On the Cohomology of the mod 2 Steenrod Algebra

メタデータ	言語：
	出版者：琉球大学理工学部
	公開日： $2012-02-28$
	キーワード（Ja）：
	キーワード（En）：
	作成者：Nakamura，Osamu，中村，治 メールアドレス： 所属：
hRL	http：／／hdl．handle．net／20．500．12000／23487

On the Cohomology of the mod 2 Steenrod Algebra

by

Osamu NaKamura*

Introduction

Let A_{p} denote the mod p Steenrod algebra. J. P. May (1) constructed a spectral sequence. converging to $E^{0} H^{*}\left(A_{p}\right)$ and having $H^{*}\left(E^{0} A_{p}\right)$ as its E_{2} term and made some computations of the algebra $E^{0} H *\left(A_{p}\right)$ by using the imbedding method. Latter. for the case of the prime 2, M. C. Tangora (4) made extensive computations of this algebra for the range $t-s \leqslant 70$. In his computations he used the imbedding method. manipulative methods. application of Adams' results on $H^{*}\left(A_{2}\right)$ and application of known results in homotopy theory.

The purpose of this paper is to compute the algebra $E^{0} H^{*}\left(A_{2}\right)$ for the range $71 \leqslant t-s \leqslant 77$, using the above methods together with the matric Massey product method. which was given in May's paper (2). Our main results is Theorem 2.14.

Finally the author wishes to express his hearty thanks to Professor Masanobu Yonaha who helps him with translating into English.

§ 1. Some known results on May spectral sequence

Since we are concerned only with the prime 2 , from now on we will write A instead of A_{2} for the mod 2 Steenrod algebra.

The following theorem is proved by J. P. May in his thesis.

THEOREM 1.1. (May) There exists a spectral sequence (E_{r}, d_{r}), converging to $E^{0} H^{*}(A)$, and having as its E_{2} term $H^{*}\left(E^{0} A\right)$. Each E_{r} is a tri-graded algebra. and each d_{r} is a homomorphism

$$
d r: E_{r} u, v, t \longrightarrow E_{r} u \cdot r, v-r+1, t
$$

which is a derivation with respect to the algebra structure.
The algebra $H^{*}\left(E^{\circ} A\right)$,
$t-s<165$ or $s<4$, is calculated by J. P. May in his thesis. We quote May's results on $H^{*}\left(E^{0} A\right)$ for the range $t-s \leqq 80$.

THEOREM 1.2. (May) $H^{*}\left(E^{\circ} A\right)$ is generated as an algebra over Z_{2} by the following generators in Table I.A. for the range $t-s \leq 80$. The relations in $H^{*}\left(E^{0} A\right)$ for the range $t-s \leqq 80$ are given in Table I.B.

[^0]Table I.A.

$t-s$	s	Name	Weight	$t-s$	s	Name	Weight
0	1	h_{0}	0	28	2	$b_{0,4}$	6
1	1	h_{1}	0	31	1	h_{5}	0
3	1	h_{2}	0	34	2	$h_{2}(1)$	2
4	2	$b_{0,2}$	2	38	3	$h_{0}(1,3)$	4
7	1	h_{3}	0	46	2	$b_{3,2}$	2
7	2	$h_{0}(1)$	2	46	3	$h_{0}(1,2)$	6
10	2	$b_{1,2}$	2	54	2	$b_{2,3}$	4
12	2	$b_{0,3}$	4	58	2	$b_{1,4}$	6
15	1	h_{4}	0	60	2	$b_{0,5}$	8
16	2	$h_{1}(1)$	2	63	1	h_{6}	0
22	2	$b_{2,2}$	2	70	2	$h_{3}(1)$	2
26	2	$b_{1,3}$	4	79	3	$h_{1}(1,3)$	4

Table I.B.
$1 \quad h_{i} h_{i+1}=0 \quad(i \geqslant 0)$
$2.1 \quad b_{i, 2} b_{i+2,2}=h_{i}^{2} b_{i+1,3}+h_{i+3}{ }^{2} b_{i, 3}(i \geqslant 0)$
$2.2 \quad b_{0,3} b_{3,2}=b_{0,2} b_{2,3}+h_{0}^{2} b_{1,4}+h_{4}^{2} b_{0,4}$
$3.1 \quad h_{i+2} b_{i, 2}=h_{i} h_{i}(1) \quad(i \geqslant 0)$
$3.2 \quad h_{i+2} h_{i}(1)=h_{i} b_{i+1,2}(i \geqslant 0)$
$3.3 \quad h_{i+3} h_{i}(1)=0(i \geqslant 0)$
$3.4 \quad h_{i-1} h_{i}(1)=0(i \geqslant 1)$
$4.1 \quad h_{i}(1)^{2}=b_{i, 2} b_{i+1,2}+h_{i+1}{ }^{2} b_{i, 3}(i \geqslant 0)$
$4.2 \quad h_{i}(1) h_{i+1}(1)=0 \quad(i \geqslant 0)$
$4.3 \quad h_{0}(1) h_{2}(1)=h_{0} h_{4} b_{1,3}$
$4.4 \quad h_{0}(1) h_{3}(1)=0$
$5.1 \quad b_{i, 2} h_{i+1}(1)=h_{i+1} h_{i+3} b_{i, 3} \quad(i \geqslant 0)$
$5.2 \quad b_{i+2,2} h_{i}(1)=h_{i} h_{i+2} b_{i+1,3} \quad(i \geqslant 0)$
$6.1 \quad b_{i, 2} h_{i+2}(1)=h_{i} h_{i}(1,3) \quad(i \geqq 0)$
$6.2 \quad h_{2} h_{0}(1,3)=h_{0} h_{4} b_{1,3}$
$6.3 \quad b_{3,2} h_{0}(1)=h_{4} h_{0}(1,3)$
$6.4 \quad h_{s} h_{0}(1,3)=0$
$6.5 \quad h_{0} h_{1}(1,3)=0$
$7.1 \quad b_{0,3} h_{2}(1)=h_{0} h_{0}(1,2)+h_{2} h_{4} b_{0,4}$
$7.2 \quad b_{2,3} h_{0}(1)=h_{s} h_{0}(1,2)+h_{0} h_{2} b_{1,4}$
$7.3 \quad h_{5} h_{0}(1,2)=0$
$8.1 \quad h_{1}(1) h_{0}(1,3)=h_{1} h_{3} h_{0}(1,2)$
$8.2 \quad b_{1.2} h_{0}(1,3)=h_{1}^{2} h_{0}(1,2)+h_{\mathrm{s}} b_{1,3} h_{0}(1)$
$8.3 \quad b_{2,2} h_{0}(1,3)=h_{3}^{2} h_{0}(1,2)+h_{0} b_{1,3} h_{2}(1)$
$8.4 \quad b_{0,3} h_{0}(1,3)=b_{0,2} h_{0}(1,2)+h_{4} h_{0}, 4 h_{0}(1)$

Table I.B. (continued)

10.1	$h_{0}(1) h_{0}(1,3)=h_{1}^{2} h_{4} b_{0,4}+h_{4} b_{0,2} b_{1,3}$
10.2	$h_{2}(1) h_{0}(1,3)=h_{0} h^{2} b_{1,4}+h_{0} b_{1,3} b_{3,2}$
11.1	$h_{0}(1) h_{0}(1,2)=h_{1} b_{0,4} b_{1,2}+h_{4} b_{0,3} b_{1,3}$
11.2	$h_{2}(1) h_{0}(1,2)=h_{0} b_{1,4} b_{2,2}+h_{0} b_{1,3} b_{2,3}$
12	$h_{0}(1,3)^{2}=h_{1}^{2} h_{3}^{2} b_{0,5}+h_{1}^{2} b_{0,4} b_{3,2}+h_{3}^{2} b_{0,2} b_{0,4}+b_{0,2} b_{1,3} b_{3,2}$

At least for the range $t-s \leqq 71$, the differentials d_{r} in May spectral sequence were determined by J. P. May [1] and M. C. Tangora [4]. Their methods of proof are the following:

1. The Imbedding Method.
2. Manipulative Methods.
3. Application of Adams' Results on $H^{*}(A)$.
4. Application of Known Results in Homotopy Theory.

