琉球大学学術リポジトリ

On orbit spaces of semi-free SO(2) actions

メタデータ	言語:
	出版者: 琉球大学理工学部
	公開日: 2012-02-28
	キーワード (Ja):
	キーワード (En):
	作成者: Maehara, Hiroshi, 前原, 潤
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/23448

On orbit spaces of semi-free SO(2) actions*

Hiroshi MAEHARA

A differentiable action of SO(2) on a smooth manifold is said to be *semi-free* if there exists a non-vacuous set of fixed points, outside of which the action is free, that is, there are two types of isotropy subgroups, the identity group $\{e\}$ and the whole group SO(2). Let M be a compact connected smooth manifold with a semi-free SO(2) action. Let $M^*=M/SO(2)$ be the orbit space and $\pi:M\longrightarrow M^*$ the natural projection. Denote by $\pi_1(M)$, $\pi_1(M^*)$ the fundamental groups of M, M^* , respectively. In this note we prove the following result.

Theorem 1. $\pi_{\#}$: $\pi_1(M) \longrightarrow \pi_1(M^*)$ is an isomorphism.

If M is the *n*-sphere S^n , the set of fixed points is a homology sphere by Smith theory. Let k be its dimmension, then n-k is even, say 2r. We also prove

Theorem 2. $S^n/SO(2) \simeq \Sigma^{k+1}CP(r-1)$ (homotopy equivalence), where $\Sigma^{k+1}CP$ (r-1) denotes the (k+1)-iterated suspension space of the (r-1)-complex projectiv espace.

1. The fixed point set and its neighborhood.

Let M be a compact smooth manifold with a $semi-free\ SO(2)$ action. By averaging a given Riemannian metric on M, we have a new metric for which SO(2) acts as a group of isometries. Let T_x be the tangent space of M at a fixed point x. The SO(2) action on T_x via the differential $dg:T_x \longrightarrow T_x.g \in SO(2)$, is an orthogonal action and the exponential map $T_x \longrightarrow M$ is an "equivariant" diffeomorphism near x with respect to the actions. Therefore the set of fixed points is locally Euclidean, and a connected component F of the set of fixed points is a smooth submanifold of M. Moreover, as usual, we can choose an invariant tubular neighborhood of F. Let N_x denote the normal space of F at x, then we see the dimmension of N_x is even, say 2r. Since the action is semi-free it follows easily that the induced action of SO(2) on N_x is equivalent to the action defined by the representation $\phi: SO(2) \longrightarrow O(2r)$, which takes $A \in SO(2)$ to the (2×2) -block matrix

$$\phi(\mathbf{A}) = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ & \cdot \\ \mathbf{0} & \mathbf{A} \end{bmatrix}$$

Hence, as easily seen, the orbit space of the SO(2) action on the normal sphere bundle of F is a complex projective space bundle over F.

2. Van Kampen's theorem.

We recall here Van Kampen's theorem. The proof is given in [1]. Let X be a

Received: Dec. 15, 1970

^{*} mathematics Dept. Sciences & Engineering Div

topological space and X_0 , X_1 , X_2 path connected open subsets of X such that $X_1 \cup X_2 = X$, $X_{1\cap}X_2 = X_0$; * a point of X_0 ; $G = \pi_1(X, *)$, $G_i = \pi_1(X_i, *)$ (i = 0, 1, 2) the fundamental groups of X, X_i (i = 0, 1, 2) based at *, respectively. The inclusion maps induce the commutative diagram

Van Kampen's theorem

- i) b_i G_i (i=1, 2) generate G_i
- ii) Given a group H and a homomorphism $c_i: G_i \longrightarrow H$ (i=0, 1, 2) satisfying $c_0 = c_1a_1 = c_2a_2$, then there is a homomorphism $d: G \longrightarrow H$ satisfying $c_i = db_i$ (i=0, 1, 2).

Denote by K_0 the kernel of a_2 and by K_1 the minimal normal subgroup of G_1 containing a_1K_{0} .

Lemma 1. (corollary of Van Kampen's theorem)

If a_2 is onto, then so is b_1 and its kernel is K_{1} .

