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Anisotropic s—d Exchange Interaction
Normal State T
Seitaro Matayoshi* and Asao Yaras

Summary

In this paper we have dealt with an anisotropic s-d exchange interaction and
calculated physical quantities such as specific heat and resistivity using the
Hamann 's approximation,

Since partial breakdown of the rotational symmetry arises in this system, we have
introduced a special type of T -operation for matrices and utilized it to construct
equations of the t's matrices which appear in the one-particle Green’s function,

1, Introduction

The phenomena of the resistance minimum in some metals and alloys has been a
puzzling problem in the theory of metals for a long time.

The first theoretical explanation has been given by kondo,!) who has considered the
spin flip scattering of conduction electrons using s-d exchange model?) as the origin
of the resistance minimum. He has calculated the life time of conduction electrons
due to this anomalous scattering in the second Born approximation, and has shown
that there appears the “singular” term proportional to In T. Combining this singular
term with the usual term due to the scattering by phonons, he has succeeded to
explain the occurrence of the resistance minimum at a certain temperature. It is to
be noted that this occurs only when the exchange coupling between the “localized spin”
of the paramagnetic impurity and the spin density of conduction electrons is antiferro-
magnetic. While we have believed for a long time that the ordinary perturbational
theory could have accounted for all effects of interest, but the appearance of such a
singular term has meant that the perturbational treatment of this anomalous scattering
problem becomes very doubtfull at sufficiently low temperatures,

There have been a number of attempts to treat the s-d exchange model by
nonperturbative methods.

Suhl® has used the Chew-Low method4) in calculating the scattering t-matrix of
conduction electrons by the paramagnetic impurity. His result is similar to that of
AbrikosovS) and Doniach®), who have calculated the self-energy of conduction electrons
by using the technique of the Feynman diagram® and summed up the most “divergent
terms”,»®) so Suhl’s result shows the instability; that is, the breakdown of the analyti-
cal property of the t-matrix at low temperatures.

Later, Suhl and Wong?’ have succeeded to remove this instability and to obtain the
t-matrix which is analytic even at low tmeperatures.

Nagaoka & has developed a special decoupling scheme for double time Green's
functions.?) As a result of the decoupling procedure, he has obtained the complex
closed sets of equations and proceeded by further approximations to solve these
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equations. His result has been shown to be similar to that of Suhl, Abrikosov, and
Doniach at high temperatures but to give the finite value for the life time of
conduction electrons at low temperatures, especially at. O°K. An improvement of
the calculations have been achieved by Hamann,lD

He has shown that all the informations contained in Nagaoka’s equations can be
exactly obtained from the solution of a nonlinear integral equation for the t-matrix
which appear in the one-particle Green's function, derived a simpler integral equation
than the original one by retaining only those parts of the integral operators which
give rise to Fermi surface anomalies of the Kondo type, and solved it approximately
to obtain physical quantities, This simplified equation has been studied exactly by
Bloomfield and Hamann!® using special mathematical techniques in the theory of
“singular integral equations.”1? Zittartz and Muller-Hartmanni®) have, recently, solved
exactly the original non-linear integral equation derived by Hamann, which is equi-
valent to solving the Nagaoka equation, and given physical quantities.

This Green's function method has been shown to be equivalent to the Suhl's
method, mentioned above, by Schotte,1®) and Zittartz,1¥) respectively,

Giving “reasonable” physical quantities, if we utilize the exact solutions in calculations,
nonperturbative theories for the s-d exchange system seem to be successful.

Now we must refer to the ground state of this system.

Yoshida!®) and his coworkers!®) have investigated the ground state of the system by the
variational method and obtained a possibility forming a singlet ground state for s= %,
as Cooper pairs!” in superconductors. Kondo!®) has used the different method and got
the similar result, This singlet ground state had been conjectured by Anderson.®

If this is true, the susceptibility x multiplied by absolute temperature T should
vanish at T=0.

