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Theorems on number of "trees" with a given
number of "knots" or "branches"

and on "spanning graphs"

By

Tadao INAMI*

1. The number of trees with n branches or with m knots.

A tree with n branches has either 1, 2, 3,· · .. , or n main branches. If the tree has one
main branch, it can only be formed by adding on to this main branch a tree with n-1 branches.
If the tree has two main branches, then p +q being a partition of n-2, the tree can be formed
by adding onto one main branch a tree of p branches, and to the other main branch a tree
of q branches, the number of trees so obtained is

ApAq if p=l=q

~ Ap(Ap+ 1) if p=q=-}(n-2)

where A p and A q are the numbers of trees that can be formed by p and q branches,
respectively.

If the tree has three main branches, then if p+q+r is any partition of n-3, An contains
the part

ApAqAr if p=l=q=l=r

~ A p(Ap +1)A1• if p==q=l=r

~ A p(Ap+1)(Ap+2) if p=Q=r=i(n-3)

The prereding rule for the formation of the number An is completely expressed. by the
" generating function" :

a(x)~ A o+ A 1x+ A 2x 2 + .... ~ (1-x)-1(1-x 2)-A1(1-x3)-A2 . ...

Comparing the expanded right hand with the middle section of the equation, the number
An of tropologically distinct trees with n branches is obtained. The number of topologically
distinct rooted trees, Cn, with n knots is equal to the number of topologically distinct trees
with n-1 branches. .

C(x) ==C1X+C2X2+C3X3+ . ... ==x(1-x)-C1(1-x2)-C2(1-x3)-c3 . ...

==X(1+C1X+ C1(C1+1) x 2+ C1(Cl+1)(C1+2).x 2+ .... )
2! 3!

X (1 +Cox2+ C2(~2t1) x·+ .... ) X •• ..

giving
C1==1

C2 ==C1==1

C3 = CI(~lt1) +Co=2

C.= CI(CI+i{(CI+2) +CIC2+C3=4

C,,:= C1(C1+1)(C1+2)(C1+3) + C1(C1+1) +C C +C + C2(C~+1) -:9
.J 4! 2! 1 3.. 2!

* Agriculture, Home Economics and Engineering Division, University of the Ryukyus.
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The generating function c(x) may be written

c(x) = xe Cc;) + c(~~+ c(~-!2.+.,.

[
1 c(x) C(X)2+ C(X 2) c(xY~+3c(X)C(X2)+2c(X3) ]

=X +-11-+ 2! + 3! +....

n=4
An=9

Fig. 1. An

0=1 n=2 n=3
C1 = 1 C2 = 1 Cs = 2

Fig. 2. Cn

n=4
C4 =4

Both forms of expansion have their advantages: The first form serves as the starting point
for asymptotic computation of Cn and the number, Cn', 'of topologically distinct unrooted
trees with n knots. The second serves as the starting point for generalization [In the general
term of the series, the cycle-index of the symmetrical groups of n elements is recognized. ]

The number of trees Dn which can be formed with n given knots labelled a,~, r,··· is
given by nll

-
2 (See Fig. 3)

b~ Z~ ~~ ~:oa
n=1 n=2 n=3
0 1 =1 O2 =1 0 3 =3

Fig.3. Dn

a {3

\{
THE ABOVE ARE CONSIDERED
TOPOLOGICALLY IDENTICAL

2. Number of trees with a given number of free branches

The number of trees Bn with a given number, n, of free branches, bifurcations at least,
is given, according to Cayley1) by

(1-x)-1(1-x2)-B2(1--x2)-Ba ••• ==1+x+2B2x2+2B3x3+ ...

to give, for n=2, 3,···,7,

n 2

1

3 4 5 I 6 I 7

2 --5-112 -1_3~-I __~o
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v
Fig. 4. Bn

3. Multiple-operators and Labelled trees.

If U is an operand and P, Q, R,' .. are operators, then there exists a certain relationship
between decomposition of multiple-operators and trees labelled by operators and the operand1) ,

as shown in Fig. 5; where Q X P denotes the mere algebraic product of Q and P (so does
the bifurcations of branches Q an~ P), while QP (and the succession of Q and P nodes in
cascade) denotes the result of operation performed upon P as operand.