Proof. The ontoness of b_1 is obvious by i) of Van Kampen's theorem. Let $e_i:G_i \longrightarrow G_i/K_i$ (i=0, 1) be the natural projections and $f_1:G_0/K_0 \longrightarrow G_1/K_1$, $f_2:G_0/K_0 \longrightarrow G_2$ be the natural homomorphisms induced by a_1, a_2, f_2 is an isomorphism. We put $H=G_1/K_1$, $c_1=e_1$, $c_0=f_1e_0$ and $c_2=f_1f_2^{-1}$. Since the diagram

is commutative, there is a homomorphism $d: G \longrightarrow H = G_1/K_1$ satisfying $c_i = db_i$ (i = 0, 1, 2) by ii) of Van Kampen's theorem. Since $b_1a_1K_0 = b_2a_2K_0 = 1$ (1 the unit of G), the normal subgroup, Kernel b_1 , contains a_1K_0 and hence contains K_1 .

Therefore b_1 induces a homomorphism $g: G_1/K_1 \longrightarrow G$ satisfying $ge_1 = b_1$. From

$$dg(e_1x) = d(ge_1)x = db_1x = c_1x = e_1x, x \in G,$$

it follows that dg = id: $G_1/K_1 \longrightarrow G_1/K_1$. Hence g is a monomorphism and $Kernel\ b_1 = Kernel\ (ge_1) = Kernel\ e_1 = K_1$.

This proves lemma 1.

3. Proof of theorem 1.

Let F be a connected component of the set of fixed points and T a small open invariant tubular neighborhood of F such that T-F has no fixed point; $\dot{T}=T\cap (M-F)$. Denote by T^* , \dot{T}^* the orbit spaces of T. \dot{T} , respectively. \dot{T} , T, \dot{T} , T^* are fibre bundles over F.

i) The inclusion map induces an isomorphism

$$\pi_1(M^*-F) \longrightarrow \pi_1(M^*)$$
.

Proof. We denote by $p:T^*\longrightarrow F$, $\dot{p}:\dot{T}^*\longrightarrow F$ the bundle projections and by $j:\dot{T}^*\longrightarrow T^*$ the inclusion. p is a homotopy equivalence and the fibre of \dot{p} has the homotopy type of a complex projective space. Consider the commutative diagram

$$\pi_{1}(\dot{\mathbf{T}}^{*}) \xrightarrow{\dot{\mathbf{J}}_{\sharp}} \pi_{1}(\mathbf{T}^{*})$$

$$\dot{\mathbf{p}}_{\sharp}$$

$$\pi_{1}(\mathbf{F})$$

 $p_{\#}$ is an isomorphism. Since the fibre of $p:\mathring{T}^*\longrightarrow F$ is simply connected, $\mathring{p}_{\#}$ is also an isomorphism. Hence $j_{\#}$ is an isomorphism. Applying lemma 1 to $M^*=(M^*-F)\bigcap T^*$, $(M^*-F)\bigcap T^*=\mathring{T}^*$ we obtain \mathring{i}).

Let S be an orbit of the SO(2) action in T and a, b, c, d, e the inclusion maps, q, \dot{q} the bundle projections in the following diagram

ii) $e_{\#}$: π_1 $(\mathring{T}) \longrightarrow \pi_1(T)$ is onto and its kernel equals $a_{\#}$ $\pi_1(S)$.

Proof. If the codimmension of F is greater than two, $e_{\#}$ is an isomorphism and $a_{\#}$ $\pi_1(S) = 1$ by the general position argument.

If the codimmension of F is two, then S is a deformation retract of a fibre of $q^{\bullet}: \mathring{T} \longrightarrow F$, $i_{\bullet} e_{\bullet}$, $S \xrightarrow{a} \mathring{T} \xrightarrow{q} F$ is a fibration. Hence $\mathring{q}_{\#}: \pi_{1}(\mathring{T}) \longrightarrow \pi_{1}(F)$ is onto and Kernel $\mathring{q}_{\#} = a_{\#}\pi_{1}(S)$. Since q is a homotopy equivalence and $qe = \mathring{q}$, ii is now clear.

iii) If there remains any fixed point in M-F, then $d_{\#}: \pi_1(M-F) \longrightarrow \pi_1(M)$ is an isomorphism, otherwise $d_{\#}$ is onto and Kernel $d_{\#}=c_{\#}\pi_1(S)$.

