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On orbit spaces of semi-free SO(2) actions*

Hiroshi MAEHARA

A differentiable action of SO(2) on a smooth manifold is said to be semi-free if
there exists a non-vacuous set of fixed points. outside of which the action is free,
that is, there are two types of isotropy subgroups, the identity group {e} and the
whole group SO(2). Let M be a compact connected smooth manifold with a semi-free
SO(2) action. Let M*=M/SO(2) be the orbit space and x:M——M#* the natural
projection. Denote by m,(M), 7,(M*) the fundamental groups of M, M¥#, respectively.
In this note we prove the following resull.

Theorem {. 7y: T,(M)—> 7w, (M*) is an isomorphism.

If M is the n-sphere S», the set of fixed points is a homology sphere by Smith
theory. Let k be its dimmension, then n—k& is even, say 2r. We also prove

Theorem 2. $"/SO(2)=3* *1CP(r—1) (homotopy equivalence), where
NE+ICP (r—1) denotes the (k+1)—iterated suspension space of the (r—1)-complex
projectiv espace.

1. The fixed point set and its neighborhood.

Let M be a compact smooth manifold with a semi-free SO(2) action. By averaging
a given Riemannian metric on M, we have a new metric for which SO(2) acts as a
group of isometries. Let T, be the tangent space of M at a fixed point x. The SO(2)
action on T, via the differential dg:T.——T..ge SO(2), is an orthogonal action and
the exponential map 7 ,——M is an *“equivariant” diffeomorphism near x with respect
to the actions. Therefore the set of fixed points is locally Euclidean, and a connected
component F of the set of fixed points is a smooth submanifold of M. Moreover. as
usual, we can choose an invariant tubular neighborhood of F. Let N, denote the
normal space of F at x. then we see the dimmension of N, is even. say 2r. Since the
action is semi-free it follows easily that the induced action of SO(2) on N, is equivalent
to the action defined by the representation ¢ : SO(2)—0(2r), which takes
A€S0O(2) to the (2% 2)—Dblock matrix

A 01
0 ‘A

Hence, as easily seen, the orbit space of the SO(2) action on the normal sphere bundle
of F is a complex projective space bundle over F.

$(A) =

2. Van Kampen’s theorem,

We recall here Van Kampen’s theorem. The proof is given in [1). Let X be a
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topological space and X, X1 X. path connected open subsets of X such that X,\YX,
=X, X1nX:=X,;  a point of X, ; G=7(X, *), G; = 7, (X;.*) (i=0,1, 2) the
fundamental groups of X, X, (i=0, 1, 2) based at *, respectively. The inclusion maps
induce the commutative diagram
G'\,E/Gz
by G b

Van Kampen's theorem

i) b G;(i=1, 2) generate G.

i) Given a group H and a homomorphism ¢, : G, —H (i=0, 1, 2)satisfying
Co =C11="Csy, then there is a homomorphism d : G —> H satisfying c¢; = db; (i=0,
1, 2).

Denote by K, the kernel of a, and by K, the minimal normal subgroup of G,
containing a,K.

Lemma 1, (corollary of Van Kampen's theorem)

If a, is onto, then so is b, and its kernel is K.

Proof. The ontoness of b, is obvious by 7) of Van Kampen’s theorem. Let ¢; :G;
—>G/K; (i=0, 1) be the natural projections and f; : Go/K;—> Gi/K ., f2: Go/K,
— G, be the natural homomorphisms induced by ai. @, f, is an isomorphism. We

put H=G:/K1, ci=es, co=f1e, and c,=f.1f37". Since the diagram

a,
G;*——-Go&)
81]4 ; eol f/y
1
G/K, — Gy/K,

is commutative, there is a homomorphismd : G— H= G,/K, satisfying ¢; =db; (i=
0, 1, 2) by ii) of Van Kampen's theorem. Since b,a,K=5b,a,K,=1 (1 the unit of G),
the normal subgroup, Kernel b,, contains @,K, and hence contains K.

G,

Therefore b; induces a homomorphism g : G,/K,—>G satisfying ge,=b;.
From
dglex)=d(ge)x=dbx=c,x=e,x, x¢G,
it follows that dg=id : G,/K,—> G,/K;. Hence g is a monomorphism and
Kernel by=Kernel (ge,)=Kernel e,=K,.
This proves lemma 1,

3. Proof of theorem 1,

Let F be a connected component of the set of fixed points and T a small open
invariant tubular neighborhood of F such that T—F has no fixed point ; T=Tﬂ
(M—F). Denote by T*, T* the orbit spaces of T. T, respectively. 4 i 4 * T* are
fibre bundles over F.

i) The inclusion map induces an isomorphism

7T, (M* — F)—> 7, (M*).
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Proof. We denote by p : T*— F, p : T*— F the bundle projections and by
j: T*—> T* the inclusion, p is a homotopy equivalence and the fibre of p has the
homotopy type of a complex projective space. Consider the commutative diagram

2T e T

N

R](F)

p= is an isomorphism. Since the fibre of p - T*—F is simply connected, 1.),: is also
an isomorphism. Hence j, is an isomorphism. Applying lemma 1 to M*=(M*—F)\T*,
(M*—F)\T*=T* we obtain 7).