Recently, Zittartz?) have examined, using nonperturbative exact solution, the
susceptibility and obtained the unfavorable result that x, which should certainly be
either positive or zero, is negative at T=0 for S=%.

This fault seems to result from either the Nagaoka’s decoupling scheme, or the
model with a single impurity spin.

This question ought to be answered, but it is extremely difficult.

Having interests of this problems, the authors would like to propose an anisotropic
model: i. e.,

o JS=N0zSz+#(0+S-+ 0-8.),
instead of the usual isotropic interaction: i, e.,

JoS=J{czSz+ +(o+S-+ o-8.)},

where
& A 0 0
J=10 2¢ 0
0 0 24/ ,

and ) and # are assumed to be real and independent from each other.

The reason for proposition of the anisotropic interaction model is that, for # =0,
we can obtain a solution without an approximation, and for #3520, we will be able
to hope to discuss the Nagaoka's decoupling scheme. '



Matayoshi + Yara: Anisotropic s-d Exchange Interaction Normal State |

In this paper, first we will disscuss the anisotropic exchange model in Hamann's
treatment, and then give observable quantities except susceptibility.

Since in our system the rotational symmetry breaks down partly, we will employ a
matrix form of Green's functions rather than the usual form® used for the normal
states.

2. Formulation

The starting point for the following calculations is the anisotropic s-d exchange
Hamiltonian

H=3,¢ £:CioC;
— 3 ((Cfy Cory —Cy Cory)ASz+ Cfy Cory #S_+Cfy Cpry BS4} (2—1)

where £, is the free electron energy measured relative to the chemical potential,
and C;a' and C,o creates and annihilates conduction electrons with momentum % and
spin o, respectively.

» and # are the coupling constants, per an electron, of the anisotropic exchange
interaction between conduction electrons and an impurity spin 8 (S=4).

We introduce the Green’s functions in matrix forms

. &Cay | Car1 >z 0
G (2) = N (2—2)
0 &Cowy |Conr 1 Dz i
Cs1Sz | C+. 0
fare (2) = [< it 1S 122 ‘ @—3)
| 0 &C_x; Sz | Cow | D2z "
and
&C_p, S- |Ca 1> 0
A (2) = [ e ] (2—4)
0 —&LCyt 8- | Cnry Dz )

where €A | B, denotes the n-th Fourier coefficient of the temperature dependent

Green's function?) of two operators A and B, i. e,

—<T AcmyBersy > (2—5)
with 0Z7,7'LB and
®n =ﬁ'-§1—x (2—6)

The braket <<BA>> is the usual statistical average of operators BA and T is the
time ordering operator.!) The thermal averages are related to the Green's functions.
This relation is given by the general expression

<BA>= 42,6/ 3CA B>y =5, (KAIBD g ) - @-7)
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where § is positive and infinitesimal.

We will follow Nagaoka's treatments 8 for the constructions of equations of the
Green’s functions as closely as possible, especially for the decoupling scheme of the
‘Green's functions higher in order than the three Green's functions introduced above.

The closed epuations of these Green's functions are

Qs (Z)Gaw (Z)+ A3t Paar(Z)+ £ 3 Aew (Z)=5mar (2—8)
Or (Z2) Paw (Z)+ R 20 Aow () + K16 20 G (2)=0, (2-9)
OQn (Z) Amw (Z)+Ox Ze Pow (2) + P, 2 An(@)+ L, 24 G (Z)=0, (2-10)

where Z is a complex energy, and

_ (Z-& 0

b @)= ("3"" 276, ) (2—11)

. <Ci1 C/t > 0
Re=—5—=p2 (S0 7 <t Cy ), (2—12)
. A <Cki C/1S:> 0
Max =—-4—-+ uwt ( k1 0:; —<C:;C”s+>], (2—13)
AL _ < Cx; C; 0
Ox=p—2up3%; ( (;‘ ”><C:1C;1>). (2—14)
A A <Ca Cp > 0
Pa=—2'—“?\2: ( 0” Ly (C:;C;,} )' 2—15)

and

A <CyiCliS-> 0
ir=2r2 ( 6 —<c:,c“s_>)

g <CuC/1S2> 0 p i 3
2u2: (S <ChCurSe>)t 5 (e—16)