Proof. Consider the commutative diagram induced by the inclusion maps

If there is any fixed point in M-F, then S is contractible to a point in M-F. Hence, $b_{\#}a_{\#}\pi_1(S)=c_{\#}\pi_1(S)=1$, and lemma 1, ii) above, show that $d_{\#}$ is an isomorphism. If M-F has no fixed point, then

$$S \xrightarrow{c} (M-F) \xrightarrow{\pi} (M^*-F)$$

is a fibration. Therefore $c_{\#}$ $\pi_1(S) = \text{Kernel } [\pi_{\#} : \pi_1(M-F) \longrightarrow \pi_1(M)]$,

which is a normal subgroup of $\pi_1(M-F)$. The rest oi iii) follows from Iemma 1. Now we complete the proof of theorem 1.

Let F_i ($i=1,\ldots,s$) be connected components of the set of fixed points. Put $M_0=M$, $M_i=M_{i-1}-F_i$ ($i=1,\ldots,s-1$) and $M_i^*=M_i/SO(2)$ ($i=0,\ldots,s-1$).

The inclusion maps and the natural projections induce the commutative diagram

in which the horizontal maps are isomorphisms by i) and iii). Let S be an orbit in $M_{s-1}-F_s$ and $c: S \longrightarrow (M_{s-1}-F_s)$ the inclusion. Since $M_{s-1}-F_s$ has no fixed point,

$$S \xrightarrow{c} (M_{s-1} - F_s) \xrightarrow{\pi} (M_{s-1}^* - F_s)$$

is a fibration. The commutative diagram

(in which the vertical maps are induced by the inclusions) and iii) yield the commutatve diagram

$$\pi_{1}(M_{S-1}-F_{S})/c \neq \pi_{1}(S) \xrightarrow{\cong} \pi_{1}(M_{S-1}^{*}-F_{S})$$

$$\downarrow \cong iii) \qquad \qquad \downarrow \cong$$

$$\pi_{1}(M_{S-1}) \xrightarrow{\pi_{\#}} \pi_{1}(M_{S-1}^{*})$$

Therefore $\pi_{\#}: \pi_1(M_{*-1}) \longrightarrow \pi_1(M_{*-1})$ is an isomorphism, and so is $\pi_{\#}: \pi_1(M_0) \longrightarrow \pi_1(M_0^*)$. This complete the proof.

4. Proof of theorem 2.

Lemma 2. Let X be a compact acyclic manifold with a semi-free SO(2) action. Then X/SO(2) is acyclic.

Proof. The set of fixed points is acyclic by P. A. Smith theory [2]. Let T be a closed invariant tubular neighborhood of the set of fixed points. W the closure of X-F, $\dot{T}=W\cap T$. Denote by W^* , \dot{T}^* the orbit spaces of W, \dot{T} , respectively. In the Mayer-Vietoris sequence

$$\longrightarrow H_{i+1}(X) \longrightarrow H_i(\dot{T}) \longrightarrow H_i(W) + H_i(T) \longrightarrow H_i(X) \longrightarrow.$$

 $H_i(\dot{T}) \longrightarrow H_i(W)$ are isomorphisms for all i. It follows then easily from Gysin homology sequence that $H_i(\dot{T}^*) \longrightarrow H_i(W^*)$ are isomorphisms for all i. Using the Mayer-Vietoris sequence again, we obtain lemma 2.

Proof of theorem 2. Choose a small invariant disk neighborhood D of a fixed point and denote by ∂D its boundary. Since the action on D may be regarded as a linear action, it is easy to see that $\partial D/SO(2)$ and D/SO(2) are homeomorphic to $\sum^k CP(r-1)$ and its cone, respectively. Let V be the cloure of S^n-D and V^* its

orbit space. Since V is acyclic, V^* is also acyclic by lemma 2. Let Y be the space obtained from $S^n/SO(2)$ by collapsing V^* to a single point. Clearly Y is homeomorphic to $\sum_{k=1}^{k+1} CP(r-1)$. Let $w:S^n/SO(2) \longrightarrow Y$ be the identification map. Since $S^n/SO(2)$ is simply connected by Theorem 1 and triangulable by C. T. Yang [3], it follows now easily from the theorem of J. H. C. Whitehead that w is a homotopy equivalence. This complete the proof.

Reference

- [1] R. Crowell and R. Fox. An introduction to knot theory, Ginn and co., 1963.
- [2] P. A. Smith, Fixed point of periodic transformations. Appendix B in Lefschetz, Algebraic Topology, 1942.
- [3] C. T. Yang, The triangulability of the orbit space of a differentiable transformation group, Bull. Amer. Math. Soc. (3) 69 (1963), 405-408.