琉球大学学術リポジトリ
与られた数の「節」や「枝」をもった「木」の数および「包括図」に関する諸定理

| メタデータ | 言語： |
| :---: | :--- |
|  | 出版者：琉球大学農家政工学部 |
|  | 公開日：2012－02－16 |
|  | キーワード（Ja）： |
|  | キーワード（En）： |
|  | 作成者：Inami，Tadao，伊波，直朗 <br> メールアドレス： <br>  <br> 所属： |
| URL | http：／／hdl．handle．net／20．500．12000／23292 |

# Theorems on number of "trees" with a given number of "knots" or "branches" and on "spanning graphs" 

By

## Tadao INAMI*

1. The number of trees with $\boldsymbol{n}$ branches or with $\boldsymbol{m}$ knots.

A tree with $n$ branches has either $1,2,3, \cdots$, or $n$ main branches. If the tree has one main branch, it can only be formed by adding on to this main branch a tree with $n-1$ branches. If the tree has two main branches, then $p+q$ being a partition of $n-2$, the tree can be formed by adding onto one main branch a tree of $p$ branches, and to the other main branch a tree of $q$ branches, the number of trees so obtained is

$$
\begin{array}{lll}
A_{p} A_{q} & \text { if } & p \neq q \\
\frac{1}{2} A_{p}\left(A_{p}+1\right) & \text { if } & p=q=\frac{1}{2}(n-2)
\end{array}
$$

where $A_{p}$ and $A_{q}$ are the numbers of trees that can be formed by $p$ and $q$ branches, respectively.

If the tree has three main branches, then if $p+q+r$ is any partition of $n-3, A_{n}$ contains the part

$$
\begin{array}{lll}
A_{p} A_{q} A_{r} & \text { if } p \neq q \neq r \\
\frac{1}{2} A_{p}\left(A_{p}+1\right) A_{r} & \text { if } p=q \neq r \\
\frac{1}{6} A_{p}\left(A_{p}+1\right)\left(A_{p}+2\right) & \text { if } \quad p=q=r=\frac{1}{3}(n-3)
\end{array}
$$

The prereding rule for the formation of the number $A_{n}$ is completely expressed by the "generating function":

$$
a(x)=A_{0}+A_{1} x+A_{2} x^{2}+\cdots=(1-x)^{-1}\left(1-x^{2}\right)^{-A_{1}}\left(1-x^{3}\right)^{-A_{2}} \cdots
$$

Comparing the expanded right hand with the middle section of the equation, the number $A_{n}$ of tropologically distinct trees with $n$ branches is obtained. The number of topologically distinct rooted trees, $C_{n}$, with $n$ knots is equal to the number of topologically distinct trees with $n-1$ branches.

$$
\begin{aligned}
C(x) & =C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\cdots=x(1-x)^{-c_{1}}\left(1-x^{2}\right)^{-c_{2}}\left(1-x^{3}\right)^{-c_{3}} \cdots \\
& =x\left(1+C_{1} x+\frac{C_{1}\left(C_{1}+1\right)}{2!} x^{2}+\frac{C_{1}\left(C_{1}+1\right)\left(C_{1}+2\right)}{3!} x^{2}+\cdots\right) \\
& \times\left(1+C_{2} x^{2}+\frac{C_{2}\left(C_{2}+1\right)}{2!} x^{4}+\cdots\right) \times \cdots
\end{aligned}
$$

giving

$$
\begin{aligned}
& C_{1}=1 \\
& C_{2}=C_{1}=1 \\
& C_{3}=\frac{C_{1}\left(C_{1}+1\right)}{2!}+C_{2}=2 \\
& C_{4}=\frac{C_{1}\left(C_{1}+1\right)\left(C_{1}+2\right)}{3!}+C_{1} C_{2}+C_{3}=4 \\
& C_{5}=\frac{C_{1}\left(C_{1}+1\right)\left(C_{1}+2\right)\left(C_{1}+3\right)}{4!}+\frac{C_{1}\left(C_{1}+1\right)}{2!}+C_{1} C_{3}+C_{4}+\frac{C_{2}\left(C_{9}+1\right)}{2!}=9
\end{aligned}
$$

[^0]Thus

| $n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $A_{n}$ | 1 | 2 | 4 | 9 | 20 | 48 | 115 | 286 | 719 | 1842 | 4766 | 12486 |
| $C_{n}$ | 1 | 1 | 2 | 4 | 9 | 20 | 48 | 115 | 286 | 719 | 1842 | 4766 |