To obtain the formal solutions of these closed set of the equations, it is
convenient to define t-matrices without spin flip,!? i, e.,

e @)=32 Pa(D)=-¢, (2)8;* (D), (2—17)
Av (D)=32 An(Z)=~t, @) G (2), (2—18)
‘Consequently, we have the following:
G (D)=Z 16w (Z)=32:Gex (2)
=0 D+ F@OA t, D)+ s i, (220;1(2), (2—19)
where
F@=2:0;12) (2—20)

Now we must write down the equations satisfied with t-matrices. They are given
by
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A-AM(2) F(2))1, (2)+(R(Z) - eM(2) F(2))t, (2)=M(2), @—21)

O @)-x L) ¥F@)t, @+0+ 8 (@2)-s L@) k@)1, @=12), @2
where

R@==2:47' DN, (2—23)

MZ)=2 073 @)N¢, (2—24)

0@ =2:8;' @0, (2—25)

P@)=2:07' @ P, (2—26)
and

L@==2:.87' @ L:. (2—27)

Next step is to express the eqs. (2—23)~(2—27) in terms of { and {,, using
the eq. (2—7).

It is easy to express N by the matrices {-s, Using egs. (2—2), (2—7), (2—12),
(2—19) and (2—23), we,can write

R@=2:07'@ { 4 §a(Gliva)) ~ 4}

=ut (@
2 s8a {%(Iw:)lw P@) t, (ioa) F(”"n)}
+pt m{‘"““”‘_};“‘(z’ (ioa) Fi(wa)) (2—28)

where the function g (Z) is given by

¢ @ =g (EA2-FDY_1 4

th8 o
1 o0 S i
=i f_oodm T—?_NEFR(",)—' F* (o) :[ (2—29)

To obtain similar expressions for the rest of functions N etc, it is necessary to
have a little manipulations where we take complex conjugate of the matrices and

use T; -operation defined by

a 0)T1 - ___( (2—30)

As the result, we have explicit forms for the rest of functions N etc., as the
follows:

M@= 2-F@ - p8.{-E2)=FD 4 o,y } (2—31)

Z—-iw,

T ay—
6@ =pb@ —2p5. {E02-F@ )
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—Zkﬂﬁn{ FTl(imn_)‘ F(Z) {Ti(iwa) BT (iw,.)}

Z+iwn
ATI - o _'h Z . % .
_2‘”2%“{5‘ (lzﬂi_{)wnp( ) Est(lwn)FTl(lwn)}
=—2ug(Z)
— BN B [ F(Imizw_ F(Z) i Ti(—iwa) AF(iwn)}
~2u1 g0 { F(”’:f; EE) m—ion) Flon)} (2—32)
P@=-18(2)
F(lwn) F(Z) ., A ot
o N { P, ¢ T (- lmn)F(Iwn)}
—r e (B2 F@ imin,) pwn)} (2—33)

and
L@=-4-F@

_zﬁﬁn{F(iw“) F(z)ﬂ'rt( lmn)}

Z—iwy

_x%“ {F{iwn)_F(Z) “Tl(“imn)}’ (2_33\)

Z—iw
where we have used the relation;
FTi(-2)=}2), (2—34)

which is easily checked using egs. (2—11) and (2—20). Here, we have assumed that

the state density 2 is an even function of a free electron energy: P (&x)=pP(— &),

analytic in a neighbourhood of the real axis, and falls off rapidly enough at infinity.
As pointed out by Takano and Matayoshi,2l) we have also

(@) =1, (Z) (2—35)
and

t2 (2)=t, (Z) (2—36)
for

F@=F@) =27 g = [ do 52 @-37)
and

@) =e@)=——1 [ do L2 Ll (2-38)