THEOREM 1.3. (May and Tangora) For the range $t-s \leqq 71 . d_{r}$ is given as follows:

1. $d_{r}\left(h_{i}\right)=0 \quad(\mathrm{r} \geq 2)$
2. $d_{2}\left(b_{i, 2}\right)=h_{i+1}{ }^{3}+h_{i}^{2} h_{i+2}$,
$d_{2^{k+1}}\left(b_{0}, 2^{2^{k}}\right)=h_{0}^{2^{k+1}} h_{k+2} \quad(k \geqslant 1) ;$
3. $d_{2}{ }^{k+1}\left(b_{i}, j\right)=h_{i+j+k} b_{i, j-1}^{2^{k}}+h_{i+k+1} b_{i+1, j-1}^{2^{k}}(k \geqq 0, j \geqq 3)$;
4. $\quad d_{2}\left(h_{i}(1)\right)=h_{i} h_{i+2}{ }_{2}^{2}$;
5. $d_{2}\left(h_{i}(1,3)\right)=h_{i}(1) h_{i+4}{ }^{2}+h_{i} h_{i+2}(1)$;
6. $\quad d_{2}\left(h_{i}(1,2)\right)=h_{i+3} h_{i}(1,3)$;
7. $b_{2^{k+2}}\left(h_{i+k+2} b_{i} 3^{2^{k}}\right)=h_{i}^{2^{k+1}} h_{i+k+3}^{2}(k \geqq 0)$;
8. $d_{6}\left(b_{0},{ }_{2}^{2} i\right)=h_{0}^{5} s$,
here $i=h_{0} b_{0,2} b_{0}, 3 h_{0}(1)$ and $s=h_{4} b_{0}{ }_{2}^{2} h_{0}(1)+h_{0}^{3} b_{0,2} b_{1,3}$;
9. $d \checkmark\left(h_{0} h_{3} b_{0,4}\right)=h_{0}^{3} h_{2}(1)+h_{0} h_{4}^{2} b_{0,2}$;
10. $d_{\theta}\left(b_{0,2}^{2} r\right)=h_{0}^{6} x$, here $r=h_{2}^{2} b_{0,3}^{2}$ and $x=h_{3} b_{0,2} b_{1,3}+h_{1}^{2} h_{3} b_{0,4}$;
11. $d_{6}\left(\left(b_{0}, 3 b_{1,3}+b_{0}, b_{1,2}\right) h_{0}(1)\right)=h_{0}^{3} b_{2}{ }_{2}^{2}$;
12. $\quad d_{4}\left(h_{2} b_{0}, 4 h_{1}(1)\right)=h_{1}^{2} b_{2,2}^{2}$;
13. $d_{4}\left(h_{2} h_{0}(1,2)\right)=h_{0} h_{3}^{2} h_{2}(1)$;
14. $d_{\mathrm{G}}\left(h 3 b_{0,2}^{6} b_{0,3}^{2}\right)=h_{0}^{10} b_{0,2} b_{0,3}\left(b_{0,3} b_{1,3}+b_{0,4} b_{1,2}\right)$;
15. $\quad d_{12}\left(h_{4} b_{0}^{12}, 2\right)=h_{0}^{14} h \mathrm{~s} b_{0}{ }_{2}^{2} i$;
16. $d_{12}\left(h_{3} b_{0},{ }_{2}^{8} b_{0}{ }_{3}^{2}\right)=h_{0}^{10} h 5 b_{0,2}^{2} i$;
17. $d_{4}\left(h_{2} b_{0}, 3 b_{0}, 4 h_{1}(1)\right)=b_{1,2}^{2} b_{2}, 2 h_{1}(1)$;
18. $d_{6}\left(h_{0} b_{0,2} b_{0,3}\left(b_{0,3} b_{1,3}+b_{0,4} b_{1,2}\right)\right)=h_{0} h s b_{0}{ }_{2}^{3} b_{1,2}$;
19. $\left.d_{6}\left(h_{0} b_{0,3}\left(b_{0,3} b_{1,3}+b_{0,4} b_{1,2}\right)\right) h_{0}(1)\right)=h_{0} h_{5} b_{0}{ }_{2}^{2} b_{1,2} h_{0}(1)$;
$d_{0}\left(b_{0,2}^{2} b_{1,2}\left(b_{0,3} b_{1,3}+b_{0,4} b_{1,2}\right)\right)=h_{1} h_{3} h_{\mathrm{s}} b_{0,2} ;$
$d_{0}\left(b_{0},{ }_{2}^{4} b_{1,2}\left(b_{0}, 3 b_{1,3}+b_{0}, 4 b_{1,2}\right)\right)=h_{1} h_{3} h_{\mathrm{s}} b_{0,2}^{6} ;$
$d_{0}\left(h_{0} b_{0,3} b_{0,2}^{2}\left(b_{0}, 3 b_{1,3}+b_{0,4} b_{1,2}\right)\right)=h_{0} h_{5} b_{0},{ }_{2}^{4} b_{1,2} h_{0}(1) ;$
20. $d_{6}\left(h_{1} b_{1,2}\left(b_{0,3} b_{1,3}+b_{0,4} b_{1,2}\right)\right)=h_{1}^{2} h_{3} h_{5} b_{0,2}^{2}$;
21. $\quad d_{4}\left(b_{1,3}^{2} h_{1}(1)+h_{3}^{2} b_{0}, 4 b_{1,3}\right)=h_{5}\left(b_{1,2}^{2} h_{1}(1)+h_{1}^{2} b_{0,3} b_{2,2}\right)$;
22. $d_{4}\left(h_{3} b_{0}, h_{2}(1)\right)=h_{0}^{2} h_{2}(1)^{2}$,
$d_{0}\left(b_{0},{ }_{2}^{2} b_{0},{ }_{3}^{2} x\right)=h_{0}^{6} b_{0},{ }_{3}^{2}, b_{2},{ }_{2}^{2}$,
$d_{6}\left(h_{0}^{2} b_{0,3}^{2}\left(b_{0,3} b_{1,3}+b_{0,4} b_{1,2}\right) h_{0}(1)\right)=h_{0}^{5} b_{0, ~}^{2} b_{2,2}^{2} ;$
23. $d_{8}\left(h_{0} h_{3}^{3} b_{0}{ }_{4}^{2}\right)=h_{0}^{8} h_{4} b_{2,3}$,
$d_{\mathrm{B}}\left(h_{0}^{2} h_{2} h_{\mathrm{s}} b_{0},{ }_{3}^{3}\right)=d_{\mathrm{s}}\left(h_{3} h_{\mathrm{s}} b_{0,2}^{2} b_{0,3}^{2}\right)=h_{0}^{8} h_{4} b_{2,3}$;
24. $\quad d \mathrm{~s}\left(h_{0}^{2} h_{\mathrm{s}} b_{0}{ }_{4}^{2}\right)=h_{0}^{2} h_{5}^{2} b_{0}{ }_{2}^{2}$;
25. $\quad d_{4}\left(h_{0} h_{3} b_{0,2} b_{0}, 4 b_{1,3}\right)=h_{0}^{4} b_{1,3} h_{0}(1,3)$.

Furthermore the following two methods of proof are known for the various differentials in May spectral sequence.
5. The Matric Massey Products Method. The matric Massey products in spectral sequences were studied by J. P. May [2]. We quote some of his results which we use in this paper.

THEOREM 1.4. (May) Let $\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be defined in E_{r+1}. Assume that v_{i} $\in E_{r-1}^{\rho_{i}, q_{i}, t_{i}}$ and that v_{i} converges to w_{i}, where $<w_{1}, w_{2}, w_{3}>$ is defined in $H^{*}(A)$. Assume further that the following condition (*) is satisfied.
(*) If $(p, q, t)=\left(p_{1}+p_{2}, q_{1}+q_{2}, t_{1}+t_{2}\right)$ or $\left(p_{2}+p_{3}, q_{2}+q_{3}, t_{2}+t_{3}\right)$, then
$E_{r+u+1}^{p-r-u q \cdot r+u-1, t} \subset E_{r+u+1, \infty}$ for $u \geqq 0$.
Then any element of $\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is a permanent cocycle which converges to an element of $\left\langle w_{1}, w_{2}, w_{3}\right\rangle$.

THEOREM 1.5. (May) Let $\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be defined in E_{r+1}, where $v_{i} \in E_{r+1}^{p_{i}, q_{i}, t_{i}}$. Let $n>r$ be given such that $d_{\mathrm{m}}\left(v_{i}\right)=0$ for $m<n$ and $1 \leqslant i \leqslant 3$ and such that the following condition (*) is satisfied.
(*) If $(p, q, t)=\left(p_{1}+p_{2}, q_{1}+q_{2}, t_{1}+t_{2}\right)$ or $\left(p_{2}+p_{3}, q_{2}+q_{3}, t_{2}+t_{3}\right)$, then, for each m such that $r<m<n, E_{m}^{p-r+m, q+r-m, t}=0$ and $E_{r+n-m}^{p-r+m, q+r-m, t}=0$.
Assume in addition to above hypotheses that for $1 \leqq i \leqq 3$ there is just one element $y_{i} \in E_{r+1}$ which survives to $d_{n}\left(v_{i}\right)$ and that $\left\langle d_{n}\left(v_{1}\right), v_{2}, v_{3}\right\rangle,\left\langle v_{1}, d_{n}\left(v_{2}\right), v_{3}\right\rangle$ and $<v_{1}, v_{2}, d_{n}\left(v_{3}\right)>$ are defined in E_{r+1}. Assume further that all Massey products in sight have zero indeterminancy. Then
$d_{n}\left(\left\langle v_{1}, v_{2}, v_{3}\right\rangle\right)=\left\langle d_{n}\left(v_{1}\right), v_{2}, v_{3}\right\rangle+\left\langle v_{1}, d_{n}\left(v_{2}\right), v_{3}\right\rangle+\left\langle v_{1}, v_{2}, d_{n}\left(v_{3}\right)\right\rangle$

Remark. In adove two theorems we consider only the Massey products in May spectral sequence. They turn out to be powerful tool in studying differentials in May spectral sequence.
6. Application of Effect of Squaring Operations in May Spectral Sequence. I have studied differentials in May spectral sequence by applying the effect of the squaring operations [3]. However, we will not use this method in this paper.

