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Two Band Models for Solids

with an Ising Impurity

Seitaro MATAYOSHI*

Summary

Using two band models for solids with an Ising impurity, we have seen the
possibility of “effective” energy gap in the superconducting states, This “effective
gap” appears for the existences of the both gaps; namely, the one belonging to the
model of two bands and the other to the superconducting states, and, in addtion,
separate into two parts; i, e, a “part” of the semiconductor-like states and a “part”
of the superconducting states,

In the various “gap” in the superconducting states and in, also, the normal states,
we have searched for the excited states and discussed them,

1. Introduction

Since the paper published by Abrikosov and Gorkov,’ many works have been done
experimentally and theoretically concerning the thermo-dynamic and transport
properties of superconductors with small amount of paramagnetic impurities,

Recently, several authors have investigated localized low lying excited states in the
energy gap of superconductors with the paramagnetic impurities.

Soda, Matsuura, and Nagaoka?) have first found such states within the gap in the
superconducting state of the s-d exchange interaction system, Their approach is a
perturbational method corresponding to Yoshida’ s treatment® in the normal s-d system.
Fowler and Maki!? have examined the states in terms of the dispersion relations,
Takano and Matayoshi,» Zittartz and Miiller-Hartmann® also in terms of the two-time
Green's functions, respectively.

Although a satisfactory theory for the s-d system has not yet been obtained,” all
their results have supported the existence of the localized low lying excited states in
the energy gap of superconductors.

As it is well known, a paramagnetic impurity in normal and superconducting metals
brings about a new kind of quantum mechanical effect, “the so-called Kondo effect”,®
but this effect makes complete solutions of the problem quite difficult,

Shiba%) has proposed a solvable model of superconductors with a localized impurity
spin which is equivalent to a local magnetic field. Using this model, he has obtained
the exact solution of the Temperature Green' s function, and has discussed the excited
state and others in superconductors.

Another solvable model of s-d system with an Ising spin of impurity has been
suggested and investigated exactly by Yara and Matayoshi.lD

These solvable models are almost equivalent to each other in the normal and the
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superconducting states. There arc, however, great differences between the two
solvable models in the effects due to the existence of correlations between impurities
and of an external field. ¢

In this paper, we will show the excited states in the energy gap using one of the
solvable models in a system of two bands, and ‘will be able to see an ‘“effective” gap
in the superconducting states. This effective gap will sharply separate into* parts” of
the semiconductor-like state and superconducting state.

The “part” of the semiconducting-like state has a structure sensitive on physically
observable quantities, but the “part” of the superconduting state lacks not only the
structure sensitive stated above but also the effect due to the gap in the two bands.

We will also see levels of localized bound state by an impurities potential especially
in the “part” of the semiconductor-like, but not in the “part” of the superconducting.

In addition, we must include the explanation of the experimental fact of the “deep”
bound states in the gap of the semiconductors with transition atoms as impurities in
the normal state, and will give the account for the “deep” bound states in the
superconducting states, too,

In calculation, the author will use the model by Yara and Matayoshi,1® for he will
study the effects of the correlations between impurities and of an external field in
the future series of this paper,

In Shiba’s model,®) we cannot take into consideration the effects mentioned above,
especially, the effect of an external field.

We will give the formulation of the two-time Green's functions in section 2, and
in sections 3 and 4, will show various bound states in “gap” in normal and in
superconducting states, respectively.

2. Formulation and Formal Solution
The Hamiltonian of our problem can be given in the following form.
H=3/0 £:CigCie — A, 3¢ (Cy CLoi+CoriCoy)

v J +
+9gNZwe Clo Cro—an2u(CitCry—C/ Cry) Su (2—1)

where £ ; is the kinetic energy of an electron measured from the Fermi energy, and
Cio and C‘;I are operators of the destruction and the creation of electrons with wave
number ¢ and spin o, respectively.

Ao is the order parameter or the gap energy of the superconducting states defined by

A, =g3;<C/C , > =82,:<C-;C1> 2—2)

m 1)
g being the coupling constant in the B. C. S. Hamiltonian and <A>> denoting the

statistical average of an operator A. N is the number of atoms in the system, V is the
strength of a scattering potential impurity, and J is the coupling constant of the
exchange interaction between electrons and an Ising impurity of operator Sz which is
located at the origin of the system.