From egs. (2—21), (2—22), (2—28), and from (2—31) through (2—38) except
(2—34), we can obtain the explicit closed sets in terms of t; and t;, dropping out

31
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the symbol “A" and T; operator (since t';"x =—t;, for j=1, 2).
To derive the closed sets in terms of t; and t;, we have used the T; -operator, but

not the rotational symmetry l};};latia:u'is such as <Cxy Cy:>=<C:;Cr|>, etc., which
had been used in many works. Therefore, it ought to be stressed that our approaches
are of great significance especially in treating a system without the rotational
symmetry; for example, systems with a finit external field.

Attentions are paid to the relations in the system without fields;

i (—Z)=—4(Z) for j=1 and 2, (2—39)
which are easily checked in the closed sets in terms of t; and t;, and were pointed

out by Zittartz and Muller-Hartmann.22)
Now, we write down the desired forms of the closed sets in terms of t; and tg;

A(Z)1,(Z) +B(Z)t(Z) =C(2) (2—40)
and
B(2)u(2)+A(2)u(2)=E (@), 2—41)
where
A@) =1-2 @) - wF@ 8 (FUP2EE y Gow) ) (2—42)
B(Z) = —4- F(Z)+ p8(@)+ 1 4 Ba{ 10 P F(0a)t (i@a) }
+ i ga(FUgalsFBE, Gy,y) 2—43)
o ul
A(Z) =1-—"5"F(Z)+xe(2)
+ ! §a {m“)mﬂp(im")n (ion) }
—~ 242 F(Z) §n {F('“’“EWF(Z) t (iwn) }
i - 2
#auga{FULRLZRBL,, g, (2—44)
B (2)=—2F(2)+2 48(2)
+2) 4 Bn {Ep(lmi);op(znzt (iwn)}
+2p?%n{ P(i"z"‘_)i;‘:(z) F(ioa)ts (iwn)}
— M F(Z)§n { F(”"“_)WF(Z) tr (i0a) } (2—45)
CZ = X2 F@ + 8 { g0 2ty (0a) (2-46)

and
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C(Z)=—5-F(Z)+ ) §a {E('—“’z%@ te(ion) }

F(io F(Z
+2.u.%' {(—12&,"( )11 (1&)“)}. (2—47)
Our closed sets are clearly equivalent to the eq.(20) in the ref.(12) forh = pu=
J/2N
The summation in the function A, etc,, can be expressed in the usual way as a
contour integral bent over to the real axis. This gives

A(Z)=1— f F2 (Z)

so
~hF@) [ do ":_Zw{[FR(w)—F(Z))tzR(w)

~(Fe (0)~F ()] 6} (0) } (2—48)

B(Z) =-—

2
TF @+u@

Bw
g [ do :‘“fEFR(w) F(Z)JFR ()% (0)
—

~(F" (@) —F (Z)JF* ()t} () }

2 oo Bow
+£° [ do™ 5 f(FR(0) —F(2))2 R
4mf_m“’~z—_2a;{t (0)=F@)F ¢ ()

~(F* (0)=F(2)Y 1} (o) } (2—49)
A@ =1-L-F @)+ re2)
+4 = 2 {EFR(w)—F(ZDFR(w)t“cw)

—(F* (0) —F(Z)JF (o)t} (w}}

28 £z) [ dw‘h"{cFﬂ(m F(Z))tF (0)~CF* (@) ~F@)2} (2) }
-® Z-w

20 (4o o B55 (6 () ~F@)F 18 (0)~CF" (@) -F@Y ¢ (e) }

0 Z_w

(2—50)
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B (2)=-2F (2) +2,48(2)

B w
2 th—0 .
+5 A f_‘io""zfa,{c'm“") F(Z) 3%t} ()

~C(F* (0)—F(Z)2 t3 (0) }

F(Z)JFR (0)t3 (o)

