The Second Homology Group of the Quotient Space of a Periodic Transformation

メタデータ	言語：
	出版者：琉球大学理工学部
	公開日： $2012-02-28$
	キーワード（Ja）：
	キーワード（En）：
	作成者：Maehara，Hiroshi，前原，濶 メールアドレス： 所属：
hRL	http：／／hdl．handle．net／20．500．12000／23488

The Second Homology Group of the Quotient Space of
 a Periodic Transformation by Hiroshi Maehara*

Throughout this note M is a compact 2 -connected triangulated manifold, T : $M \rightarrow M$ a simplicial periodic transformation of prime period p, F the fixed point set of T and M^{*} the quotient space of M by T. We shall prove
Theorem. $H_{2}\left(M^{*}, Z\right) \cong \widetilde{H}_{0}\left(F, Z_{p}\right)$, where \widetilde{H}_{o} is the reduced homology group.

1. The set F

Since T is simplicial, F is a subcomplex of M. Moreover, by P. A. Smith [1〕, F is an orientable homology manifold over Z_{p}.

Proposition. If $\operatorname{dim} F \geqslant \operatorname{dim} M-2, F$ is connected.
Proof. We consider only the case $\operatorname{dim} F=\operatorname{dim} M-2$. Let $\operatorname{dim} M=n$ and F_{o} be an $(n-2)$-dimensional component of F and let σ be an ($n-2$)-simplex of $F_{\dot{o}}$. Denote by $\hat{\sigma}$ the dual 2 -cell of σ in the dual cellular decomposition of M, i. e. $\hat{\sigma}$ is the union of $2-$ simplexes in the first barycentric subdivision of M which meet σ only at the barycenter of σ. The boundary $\partial \hat{\sigma}$ of $\hat{\sigma}$ is invariant under T and does not meet F.

Now assume $F-F_{o} \neq \varnothing$. Let a, b be vertices of $F-F_{o}, \partial \hat{\sigma}$, respectively. Let A be a 1 -chain in $M-F_{o}$ such that $\partial A=a-b$, and B a minimal (relative to the number of 1 -simplexes) 1 -chain in $\partial \hat{\sigma}$ such that $\partial B=b-T b$. Then in some orientation of $\hat{\sigma}$,

$$
\sum_{i=1}^{p} T_{i}^{i} B=\partial \hat{\sigma}
$$

where T_{z} is the chain map induced by T. Since $\partial\left(A-T_{\sharp} A+B\right)=O$ and $H_{1}(M, Z)=0$, there is a 2 -chain C in M such that $\partial C=A-T: A+B$.
Then

$$
\begin{aligned}
& \partial \sum_{i=1}^{p} T_{:}^{i} C=\sum_{i=1}^{p}\left(T_{:}^{i} A-T_{:}^{i+1} A+T_{z}^{i} B\right) \\
& =\Sigma T_{\#}^{i} B=\partial \hat{\sigma} .
\end{aligned}
$$

Hence $\Sigma T_{s}^{i} C-\hat{\sigma}$ is a 2 -cycle of M.
Furthermore, F_{0} is an $(n-2)$ cycle $(\bmod p)$ in $M \bmod \partial M$.
Consider now the intersection number $I\left(\Sigma T_{i}^{i} C-\hat{\sigma}, F_{o}\right)$ of two cycles mod p.
Since $\Sigma T_{i}^{i} C-\hat{\sigma}$ is homologous to zero(for $\left.H_{2}(M, Z)=0\right), I\left(\Sigma T_{i}^{i} C-\hat{\sigma}, F_{0}\right)=0 \bmod p$.
*Dept. of Math., Div. of Sci. \& Eng., Univ. of the Ryukyus

Therefore $I\left(\Sigma T_{\#}^{i} C, F_{o}\right)=I\left(\hat{\sigma}, F_{o}\right) \bmod p$.
But $I\left(\hat{\sigma}, F_{0}\right)=1$ and $I\left(\Sigma T_{n}^{i} C, F_{0}\right)=\sum_{i=1}^{p} I\left(T_{\|}^{i} C, F_{0}\right)=p I\left(C, F_{0}\right)=0 \bmod p$. This is contradiction.
2. A homomorohism $\Phi: \mathbf{H}_{1}(\mathbf{M}, \mathbf{F} ; \mathbf{Z}) \otimes \mathbf{Z}_{p} \rightarrow \mathbf{H}_{\mathbf{2}}\left(\mathbf{M}^{\prime}, \mathbf{Z}\right)$

Let $Z_{\dot{p}}=\left\{1, T, \ldots, T^{p-1}\right\}$ and $\pi: M \rightarrow M^{*}$ the natural projection. The triangulation of M (subdivide M if necessary) introduces in a natural way a triangulation into M^{*} and π is simplicial. The chain maps induced by T, π are denoted by T_{z}, π, respectively.

