

where N, [Z;, (ete.)] is a set of all impedance (etc.) variables in the network of theorem 1.
Substitution of appropriate variables, first from M and then from M’, for A, B, and C yields
the relations of theorem 1 and of the following theorem.

THEOLEM 2. If N is either a linear network of admittances and of current sources
containing no negative conductance, or a part of such a network, the potentials at the nodes
of N are distributed in such a way that

=2 B lgavs— o =2i v, —v0)]

is a minimum; where g;; is the conductance between the jth and kth nodes, 7;; is the current
from the jth node to the /th node due to the current source between the jth and kth nodes,
v; is the potential of jth node, of N, and m is the total number of the nodes of N,
considering each end of each branch admittance and current-source as a node.

PrROOF. Suppose that N is a linear network of admittances and of current sources
containing no negative conductance or a part of such a network.

Let each end of each branch admittance and of each branch current-source be considered
a node, numbered 1, 2, ---+, m. Let the node potentials at nodes 1, 2, ----, m, be v, vs,
...., Um, respectively, with respect to an arbitrarily chosen potential. Then the potential at
a node j(0<j<n) is expressed as

m
V;j=a;V1+ajsVe+a;vzt - +ajnvak2 @ jKVk
t=1

where, for each positive integer &k not greater than m, aj; is a constant having a value of
either 1, —1, or 0.

For each pair of positive integers j and k& both not greater than m, let g;; be the
conductance between nodes j and k and let 7j; be the current from node j to node k, due
to a current source between the nodes. Then

m  m

f= ?‘; k2=1 [(wj—vi)*g ke —2i (v j—vi)].

Assume, now, that it is possible to obtain a different arrangement of potentials. The most
general rearrangement which does not violate Kirchhoff’s second law consists of superposition
of potentials 4v, dvs, ----, dv, at each node of the loops of N.

Then the new value of the function becomes

fHdf=3 J=1 =2 L‘” [vj—ve+dviaji—aw)1’gu— 12' ;2 ;Z: [vj—ve+dvlai—aw)lijk.
Thus
EZ 7% % [@ji—ar) v %9 ju+2dvila je—ar) [ (0 —vi)g ju—1 i ]
By Kirchhoff’s first law
:?:1 é‘; [(vj—vi)g e —1x;]1=0.

7=
Therefore

m

2 Z 5:,‘1 [(aji—ar)dvi]2gr; >0,
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since, for each set of positive integers j, k, and [ all not greater than m, gx; is nonnegative
and [(ej;—ax)dv,]* is nonnegative, because aj;, ax;, and Jv; are real quantities.

CORROLLARY 2-1. If N is either a linear network of electrical admittances containing
no source of electric current nor a negative conductance, or a part of such a network, the
potentials at nodes on N are such that the power dissipated in N is a minimum.

THEOREM 3. If two points A, B are connected by a linear network of conductors, a de-
crease in the resistance of any one of these conductors will not increase the resistance between
A and B.

PrROOF: Suppose that two points A, B are connected by a network of conductors, that
I is the current from A to B, and that R is the resistance between A and B.

The power consumed by the network is

P=I°R.
Suppose that the resistance of any single conductor j in the network is reduced from R; to
R’; and let I; be the current flowing through R; before the reduction. Assume that the
currents flowing in the branches of the network remain unaltered in spite of this reduction
in the resistance R;. There will be a decrease in power consumed by the network equal to
AP=(R;—R’;)I;*.

The currents which are assumed to exist in the network after the reduction in the resistance
are not the ones that are possible but the ones that were imagined. Suppose that the currents
are allowed to distribute themselves in a manner that is possible in nature. By theorem 1,
there is a further reduction in power consumed by the network.

Thus a decrease in the resistance of any single conductor results in the reduction of power
consumed, i.e., if we denote the new resistance between A and B by R/,

R'I*<RI*
or
R'<R.

CORROLLARY 3-1. In a linear two terminal resistance network, closing a switch in any
branch of the network does not increase the resistance between terminals.

PROOF: In a linear two terminal resistance network, closing a switch in any branch of
the network represents a reduction of resistance in the switch-circuit from infinite value to
a finite value. By theorem 3, this does not increase the resistance between terminals.