17



MATAYOSI : Two Band Models for Solidt with an Ising Impurity

The Green’s functions in Nanbu spacel® to be calculated in the following are

KCrt |Co 1Dy LCri [Ci 1Dy
G (0) = + + +
| LChi | Cw1Dg LCori | CaniDg , (2—3)
and
&Ci1Sz | CH 1Dy KCriSz | Cridg
P**'(m) n + + +
LCxiSz | Cr1 D pkCmniSz |Con i Dy 2—4)

where <€A | B>, denotes the Fourier transform of the Green’s function of two
operators A and B,

There are various kinds of the Green's functions, i. e. the retarded or advanced
two-time Green's function, the temperature Green's function, and so on.

The only differences are the definition of the frequencies and the relation between
the Green's function <€A | B>y and the average <<BA>.

The former Green's function has simpler analytical properties, while the latter is
convenient for perturbational calculations. Though the two-time Green's functions
will be used in the following, it can be easily rewritten by means of the temperature
Green's function which will also be utilized in the forthcoming series.

Equations for Ges(®) and f'as (@) are derived in the usual way, We have the
following,

fu (0) Grwr () — 2&—2 ¢ Gow (m)+—2]W Sefew(o)=8m . (2—5)

A J A
Qi (@) Parr (0)—3N 2 f tw(0)+3 g2 eGew(w)=0, (2—6)
which are exact equations and make use of the usual relation <Sz> =0 obtained
from the axial symmstry of the sytem. The inverse matrix of (34 (®)in egs. (2—5)
and (2—6) is the free Green's function of a pure superconductor and is given by

1 [ o+ér  —A,

w? — fi -4 _— o Ei , 2—7

These coupled Equations (2—5) and (2—6) can be solved easily to give the
solution in the following simple forms:

Gm(0)= 3a ;' (0)+H;" (0) t, (@) (0), (2—8)

P (0) =45 (0) 1, (0) 37 (w), (2—9)
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t, ("’)=( _4Yr¢fa "% ) l:l _““‘2_," F(o) g +_i‘%'(“’)j“1

A o -1
+(aenrar) G- k@8] e

b (0) = (axy —a) (1——5 B(@) g +——F()]) "
v A\ A J A =1
L () (- Bt — k@)

' (2—11")

and

Flo)=—2, 71() (2—12)

These solutions coincide with egs. (2—8) in the reference (10) , if we put the
strength V of a impurity potential equal to zero. Using these solutions, we can
investigate various physical quantities., In the next section, discussions of excited
states in the energy gap of normal state will be given.

3. Normal State

To calculate the function F(w) specifically, we must assume a form of the state
density p (£¢) as shown in Fig.| for simplicity.

Both the upper and lower energy bands are supposed to have the same band width
D—A and the same uniform state density p, It is further assumed that the total

number of electrons in the system just equals the total number of one-electron states
in the lower band.

IR

1]

-b A 0 ] > &

Fig. [, State density of the two band models,

Consequently, the lower energy band is fully occupied by electrons, while the upper
band is completely empty in the ground state of the system without an interaction
between electrons and impurities. This state density will be used in this section and
thereafter.

Now, we can obtain the concrete results of F(w) in the following.
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Fi(0)=F (0£i8)=7%: —5—F273
— A .
J ——g—-ln |%—TE] :F“'_{:l_ for |w| >A (3—1)
P w—A
‘ £ lw+a . for |o] <A -2

which are approximately calculated using an assumption, i. e. D> ||, A.

The low lying excited levels are obtained by seeking singular points of the normal
Green's function Gyx' (@) or t; (w) matrix without spin flip : namely by the
zero points in the following equations

V_Fs - i _

1——2-1: (0) + i F+ (w) =0, (3—3)

To find bound states in the gap A, it is convenient to divide the discussions into
two cases and consider them separately.

CaseA

v Pl
"1 E ;ﬁ' #0 and 7 E4g =0 (3—4)

For this case we have, from egs. (3—3) ,
w—A\_

o+ A |_0
and obtain the excited state, i. e.