§ 2. Calculations

In this section we indicate the calculation of $E^{o} H^{*}(A)$ for the range $71 \leqq t-s \leqq 77$. It is impossible to give all details, of course. We consider only the new independent differentials for the range $72 \leqq t-s \leqq 78$. After each new independent differential is obtained, we must do a certain amount of routine calculation. We omit this part of calculation. We now begin the calculation.

PROPOSITION 2.1. $d_{6}\left(h_{0}^{2} b_{1,2} b_{0,3}^{2}(B)\right)=h_{0} h_{5} d_{0} j$.
Here $B=b_{0,3} b_{1,3}+b_{0,4} b_{1,2}$.
PROOF. We make use of Theorem 1.5. Since $d_{4}\left(h_{2} b_{0}, 3\right)=h_{0}^{2} h_{3}^{2}$ and $d_{0}\left(h_{0} h_{0}(1) b_{0,3}(B)\right)=h_{0} h_{5} h_{0}(1)^{3} b_{0,2}$, Massey product $<h_{0} h_{0}(1) b_{0,3}(B), h_{0} h_{3}, h_{0} h_{3}>$ is defined in E_{5} and is equal to $h_{0}^{2} b_{1,2} b_{0,3}{ }^{2}(B)$. Furthermore it is easy to see that this Massey product satisfies all conditions of Theorem 1.5 for $n=6$. Then we have $d_{6}\left(<h_{0} h_{0}(1) b_{0,3}(B), h_{0} h_{3}, h_{0} h_{3}>\right)=\left\langle h_{0} h_{s} h_{0}(1)^{3} b_{0,2}, h_{0} h_{3}, h_{0} h_{3}\right\rangle$. Since $<h_{0} h_{s} h_{0}(1)^{3} b_{0,2}, h_{0} h_{3}, h_{0} h_{3}>$ is equal to $h_{0} h_{s} d_{0} j$, we have the result.

PROPOSITION 2.2. $d_{6}\left(\left(b_{0,2} b_{1,3}+h_{1}^{2} b_{0}, 4\right) b_{2,2}^{2}+h_{2}(1) b_{1,3} h_{0}(1)\right)=0$.
Proof. We make use of Theorem 1.4. Let α be a cochain $\left(b_{0,2} b_{1,3}+h_{1}^{2} b_{0,4}\right) b_{2,2}^{2}+h_{2}(1) b_{1,3} h_{0}(1)^{2}$. Since $d_{2}\left(b_{0,2} b_{1,3}+h_{1}^{2} b_{0,4}\right)=h_{4} h_{0}(1)^{2}$ and $d_{2}\left(h_{2}(1) b_{1,3}\right)=h_{4} b_{2},{ }_{2}^{2}$, Massey product $\left\langle h_{0}(1)^{2}, h_{4}, b_{2},{ }_{2}^{2}\right\rangle$ is defined in E_{3} and contains the cochain $\alpha . h_{0}(1)^{2}, h_{4}$ and $b_{2},{ }_{2}^{2}$ converge to d_{0}, h_{4} and g_{2}, respectively. For dimensional reasons, we have $h_{4} d_{0}=0$ and $h_{4} g_{2}=0$ in $H^{*}(A)$. Then Massey product $\left\langle d_{0}, h_{4}, g_{2}\right\rangle$ is defined in $H^{*}(A)$. Furthermore it is easy to see that these Massey products satisfy the condition (*) of Therem 1.4. Then we have the result.

PROPOSITION 2.3. (a) $d_{8}\left(h_{0} h_{2} h_{4} b_{0},{ }_{4}^{2}\right)=h_{0}^{2} h_{5}^{2} h_{0}(1) b_{0,2}$;
(b) $d_{\mathrm{s}}\left(h_{1} h_{4} b_{0},{ }_{4}^{2}\right)=h_{1} h_{5}^{2} b_{0}{ }_{2}^{2}$.

Proof. We make use of manipulative methods. By Theorm 1.3, $d_{2}\left(h_{4} b_{0}, 2 b_{0}{ }_{4}^{2}\right)=h_{0}^{2} h_{2} h_{4} b_{0}{ }_{4}^{2}+h_{1}^{3} h_{\mathrm{s}} b_{0},{ }_{4}^{2}, d_{2}\left(h_{5}^{2} b_{0},{ }_{2}^{3}\right)=h_{0}^{3} h_{5}^{2} h_{0}(1) b_{0,2}+h_{1}^{3} h_{5}^{2} b_{0}{ }_{2}^{2}$ and $d_{8}\left(h_{0}^{2} h_{4} b_{0},{ }_{4}^{2}\right)=$ $h_{0}^{2} h_{5}^{2} b_{0}{ }_{0}^{2}$. By Proposition 2.2, the cochain $h_{0}^{3} h_{5}^{2} h_{0}(1) b_{0,2}$ is non zero in Es. Then $d \mathrm{~s}\left(h_{0}^{2} h_{2} h s b_{0}{ }_{4}^{2}\right)=d \mathrm{~s}\left(h_{1}^{3} h_{\mathrm{s}} b_{0},{ }_{4}^{2}\right)=h_{0}^{3} h_{\mathrm{s}}^{2} h_{0}(1) b_{0,2}=h_{1}^{3} h_{\mathrm{s}}^{2} b_{0},{ }_{2}^{2}$. Since the differential is a derivation, the results follow.

PROPOSITION 2.4. $d_{6}\left(h_{1} b_{1,2} b_{0,3}^{2}(B)\right)=d_{1} g^{2}+h_{0}^{2} P^{1} A^{\prime \prime}$.
PROOF. There are two possible terms $d_{1} g^{2}$ and $h_{0}^{2} P^{1} A^{\prime \prime}$. I know no proof of this proposition except by the imbedding method. Since the calculation of proof would be too long to write in detail, we will give only its sketch. It is a routine matter to verify that
the dual elements of $d_{1} g^{2}, h_{0}^{2} P^{1} A^{\prime \prime}$ and $h_{1} b_{1},{ }_{2} b_{0},{ }_{3}^{2}(B)$ appear in the bar constuction as

$$
\begin{aligned}
& \left\{P_{2}^{1}\right\}^{10} *\left\{P_{2}^{2}\right\}^{2}, \\
& \left\{P_{1}^{0}\right\}^{3} *\left\{P_{2}^{0}\right\}^{5} *\left\{P_{2}^{3}\right\} *\left\{P_{3}^{1}\right\}^{3}+ \\
& \left\{P_{1}^{0}\right\}^{2} *\left\{P_{2}^{0}\right\}^{0} *\left\{P_{2}^{2}\right\} *\left\{P_{2}^{3}\right\} *\left\{P_{3}^{1}\right\}^{2} \\
& +\left\{P_{1}^{0}\right\} *\left\{P_{2}^{0}\right\}^{\circ} *\left\{P_{2}^{2}\right\}^{2} *\left\{P_{2}^{3}\right\} *\left\{P_{3}^{1}\right\} \\
& +\left\{P_{2}^{0}\right\}^{0} *\left\{P_{2}^{2}\right\}^{0} *\left\{P_{2}^{3}\right\} \\
& \text { and }\left\{P_{1}^{2}\right\}^{3} *\left\{P_{3}^{0}\right\}^{0} *\left\{P_{4}^{0}\right\}^{2}+ \\
& \left\{P_{1}^{1}\right\} *\left\{P_{2}^{1}\right\}^{4} *\left\{P_{3}^{0}\right\}^{4} *\left\{P_{4}^{0}\right\}^{2}, \text { respectively. }
\end{aligned}
$$