+ B[ el

—(F* (@) —F(Z)JF" (@) t§ (o) }

A3 p (z)f doth 2 {LFR(w)ﬂF(Z)Jt“(wJ

4 -0 Z_w
—(F* (@) —F (2) )4 (o) } (2-51)
Bo
C(Z)h—-F(ZH = f do th™5— e {CF* (@) —F@)t} (@)
-0 Z_w
~(F* (0)~F(2Z) )i () }, (2—52)
and
Bw
E@ =-# T {(F* (o) ~F@) 28 (0)
w

~CF* (0)=F (2)) (v) }

+ 471'1 f d@lh

—CF" (@) —F(2)Jt] (@) } . (2—53)

{EFR (@) —=F(Z)Jt} (w)

3. Hamann 's Approximation

According to Hamann ’s discussions,!?) we can obtain the functions A, etc, in the
simpler form and define them on the real axis o as follows:

AR(w+ig)=A(w)

: D 87
=1+ %)’2 _%&ﬁf dn th—7p (), G-1)
5 0—7+i3
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. Bn
B(w)=_"'41p3+p3“(w)—ﬁz_&_“ dpth 3 ta(7)

@—7+18
B
2]7r,u fd,?th 3 ta(’))n (3—2)
-7 4+i3
A7
A(w)=1+-T ,uE+>LgR(m)—J£2’Lg fdf; {h__'z__tﬂ(ﬂ)
®—7+i7
F dn ‘_' t: (7)
f w*'l+18
; B
2 PEEEST
B(w)="Th p+2ugR (0) A £ fanth—5 12 (7)
o—1+id
i 87 _Bn1
,-._gf:?l_‘ﬁquth—z_ te :;)_flz)“ qu 2 u(?}), (3—4)
w—7+1i -7 +id
. ; B
th————
C(w) =_'T”x——g-jdq__2__ t2 (7) (3—5)
w—7+18
and
2# th 87
C(m):——”—p——‘- d7 2
2 2 f > =% i3 1(7)
B
A th———
5 Jdn 2 Y (g,
2f S Tk (7) (3—6)

where we put A and g instead of A P and p @, respectively, P denoting the
state density at the Fermi energyw = (.

The essential approximation in the Hamann's treatments 10) js

8w gRa(w)
___f dn 5 ey = [ gg (), =4
w—7%i§ 0

which includes exactly the most divergent terms pointed out by Abrikosovd) at least
10}
and has an error of only a few percents.

Consequently, we can establish the simultaneous non-linear differential equations
from egs. (2—40), (2—41), and from (3—1) through (3—6); namely
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2 . .
CL+m M 4wt h e IV + (B a4 b md n s +272 u2 91D ¥,
=_.R2'——”,'\/r2 R (3'—8)
2 ,
E—’;——x p+2pxtdn? v pd+ ol (A2 +262)VEIY

+C1+Tpt tax £ 22 (M2 +2p2) ¥ + 272 A p ¥y ) “/';

2
and
¥i(0)=0 for j=1,2, (3—10)
where, for conveniece, we put as follows;
x =gR(w), (3—11)
Vi ——Z—E—Id'l] ] ("7) for j=1,2, (3—12)
©0—7 +1 O—7+id
and
. 8 '\/fj 3 —
«/ri =—3% " for j=1,2. (3—13)

The eqs (3—8), (3—9), and (3—10) can be solved easily to give the formal
solutions;

2 2
1+ ~’;—x2]~lf1+ E”T#2+#XJW+”2 IWASRS
DY
Frtpt ) ==, (3—14)

and

2
(Ghp+2ux) ¥ + (14 BN XDV, 427 N p Y

+ a2 (A2 42p2)V ‘/’2+ﬂ2kl£‘/’z=-‘—~g—7‘ (3—15)

or, eliminating ¥+, from eqs (3—14) and (3—15), we have

a0 V’g + ay \1': +as ¥2 +a3 =0, (3—16)
and
_———Z‘ x— E—Z—.u? +u Vs —nt oyl
¥ = 7 (3—16")
1 +—";~>~2 +md AN ope

where
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i .
2 =274 (A2 — p?)put +—?‘;—Cl3 2 (n—p) =2xpt (M= p)), (3—17)
4 ' !
a =372 A p (AN p— AT p? +2p8 (A =)