1-7 {n

1
Thew — 7, curve is shown in Fig. |.
Case B.

v, % 0 and 72 %0.

For this case we can achieve the following as

the final results, =Fx
& m— Atha - S Fig. I. The relation between 7 and o,
. 2(nm£m) (3—6) due to the ordinary potential, i, e.,

the position of the excited states,
in the same way as in the Case A.

We can easily depict the curve of @ by 7 in eqs. (3—6) . The graph in Fig. §
give the @ — 7, curve for a constant 72 and vi'ce ver'sa in Fig. V.

The low excited energy @ in the eq. (3—5) is the single-valued function of 7; ,
but the @ in the eq. (3—6) are two-valued. We can graphically see the connection
between eq 's (3—5) and (3—6) in the Fig. [ and Fig. I, when 7; approaches zero.
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Fig. . @—7 curve for a constant 72 in the normal states,

It will be convenient for discussions on the
superconducting states in the next section to
have the Fig. V.

4 Superconducting State

The treatments are quite the same as in the
normal state in the section 3. To begin with,
we must caluculate the function f(®)in this
section, too. The final result of this function
is given in the following,

Fig, V. The bound state position as a
function of %2 for a positive

constant 71 in the normal . Z —A,
states, F(Z) = [ ] 1(2), 4—1
. .—As Z
and
1 1
1(Z)=—-3 N By , BEY,
N %t ZF —fi —Af 4—1")

where Z is the complex number, and the function I is shown to be easily obtained
on the real axis in the complex plane; namely,

w2 —AZ —
[(0)=I(0 +i§ )= _If]___z_j__z_ | V0P -AT-a
V02 — A2 Vo —AZxA
_ imp
TN Jet—ar o for 0>yATFAT
4+

| L imP 1

N Vol —AE s for o <—1/A2+A§

(4—2)
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p 1 VT —AT—A
T3 ) T AR S . T B
N ot —Af in Ve=aita yfora.< || <y A? + A?
4—3)
and
I(0)=—"P - , for |o]| <Ae (4—9)

N 'L/As —w?

which coicide with egs. (3—1) and (3—2) at the normal limit of Ao, =0, and with
that of the superconducting metals at the limit of A =0 , respectively,
The equations of the position of the bound state in the energy gap are given by

det |1 -——‘é—f‘:*(w)es ;f_-—-i_ﬁ‘*(w) =0

(4—5)

or
CosfraticonY -Cyomnd + (S )at 0=t g

The solutions of this equations are grouped into several cases for the sake of

discussions,
o

Case A 7, %0 and 7; =0 for |w|<A.. e

We have no solution of the w. i
B

Case A’ 71 40and 7,=0for A< |o| <y A2+ A2

We have the following, -8
. VETatoa -
17} nt| = —— | =0,
| Vol-AL4+A (4—7) Sy
from eqs. (4—3) and (4—6) and take Fig. V. Impurity levels for the case

of the ordinary potential only in the
e =y “part” of the semiconductor-like
®=% A° + A th? Tor " (4—g) States. Such levels have not appeared
) in the single band model,

as the solutins of egs. (4—7) . We must select the signs of eqs. (4—8) approaching
eq. (3—5) at the limit A, =0.

Therefore we obtain the final results as follows:

0==V a1 4 At g for %20
u 71
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and (4—9)

w=V 2 2 th? 1__ . for 71 <0
A°+A th 3oi

or

1—.
27 (49,
Case B. 7 %0 and 7; #0 for |w| <A,.

o=—(sgn7 ) V'Az + A2 th?

The bound states are given by

1+ w2 7} —x? 75
VI+nt o3 —wt vl (0 +4n? 72

0=+ AO! Itd

Fgi. VI. The excited state position as
(4—10) a function of 72 for a positive
constant 71 in the “part” of

as the final solution of egs. (4—6) . semiconductor-like states and in the
“part” of the superconducting
Case B’ 7) 0 and 7 0 for A, < | 0 | < states, Attention should be paid to

the “part” of the superconducting
states of | @ | <A, . The bound
states in this “part” are completely
equivalent to that of the gap of
in term of either 7¥; or 7z , but can give an superconductors in the single band
outline of the curve of the ® in terms of 71 for  model,
a constant 7 and vi'ce ver'sa, for we can use
the results and the figures obtained previously.