The generating function $c(x)$ may be written

$$
\begin{aligned}
c(x) & =x e \frac{c(x)}{1}+\frac{c\left(x^{2}\right)}{2}+\frac{c\left(x^{8}\right)}{3}+\cdots \\
& =x\left[1+\frac{c(x)}{1!}+\frac{c(x)^{2}+c\left(x^{2}\right)}{2!}+\frac{c(x)^{3}+3 c(x) c\left(x^{2}\right)+2 c\left(x^{3}\right)}{3!}+\cdots\right]
\end{aligned}
$$




Fig. 1. $A_{n}$


Fig. 2. $C_{n}$
Both forms of expansion have their advantages: The first form serves as the starting point for asymptotic computation of $C_{n}$ and the number, $C_{n}{ }^{\prime}$, of topologically distinct unrooted trees with $n$ knots. The second serves as the starting point for generalization [In the general term of the series, the cycle-index of the symmetrical groups of $n$ elements is recognized.]

The number of trees $D_{n}$ which can be formed with $n$ given knots labelled $\alpha, \beta, \gamma, \cdots$ is given by $n^{n-2}$ (See Fig. 3)


the above are considered TOPOLOGICALLY IDENTICAL

Fig. 3. $D_{n}$

## 2. Number of trees with a given number of free branches

The number of trees $B_{n}$ with a given number, $n$, of free branches, bifurcations at least, is given, according to Cayley ${ }^{1)}$ by

$$
(1-x)^{-1}\left(1-x^{2}\right)^{-B_{2}}\left(1-x^{2}\right)^{-B_{3}} \cdots=1+x+2 B_{2} x^{2}+2 B_{3} x^{3}+\cdots
$$

to give, for $n=2,3, \cdots, 7$,

| $n$ | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B_{n}$ | 1 | 2 | 5 | 12 | 33 | 90 |







Fig. 4. $B_{n}$

## 3. Multiple-operators and Labelled trees.

If $U$ is an operand and $P, Q, R, \cdots$ are operators, then there exists a certain relationship between decomposition of multiple-operators and trees labelled by operators and the operand ${ }^{11}$, as shown in Fig. 5; where $\mathrm{Q} \times \mathrm{P}$ denotes the mere algebraic product of Q and $P$ (so does the bifurcations of branches $Q$ and $P$ ), while $Q P$ (and the succession of $Q$ and $P$ nodes in cascade) denotes the result of operation performed upon $P$ as operand.

$$
\begin{aligned}
& \begin{array}{l}
9 \mathrm{P} \\
0
\end{array} \\
& \begin{array}{lll}
q Q & P & Q \\
O P & q_{U} & \gamma_{U}
\end{array} \\
& P U=P U \quad Q P U=(Q \times P) U+(Q P) U \\
& \mathrm{RQPU}=((\mathrm{RQ}) \mathrm{P}) \mathrm{U}+\cdots+(\mathrm{RQ} \times \mathrm{P}) \mathrm{U}+(\mathrm{R} \times \mathrm{Q} \times \mathrm{P}) \mathrm{U}
\end{aligned}
$$

Fig. 5. The relationship between multiple-operators and labelled trees where no transposition of order PQR... occurs from root to free branches.

## 4. Number of bifuraction-trees with $n$ end-points.

By a bifurcation-tree, we mean a tree with non-terminal knots of three branches. The number $D_{n}$ of bifurcation tree with a given number, $n$, of end points is, according to Cayley ${ }^{2}$, expressed in terms of $D_{1}, D_{2}, \cdots, D_{n-1}$, as

$$
D_{n}=D_{1} D_{n-1}+D_{2} D_{n-2}+\cdots+D_{n-1} D_{1}
$$

if we let, arbitrarily

$$
D_{1}=1 .
$$

If we consider a function

$$
f(x)=D_{1}+x D_{2}+x^{2} D_{3}+\cdots
$$

we have

$$
\begin{array}{rlr}
f^{2}=D_{1} D_{1}+x\left(D_{1} D_{2}+D_{2} D_{1}\right)+x^{2}\left(D_{1} D_{3}+D_{2} D_{2}+D_{3} D_{1}\right)+\cdots \\
=D_{2}+x D_{3} & +x^{2} D_{4} & +\cdots
\end{array}
$$

Thus

$$
\begin{aligned}
& x f^{2}=f-1 \\
\therefore & f=\frac{1-\sqrt{1-4 x}}{2 x}
\end{aligned}
$$

