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On orbit spaces of semi-free SO(2) actions * 

Hiroshi 1'lAEHARA 

A differentiable action of 50(2) on a smooth manifold is said to be semi-free if 

there exists a non-vacuous set of fixed points. outside of which the action is free, 

that is, there are two types of isotropy subgroups, the identity group {e} and the 

whole group 50(2). Let M be a compact connected smooth manifold with a semi-free 

50(2) action. Let M*=M/50(2) be the orbit space and n':M~M* the natural 

projection. Denote by Jt1(M), n'l(M*) the fundamental groups of M. M*. respectively. 

In this note we prove the following result. 

Theorem 1. n'#: 7t'l(M)~7t'l(M*) is an isomorphism. 

If ~vJ is the ll-sphere 5 11
, the set of fixed points is a homology sphere by Smith 

theory. Let k be its dimmension, then tt-k is even, say 2r. We also prove 

Theorem 2. 5" /50(2)::::::.!,k + ICP(r-l) (homotopy equivalence), where 

2,k + ICP (r-l) denotes the (k+l) -iterated suspension space of the (r-l)-complex 

projectiv espace. 

1. The rixed point set and its lleighborhood. 

Let M be a compact smooth manifold with a semi-free 50(2) action. By averaging 

a given Riemannian metric on M, we have a new metric for which 50(2) acts as a 

group of isometries. Let T.I" be the tangent space of M at a fixed point x. The 50(2) 

action on Tr via the differential dg:T.e~Tr,gE 50(2), is an orthogonal action and 

the exponential map T.r ~M is an "equivariant" diffeomorphism near x with respect 

to the actions. Therefore the set of fixed points is locally Euclidean, and a connected 

component F of the set of fixed points is a smooth submanifold of M. Ivioreover, as 

usual. v~Te can choose an invariant tubular neighborhood of F. Let N x denote the 

normal space of F at x. then we see the dimmension of N z is even. say 2r. Since the 

action is semi-free it follows easily that the induced action of 50(2) on N.I" is equivalent 

to the action defined by the representation cP : 50(2)~0(2r), \V-hich takes 

A E50(2) to the (2x2)-block matrix 

¢(A) = I A ••• 01 
o A 

Hence, as easily seen, the orbit space of the 50(2) action on the normal sphere bundle 

of F is a complex projective space bundle over F. 

2. Van Kampen's theorem. 

We recall here Van Kampen's theorem. The proof is given in [1). Let X be a 
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topological space and Xo. Xl> X 2 path connected open subsets of X such that XIV X 2 

= X. X 1n X 2 = Xo; * a point of Xo ; G =7t'l(X, *), G i = 1t'1 (Xi ,*) (i = 0,1. 2) the 

fundamental groups of X. Xl (i=O. 1, 2) based at *. respectively. The inclusion maps 

induce the commutative diagram 

Van Kampen's theorem 

i) b, G t (i = 1. 2) generate G. 

ii) Given a group II and a homomorphism Ci : G i ---",H (i=0. 1, 2) satisfying 

Co =Clal=C2a2' then there is a homomorphism d : G ---'" H satisfying Ci = db; (i=0. 

1, 2). 

Denote by Ko the kernel of a2 and by K 1 the minimal normal subgroup of G 1 

containing a1K o. 

Lemma 1. (corollary of Van Kampen's theorem) 

If a2 is onto, then so is bi and its kernel is K 1. 

Proof. The ontoness of b l is obvious by i) of Van Kampen's theorem. Letei:G; 

---"'G/Ki (i=0. 1) be the natural projections and 11 : GolKo ---'" Gt/K h 12: GolKo 

---'" C 2 be the natural homomorphisms induced by at. a2. 12 is an isomorphism. \Ve 

put H=G 1IKh Cl=el, cO=/leO and c2=/d21. Since the diagram 
at 

G1 ~I---- Go~ 

ell eo! f ~G2 
f1 ~ 

G1/Kl E Go/Ko 
is commutative, there is a homomorphismd: C---",H= G1IKt satisfying Ci =dbi (i= 

0. 1.2) by ii) of Van Kampen's theorem. Since b1a1K o= b2a2K o = 1 (1 the unit of G), 

the normal subgroup, Kernel b1• contains alKO and hence contains K I• 

Therefore bl induces a homomorphism g : Gt/KI---"'G satisfying gel=b1. 

From 

dg(eIX) =d(gel)X=db1x=clx=elx, xEG, 

it follows that dg=id " Gt/KI---'" Gt/K 1• Hence g is a monomorphism and 

Kernel bl = Kernel (get) = Kernel el = K 1. 

This proves lemma 1. 

3. Proof of theorem 1. 
Let F be a connected component of the set of fixed points and T a small open 

invariant tubular neighborhood of F such that T-F has no fixed point; T=Tn 

(M-F). Denote by T*, T* the orbit spaces of T. t, respectively. T. T,t *. T* are 

fi bre bundles over F. 

i) The inclusion map induces an isornorphism 

?T: 1 (M* - F) ~1t'1 (M*). 
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Proof. We denote by p : T*--+ F, P : T*--+ F the bundle projections and by 

j T*--+ T* the inclusion. p is a homotopy equivalence and the fibre of p has the 

homotopy type of a complex projective space. Consider the commutative diagram 

P# is an isomorphism. Since the fibre of p i'*~ F is simply connected, P# is also 

an isomorphism. Hence j# is an isomorphism. Applying lemma 1 to M*= (M*-F)nT*. 

