琉球大学学術リポジトリ
On orbit spaces of semi－free $\mathrm{SO}(2)$ actions

メタデータ	言語：
	出版者：琉球大学理工学部
	公開日： $2012-02-28$
	キーワード（Ja）：
	キーワード（En）：
	作成者：Maehara，Hiroshi，前原，潤 メールアドレス： 所属：
hRL	http：／／hdl．handle．net／20．500．12000／23448

On orbit spaces of semi-free $\mathrm{SO}(2)$ actions*

Hiroshi MAEHARA

A differentiable action of $S O(2)$ on a smooth manifold is said to be semi-free if there exists a non-vacuous set of fixed points, outside of which the action is free, that is, there are two types of isotropy subgroups, the identity group $\{e\}$ and the whole group $S O$ (2). Let M be a compact connected smooth manifold with a semi-free $S O$ (2) action. Let $M^{*}=M / S O$ (2) be the orbit space and $\pi: M \longrightarrow M^{*}$ the natural projection. Denote by $\pi_{1}(\boldsymbol{M}), \pi_{1}\left(\boldsymbol{M}^{*}\right)$ the fundamental groups of M, M^{*}, respectively. In this note we prove the following result.

Theorem 1. $\pi_{\#}: \pi_{1}(M) \longrightarrow \pi_{1}\left(M^{*}\right)$ is an isomorphism.
If M is the n-sphere S^{n}, the set of fixed points is a homology sphere by Smith theory. Let k be its dimmension, then $n-k$ is even, say $2 r$. We also prove

Theorem 2. $S^{n} / S O(2) \simeq \Sigma^{k+1} C P(r-1)$ (homotopy equivalence), where $\Sigma^{k+1} C P(r-1)$ denotes the $(k+1)$-iterated suspension space of the $(r-1) \cdot c o m p l e x$ projectiv espace.

1. The fixed point set and its neighborhood.

Let M be a compact smooth manifold with a semi-free $S O(2)$ action. By averaging a given Riemannian metric on M, we have a new metric for which $S O(2)$ acts as a group of isometries. Let T_{x} be the tangent space of M at a fixed point x. The $S O$ (2) action on T_{x} via the differential $d g: T_{x} \longrightarrow T_{x}, g \in S O(2)$, is an orthogonal action and the exponential map $T_{r} \longrightarrow M$ is an "equivariant" diffeomorphism near x with respect to the actions. Therefore the set of fixed points is locally Euclidean, and a connected component F of the set of fixed points is a smooth submanifold of M. Moreover, as usual, we can choose an invariant tubular neighborhood of F. Let N_{x} denote the normal space of F at x. then we see the dimmension of N_{x} is even. say $2 r$. Since the action is semi-free it follows easily that the induced action of $S O(2)$ on N_{x} is equivalent to the action defined by the representation $\phi: S O(2) \longrightarrow O(2 r)$, which takes $A^{\epsilon} S O(2)$ to the (2×2)-block matrix

$$
\phi(\mathrm{A})=\left(\begin{array}{ll}
\mathrm{A} & \\
\cdot & 0 \\
0 & \ddots
\end{array}\right)
$$

Hence, as easily seen, the orbit space of the $S O(2)$ action on the normal sphere bundle of F is a complex projective space bundle over F.

2. Van Kampen's theorem.

We recall here Van Kampen's theorem. The proof is given in [1]. Let X be a

[^0]topological space and X_{0}, X_{1}, X_{2} path connected open subsets of X such that $X_{1} \cup X_{2}$ $=X, X_{1 \cap} X_{2}=X_{0} ; *$ a point of $X_{0} ; G=\pi_{1}(X, *), G_{i}=\pi_{1}\left(X_{i}, *\right)(i=0,1,2)$ the fundamental groups of $X, X_{i}(i=0,1,2)$ based at *, respectively. The inclusion maps induce the commutative diagram

Van Kampen's theorem
i) $b_{i} G_{i}(i=1,2)$ generate G.
ii) Given a group H and a homomorphism $c_{i}: G_{i} \longrightarrow H(i=0,1,2)$ satisfying $c_{o}=c_{1} a_{1}=c_{2} a_{2}$, then there is a homomorphism $d: G \longrightarrow H$ satisfying $c_{i}=d b_{i}(i=0$, 1, 2).

Denote by K_{0} the kernel of a_{2} and by K_{1} the minimal normal subgroup of G_{1} containing $a_{1} K_{0}$.