NoTg: This is an extension of the second theorem presented by C. E. Shannon and D.
W. Hagelbarger. (See the primary reference at the end of this paper.) They proved that
this theorem obtains when only the direct-current constraints are to be applied at the termi-
nals of a passive network. Here, however, it is proved that the theorem is true for alter-
nating-current resistance and that the restrictions imposed by Shannon and Hagelbarger are
quite unnecessary.

COROLLARY 3-2. In a linear four-terminal resistance network, a reduction in the resis-
tance of any one section of the network does not increase the input resistance of the network.

PROOF: An input resistance of a four-terminal network is the resistance between two
input terminals. Therefore, by theorem 3, a reduction in the resistance of any one section
of the network does not increase the input resistance of the network.

COROLLARY 3-3. In a linear four-terminal resistance network, a decrease in the resis-
tance of any one section of the network does not increase the output resistance of the net-
work.

CORROLLARY 3-4. In a linear four-terminal resistance network, closing a switch in any
branch of the network does not increase the input nor out-put resistance.

DEFINITION 8. Concave (downward) function. If f is a function of » nonnegative real
variables, the statement that f is a concave (downward) function means that, for any two
sets of values 2, %3, -+, 2, and x,, 2/, ----, 2, in the range of f,

f(a;,-i-:cl’ Lo+ Tt n
2 2 ’ 2

>2%’[f(x1, Xe, e, Bp)Ff(@y, T, e, )]
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DEFINITION 9. Convex (downward) function. If f is a function of 7n nonnegative real
variables, the statement that f is a convex (downward) function means that, for any two

sets of values x,, 22, ----, @, and x,/, ./, ----, x,” in the range of f,
T+ Xetay x +ac i ;o ,
f(% T e, T )é——[f(xl, @, +os, @)+, @, e, @)
DEFINITION 10. Linear funct1on. If f is a function of » nonnegative real variables, the
statement that f is a linear function means that, for any two sets of values z, @z, ...., Zn
and z,, x’, ----, x,’ in the range of f,
T1+x  wot T+ 2, 1 ;o ,
f(-'——z_—'—, T %)=5[f(xn, Ta, -ooe, Ta)FF@0, @, e, @)

NoTE: It should be obvious that, if f is a convex function, then —f is a concave
function, and vice-versa. For other elementary properties of convex and concave functions,
a book! by Hardy, et al., gffers a good summary.

With the preliminary theorems and definitions, we can now proceed to prove several
other theorems, one of which is an extension of a theorem by C. E. Shannon and D. H.
Hagelbarger.

LemMMA 1. If N is a linear network of nonnegative resistances R, R:, Rs, -+, R, in
series, and R is the resistance between terminals of N, then R is a linear function of R,,
Re, --+-, Ra.

ProOF: Let N, be a network of nonnegative resistances R, Rs, ----, R, in series, and
Ry, be the resistance between terminals of N;. Let N: be a network of nonnegative resistances
RY, Ry, ----, R, in series and R,: be the resistance between the terminals of N;. Let N,
be the network of nonnegative resistances (Ri+Ri’), (R:+R:), ----, (Rx+Ry) in series and
R, be the resistance between terminals of N,. Then

Ry=Ri+Rst---- +R,,=§‘: Ri
Ru=R/+Ri+- - +R/= 5 R

Ry =(R+R,)+(R:+Rs)+ - -+ +(Rn+Rnl)=ié (Ri+Ri/)=i’?_’E R‘z+i§: R/

Ry =R+ Rys.
Therefore, if N is a network of nonnegative resistances R;, R:, ----, R, in series and R is
the resistance between terminals of N, then R is a linear function of Ry, R, ----, R,.
LEMMA 2. If N is a linear network of nonnegative conductances Gi, Gz, ----, G, in

parallel, and G is the conductance between terminals of N, then G is a linear function of
Gly G‘.:; Tttty Gn-

Proor: This is a dual of lemma 1. The proof may be given in exactly similar manner
as in lemma 1.

THEOREM 4. If N is a two-terminal linear network of nonnegative resistances, R, R:,

, R. and R is the resistance between terminals of N, then R is a concave (downward)
function of Ry, Re, ----, Ra.