But

$$
\begin{aligned}
& \begin{aligned}
\sqrt{1-4 x} & =1-\frac{1}{2} 4 x+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{1 \cdot 2}(4 x)^{2}-\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{1 \cdot 2 \cdot 3}\left(4 x^{3}\right)+\cdots \\
& =1-2 x-2 x^{2}-4 x^{3}-10 x^{4}-\cdots
\end{aligned} \\
& \therefore \quad f=1+x+2 x^{2}+5 x^{3}+\cdots
\end{aligned}
$$

The coefficients of $x^{0}, x^{1}, x^{2}, x^{3}, \cdots$ are equal to $D_{1}, D_{2}, D_{3}, D_{4}, \cdots$. The expression for general term is seen to be

$$
D_{n}=\frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-3)}{1 \cdot 2 \cdot 3 \cdot \cdots \cdot n} 2^{n-1}
$$

giving

| $n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $D_{n}$ | 1 | 1 | 2 | 5 | 14 | 42 | 132 |

Illustrations for $n=2,3,4$ are shown in Figs. 6, 7, 8, respectively.


Fig. 6. $D_{2}$
Fig. 7. $D_{3}$


Fig. 8. $D_{4}$

If $A, B, C, D$ are symbols capable of successive binary combinations, but do not satisfy the associative law, number of the different significations of the ambiguous expression $A B C \cdots N$ $\mathrm{i}_{\mathrm{s}}$ equal to $D_{n}$. For instance, $A B$ has only one meaning; $A B C$ may mean either $A \cdot B C$ or $A B \cdot C ; A B C D$ may mean $A(B \cdot C D), A B \cdot C D,(A B \cdot C) D,(A \cdot B C) D$, or $A(B C \cdot D)$.

## 5. Spanning graphs.

Def. Spanning sub-graph. A sub-graph spans a graph if it contains all the vertices of the graph.

Def. Maximal graph. A graph is maximal if it is not contained in any larger graph of the same sort.

Def. Minimal graph. A graph is minimal if it does not contain any smaller graph of the same sort.

Def. Forest. A forest is a graph with no loops.
Problem. Give a practical method for constructing a spanning subtree of minimum length.
Solution. There is no loss of generality in assuming that the given connected graph $G$ is complete, i.e., that every pair of vertices is connected by an edge. For if any edge of $G$ is " missing", it is possible to consider the "missing" edge as an edge of infinite length.

Construction A. Perform the following step as many times as possible: Among the edges of $G$ not yet chosen, choose the shortest edge which does not form any loops with those edges already chosen. Clearly the set of edges eventually chosen must form a spanning tree of $G$, and in fact it forms a shortest spanning tree.

Construction $A^{\prime}$. (Dual of A) Perform the following step as many times as possible: Among the edges not yet chosen, choose the longest edge whose removal will not disconnect them. Clearly the set of edges not eventually chosen forms a spanning tree of $G$, and in fact it forms a shortest spanning tree.

Construction $B$. Let $V$ be an arbitrary but fixed (nonempty) subset of the vertices of $G$. Then perform the following step as many times as possible: Among the edges of $G$ which are not yet chosen bưt which are connected either to a vertex of $V$ or to an edge
already chosen, pick the shortest edge which does not form any loops with the edges already chosen. Clearly the set of edges eventually chosen forms a spanning tree of $G$, and in fact it forms a shortest spanning tree. In case $V$ is the set of all vertices of $G$, then Conssruction $B$ reduces to Construction $A$.

Theorem 1. If $G$ is a connected graph with $n$ vertices, and $T$ is a subgraph of $G$, then the following conditions are all equivalent:
(a) $T$ is a spanning tree of $G$;
(b) $T$ is a maximal forest in $G$;
(c) $T$ is a minimal connected spanning graph of $G$;
(d) $T$ is a forest with $n-1$ edges.
(e) $T$ is a connected spanning graph with $n-1$ edges.

Theorem 2. If the edges of $G$ all have distinct lengths, then $T$ is unique, where $T$ is any shortest spanning tree of $G$.

Proof. In Construction $A$ in the above problem, let the edges chosen be called $a_{1}, \cdots$, $a_{n-1}$ in the order chosen. Let $A_{i}$ be the forest consisting of edges $a_{1}$ through $a_{i}$. From the hypothesis that the edges of $G$ have distinct lengths, it is easily seen that Construction $A$ proceeds in a unique manner. Thus the $A_{i}$ are unique, and hence also $T$.

Suppose $T \neq A$. Let $a_{i}$ be the first edge of $A_{n-1}$ which is not in $T$. Then $a_{1}, \cdots$, $a_{i-1}$ are in $T$. TU $a_{i}$ must have exactly one loop, which must contain $a_{i}$. This loop must also contain some edge $e$ which is not in $A_{n-1}$. Then $T U a_{i}-e$ is a forest with $n-1$ edgef.