We must show that in bar construction $d\left(\left\{P_{2}^{1}\right\}^{10} *\left\{P_{2}^{2}\right\}^{2}\right)$ and

$$
\begin{aligned}
& d\left(\left\{P_{1}^{0}\right\}^{3} *\left\{P_{2}^{0}\right\}^{5} *\left\{P_{2}^{3}\right\} *\left\{P_{3}^{1}\right\}^{3}+\left\{P_{1}^{0}\right\}^{2} *\left\{P_{2}^{0}\right\}^{6} *\left\{P_{2}^{2}\right\} *\left\{P_{2}^{3}\right\} *\left\{P_{3}^{1}\right\}^{2}\right. \\
& \left.+\left\{P_{1}^{0}\right\} *\left\{P_{2}^{0}\right\}^{7} *\left\{P_{2}^{2}\right\}^{2} *\left\{P_{2}^{3}\right\} *\left\{P_{3}^{1}\right\}+\left\{P_{2}^{0}\right\}^{8} *\left\{P_{2}^{2}\right\}^{3} *\left\{P_{2}^{3}\right\}\right)
\end{aligned}
$$

are homologous to

$$
\left\{P_{1}^{2}\right\}^{3} *\left\{P_{3}^{0}\right\}^{0} *\left\{P_{4}^{0}\right\}^{2}+\left\{P_{1}^{1}\right\}^{*}\left\{P_{2}^{1}\right\}^{4} *\left\{P_{3}^{0}\right\}^{4} *\left\{P_{4}^{0}\right\}^{2}
$$

modulo terms of weight greater than 18. We first consider the differential $d\left(\left\{P_{2}^{1}\right\}^{10} *\left\{P_{2}^{2}\right\}^{2}\right)=\left\{P_{2}^{0} P_{4}^{0} P_{2}^{1}\right\} *\left\{P_{2}^{1}\right\}^{10}+\left\{P_{2}^{0} P_{4}^{0}\right\} *\left\{P_{2}^{1}\right\}^{0} *\left\{P_{2}^{2}\right\}$.
Already this differential contains no terms of weight less than 15 . By adding to this the boundaries of two terms of weight 14 ,

$$
\left\{P_{2}^{0} \mid P_{4}^{0}\right\} *\left\{P_{2}^{1}\right\}^{0} *\left\{P_{2}^{2}\right\}+\left\{P_{1}^{1}\right\} *\left\{P_{1}^{2}\right\} *\left\{P_{4}^{0}\right\}^{2} *\left\{P_{2}^{1}\right\}^{8},
$$

we eliminate all term of weight 15 . By adding in the boundary of one term of weight 15 ,

$$
\left\{P_{1}^{2}\right\} *\left\{P_{4}^{0}\right\}^{2} *\left\{P_{1}^{0} \mid P_{3}^{0}\right\} *\left\{P_{2}^{1}\right\}^{7},
$$

we obtain one term of weight 16,

$$
\left\{P_{1}^{2}\right\}^{*}\left\{P_{4}^{0}\right\}^{2} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{2}^{1}\right\}^{6} .
$$

Now by Theorem 1.3 , we have the differential $d_{2}\left(h_{2} b_{1},{ }^{3} b_{0}, 3 b_{0}, 4\right)=h_{2} h 4 b_{1,2}{ }^{3} b_{0}{ }_{3}^{2}+h_{2}^{4} b_{1}{ }_{2}^{2} b_{0}, 3 b_{0}, 4$. Then by adding in the aoundaries of one term of weighth 14 ,

$$
\left\{P_{1}^{2}\right\}^{4} *\left\{P_{2}^{1}\right\}^{4} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2}
$$

and of one term of whight 15 ,

$$
\left\{P_{1}^{2}\right\}^{2} *\left\{P_{1}^{1} \mid P_{2}^{1}\right\} *\left\{P_{2}^{1}\right\}^{4} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2}
$$

we eliminate all terms of weight 16. By adding in the boundaries of six terms of weight 16 ,

$$
\begin{aligned}
& \left\{P_{2}^{0} P_{4}^{0} \mid P_{2}^{1}\right\} *\left\{P_{2}^{1}\right\}^{20}+\left\{P_{2}^{0}\left|P_{4}^{0}\right| P_{2}^{0} \mid P_{4}^{0}\right\}^{2} *\left\{P_{2}^{1}\right\}^{0} \\
& +\left\{P_{1}^{2}\right\}^{3} *\left\{P_{1}^{1} \mid P_{1}^{0} P_{3}^{0}\right\} *\left\{P_{2}^{1}\right\}^{3} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{1}\right\} *\left\{P_{4}^{0}\right\}^{2} *\left\{P_{1}^{1} \mid P_{1}^{0} P_{3}^{0}\right\} *\left\{P_{2}^{1}\right\}^{7} \\
& +\left\{P_{4}^{0}\right\}^{2} *\left\{P_{1}^{1}\left|P_{2}^{0}\right| P_{3}^{0}\right\} *\left\{P_{2}^{1}\right\}^{7} \\
& \left.+\left\{P_{1}^{1}\left|P_{2}^{1}\right| P_{1}^{1} \mid P_{2}^{1}\right\} *\left\{P_{2}^{1}\right\}\right\}^{4} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2},
\end{aligned}
$$

we eliminate all terms of weight 17 . By adding in the boundaries of twelve terms of weight 17 .

$$
\begin{aligned}
& \left\{P_{1}^{2}\right\}^{3} *\left\{P_{1}^{0} P_{3}^{0}\left|P_{1}^{0}\right| P_{3}^{0}\right\} *\left\{P_{2}^{1}\right\}^{2} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{2}\right\}^{3} *\left\{P_{1}^{0}\left|P_{3}^{0}\right| P_{3}^{0} \mid P_{3}^{0}\right\} *\left\{P_{2}^{1}\right\} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{2}\right\}^{2} *\left\{P_{1}^{1}\left|P_{1}^{1}\right| P_{2}^{0} P_{3}^{0}\right\} *\left\{P_{2}^{1}\right\}^{3} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{2}\right\} *\left\{P_{1}^{1}\left|P_{1}^{1}\right| P_{1}^{0} P_{3}^{0}\right\} *\left\{P_{2}^{2}\right\}^{4} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{2}\right\} *\left\{P_{1}^{1} \mid P_{2}^{1}\right\} *\left\{P_{1}^{1} \mid P_{1}^{0} P_{3}^{0}\right\} *\left\{P_{2}^{1}\right\}^{3} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{4}^{0}\right\}^{2} *\left\{P_{1}^{0} \mid P_{3}^{0}\right\} *\left\{P_{1}^{1} \mid P_{1}^{0} P_{3}^{0}\right\} *\left\{P_{2}^{1}\right\}^{6} \\
& +\left\{P_{1}^{1}\right\} *\left\{P_{4}^{0}\right\}^{2} *\left\{P _ { 1 } ^ { 0 } | P _ { 3 } ^ { 0 } | P _ { 1 } ^ { 0 } P _ { 3 } ^ { 0 } \left\{*\left\{P_{2}^{1}\right\}^{6}\right.\right. \\
& +\left\{P_{1}^{1}\right\} *\left\{P_{4}^{0}\right\}^{2} *\left\{P_{3}^{0}\left|P_{3}^{0}\right| P_{3}^{0} \mid P_{1}^{0}\right\} *\left\{P_{2}^{1}\right\}^{5} \\
& +\left\{P_{4}^{0}\right\}^{2} *\left\{P_{2}^{0}\left|P_{1}^{0}\right| P_{3}^{0} \mid P_{3}^{0}\right\} *\left\{P_{2}^{1}\right\}^{6} \\
& +\left\{P_{4}^{0}\right\}^{2} *\left\{P_{1}^{0}\left|P_{2}^{0}\right| P_{3}^{0} \mid P_{3}^{0}\right\} *\left\{P_{2}^{1}\right\}^{6} \\
& +\left\{P_{4}^{0}\right\}^{2} *\left\{P_{1}^{0}\left|P_{3}^{0}\right| P_{2}^{0} \mid P_{3}^{0}\right\} *\left\{P_{2}^{1}\right\}^{6} \\
& +\left\{P_{4}^{0}\right\}^{2} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{1}^{0}\right\} *\left\{P_{2}^{0}\right\} *\left\{P_{2}^{1}\right\}^{6},
\end{aligned}
$$

we eliminate all terms of weight 18 except two terms,

$$
\left\{P_{1}^{2}\right\}^{3} *\left\{P_{3}^{0}\right\}^{6} *\left\{P_{4}^{0}\right\}^{2}+\left\{P_{1}^{1}\right\} *\left\{P_{2}^{1}\right\}^{4} *\left\{P_{3}^{0}\right\}^{4} *\left\{P_{4}^{0}\right\}^{2}
$$

Next we consider the differential

$$
\begin{aligned}
& d\left(\left\{P_{1}^{0}\right\}^{3} *\left\{P_{2}^{0}\right\}^{5} *\left\{P_{2}^{3}\right\} *\left\{P_{3}^{1}\right\}^{3}+\left\{P_{1}^{0}\right\}^{2} *\left\{P_{2}^{0}\right\}^{6} *\left\{P_{2}^{2}\right\} *\left\{P_{2}^{3}\right\} *\left\{P_{3}^{1}\right\}^{2}\right. \\
& \left.+\left\{P_{1}^{0}\right\} *\left\{P_{2}^{0}\right\}^{7} *\left\{P_{2}^{2}\right\}^{2} *\left\{P_{2}^{3}\right\} *\left\{P_{3}^{1}\right\}+\left\{P_{2}^{0}\right\}^{8} *\left\{P_{2}^{2}\right\}^{3} *\left\{P_{2}^{3}\right\}\right) .
\end{aligned}
$$

Since this calculation for proof is very long, we only mention its steps. There are innumerable choices to be made in such a calculation and I do not claim that the proof indicated is the shortest possible. This differential contains no terms of weight less than 15. By adding to this the boundaries of 22 terms, we eliminate all terms of weight 15 . By adding in the boundaries of 88 terms, we eliminate all terms of weight 16 . By adding in the boundaries of 166 terms, we eliminate all terms of weight 17 . And by adding in the boundaries of 501 terms, we eliminate all terms of weight 18 except two terms,

$$
\left\{P_{1}^{2}\right\}^{3} *\left\{P_{3}^{0}\right\}^{6} *\left\{P_{4}^{0}\right\}^{2}+\left\{P_{1}^{1}\right\} *\left\{P_{2}^{1}\right\}^{4} *\left\{P_{3}^{0}\right\}^{4} *\left\{P_{4}^{0}\right\}^{2} .
$$