PrROOF: Suppose that N is a linear two-terminal network of nonnegative resistances R;,
R, ++++, R, and that R is the resistance between terminals of N. Form a network N’ of
similar configuration by replacing R, by R,, R: by R:, ----, R, by R,’, where R/’ R,

, Ry’ are arbitrary linear nonnegative resistances and let R’ be the resistance between
R+R/’ R:+R. Ry.+Ry

TR PRREIRERLY 5 . and

terminals of N'. Form a similar network N, with

let R, be the resistance between terminals of Nj.
Let I denote the current through terminals of N, and I; denote the current in the jth

K G. H. Hardy, J E. thtlewood and G. Polya, ‘‘Inequalities’”’, Cambridge University Press,
London, 1934.
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branch R;+R;(0<j<n) of No. Then

o, (Ri+ROLE _ & RyIF | & RByIF

B 12=1 2I¢ =1 23 + =1 2I*
Let 7; denote the current in the jth branch R; (0<j<n) of N under the same constraint
as before, and let i; denote the current in the jth branch R;(0<j<n) of N’ under the

same constraint as before. Then

B _ & Ry

2 _12=1 2I*

R >~ Rji;*
=N

2 =1 2I*

By Corollary 1-1,

n n
E Rjif< 75_31 BRI

n 3
J;‘L Rj/'l«j,s"éjzl R;I

Hence

R(RI'I‘RII R2+R2/ e Rn‘l’Rn’
0 2 ’ 2 ’ ’ 2

)z%[Ruel, Roy -ooe) RFR(BY, R, -, R)]

Quod erat demonstrandum.

NoTe: This is an extension of the first theorem presented by C. E. Shannon and D. W,
Hagelbarger in the Journal of Applied Physics, Vol. 27, No. 1, January, 1956.

COROLLARY 4-1. If N is a four-terminal network of linear nonnegative resistances R,
R;, ----, R, with input resistance R, then R is a concave (downward) function of R, R,

o, R ne

THEOREM 5%. If N is a linear two-terminal network of nonnegative conductances Gi,
Gs, ++++, G, and if G is the conductance between the terminals of N, then G is a concave
(downward) function of Gy, Gg, -+, Gyp.

PrROOF: Suppose that N is a linear two-terminal network of nonnegative conductances
Gy, Gs, -+++, G, and that G is the conductance between the terminals of N. Form a lineor
network N’ by similar configuration by replacing G, by G\’, G: by G¢/, ----, G, by G/, where
Gy, G, ----, G, are arbitrary linear nonnegative conductances, and let G’ be the conductance
Gi+G/ G+ Gy GutGa”

5 5 5
in a similar manner, and let G, be the conductance between terminals of Nj.

Let V denote the potential difference across the terminals of N, and let V; denote the
voltage across the jth branch G;+G,;(0<j<n) of N,. Then
- & GGV & GV & GV
Go= ,21 & ‘E 2v? +,§1 2y
Let v; denote the potential differentce across the jth branch G;(0<j<n) of N under the
same constraint as before, and let v; denote the potential difference across the jth branch
G;j(0<j<n) of N’ under the same constraint as before. Then

between the terminals of N'. Form a linear network N, of -

G _ & Gwi®
2 = ooy
G & Giv”
2 Jj=1 2V2

By corollary 2-1,

® This is a dual of the previous theorem.
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Hence
Go( Gi+G’ GutGY  GatGa
2 ’ 2 ’ ’ 2

CoROLLARY 5-1. If N is a four-terminal network of linear nonnegative conductance
Gi, Gy, ---+, G, with input conductance G, then G is a concave (downward) function of G,
Gey o0, Ga

THEOREM 6. If N is a multi-terminal balanced linear network of nonnegative resistances,
the input resistance of N is a concave (downward) function of resistances in N.

COROLLARY 6-1. If N is a multi-terminal balanced network of linear nonnegative
conductances, the input conductance of N is a concave (downward) function of conductances
of N.

THEOREM 7. The input conductance for an electromagnetic wave propagating through
a medium is:

(a) a concave (downward) function of the conductance encountered by the wave if

(i) the intrinsic impedance of the medium is real, and
(ii) the admittance encountered by the wave has a real value such that G G'<4 for
every G and G’ in the range.

(b) a convex (downward) function of the conductance encountered by the wave if

(i) intrinsic impedance of the medium is real, and
(ii) the admittance encountered by the wave has a real value such that G G'>4 for
every G and G’ in the range.