The figures of the Case A with A’ are given

in Fig. ¥ and the Case B with B, in Fig. {].

VBT TAT.

We cannot obtain the explicit form of the o

5. Results and Discussions

Using the two-band model for solids with an Ising impurity, we have investigated
the various kinds of the excited states within the “gap” in the normal states and the
superconducting states.

In the normal states, the gap in this system is only the gap A owing to the model
of two bands. We have given the excited state, namely w— 71 curve in the Fig. ],
corresponding to the usual results due to the existence of impurity potentials. However,
the absolute values of 7; seeming to be very small, we cannot in fact obtain the
“deep” excited levels as they have been shown in many experimental data.

We also know the experimental facts concerning the “deep” levels in a system with
the transition atoms as impurities, In the Fig, [ or the Fig. IV, the graphs of w— 7,
curves are shown for the case when an impurity spin exists. These graphs give the
reason for the appearance of the “deep” levels, if the property of the structure sensitive
is taken into consideration,

The occurence of the structure sensitive is due to the existence of the small gap
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owing to the two-band system and the existence of impurities.

In the superconducting states, we have had the “effective gap” consisting of the
gaps owing to A in the two-band model and A, in the superconductors. This effective
gap has sharply-separated into two parts: i, e., the “parts” of the semiconductor-like
and the superconducting. The “part” of the semiconductor-like has a structure sensitive
property for physical quantities, but the “part” of the superconducting does not. In the
appearance of the superconducting state at very low imputity concentration, any
systems are.necessary to have energy gap owing to the formation of many Cooper
'pairs‘

In addition, the energy gap owing to many Cooper pairs is the universal function
independent of a form of electron state density and dependent only on a value of the
density in the neighborhood of the Fermi surface. Therefore, the “part” of the
superconducting states in this two-band model is completely equivalent to the gap of
the superconducting states in a single band model, or in a metal. Consequently, the
graphs in the “pdrt” of the superconducting states in Fig. V| correspond to the ones
in Pig. ] in Ref. (10" . Contrary to the superconducting case, the “part” of the
semiconductor-like is due to the gap in the two-band system and has effect for the
sake of the superconducting states. This effect is largest at | o | =A,, decreasing
as | w | approaches the gap edge VAT YAt , and is smallest at the edge VALFA

so, the “part” of thé"semiconductor-like becomes the part of the superconductor-like

in the neighborhood of the edge | w | =A,, and becomes also the part of the normal

‘semiconductor-like in the neighborhood of the edge |w| =1/A? + A? , We know
o

the relation of correspondence 'between Fig. [ and V], or Fig. [V and V], respestively.

As it is seen in Fig. V, we can obtain the excited states for the ordinary potential
in the “part” of the semiconductor-like states. The excited states for the potential
have not been obtained in the normal states and in the superconducting states for the
single band model.

It is interesting to discuss the case of a solid

with a finite concentration of Ising impurity A:;—A

spins. Using the discussion of equivalence

between the “part” of the superconducting state o

in the two—band model and the gap of the I
supercoductors in a single band model, and also o -

%
using the results in Ref, (9) and (10) , we can

presume that at extremely low concentration,
the growth of impurity band begins with the :
localized levels near the edge | @ | =Ao, and T
at higher i

. ghe cox}centratlon, the growth. of band Fig. WI. The positions of the impurity
begins also with the edge Apand with levels levels taking the “Kondo effect”

near w =0, into consideration in the “part”
Next, we must refer to the “Kondo effect”. of the superconducting states,

It is very difficult to take the Kondo effect problem into consideration, but we will be
able to infer it as shown in Fig. V[, if we utilize the equivalent property mentioned
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above and the result in Ref. (6) .

On both the finite concentration problem and the Kondo effect problem, we have
given some suggestions in the “part” of the superconducting state, but not in the “part”
of the semiconductor-like state. As it seems to be very interesting, we will investigate
the problems in our future work.
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