PU=PU

~
Q p Q

p q 7'
U t5 u

QPU=(QxP)U+(QP) U

R

Q

p

U

RQPU = «RQ)P)U+.··+(RQ X P)U+(R X QX P)U

Fig. 5. The relationship between multiple-operators and
labelled trees where no transposition of order
PQR· .. occurs from root to free branches.

4. Number of bifuraction-trees with n end-points.

By a bifurcation-tree, we mean a tree with non-terminal knots of three branches. The
number Dn of bifurcation tree with a given number, n, of end points is, according to
Cayley2, expressed in terms of D t , D2, •••• , Dn-t, as

Dn=DtDn- t+D2Dn- 2+···· +Dn-tD1

if we let, arbitrarily

D1=1.

If we consider a function

we have

f2 = DtDt+x(DtD2+D2D 1) +x2(DtDa+D2D2+DaDt)+····
=D2+xDs +x2D4 +·.··

Thus

xf2=f-l

.. f- 1-,yI=4X
2x

But
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~(-~)(-:)
---1-'2-'-3--·(4x3)+ .. ·

=1-2x-2x2-4x3 -10x4 - ••• •

.• f=1+x+2x 2+5x3+ ...
The coefficients of xu, Xl, X 2

, x3
, ••• are equal to Dt, D?, D 3 , D 4,···. The expression for general

term is seen to be

_1_·3_·_5_._••_._'_(2_n_-_3~) 211,-1
1·2·3· ... 'n

giving

Illustrations for n=2, 3, 4 are shown in Figs. 6, 7, 8, respectively.

Fig. 6. D 2 Fig. 7. D s Fig. 8. D 4

If A, B, C, D are symbols capable of successive binary combinations, but do not satisfy the
associative law, numher of the different significations of the ambiguous expression ABC···· N
is equal to Dn • For instance, AB has only one meaning; ABC may mean either A·BC or
AB·C; ABCD may mean A(B·CD), AB·CD, (AB·C)D, (A·BC)D, or A(BC·D).

5. Spanning graphs.

Def. Spanning sub-graph. A sub-graph spans a graph if it contains all the vertices of
the graph.

Def. Maximal graph. A graph is maximal if it is not contained in any larger graph of
the same sort.

Def. Minimal graph. A graph is minimal if it does not contain any smaller graph of
the sam'a sort.

De!. Forest. A forest is a graph with no loops.
Problem. Give a practical method for constructing a spanning subtree of minimum length.
Solution. There is no loss of generality in assuming that the given connected graph G

is complete, Le., that every pair of vertices is connected by an edge. For if any edge of G
is "missing", it is possible to consider the "missing" edge as an edge of infinite length.

Construction A. Perform the following step as many times as possible: Among the
edges of G not yet chosen, choose the shortest edge which does not form any loops with those
edges already chosen. Clearly the set of edges eventually chosen must form a spanning tree
of G, and in fact it forms a shortest spanning tree.

Construction A'. (Dual of A) Perform the following step as many times as possible:
Among the edges not yet chosen, choose the longest edge whose removal will not disconnect
them. Clearly the set of edges not eventually chosen forms a spanning tree of G, and in
fact it forms a shortest spanning tree.

Construction B. Let V be an arbitrary but fixed (nonempty) subset of the vertices of
G. Then perform the following step as many times as possible: Among the edges of G
whi<;h ~re not yet <;hos~n blJt whiCh ~r~ ~onne<;t~d ~ith~r to ~ vertex of V or to an edge
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already chosen, pick the shortest edge which does not form any loops with the edges already
chosen. Clearly the set of edges eventually chosen forms a spanning tree of G, and in fact
it forms a shortest spanning tree. In case V is the set of all vertices of G, then Conssruction
B reduces to Construction A.

Theorem 1. If G is a connected graph with n vertices, and T is a subgraph of G, then
the following conditions are all equivalent:

(a) T is a spanning tree of G;
(b) T is a maximal forest in G;
(c) T is a minimal connected spanning graph of G;
(d) T is a forest with n-1 edges.
(e) T is a connected spanning graph with n-1 edges.
Theorem 2. If the edges of G all have distinct lengths, then T is unique, where T is

any shortest spanning tree of G.
Proof. In Construction A in the above problem, let the edges chosen be called at, .... ,

an-l in the order chosen. Let Ai be the forest consisting of edges at through ai. From the
hypothesis that the edges of G have distinct lengths, it is easily seen that Construction A
proceeds in a unique manner. Thus the Ai are unique, and hence also T.