Lemma 1. (corollary of Van Kampen's theorem)
If a_{2} is onto, then so is b_{1} and its kernel is K_{1}.
Proof. The ontoness of b_{1} is obvious by i) of Van Kampen's theorem, Let $e_{i}: G_{i}$ $\longrightarrow G_{i} / K_{i}(i=0,1)$ be the natural projections and $f_{1}: G_{0} / K_{0} \longrightarrow G_{1} / K_{1}, f_{2}: G_{0} / K_{0}$ $\longrightarrow G_{2}$ be the natural homomorphisms induced by a_{1}, a_{2}, f_{2} is an isomorphism. We put $H=G_{1} / K_{1}, c_{1}=e_{1}, c_{0}=f_{1} e_{0}$ and $c_{2}=f_{1} f_{2}^{-1}$. Since the diagram

is commutative, there is a homomorphism $d: G \longrightarrow H=G_{1} / K_{1}$ satisfying $c_{i}=d b_{i}(i=$ $0,1,2$) by $i i$) of Van Kampen's theorem. Since $b_{1} a_{1} K_{0}=b_{2} a_{2} K_{0}=1$ (1 the unit of G), the normal subgroup, Kernel b_{1}, contains $a_{1} K_{0}$ and hence contains K_{1}. Therefore b_{1} induces a homomorphism $g: G_{1} / K_{1} \longrightarrow G$ satisfying $g e_{1}=b_{1}$. From

$$
d g\left(e_{1} x\right)=d\left(g e_{1}\right) x=d b_{1} x=c_{1} x=e_{1} x, x \in G
$$

it follows that $d g=i d: G_{1} / K_{1} \longrightarrow G_{1} / K_{1}$. Hence g is a monomorphism and

$$
\text { Kernel } b_{1}=\text { Kernel }\left(g e_{1}\right)=\text { Kernel } e_{1}=K_{1} .
$$

This proves lemma 1.

3. Proof of theorem 1.

Let F be a connected component of the set of fixed points and T a small open invariant tubular neighborhood of F such that $T-F$ has no fixed point ; $\dot{T}=T \cap$ (M-F). Denote by $T^{*}, \dot{T} *$ the orbit spaces of T, \dot{T}, respectively. $\dot{T}, T, \dot{T} *, T^{*}$ are fibre bundles over F.
i) The inclusion map induces an isomorphism

$$
\pi_{1}\left(M^{*}-F\right) \longrightarrow \pi_{1}\left(M^{*}\right)
$$

Proof. We denote by $p: T^{*} \longrightarrow F, \dot{p}: \dot{T} * \longrightarrow F$ the bundle projections and by $j: \dot{T}^{*} \longrightarrow T^{*}$ the inclusion. p is a homotopy equivalence and the fibre of \dot{p} has the homotopy type of a complex projective space. Consider the commutative diagram

$p_{\#}$ is an isomorphism. Since the fibre of $p: \dot{\Gamma} * \longrightarrow F$ is simply connected, $\dot{p}_{\#}$ is also an isomorphism. Hence $j_{\#}$ is an isomorphism. Applying lemma 1 to $M^{*}=\left(M^{*}-F\right) \cap T^{*}$, $\left(M^{*}-F\right) \bigcap T^{*}=\dot{T}^{*}$ we obtain i.

Let S be an orbit of the $S O(2)$ action in $\dot{\Gamma}$ and a, b, c, d, e the inclusion maps. q, \dot{q} the bundle projections in the following diagram

ii) $e_{\#}: \pi_{1}(\dot{T}) \longrightarrow \pi_{1}(T)$ is onto and its kernel equals $a_{\#} \pi_{1}(S)$.

Proof. If the codimmension of F is greater than two, $e_{\#}$ is an isomorphism and $a_{\#} \pi_{1}(S)=1$ by the general position argument. If the codimmension of F is two, then S is a deformation retract of a fibre of $\dot{q}: \dot{T}$ $\longrightarrow F, i, e_{0,} S \xrightarrow{a} \dot{T} \xrightarrow{\dot{q}} F$ is a fibration. Hence $\dot{q}_{\#}: \pi_{1}(\dot{\Gamma}) \longrightarrow \pi_{1}(F)$ is onto and Kernel $\dot{q}_{\#}=a_{\#} \pi_{1}(S)$. Since q is a homotopy equivalence and $q e=\dot{q}$, ii) is now clear.
iii) If there remains any fixed point in $M-F$, then $d_{\#}: \pi_{1}(M-F) \longrightarrow \pi_{1}(M)$ is an isomorphism, otherwise $d_{\#}$ is onto and Kernel $d_{\#}=c_{\#} \pi_{1}(S)$.

Proof. Consider the commutative diagram induced by the inclusion maps

If there is any fixed point in $M-F$, then S is contractible to a point in $M-F$. Hence, $b_{\#} a_{\#} \pi_{1}(S)=c_{\#} \pi_{1}(S)=1$, and Iemma 1 , $i i$) above, show that $d_{\#}$ is an isomorphism. If $M-F$ has no fixed point, then

$$
S \xrightarrow{c}(M-F) \xrightarrow{\pi}\left(M^{*}-F\right)
$$

is a fibration. Therefore $c_{\#} \pi_{1}(S)=\operatorname{Kernel}\left[\pi_{\#}: \pi_{1}(M-F) \longrightarrow \pi_{1}(M)\right]$, which is a normal subgroup of $\pi_{1}(M-F)$. The rest oi $i i i$) follows from Iemma 1.