Thus 2.4 is proved.
PROPOSITION. 2.5. $d_{4}\left(h_{2} h_{1}(1)^{2} b_{0,3} b_{0,4}\right)=h_{1}(1)^{4} b_{1,2}$
$+h_{2}^{2} h_{1}(1)^{2} b_{1,2} b_{1,3}+h_{1}^{2} h_{1}(1) b_{2}{ }_{2}^{2} b_{0,3}$.
PROOF. I know no proof of this proposition except by the imbedding method. We must show that in the bar construction $d\left(\left\{P_{2}^{1}\right\}^{6} *\left\{P_{2}^{2}\right\}^{4}\right)$ is homologous to

$$
\left\{P_{1}^{2}\right\} *\left\{P_{2}^{1}\right\}^{2} *\left\{P_{2}^{2}\right\}^{2} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2}
$$

modulo terms of weight greater than 14. This differential contains no terms of weight less than 13 . By adding to this the boundaries of three terms of weight 12 ,

$$
\begin{aligned}
& \left\{P_{2}^{0} \mid P_{4}^{0}\right\} *\left\{P_{2}^{1}\right\}^{5} *\left\{P_{2}^{2}\right\}^{3}+\left\{P_{1}^{1}\right\} *\left\{P_{1}^{2}\right\} *\left\{P_{2}^{1}\right\}^{4} *\left\{P_{2}^{2}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{2}\right\} *\left\{P_{1}^{3}\right\} *\left\{P_{2}^{1}\right\}^{5} *\left\{P_{4}^{0}\right\}^{2}
\end{aligned}
$$

we eliminate all terms of weight 13. By adding in the boundaries of three terms of weight 13 ,

$$
\begin{aligned}
& \left\{P_{1}^{2}\right\} *\left\{P_{2}^{1}\right\}^{3} *\left\{P_{2}^{2}\right\}^{2} *\left\{P_{1}^{0} \mid P_{3}^{0}\right\} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{1}\right\} *\left\{P_{2}^{1}\right\}^{4} *\left\{P_{2}^{2}\right\} *\left\{P_{1}^{1} \mid P_{3}^{1}\right\} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{3}\right\} *\left\{P_{2}^{1}\right\}^{5} *\left\{P_{1}^{1} \mid P_{3}^{1}\right\} *\left\{P_{4}^{0}\right\}^{2}
\end{aligned}
$$

we eliminate all terms of weight 14 except two terms,

$$
\begin{aligned}
& \left\{P_{1}^{2}\right\} *\left\{P_{1}^{2}\right\}^{2} *\left\{P_{2}^{2}\right\}^{2} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{1}\right\} *\left\{P_{2}^{1}\right\}^{4} *\left\{P_{3}^{1}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2}
\end{aligned}
$$

Since we have a differential $d_{2}\left(h_{1} b_{1},{ }_{2}^{2} b_{1}, 3 b_{0,4}\right)=h_{1} h_{0}(1) b_{1,2}^{2} h_{0}(1,2)+h_{1}^{2} b_{1},{ }_{2}^{2} b_{1,3}^{2}$ by Theorem 1.3, we can eliminate the term $\left\{P_{1}^{1}\right\} *\left\{P_{2}^{1}\right\}^{4} *\left\{P_{3}^{1}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2}$ by adding the boundaries of the dual elements of $h_{1} h_{0}(1) b_{1},{ }_{2}^{2} h_{0}(1,2)$ or $h_{1}^{2} b_{1}{ }_{2}^{2} b_{1}, \frac{2}{2}$ which have the weight greater than 11. Thus proposition is proved.

PROPOSITION. 2.6. (a) $d_{4}\left(h_{0} h_{4} b_{0,5}\right)=h_{0} h_{5}^{2} b_{0,3}+h_{0} h_{3}(1) b_{0,2}$;
(b) $d_{6}\left(h_{3} b_{0},{ }_{2}^{4} b_{1},{ }_{3}^{2}\right)=h_{0}^{6} h_{3}^{2} b_{2,2} b_{0,3}+h_{0}^{7} h_{4} h_{0}(1) b_{1,3}^{2}+h_{0}^{8} b_{2,2} b_{1,3}^{2}$.

Proof. We make use of the Adams vanishing theorem. For dimensional and filtrational reasons there are no other ways to kill the cocycles $h_{0}^{n}\left(h_{0} h_{5}^{2} b_{0,3}+h_{0} h_{3}(1) b_{0,2}\right)$ and $h_{0}^{n}\left(h_{0}^{6} h_{3}^{2} b_{2,2} b_{0,3}+h_{0}^{7} h_{4} h_{0}(1) b_{1,3}^{2}+h_{0}^{8} b_{2,2} b_{1,3}^{2}\right)$, for large n.

PROPOSITION 2.7. $d_{6}\left(h_{0} h_{2} b_{0,3}{ }^{6}\right)=h_{0}^{2} d_{0} B_{4}+h_{0} P^{2} D_{2}$.
PROOF. There are two possible terms $h_{0}^{2} d_{0} B_{4}=h_{1} d_{0} B_{21}$ and $h_{0} P^{2} D_{2}$ for dimensional and filtrational reasons. First we will prove that $d_{6}\left(h_{0} h_{2} b_{0},{ }_{3}^{6}\right)$ contains the term $h_{0}^{2} d_{0} B_{4}$ $=h_{1} d_{0} B_{21}$. We must show that in the bar construction.

$$
\begin{aligned}
& d\left(\left\{P_{1}^{0}\right\}^{3} *\left\{P_{2}^{0}\right\}^{2} *\left\{P_{2}^{1}\right\}^{6} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2}\right. \\
& +\left\{P_{1}^{0}\right\}^{2} *\left\{P_{1}^{2}\right\}^{*}\left\{P_{2}^{0}\right\}^{3} *\left\{P_{2}^{1}\right\}^{5} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{0}\right\}^{*}\left\{P_{1}^{2}\right\}^{2} *\left\{P_{2}^{0}\right\}^{4} *\left\{P_{2}^{1}\right\}^{4} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& \left.+\left\{P_{1}^{2}\right\}^{3} *\left\{P_{2}^{0}\right\}^{5} *\left\{P_{2}^{1}\right\}^{3} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2}+\left\{P_{1}^{1}\right\}^{*}\left\{P_{2}^{0}\right\}^{5} *\left\{P_{2}^{1}\right\}^{7} *\left\{P_{4}^{0}\right\}^{2}\right)
\end{aligned}
$$

is homologous to

$$
\left\{P_{1}^{0}\right\} *\left\{P_{1}^{2}\right\} *\left\{P_{3}^{0}\right\}^{12}
$$

modulo terms of weight greater than 24 , since we have a differential $d_{2}\left(h_{0}(1)^{5} b_{0,3} b_{0,4}+h_{0}(1)^{3} b_{0,2} b_{0,3}{ }^{2} b_{1,3}+h_{1}^{2} h_{0}(1)^{3} b_{0},{ }_{3}^{2} b_{0,4}\right)=h_{0}^{2} d_{0} B_{4}+h_{1} d_{0} B_{21}$ by Theorem 1.3.

This differential contains no terms of weight less than 20. By adding to this the boundaries of five terms of weight 19 ,

$$
\begin{aligned}
& \left\{P_{2}^{0}\right\}^{5} *\left\{P_{2}^{1}\right\}^{6} *\left\{P_{1}^{0} \mid P_{3}^{0}\right\} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{0}\right\} *\left\{P_{2,}^{0} P_{1}^{1}\right\} *\left\{P_{2}^{0}\right\}^{3} *\left\{P_{2}^{1}\right\}^{5} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{2}\right\} *\left\{P_{2}^{0} P_{1}^{1}\right\} *\left\{P_{2}^{0}\right\}^{4} *\left\{P_{2}^{1}\right\}^{6} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{0}\right\} *\left\{P_{2}^{1} \mid P_{1}^{1}\right\} *\left\{P_{2}^{0}\right\}^{4} *\left\{P_{2}^{1}\right\}^{6} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{2}\right\} *\left\{P_{2}^{1} P_{1}^{1}\right\} *\left\{P_{2}^{0}\right\}^{5} *\left\{P_{2}^{1}\right\}^{3} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2},
\end{aligned}
$$

we eliminate all terms of weight 20. By adding in the boundaries of five terms of weight 20 ,