SO A O = m) 420 a3 (A= @) I+ RN p—4pd )%

4
—Zga et —pd %, (3—18)
2 2 4 . 3 _
32=1+_>»2+_.w”? - +“_{:—, 2\ p w423 pgﬁagﬁ,,s
39,3 —
+ % +A—42'w—~rr2 x—22 #SLB“&R* x—2pt 22, (3—19)
and '
Al 1 '
s TR SO (3—20)

Now, we must check our solutions in several limiting cases.
Case A A=7 and p=0.

We have the trivial solutions as follows;

Vo =0 (3—21)
and
e, (S P
r (3—22)

from egs. (3—16) and (3—14).
Case B. A=pu=7.
In the same way as in Case A, we obtain

3nt 3zt
gp— 1+ 4 72+2'rxj:|:1/[1‘
6mt vi

Y2429 2P +3x2 2

(3—23)
and

¥ = —21—“%"'2 ' (3—24)

which are equivalent to the Hamann' s solutions.
Case C. Approximation taking only the most divergent terms which mean the terms

for the smallest ¢; and {2 in
Am+a potiz ym+n,

This gives

83 1 p—apuxt
Yo = —- 3___.__2 E SRR TR (3—25)
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and
1 ax+(AE-2pul)xt

VI= 4 T 1 rz-2utxr ,

or,

te s = p 1 —2xx—(22 —2pul)x?
8=V =="2 T (1+xrz—2at 20)¢
and

s e 14+2x1 x4+ 22 %2

1=V 57748 (Q+rvx—-2a722)7,

(3—26)

(3-27)

(3—28)

which correspond to the perturbational results given by Yamaguchi, Fukuhara, and

Matayoshi.2®

As has been checked above, our solutions include various limiting cases reasonably,
and therefore informations on physical quantities in general cases could be obtained

from the solutions for ¥*; and Vg
4, Physical Quantities
A. Resistivity

The life time 7 (w) in this system is given by

1 . R R
W'—clmtltt(m)"" ﬁ“z (@)],
and we find for the resistivity

AR % ¥ (%0) 8'!“2(2!3)).

i  ETET)
where ¢ is impurity concentration,
3=c
Ry =55
pet vZ
and
xo =g(0)

The graphs of the eq. (4—1) are shown in Fig. 1. through Fig. 5 ,
B. Ground state energy and specific heat.
As in the usual way, we have energy of the system; namely,

AE=E-E,
=%p lmfdn-frth’gzztx:?(v)+ﬂ~{r§(ﬂ)3.

which is simply calculated in the following.

(4—1)

(4—2)

Expanding eqs (3—14) and (3—15) as power series of w for | @ | >D, we can

obtain

e Ba %, wt B
(1472 fdwth 5t (1) ul fdrrmh 5t (7)

_ima 81
= fdn-mhz.

(4—3)
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=1
10

3

=3
10

> X

2 10 8 6 4 2
Fig. 2. R vs, x for )\, =-0,05,
where R is resistivity and x=1log(D/T)

R="To
j -

1"

16"
M=0

-3

10

=

10 i e =
10 8 3 4 2 0

Fig. 1. R. vs. x for 3, =-0.1,
where R is resistivity and x-log(D/T)
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" " "

" " i i i

Fig.