CM*-F)nT*=T* we obtain i). 
Let S be an orbit of the SO(2) action in l' and a. b. c. d. e the inclusion maps. 

q. q the bundle projections in the following diagram 

a 
S IT ' F 

~1 ~M"~lq 
ii) e# : jtl CT)--+7C 1 CT) is onto and its kernel equals a# 7C 1 CS). 

Proof. If the codimmension of F is greater than two. e# is an isomorphism and 

a# 7C1 (S) = 1 by the general position argument. 

If the codimmension of F is two, then S is a deformation retract of a fibre of q t 

~F. i. e •• S ~ t!L.. F is a fibration. Hence q#: jtl CT) ~ 7r1 (F) is onto and 

Kernel q#=a#7r1 (S). Since q is a homotopy equivalence and qe=q. ii) is now clear. 

iii) If there remains any fixed point in M-F. then d# : 7rl(M-F)~7r:l (M) 

is an isomorphism. otherwise d# is onto and Kernel d#=C#'Al(S). 

Proof. Consider the commutative diagram induced by the inclusion maps 

a~ • 

"'(S~ - ~:'T~ 
.. "--;,,(~'-. t /",(T) 

~l(~~) 

If there is any fixed point in M-F. then S is contractible to a point in M-F. Hence. 

b#a#7C 1Cs) =C#jtl(S) = 1. and lemma 1. ii) above. show that d# is an isomorphism. If 

M-F has no fixed point, then 

C 7r 
S~ (M-F)~(M*-F) 

is a fibration. Therefore C# 7r1(S)=Kernel [n'# : ;rl(M-F)~7rl(M)J • 

which is a normal subgroup of '7t 1(M-F). The rest oi iii) fonows from lemma 1. 

NO\v we complete the proof of theorem 1. 
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Let F t (i == 1. ••• s) be connected components of the set of fixed points. 

Put Mo=M. M, ==Mt-t-Ft (i-1, •••. s-1) and Mr= Mi/SO(2) (i-O .• ••. 5-1). 

The inclusion maps and the natural projections induce the commutative diagram 

7I"1(M5 - 1 )--7I"1(Ms- 2)-' •• -7I"t(Mo) 

~{N,l. H.i. 
iTl(MS - 1 )--7l"I(Ms- 2)-' •• -1!'I(Mo) 

in which the horizontal maps are isomorphisms by i) and iii). Let S be an orbit in 

M.-t-F, and c : S~(M$_t-FM) the inclusion. Since M,'-I-F, has no fixed point. 

c :it' 
S~(M~-I-F, )~(M'!l-F, ) 

is a fibration. The commutative diagram 
c ~ Jrj 

-Jrl(8) -7I"I(Ms- t-Fs)-1!'I(M;-t-Fs)-----+O 

j j;;i) 
Jrs: • 

1!'1(M5 - d '1!'I(Ms- d 

(in which the vertical maps are induced by the inclusions) and 

comm utatve diagram 

iii) yield the 

Therefore 7t'# : ';(l(M'-l)~7t'I(M"~l) is an isomorphism. and so is 7t'# 7t'1 (Mo) ~ 

1fl(1\,f~). This complete the proof. 

4. Proof of theorem 2. 

Lemma 2. Let X be a compact acyclic manifold with a semi-free SO(2) action. 

Theil X/SO(2) is acyclic. 

Proof. The set of fixed points is acyclic by P. A. Smith theory [2]. Let T be a 

closed invariant tubular neighborhood of the set of fixed points. W the closure of 

X -F. T- W n T. Denote by W*. t* the orbit spaces of W. t. respectively. In the 

Mayer-Vietoris sequence 

~Hi+t(X)~Hi (t)~Hi (W)+H{ (T)~H,. (X)----)o. 

Hi (t)~Hi (W) are isomorphisms for all i. It follows then easily from Gysin 

homology sequence that Hi (T*)---)oH i (W*) are isomorphisms for all i. Using the 

Mayer-Vietoris sequence again. we obtain lemma 2. 
Proof of theorem 2. Choose a small invariant disk neighborhood D of a fixed 

point and denote by a D its boundary. Since the action on D may be regarded as a 

linear action. it is easy to see that a DISO(2) and D/SO(2) are homeomorphic to 

'j/"CP(r- 1 ) and its cone. respectively. Let V be the cloure of S" -D and V* its 
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orbit space. Since V is acyclic. V*is also acyclic by lemma 2. Let Y be lhe space 

obtained from 5" 150(2) by collapsing V* to a single point. Clearly Y is homeomorphic 

to 'J.,k+ICP(r- 'J ). Let w : 5" 150(2)~Y be the identification map. Since 5" 150(2) 

is simply connected by Theorem 'I and triangulable by C. T. Yang [3J • it follows 

now easily from the theorem of J. H. C. Whitehead that w is a homotopy equivalence. 

This complete the proof. 
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