$$
\begin{aligned}
& \left\{P_{1}^{0}\right\}^{2} *\left\{P_{2}^{0}\right\}^{3} *\left\{P_{2}^{1}\right\}^{4} *\left\{P_{1}^{1} \mid P_{1}^{0} P_{3}^{0}\right\} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{0}\right\} *\left\{P_{1}^{2}\right\}^{*} *\left\{P_{2}^{0}\right\}^{4} *\left\{P_{2}^{1}\right\}^{3} *\left\{P_{1}^{1} \mid P_{1}^{0} P_{3}^{0}\right\} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{2}\right\}^{2} *\left\{P_{2}^{0}\right\}^{5} *\left\{P_{2}^{1}\right\}^{2} *\left\{P_{1}^{1} \mid P_{1}^{0} P_{3}^{0}\right\} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{0}\right\} *\left\{P_{1}^{0} P_{3}^{0}\right\} *\left\{P_{2}^{0}\right\}^{4} *\left\{P_{2}^{1}\right\}^{4} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2} \\
& +\left\{P_{1}^{2}\right\} *\left\{P_{1}^{0} \mid P_{3}^{0}\right\} *\left\{P_{2}^{0}\right\}^{5} *\left\{P_{2}^{1}\right\}^{3} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\}^{2},
\end{aligned}
$$

we eliminate all terms of weight 21 . In our calculation all terms of weight 22 are eliminated by adding in the boundaries of 20 terms and all terms of weight 23 are eliminated by adding in the boundaries of 32 terms. There now remain 61 terms of weight 24 which are transformed, by the addition of the boundaries of 47 elements of weight 23 , into the single term $\left\{P_{1}^{0}\right\} *\left\{P_{1}^{2}\right\} *\left\{P_{3}^{0}\right\}^{12}$. Next we will prove that $d_{0}\left(h_{0} h_{2} b_{0},{ }^{6}\right)$ contains the term $h_{0} P^{2} D_{2}$. We must show that in the bar construction

$$
\begin{aligned}
& d\left(\left\{P_{1}^{0}\right\}^{2} *\left\{P_{2}^{0}\right\}^{9} *\left\{P_{2}^{1}\right\} *\left\{P_{2}^{2}\right\} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{5}^{0}\right\}\right. \\
& +\left\{P_{1}^{0}\right\} *\left\{P_{2}^{0}\right\}^{8} *\left\{P_{2}^{2}\right\} *\left\{P_{2}^{3}\right\} *\left\{P_{3}^{0}\right\}^{4} \\
& +\left\{P_{1}^{0}\right\}^{2} *\left\{P_{2}^{0}\right\}^{7} *\left\{P_{2}^{3}\right\} *\left\{P_{3}^{0}\right\}^{4} *\left\{P_{3}^{1}\right\} \\
& \left.+\left\{P_{1}^{0}\right\}^{3} *\left\{P_{2}^{0}\right\}^{7} *\left\{P_{2}^{1}\right\} *\left\{P_{3}^{0}\right\}^{2} *\left\{P_{4}^{0}\right\} *\left\{P_{5}^{0}\right\}\right)
\end{aligned}
$$

is homologous to

$$
\left\{P_{1}^{0}\right\} *\left\{P_{1}^{2}\right\} *\left\{P_{3}^{0}\right\}^{12}
$$

modulo terms of weight greater than 24. This differential contains no terms of weight less than 21 . In our calculation all terms of weight 21,22 and 23 are eliminated by adding in the boundaries of 11,13 and 19 terms, respectively. There now remain 31 terms of weight 24 which are transformed, by the addition of the boundaries of 51 elements of weight 23 , into the single term $\left\{P_{1}^{0}\right\} *\left\{P_{1}^{2}\right\} *\left\{P_{3}^{0}\right\}^{12}$. Thus proposition is proved.

PROPOSITION. 2.8. $d_{6}\left(h_{3}^{3} b_{1,3} b_{0,4}+h_{1} b_{2,2} b_{1,3}{ }^{2}\right)=0$.

PROOF. There is only one possible term $h_{0}^{2} h_{2} h_{5} b_{0,2}^{2}=h_{1}^{3} h_{8} b_{0}{ }_{2}^{2}$ for dimensional and filtrational reasons. We must show that in bar construction

$$
\begin{aligned}
& d\left(\left\{P_{1}^{1}\right\}^{3} *\left\{P_{1}^{6}\right\} *\left\{P_{2}^{0}\right\}^{4}+\left\{P_{1}^{0}\right\}^{2} *\left\{P_{1}^{2}\right\} *\left\{P_{1}^{6}\right\} *\left\{P_{2}^{0}\right\}^{4}\right. \\
& \left.+\left\{P_{1}^{0}\right\}^{3} *\left\{P_{1}^{6}\right\}^{*}\left\{P_{2}^{0}\right\}^{3} *\left\{P_{2}^{1}\right\}\right)
\end{aligned}
$$

is homologous to zero modulo terms of weight greater than 10 , since we have a differential $d_{2}\left(h_{6} b_{0}, \frac{3}{2}\right)=h_{1}^{3} h_{6} b_{0,2}^{2}+h_{0}^{3} h_{6} h_{0}(1) b_{0,2}$ by Theorem 1.3. This differential contains no terms of weight less than 6 . By adding to this the boundaries of two terms of weight 5 ,

$$
\left\{P_{1}^{0} \mid P_{2}^{0}\right\} *\left\{P_{1}^{1}\right\} *\left\{P_{1}^{6}\right\} *\left\{P_{2}^{0}\right\}^{4}+\left\{P_{2}^{0} \mid P_{1}^{1}\right\} *\left\{P_{1}^{0}\right\} *\left\{P_{1}^{6}\right\} *\left\{P_{2}^{0}\right\}^{4}
$$

we eliminate all terms of weight 6 and 7. By adding in the boundaries of two terms of weight 7 ,

$$
\left\{P_{1}^{0}\right\}^{2} *\left\{P_{2}^{2} \mid P_{1}^{3} P_{1}^{4} P_{1}^{5}\right\} *\left\{P_{2}^{0}\right\}^{4}+\left\{P_{1}^{0}\right\}^{3} *\left\{P_{2}^{0}\right\}^{3} *\left\{P_{3}^{1} \mid P_{1}^{3} P_{1}^{4} P_{1}^{5}\right\}
$$

we eliminate all terms of weight 8 . By adding in the boundaries of eight terms of weight 8 ,

$$
\begin{aligned}
& \left\{P_{1}^{1}\right\}^{3} *\left\{P_{2}^{0}\right\}^{3} *\left\{P_{3}^{0} P_{1}^{2} \mid P_{1}^{3} P_{1}^{4} P_{1}^{5}\right\} \\
& +\left\{P_{1}^{1}\right\}^{2} *\left\{P_{2}^{0}\right\}^{4} *\left\{P_{2}^{1} P_{1}^{2} \mid P_{1}^{3} P_{1}^{4} P_{1}^{5}\right\} \\
& +\left\{P_{1}^{0}\right\}^{3} *\left\{P_{2}^{0}\right\}^{2} *\left\{P_{2}^{1}\right\} *\left\{P_{3}^{0} P_{1}^{2} \mid P_{1}^{3} P_{1}^{4} P_{1}^{5}\right\} \\
& +\left\{P_{1}^{0}\right\}^{2} *\left\{P_{1}^{2}\right\} *\left\{P_{2}^{0}\right\}^{3} *\left\{P_{3}^{0} P_{1}^{2} \mid P_{1}^{3} P_{1}^{4} P_{1}^{5}\right\} \\
& +\left\{P_{1}^{0}\right\}^{2} *\left\{P_{2}^{0}\right\}^{3} *\left\{P_{2}^{2}\left|P_{3}^{0} P_{1}^{2}\right| P_{1}^{4} P_{1}^{5}\right\} \\
& +\left\{P_{1}^{0}\right\}^{3} *\left\{P_{2}^{0}\right\}^{2} *\left\{P_{3}^{1 \mid} P_{3}^{0} P_{1}^{2} \mid P_{1}^{4} P_{1}^{5}\right\} \\
& +\left\{P_{1}^{0}\right\}^{2} *\left\{P_{2}^{0}\right\}^{3} *\left\{P_{3}^{0} P_{1}^{2}\left|P_{2}^{2}\right| P_{1}^{4} P_{1}^{5}\right\} \\
& +\left\{P_{1}^{0}\right\}^{3} *\left\{P_{2}^{0}\right\}^{2} *\left\{P_{3}^{0} P_{1}^{2}\left|P_{3}^{1}\right| P_{1}^{4} P_{1}^{5}\right\}
\end{aligned}
$$

we eliminate all terms of weight 9 . In our calculation there now remain 34 terms of weight 10 which are eliminated by the addition of the boundaries of 24 terms of weight 9. Thus proposition is proved.

PROPOSITION 2.9. $d_{4}\left(h_{4} b_{0,2} b_{1,4}+h_{1}^{2} h_{4} b_{0,5}+h_{2} b_{3,2} b_{0,4}\right)=h_{5}^{2} h_{0}(1)^{2}$.
PROOF. We make use of manipulative methods. We have
$h_{0}^{2}\left(h_{4} b_{0,2} b_{1,4}+h_{1}^{2} h_{4} b_{0,5}+h_{2} b_{3,2} b_{0,4}\right)$
$=h \cdot b_{0,2}{ }_{2}^{2} b_{2,3}+h_{1} J$
$+d_{2}\left(b_{0,2} b_{3,2} b_{0,4}+h_{3} h_{5} b_{0,3} b_{0,4}+h_{1}^{2} h_{1}(1) b_{0,5}\right)$, where
$J=h_{3} h_{\mathrm{s}} b_{0,3} b_{1,3}+h_{1}^{2} h_{1}(1) b_{1,4}+b_{0,2} b_{3,2} b_{1,3}+h_{1}^{2} b_{3,2} b_{0,4}+h_{1}^{2} h_{3}^{2} b_{0,5}$ is a permanent cocycle, and $d_{4}\left(h_{1} b_{0}{ }_{2}^{2} b_{2,3}\right)=h_{0}^{2} h_{5}^{2} h_{0}(1)^{2}$ by Theorem 1.3, from which the result follows.