2 10 8 6 4 2

4, R vs, x for )\ =0,05,
where R is resistivity and x=1og(D/T)

“ L A
v 12 1o 8 -] 4 2 0

Fig. 3. R s, x for ) =0,00,
where R is resistvity and X=1og(D/T)
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=f

lor

. \ . X
2 10 8 6 4 ] 0

Fig. 5. Rvs, x for )\ =0.1,
where R is resistivity and x=log(D/T)

and
rl ﬁﬂ R ol 3 R
-—Z'—prd’?-ﬂth—"—z ti(ﬂ)+[1+———2 7 jfdv-nth t, (n)
—i B 4—4
*myfdn-mhz, (1—4)
and as a final result we have as follows:
x? ] .
cp ME2+TF‘2]“_8_?\.P'J D2
AE=-——p pos) oy Py * 73 (4—5)
(148 DL 45—l I =g Nt

using eqs. (4—2), (4—3),and (4—4).

Non-analytic part for A and g is not contained, in eq. (4—5), and naturally not
in the ground state energy either. In addition we get very easily
2 AE
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as specific heat.

6. Results and Discussions

Since the paper published by Kondo, many works have been done experimentally and
theoretically concerning the thermodynamics and transport properties of metals and
alloys with small amount of paramagnetic impurities. There have been many works,
such as the theories by Abrikosov, Doniach, Suhl, Nagaoka and so on, as stated in
the section I. Their works seem to have succeeded to account for the physical
quantities, such as the specific heats, etc., in the s-d system. Having known the fault
of the susceptibility by Zittartz's calculations, however, we must study to remove the
fault in the s-d system. As it is very difficult to treat the usual s-d model in the
investigations for the removal of the fault, no one has suceeeded in the construction
of theory, yet.
To attack this problem from another point of view, we have proposed the model,
i. e,
cjs
instead of the usual isotropic model; i. e,
JoS
The reason for the proposition of the new anisotropic model have been stated in the
section L.
Since in our system the rotational symmetry breaks down partly any more even in
the normal states, the following statistical relations, for example, do not holt,

<C!1Cp 1 S->=2<C;,Cpr 152>, etc.,

which has been utilized by many authors, This makes it difficult to construct a closed
set of equations of t’ s- matrices. . =

By introducing matrix type of Green's functions and special type of T, operation for
matrices, however, we have beautifully got over with this difficulty.

Further merit of our treatment is that it is very suggestive even for the case when
the rotational symmetry breaks down completely We will apply this treatment to the
superconducting state in next work.

The results of the ground state energy and specific heat in our calculation do not
contain anomalous parts which appear in the Works of Nagaoka, and Bloomfield-
Hamann. The anomalous parts for the specific heat have been observed experimentally.
This failure, which also appears in Hamann's work, seems to result from the Hamann's
approximation. The exact t-solutions, in the B-H treatment,!®) for the simpler integral
equations by Hamann have the temperature-dependent phase factor which lacks in the
Hamann' s approximation. This phase factor does give effect to physical quantities
through differentiation with respect to temperature, Therefore, our failure for the
specific heat is naturally anticipated.

As for the resistivity, since it does not contain the differentiation in calculation,
our result, like Hamann' s one, could be considered to be fairly reasonable.

Our results for the reduced resistivity, computed by using the HITAC 10 mini-
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computer, are presented in Fig. 1 through Fig. 5, The graphs are drawn for various
values of the coupling constants A and x. For the cases of )\ =z, we have
reasonable results corresponding to those of Hamann's. For ) 3% u, excluding a few
cases the results have roughly the similar tendencies with those of the cases )\ = u.

Because of the limit in practicing of computation, some of the results, especially for
A>0, <0, may not be reliable enough. These results, however, do not change
monotonously with temperature, but seem to have either minimum or maximum. In
realistic system impurity spins ordering through cloud of electron spins may arise and
this might be leading to produce some sort of “effective field”. At low temperatures
this “effective field” might be competitive with temperature in giving effect to
electron conduction, producing maximum or minimum in resistivity.

Taking these into consideration, our simple model might have some sort of relation
with realistic models, containing many impurity spins. This discussion might be
questionable, but seems to of interest enough to be investigated further.
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