Suppose T*A. Let ai be the first edge of A n- 1 which is not in T. Then at, .... ,
ai-l are in T. TU ai must have exactly one loop, which must contain ai. This loop must
also contain some edge e 'which is not in An-I. Then TU a'i-e is a forest with n-1 edgef.

As Ai-J Ue is contained in the last named forest, it is a forest, so from Construction A,
length(e) > length(ai)

But then T U ai - e is shorter than T. This contradicts the definitign of T, and hence proves
indirectry that T=An-t. Q. E. D.
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与られた数の ｢節｣や ｢枝｣をもった ｢木｣の数および

｢包括図｣に関する諸定理 (摘要)

伊 波 直 朗

この論文では,n個の｢枝｣またはn個の｢節｣をもった トポロギー的に異なる ｢木｣の数,α,β,
γ･,･･･とレッテルをはってあるn個の ｢節｣をもった トポロギー的に異なる ｢木｣の数,n個の ｢枝

端｣をもった トポロギー的に異なる ｢木｣の数,多演算子とレッテルぼり木の数 との関係,n個の

｢枝堀 ｣ をもった トポロギー的に異なる ｢分岐木｣の数,｢包括図｣,｢最大図｣,｢最小図｣,｢森｣に関

する諸定理を提起,証明した｡

n個の ｢杖｣をもった トポロギー的に異なる ｢木｣の数 Anおよびn個の ｢節｣をもった トポロ

ギー的に異なる ｢木｣の数 Cnは,それぞれ次の ｢生成函数｣a(x),C(a)によってあらわすことがで

きる｡

a(x)-A｡+AIM+A2㌦+･--(1-a)~l(1-xo･)-Al(1-x3)-A2･-

C(a)-CID+C2が+C3が+-･-a(1-x)~Cl(1-♂)~C2(1-♂)-08-

すなわち,n-1,2,3,-･,12に対する Anの値は,1,2,4,9,20,48,115,286,719,1842,4766,

12486で,Cn 8値は,1,1,2,4,9,20,48,115,286,719,1842,4766である｡

n個の ｢枝堀｣をもった トポロギー的に異なる ｢木｣の数 Bnは次の ｢生成函数｣a(a;)によってあ

らわすことができる｡

b(a)-(1-a;)-1(1-♂)~B2(1-a;3)~B8-1+a+2Bo.㌔+2B3が+-･

すなわち,n-1,2,3,-･,9に対する Bnの値はそれぞれ 0,1,2,5,12,33,90である.

n個の ｢枝端｣をもった トポロギー的に異なる ｢分岐木｣の数 D′̀は次の ｢生成函数｣a(a:)によっ

てあらわすことができる｡

a(a)-Dl+D2X+D3㌦+･-- _lIイ主±4a,
2∬

すなわち,n-1,2,3,-･,7に対する Dnの値は 1,1,2,5,14,42,132である｡

｢図｣の全頂点を含む ｢部分図｣はその図を ｢包括する｣という｡同一種類のそれより大きな ｢凶｣

に含まれない ｢図｣は ｢最大｣であるという｡同一種類のそれより小さな ｢図｣を含まない ｢図｣は

｢最小｣であるという｡ループを含まない ｢図｣を ｢森｣という｡

上の定義にしたがえば,次の定理が成立する｡

茸些 I もLGが n個の頂点をもつ連結 した ｢図｣であり,Tが Gの部分図であれば,次の条件

は等価である｡

(a) Tは Gの包括木である｡

(b) Tは Gの最大森である.

(C) Tは Gの最小連結包括図であるO

(d) Tは n-1個の枝をもった森である｡

(e) Tは W-1個の枝をもった連結包拓図である.

定理 2 Gの彼が全部ちがった良さであれば耐定理の条件を満足するTは一意的にさだまる｡こ

のときTは Gの任意の最短包拍木である｡

Gの最短也柏木を作るに当っての実際的な方法も示してある｡