(c) a linear function of the conductance encountered by the wave if

(i) intrinsic impedance of the medium is real, and
(ii) the admittance encountered by the wave has a real value such that G G'=4 for
every G and G’ in the range.

ProOF: If 7 is the intrinsic impedance of the medium, the input impedance for an
electromagnetic wave propagating through the medium is given by the following equation
as a function of impedance Z encountered by the wave at a point at the distance ! from
the source of the wave:¥

)z%[G(G,, Gay -+ G+ GG, G,y -+, G,

__ Zcos kl+jnsin kl
" peoskl+jZsinkl’
The input resistance is, then,
R 7R cos® kl+nRsin*kl _ 7°R
T cost ki+ Risin® kL 7° cos® kl+ R¥sin® kl
Ri= : R = : 1 :
—cos*kl+—:rsin*kl G cos® kl+—= sin® kl
R / 7°G
The input conductance is
. 1 ..,
Gi(G) =G cos® kl+77—’G_ sin® kl.
Also
N = (¥ oo __1 s
Gi(G") =G’ cos* kl+ TG sin® kl
and

w See Simon R;r;o aﬁd John R. Whinnery: ¢ Fields and Waves in Modern Radio,’”” John
Wiley and Sons, 1953.



On Some Properties of Resistance Functions 345

GZ<G+TG) - G-;G’ cos? kl*‘m sin? el
Hence,
it Ge'<4, ci(G;G’)Z GG +G(@)
it GG'>4, G,(G;G')S GG+ G,G)
if GG'=4, GL( G;G’)___ Gt(G)-Iz-Gi(G)

THEOREM 8. The input conductance of a transmission line is a
(a) concave (downward) function of the load conductance if
(i) the characteristic impedance of the line is real, and
(ii) the load admittance has a real value such that GG'<4 for every G and G’ in the
range.
(b) convex (downward) function of the load conductance if
(i) the characteristic impedance of the line is real, and
(if) the load admittance has a real value such that GG’>4 for every G and G’ in the
range.

(c) linear function of the load conductance if

(i) the characteristic impedance of the line is real, and
(if) the load admittance has a real value such that GG'=4 for every G and G’ in the
range.

Proor. If Z, is the characteristic impedance of the transmission line, the input impedance
is given by the following equation as a function of load impedance Z; placed at a distance
! from the sending end of the line:*

;= ZLcos Bl+3Zy sin fl
Zy cos Bl+jorsin Bl °
Thus the theorem can be proved in a similar manner as in the previous theorem.

Conclusion

Theorems 1 and 2 are examples of that Principle of Extremum which is manifested so
often in nature. (For examples of manifestations of the Principle, see, for instance D’Abro’s
‘““The Rise of New Physics,”” Vol. I, Dover.) The theorems here might be called the Mini-
mum Power Theorems in Electrical Circuit. If we introduce the concept of duality, theorem
2 may be stated simply as ‘‘the dual of theorem 1 is also true.”” If a theorem is proved, the
dual of the theorem can easily be proved in exactly similar manner as in the or:ginal theorem.
Thus, the introduction of duality-concept enables us not only to simplify the statement and
the proof of theorems, but also to find out new theorems.

Corollary 3-1 and Theorem 4 are extensions of the theorems due to Shannon and Hagel-
barger. Their theorems apply only to passive linear resistance networks where a direct-current
constrainst is to be applied externally. Their approach of proof makes it difficult to extend
their theorems any further.

But, by proving theorems 1 and 2 and their corollaries, and by adopting an entirely new
method of proof, I have extended their theorems to apply to any linear network containing
no negative resistance. My theorems apply for active as well as passive networks, when

4 See, for instance, Ramo and Whinnery, ‘‘ Fields and Waves in Modern Radio.”
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direct or alternating current constraints are imposed. My theorems also apply when trans-
formers are involved in the networks.

In addition, several other theorems on properties of resistance functions have been pre-
sented and proved (eight theorems, nine corollaries, and two lemmas in all). Theorem 7
concerns with electromagnetic waves in space, and theorem 8 with transmission lines with
distributed-constants. All other theorems concern with electrical networks with lumped-
constants.
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