As $A_{i-1} U e$ is contained in the last named forest, it is a forest, so from Construction $A$, length $(e)>$ length $\left(a_{i}\right)$
But then $T U a_{i}-e$ is shorter than $T$. This contradicts the definitign of $T$, and hence proves indirectry that $T=A_{n-1}$. Q.E. D.

## References

1. Arthur Cayley: "On the theory of the analytical forms called trees," Philosophical Magazine, vol. XIII, pp. 172-176; 1857.
2. Arthur Cayley: "On the analytical forms called trees," Philosophical Magazine, vol. XIII, pp. 374-378; 1859.

# 与られた数の「節」や「枝」をもった「木」の数および「包括図」に関する諸定理（摘要） 

## 伊 波 直 朗

この論文では，$n$ 個の「枝」または $m$ 個の「節」をもったトポロギー的に異なる「木」の数，$\alpha, \beta$ ， $r, \cdots$ とレッテルをはってある $n$ 個の「節」をもったトポロギー的に異なる「木」の数，$n$ 個の「忟端」をもったトポロギー的に異なる「木」の数，多演算子とレッテルばり木の数との関係，$n$ 個の「玟端」をもったトポロギー的に異なる「分岐木」の数，「包括図」，「最大図」，「最小図」，「森」に関 する諸定理を提起，証明した。
$n$ 個の「校」をもったトポロギー的に異なる「木」の数 $A_{n}$ および $n$ 個の「節」をもったトポロ ギー的に異なる「木」の数 $C_{n}^{\prime}$ は，それぞれ次の「生成函数」 $a(x), c(x)$ によってあらわすことがで きる。

$$
\begin{aligned}
& a(x)=A_{0}+A_{1} x+A_{2} x^{2}+\cdots=(1-x)^{-1}\left(1-x^{2}\right)^{-A_{1}}\left(1-x^{3}\right)^{-A_{2}} \cdots \\
& c(x)=C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\cdots=x(1-x)^{-C_{1}\left(1-x^{2}\right)^{-C_{2}}\left(1-x^{3}\right)^{-C_{8}} \ldots}
\end{aligned}
$$

すなわち，$n=1,2,3, \cdots, 12$ に対する $A_{n}$ の値は， $1,2,4,9,20,48,115,286,719,1842,4766$ ， 12486 で，$C_{n}$ Э侹は， $1,1,2,4,9,20,48,115,286,719,1842,4766$ である。
$n$ 個の「枝端」をもったトポロギー的に異なる「木」の数 $B_{n}$ は次の「生成函数」 $b(x)$ によってあ らわすことができる。

$$
b(x)=(1-x)^{-1}\left(1-x^{2}\right)^{-B_{2}}\left(1-x^{3}\right)^{-B_{8}}=1+x+2 B_{2} x^{2}+2 B_{3} x^{3}+\cdots
$$

すなわち，$n=1,2,3, \cdots, 9$ に対する $B_{n}$ の値はそれぞれ $0,1,2,5,12,33,90$ である。
$n$ 個の「枝端」をもったトポロギー的に異なる「分岐木」の数 $D_{n}$ は次の「生成函数」 $d(x)$ によっ てあらわすことができる。

$$
d(x)=D_{1}+D_{2} x+D_{3} x^{2}+\cdots=\frac{1-\sqrt{1-4 x}}{2 x}
$$

すなわち，$n=1,2,3, \cdots, 7$ に対する $D_{n}$ の値は $1,1,2,5,14,42,132$ である。
「図」の全頂点を含む「部分図」はその図を「包括する」という。同一種類のそれより大きな「図」 に含まれない「図」は「最大」であるという。同一種類のそれより小さな「図」を含まない「図」は「最小」であるという。ループを含まない「図」を「森」という。

上の定義にしたがえば，次の定理が成立する。
定理1 もし $G$ が $n$ 個の頂点をもつ連結した「図」であり，$T$ が $G$ の部分図であれば，次の条作 は等価である。
（a）$T$ は $G$ の包括木である。
（b）$T$ は $G$ の最大森である。
（c）TはGの最小連結包括図である。
（d）$T$ は $n-1$ 個の枝をもった森である。
（e）$T$ は $n-1$ 個の枝をもった連結包括図である。
定理2 G の枝が全部ちがった長さであれば前定理の条件を満是するTは一意的にさだまる。こ のとき $T$ は $G$ の任意の最短包括木である。
G の最短勻括水を作るに当っての実際的な方法も示してある。


[^0]:    * Agriculture, Home Economics and Engineering Division, University of the Ryukyus.