PROPOSITION 2.10. $\mathrm{d}_{8}\left(h_{0} h_{2} b_{1,2} b_{0},{ }_{3}^{2}(B)\right)=0$.
PROOF. We make use of Theorem 1.4. Since we have a differential $d_{4}\left(h_{2} b_{0}, 3\right)=h_{0}^{2} h_{3}^{2}$, Massey product $\left\langle h_{0}^{2} h_{3}, h_{3}, B_{4}\right\rangle$ is defined in E_{5} and is equal to $h_{0} h_{2} b_{1,2} b_{0}{ }^{2}(B)$, where $B_{4}=h_{0} b_{1,2} b_{0,3}(B)$ is a survivor in the 60 -sterm. Next we will verify that this Massey product is defined in $H^{*}(A)$. We have a relation $h_{0}^{2} h_{3}^{2}=0$ in $H^{*}(A)$ for dimensional and filtrational reasons. If the class $h_{3} B_{4}$, which is zero in $E^{0} H^{*}(A)$, is non zero in $H^{*}(A)$, then it must be equal to a class $h_{0} X_{3}$ and therefore we have two relations $h_{1} h_{3} B_{21}=h_{0}^{2} h_{3} B_{4}=h_{0}^{3} X_{3} \neq 0$. But $h_{3} B_{21}=0$ in $H^{*}(A)$. This is a contradiction. Then we have a relation $h_{3} B_{4}=0$. Therefore, the Massey product $<h_{0}^{2} h_{3}, h_{3}, B_{4}>$ is well-defined in $H^{*}(A)$. Furthermore it is easy to see that this Massey product satisfies condition (*) of Theorem 1.4. Thus 2.10 is proved.

> PROPOSITION 2.11. $d_{4}\left(h_{3} b_{0,2}^{3} b_{1,4}+h_{5} b_{0,2}^{2} b_{0,3} b_{1,3}\right.$ $+h_{1} h_{0}(1)^{2} b_{02} b_{1,4}+h_{1}^{3} b_{0,2} b_{0,3} b_{1,4}+h_{0}^{3} h_{0}(1) b_{0,3} b_{1,4}$ $\left.+h_{0}^{3} h_{2} b_{0,4} h_{0}(1,2)\right)=h_{0}^{4} h_{3} h_{5} b_{0,3} b_{1,3}+h_{0}^{4} b_{0,2} b_{3,2} b_{1,3}$.

Proof. We make use of the Adams vanishing theorem. For dimensional and filtrational reasons there are no other ways to kill the cocycles
$h_{0}^{n}\left(h_{0}^{4} h_{3} h_{5} b_{0,3} b_{1,3}+h_{0}^{4} b_{0,2} b_{3,2} b_{1,3}\right)$, for large n.

PROPOSITION $2.12 d_{4}\left(h_{2} h_{4} b_{0,5}\right)=h_{2} h_{5}^{2} b_{0,3}$.
PROOF. We make use of manipulative methods. We have
$h_{0}^{2} h_{2} h_{4} b_{0,5}=h_{1} h_{4} b_{0,2} b_{1,4}+h_{1}^{3} h_{4} b_{0,5}+d_{2}\left(h_{4} b_{0,2} b_{0,5}\right)$,
$h_{0}^{2} h_{2} h_{5}^{2} b_{0,3}=h_{1} h_{5}^{2} h_{0}(1)^{2}+d_{2}\left(h_{5}^{2} b_{0}, 2 b_{0,3}+h_{3}(1) b_{0}, \frac{2}{2}\right)$, and
$d_{4}\left(h_{1} h_{4} b_{0,2} b_{1,4}+h_{1}^{3} h_{4} b_{0,5}\right)=h_{1} h_{5}^{2} h_{0}(1)^{2}$ by Proposition 2.9, from which the result follows.
PROPOSITION 2.13. $d_{6}\left(h_{0} h 3 h 5 b_{0}, 2 b_{0},{ }_{3}^{3}+h_{0} b_{0},{ }_{2}^{3} b_{0}, 3 b_{2}, 3+h_{0}^{3} b_{0}{ }_{2}^{2} b_{0},{ }_{3} b_{1}, 4\right)=h_{0}^{5} h 4 b_{0}{ }_{2}^{2} b_{2}, 3$.
PROOF. We make use of the Adams' vanishing theorem. For dimensional and filtrational reasons there are no other ways to kill $h_{0}^{n} h_{4} b_{0}{ }_{2}^{2} b_{2,3}$, for large n.

The differentials which we have proved in thirteen propositions above and those of Theorem 1.3 give all the essential informations about the May spectral sequence in the range $t-s \leq 77$. Countless other differentials must be craked out, but they all follow from those given above by more or less elementary arguments or routine calculations. For example, we prove that the cochain $h_{2} h_{1}(1) b_{0}, 3 h_{0}(1,2)$ is a permanent cocycle. $h_{1}(1) h_{0}(1,2)=H_{1}$ is a permanent cocycle and $d_{4}\left(h_{2} b_{0}, 3\right)=h_{0}^{2} h_{3}^{2}$ by Theorem 1.3. Then $d_{4}\left(h_{2} h_{1}(1) b_{0,3} h_{0}(1,2)\right)=0$ by Table I.B. For dimensional and filtrational reasons $d_{r}\left(h_{2} h_{1}(1) b_{0,3} h_{0}(1,2)\right)=0$ for $\mathrm{r} \geqslant 5$.

We collect the results into the following theorem. Relations which are derived from the May relation in E_{2} are indicated by equality signs; relations which come out of differentials in the May spectral sequence are indicated by the homology sign~.

THEOREM. 2.14. Table II lists all generators of the Z_{2}-module $E_{\infty}=E^{\circ} H^{*}(A)$ in the range $71 \leqslant t-s \leqq 77$. These generators are subject to the relations indicated.

Table II

t-s	s	Generators	
71	3	$h_{1} h_{3} h_{6}$	
	4	$h_{6} c_{0}$	
	5	$h_{1} p_{1} \sim h_{2} d_{2}$	
	6	$h_{1} h_{5}^{2} c_{0}$	
	6-7	$A_{2}, h_{0} A_{2}=h_{3} A^{\prime \prime} \sim S q^{\circ}(l)$	
	9-10	$h_{3}^{2} Q_{2}, h_{0} h_{3}^{2} Q_{2}$	
	11	$P^{1} X_{2}$	
	12	$h_{s} d_{0} j$	
	12	$Q_{4}=<q_{1}, h_{0}, h_{2}^{2}>$	
	13	$g^{2} n$	
	13-15	$P^{1} h_{2} B_{4}, h_{0} P^{1} h_{2} B_{4}, h_{0}^{2} P^{1} h_{2} B_{4} \sim h_{1} P^{1} B_{22}$	
	13-14	Qs, $h_{0} Q_{5}$	
	15	$h_{1} P^{2} G$	
	16	$d_{0} e_{0} g^{2}$	
	19	$P^{1} d_{0} g k$	
	20	$h_{1} P^{2} S_{1} \sim h_{1} P^{3} B_{1}$	
	22	$P^{2} d_{0} z$	
	25	$P^{4} u$	
	28-30	$P^{5} d_{0} e_{0}, h_{0} P^{5} d_{0} e_{0} \sim P^{7} h_{4}, h_{0}^{2} P^{5} d_{0} e_{0}$	
	31-36	$P^{6} i_{i}, \cdots \cdots \cdots, h_{0}^{5} P^{6}{ }_{i}$	
	33	$P^{7} h_{1} d_{0}$	
72	4	$h_{1}^{2} h_{3} h_{6} \sim h_{2}^{3} h_{6}$	
	5	$h_{1} h_{6} c_{0}$	
	6	$P^{1} h_{1} h_{6}$	
	8	B_{6}	
	8-9	$h_{3}^{2} D_{2}, h_{0} h_{3}^{2} D_{2} \sim g D_{1}$	
	10-12	$P^{1} A^{\prime \prime}, h_{0} P^{1} A^{\prime \prime}, h_{0}^{2} P^{1} A^{\prime \prime} \sim d_{1} g^{2}$	

Table II (continued)