Let S be an orbit of the SO(2) action in T and a, b, ¢, d. e the inclusion maps,
g. ¢ the bundle projections in the following diagram

S a "i" q F
N
cl / e\ ‘q
MF —=—— N Sp

i) ex ! W, (’I.‘)—>7r1(’l‘) is onto and its kernel equals ayg 7,(S).

Proof. If the codimmension of F is greater than two, ey is an isomorphism and
axz 7;(S)= 1 by the general position argument.
If the codimmension of F is two, then S is a deformation retract of a fibre of q' . T

—>F, . e S i—)"l‘i—» F is a fibration. Hence é,; & (’T) —> 7, (F) is onto and
Kernel q.#=a#7r1(S). Since ¢ is a homotopy equivalence and ge=g, i{) is now clear.

ii1) If there remains any fixed point in M—F, then dy : T,(M—F)— 7, (M)

is an isomorphism, otherwise dy is onto and Kernel dg=cyt,(S).
Proof. Consider the commutative diagram induced by the inclusion maps

a. .
S).__——-——-nn(T)

. |
fiN (:&i—/vl;g \,,(T)
/

7!'1(

T

RN

If there is any fixed point in M—F, then S is contractible to a point in M— F. Hence,
byagm,(S)=cs7(S)=1, and lemma 1, {i) above, show that dx is an isomorphism. If
M—F has no fixed point, then

S—c—) (M—F)i)(M*—F)
is a fibration. Therefore ¢y 7,(S)=Kernel [7s : T,(M—F)—m1,(M)] ,
which is a normal subgroup of 7,(M—F). The rest oi iii) follows from Iemma 1.
Now we complete the proof of theorem 1
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Let F; (i=Il. ... s) be connected components of the set of fixed points.
Put Mg"M- Mi =M1.-1—Fi (i=1. R 5—1) and M(*H Mi/SO(Z) (i‘o‘n ces S—l).
The inclusion maps and the natural projections induce the commutative diagram

7Ms- 1 )—— 7 (Ms-2)——>+ + + ——7,(M,)
T3 Ty Ty

T(Ms ) )—— 7, (M3_2)—— - « « —— 7, (M})

in which the horizontal maps are isomorphisms by i) and iii). Let S be an orbit in
M, ,—F, and ¢ : S—(M,-,—F, ) the inclusion. Since M,_,—F, has no fixed point,

c T
S——')(M-I“Fa )—)(Ms:I—FI )
is a fibration. The commutative diagram

Cg n ”
s 1i(S) — 1 (Ms—1—=Fs) — s 7,(M3~1-Fs ) ——0
= i)
”ﬁ .
ry(Ms- | )—————x(Ms-1)
(in which the vertical maps are induced by the inclusions) and {i{) yield the
commutatve diagram

oMy Bl e i8] ——— m NS s

= iii) =
Ty

7i(Ms-1) — > z,(Ms-1)
Therefore wy : T, (M,-,)—>7,(M.2,) is an isomorphism. and so is wx : 7, (M;) —>
7, (M¥). This complete the proof.

4, Proof of theorem 2,

Lemma 2, Let X be a compact acyclic mani fold with a semi-free SO(2) action.
Then X/SO(2) is acyclic.

Proof. The set of fixed points is acyclic by P. A, Smith theory [2]. Let T be a
closed invariant tubular neighborhood of the set of fixed points. W the closure of
X—F, T=W (N T. Denote by W, T* the orbit spaces of W, T. respectively. In the
Mayer-Vietoris sequence

—>Hu (X)—>H; (TY—>H, W)+ H; (T)—>H; (X)—>.
H, (T)—-)H, (W) are isomorphisms for all 7. It follows then easily from Gysin
homology sequence that H; (T*)—H; (W*) are isomorphisms for all i. Using the
Mayer-Vietoris sequence again, we obtain lemma 2,

Proof of theorem 2, Choose a small invariant disk neighborhood D of a fixed
point and denote by 8 D its boundary. Since the action on D may be regarded as a
linear action, it is easy to see that 8 D/SO(2) and D/SO(2) are homeomorphic to
S*CP(r— 1) and its cone. respectively. Let V be the cloure of S" —D and V* its
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orbit space. Since V is acyclic, V*is also acyclic by lemma 2, Let Y be the space
obtained from S§* /SO(2) by collapsing V* to a single poinl. Clearly Y is homeomorphic
to S¥CP(r—1). Let w : S* /SO(2)—>Y be the identification map. Since S*/SO(2)
is simply connected by Theorem 1 and triangulable by C. T. Yang [3], it follows
now easily from the theorem of J. H. C. Whitehead thal w is a homotopy equivalence.
This complete the proof.
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