Now we complete the proof of theorem 1.

Let $F_{i}(i=1, \ldots, s)$ be connected components of the set of fixed points.
Put $M_{0}=M, \quad M_{i}=M_{i-1}-F_{i}(i=1, \ldots, s-1)$ and $M_{i}^{*}=M_{i} / S O(2)(i=0, \ldots, s-1)$. The inclusion maps and the natural projections induce the commutative diagram

in which the horizontal maps are isomorphisms by i) and $i i i$). Let S be an orbit in $M_{s-1}-F_{z}$ and $c: S \longrightarrow\left(M_{s-1}-F_{s}\right)$ the inclusion. Since $M_{s-1}-F_{z}$ has no fixed point,

$$
S \xrightarrow{c}\left(M_{\mathrm{s}-1}-F_{\mathrm{s}}\right) \xrightarrow{\pi}\left(M_{\mathrm{s}-1}^{*}-F_{s}\right)
$$

is a fibration. The commutative diagram

(in which the vertical maps are induced by the inclusions) and $i i i$) yield the commutatve diagram

$$
\pi_{1}\left(\mathrm{M}_{\mathrm{s}-1}-\mathrm{Fs}_{\mathrm{s}}\right)\left(\begin{array}{ll}
\mathrm{c}=\pi_{1}(\mathrm{~S}) & \cong \\
\pi_{3}\left(\mathrm{M}_{\mathrm{s}-1}\right) & \cong \\
\cong \mathrm{iii}) & \pi_{4}\left(\mathrm{M}_{\mathrm{s}-1}^{*}-\mathrm{F}_{\mathrm{s}}\right) \\
\vdots \\
\pi_{2}\left(\mathrm{M}_{\mathrm{s}-1}^{*}\right)
\end{array}\right.
$$

Therefore $\pi_{\#}: \pi_{1}\left(M_{x-1}\right) \longrightarrow \pi_{1}\left(M_{*-1}^{*}\right)$ is an isomorphism. and so is $\pi_{\#}: \pi_{1}\left(M_{0}\right) \longrightarrow$ $\pi_{1}\left(M_{0}^{*}\right)$. This complete the proof.

4. Proof of theorem 2.

Lemma 2. Let X be a compact acyclic manifold with a semi-free $\operatorname{SO}(2)$ action. Then $X / S O$ (2) is acyclic.

Proof. The set of fixed points is acyclic by P. A. Smith theory [2]. Let T be a closed invariant tubular neighborhood of the set of fixed points. W the closure of $X-F, \dot{T}=W \cap T$. Denote by W^{*}, \dot{T}^{*} the orbit spaces of W, \dot{T}. respectively. In the Mayer-Vietoris sequence

$$
\longrightarrow H_{i+1}(X) \longrightarrow H_{i}(\dot{T}) \longrightarrow H_{i}(W)+H_{i}(T) \longrightarrow H_{i}(X) \longrightarrow .
$$

$H_{i}(\dot{T}) \longrightarrow H_{i}(W)$ are isomorphisms for all i. It follows then easily from Gysin homology sequence that $H_{i}\left(\dot{T}^{*}\right) \longrightarrow H_{i}\left(W^{*}\right)$ are isomorphisms for all i. Using the Mayer-Vietoris sequence again, we obtain lemma 2.

Proof of theorem 2. Choose a small invariant disk neighborhood D of a fixed point and denote by ∂D its boundary. Since the action on D may be regarded as a linear action, it is easy to see that $\partial D / S O(2)$ and $D / S O(2)$ are homeomorphic to $\Sigma^{*} C P(r-1)$ and its cone, respectively. Let V be the cloure of $S^{n}-D$ and V^{*} its
orbit space. Since V is acyclic, V^{*} is also acyclic by lemma 2. Let Y be the space obtained from $S^{a} / S O(2)$ by collapsing V^{*} to a single point. Clearly Y is homeomorphic to $\Sigma^{k+1} C P(r-1)$. Let $w: S^{n} / S O(2) \longrightarrow Y$ be the identification map. Since $S^{\prime \prime} / S O(2)$ is simply connected by Theorem I and triangulable by C. T. Yang [3], it follows now easily from the theorem of J. H. C. Whitehead that w is a homotopy equivalence. This complete the proof.

Reference

[1] R. Crowell and R. Fox, An introduction to knot theory, Ginn and co.. 1963.
〔2〕 P. A. Smith, Fixed point of periodic transformations. Appendix B in Lefschetz, Algebraic Topology, 1942.
[3] C. T. Yang, The triangulability of the orbit space of a differentiable transformation group, Bull. Amer. Math. Soc. (3) 69 (1963), 405-408.

[^0]: Received : Dec. 15, 1970

 * mathematics Dept. Sciences \& Engineering Div