$t-s$	s	Generators
	13	$h_{1} \mathrm{Q}_{4}$
	15	$g^{2} l$
	18	$P^{1} d_{0} g^{\prime}$
	18	$P^{2} Q_{1}$
	19-21	$P^{2} B_{2}, h_{0} P^{3} B_{2}, h_{0}^{2} P^{3} B_{2} \sim h_{1}^{2} P^{3} B_{1}$
	21	$P^{2} d_{0} v$
	24	$P^{2} d_{0}^{4}$
	26	$h_{1} P^{4} u$
	27	$P^{5} l, h_{0} P^{5} l, h_{0}^{2} P^{5} \sim \sim h_{1} P^{5} d_{0} e_{0}$
	34	$h_{1}^{2} P^{7} d_{0}$
	35	$P^{8} c_{0}$
73	7	$P^{1} h_{2} h^{2}$
	7	$h_{1} P^{1} h_{1} h_{6}$
	7-9	$h_{1} D_{2}, h_{0} h_{1} D_{2}, h_{0}^{2} h_{4} D_{2} \sim h_{1} B_{6}$
	14-16	$d_{0} B_{21}, h_{0} d_{0} B_{21}, h_{0}^{2} d_{0} B_{21}$
	17	$d_{0} k r$
	17-19	$P^{1} R_{2}, h_{0} P^{1} R_{2}, h_{0}^{2} P^{1} R_{2} \sim h_{1} P^{2} Q_{1}$
	20	$d_{0}^{4} e_{0}$
	23	$P^{3} d_{0} m$
	26-27	$P^{4} z, h_{0} P^{4} z \sim h_{1}^{2} P^{4} u$
	32-35	$P^{7} e_{0}, h_{0} P^{7} e_{0}, h_{0}^{2} P^{7} e_{0}, h_{0}^{3} P^{7} e_{0} \sim h_{1}^{3} P^{7} d_{0}$
	36	$h_{1} P^{8} c_{0}$
	37	$P^{9} h_{1}$
74	6	$h_{3} n_{1}$
	6-8	$P^{1} h_{2} h_{6}, h_{0} P^{1} h_{2} h_{6}, h_{0}^{2} P^{1} h_{1} h_{6}$
	8-13	$F_{1}=<d_{0}, h 4, g_{2}>, \cdots \cdots, h_{0}^{3} F_{1}$
	13-15	$d_{0} B_{4}, h_{0} d_{0} B_{4}, h_{0}^{2} d_{0} B_{4} \sim h_{1} d_{0} B_{21}$
	14	$D_{2}^{\prime \prime}=P^{2} D_{2}+h_{0} d_{0} B_{4}$
	16	$d_{0} g^{3}$
	19	$P^{1} d_{0} g l$
	22	$P^{2} d_{0}{ }^{2} r$
	25	$P^{4} v$

Table II (continued)

Table II (continued)

$t-s$	s	Generators
$5-7$	$h_{6} d_{0}, h_{0} h_{6} d_{0}, h_{0}^{2} h_{6} d_{0}$	
6	$h_{1} h_{4} D_{3}$	
7	$Y_{1}=<h_{3}, y, h_{5}>$	
7	$h_{1} J$	
$7-9$	$m_{1}, h_{0} m_{1}=p g_{2}, h_{0}^{2} m_{1} \sim h_{1} d_{1} g_{2}$	
8	H_{2}	
$8-11$	$P^{1} p^{\prime}, h_{0} P^{1} p^{\prime}, h_{0}^{2} P^{1} p^{\prime}, h_{0}^{3} P^{1} p^{\prime}$	
11	C_{2}	
12	$P^{2} D_{3}$	
$13-15$	$e_{0} B_{4}, h_{0} e_{0} B_{4} \sim P^{2} A, h_{0}^{2} e_{0} B_{4} \sim h_{1} d_{0} B_{22}$	
16	$e_{0} g^{3}$	
$16-21$	$B_{8}, h_{0} B_{8} \sim P^{2} X_{1}, h_{0}^{2} B_{8}, \cdots \cdots, h_{0}^{5} B_{8}$	
19	$P^{1} g m d_{0}$	
22	$P^{2} d_{0} e_{0} r$	
25	$P^{4} w$	
28	$P^{4} d_{0}^{2} e_{0}$	
$31-33$	$P^{6} k, h_{0} P^{6} k, h_{0}^{2} P^{6} k \sim h_{1} P^{6} d_{0}^{2}$	

Appendix 1

Dictionary of New Indecomposable Elements of E_{∞}

Name	$t-s$	s	Description
A_{2}	71	6	$h_{3} b_{13} h_{0}(1,3) \sim h_{4} b_{12} h_{0}(1,2)+h_{2} b_{22} h_{0}(1,2)$
Q4	71	12	$h_{1} h_{4} h_{0}(1) b_{0}^{4}$
Qs	71	13	$h_{2} b_{12}{ }_{2}^{2} b_{03}{ }^{4} \sim h_{4} b_{02}{ }^{2} b_{0}{ }_{3}^{4} \sim h_{3} b_{02}{ }^{3} b_{0}{ }^{2} b_{04}+$ $h_{1} b_{02}^{2} b_{0}{ }_{3}^{3} b_{13}+h_{1} h_{0}(1)^{2} b_{02} b_{0}{ }^{3} b_{04}$
B6	72	8	$\begin{aligned} & h_{4}^{2} b_{02}(B)+h_{1}^{2} b_{02} b_{03} b_{23}+h_{1} h_{s} h_{1}(1) b_{03}^{2} \\ & \sim h_{1} h_{5} h_{1}(1) b_{03}^{2}+h_{1} h_{4} b_{02} b_{13}^{2}+h_{1}^{2} b_{02} b_{03} b_{23}+h_{1}^{3} h_{4} b_{13} b_{04} \end{aligned}$
F_{1}	74	8	$h_{3}^{2} b_{22} b_{03} b_{13}+h_{1}^{2} b_{22}{ }^{2} b_{04}+h_{0} h_{4} h_{0}(1) b_{13}{ }^{2}+h_{0}^{2} b_{22} b_{13}{ }^{2}$
$D_{2}^{\prime \prime}$	74	14	$h_{0} b_{02}^{4} b_{03} h_{0}(1,2)+h_{0}^{2} h_{0}(1)^{2} b_{12} b_{03}(B)=P^{2} D_{2}+h_{0} d_{0} B_{4}$
A_{1}	75	7	$h_{3}^{3} b_{13} b_{04}+h_{1} b_{22} b_{13}{ }^{2} \sim h 2 b_{22}{ }^{2} b_{04}+$ $h_{2}^{2} h_{4} b_{13} b_{04}+h_{0} h_{2} b_{13} h_{0}(1,2)$

Dictionary of New Indecomposable Elements of E_{∞} (continued)

Name	$t-s$	s	Description
B_{7}	75	12	$h_{0} h_{2} b_{12} b_{0}{ }^{2}(B)$
J	76	6	$h_{3} h_{5} b_{08} b_{13}+b_{02} b_{32} b_{13}+h_{1}^{2} h_{1}(1) b_{14}+h_{1}^{2} b_{32} b_{04}+h_{1}^{2} h_{3}^{2} b_{05}$
D.	76	9	$h_{2}^{2} b_{0}^{2} h_{0}(1,2)$
D_{22}	76	16	$h_{0}(1){ }^{4} b_{0}{ }^{4}$
m_{1}	77	7	$h_{3} b_{22}^{2} b_{13}$
Y_{1}	77	7	$h_{3}^{3} b_{0}^{2}{ }_{4}^{2} \sim h_{2}^{2} h_{4} b_{0}^{2}{ }_{4}^{2}$
H_{2}	77	8	$h_{2} h_{1}(1) b_{0} h_{0}(1,2)$
C_{2}	77	11	$h_{2} h_{1}(1) b_{22} b_{0}{ }_{3}^{3} \sim h_{1} h_{1}(1) b_{12} b_{0}{ }^{2} b_{13} \sim h_{2}^{3} h_{1}(1) b_{03}^{2} b_{04}$
B_{8}	77	16	$h_{0}^{2} h_{0}(1) b_{02}^{2} b_{03}^{2}(B)$
B3	60	7	$h_{4} h_{0}(1)(B)=d_{0} h_{0}(1,2) \sim h_{1} h_{0}(1) b_{13}^{2}$
B_{5}	66	10	$h_{2}^{2} b_{03} b_{12}(B)+h_{1}(1)^{2} b_{12} b_{03}^{2}+h_{1} h_{3} b_{22} b_{03}^{3}$
G_{0}	66	7	$b_{12}^{2} h_{0}(1,2)+h_{1} h_{3} b_{03} h_{0}(1,2)$

Appendix 2

Display chart of E_{∞} for $71 \leq t-s \leq 77$.

References

〔1〕 J. P. MAY, The cohomology of restricted Lie algebras and of Hopf algebras; application to the Steenrod algebra, Thesis, Princeton Univ., Princeton, N.J., 1964.
[2] \qquad Matric Massey Products, J. of Algebra, 12, 1969, 533-568.
[3] O. NAKAMURA, On the squaring operations in the May spectral sequence, Mem. Fac. Sci. Kyushu Univ., 26, 1972, 293-308.
[4] M. C. TANGORA, On the cohomology of the Steenrod algebra, Thesis, Northwestern Univ., Evansn Ill., 1966.

[^0]: Received November 20, 1972
 *Dept. of Math., Sci. \& Eng. Div., Univ. of the Ryukyus