Let $\Sigma a_{i} \otimes T^{k_{i}}$ be an element of $H_{1}(M, F ; Z) \otimes Z_{p}$ and let A_{i} be 1 -chains representing a_{i}. Then ∂A_{i} are in F, so $\partial\left(A_{i}-T_{\#}^{k_{i}} A_{i}\right)=0$. Thus $\Sigma\left(A_{i}-T_{\#}^{k_{i}} A_{i}\right)$ is a 1 -cycle of M. Since $H_{1}(M, Z)=0$, we can choose a 2 -chain B of M satisfying $\partial B=$ $\Sigma\left(A_{i}-T_{\#}^{k} A_{i}\right)$.
Then

$$
\partial \pi_{\#} B=\Sigma\left(\pi_{i} A_{i}-\pi_{i} T_{i}^{k} A_{i}\right)=0
$$

Hence $\pi_{\#} B$ is a 2 cycle of M^{*}.
Define $\Phi\left(\Sigma a_{i} \otimes T^{k_{i}}\right)=\left[\pi_{\sharp} B\right]$, where [] means the homology class.
Φ is well defined.
Proof. (i) Fix A_{i} and let B, B^{\prime} be 2 -chains satisfying

$$
\partial B=\partial B^{\prime}=\Sigma\left(A_{i}-T_{\#}^{k_{i}} A_{i}\right)
$$

Then $B-B^{\prime}$ is a 2 -cycle of M. Since $H_{2}(M, Z)=0$, there is a 3 -chain C such that ว $C=B-B^{\prime}$. Thus $\partial \pi_{\#} C=\pi_{\#} B-\pi_{\#} B^{\prime}$.
(ii) Now let A_{i} and A_{i}^{\prime} represent a_{i}. Then there are 2-chains D_{i} of M and 1 -chains E_{i} of F such that $A_{i}-A_{i}^{\prime}=\partial D_{i}+E_{i}$. Let B, B^{\prime} be 2 -chains such that

$$
\partial B=\Sigma\left(A_{i}-T_{\#}^{k_{i}} A_{i}\right), \partial B^{\prime}=\Sigma\left(A_{i}^{\prime}-T_{\#}^{k} A_{i}^{\prime}\right)
$$

Then, by simple caluculation,

$$
\partial\left(\Sigma\left(D_{i}-T_{i}^{k_{i}} D_{i}\right)+B^{\prime}\right)=\partial B
$$

Hence by (i),

$$
\left[\pi_{\#}\left(\Sigma\left(D_{i}-T_{i}^{k_{i}} D_{i}\right)+B^{\prime}\right)\right]=\left[\pi_{\#} B\right] .
$$

On the other hand,

$$
\pi_{i}\left(\Sigma\left(D_{i}-T_{i}^{k_{i}} D_{i}\right)+B^{\prime}\right)=\Sigma\left(\pi_{i} D_{i}-\pi_{i} T_{i}^{k_{i}} D_{i}\right)+\pi_{i} B^{\prime}=\pi_{i} B^{\prime}
$$

Thus $\left[\pi_{q} B\right]=\left[\pi \sharp B^{\prime}\right]$.
Φ is a homomorphism.
Proof. we show only $\Phi\left(a \otimes T^{k+t}\right)=\Phi\left(a \otimes T^{k}\right)+\Phi\left(a \otimes T^{t}\right)$.
Let $a=[A]$ and B, C be 2 -chains such that $\partial B=A-T_{z}^{k} A, \partial C=A-T_{z}^{l} A$.
Since

$$
\begin{aligned}
& \partial\left(B+T_{\#}^{k} C\right)=A-T_{\#}^{k} A+T_{*}^{k+t} A=A-T_{\#}^{k+t} A \\
& \Phi\left(a \otimes T^{k+l}\right)=\left[\pi_{\sharp}\left(B+T_{\#}^{k} C\right)\right]=\left[\pi_{;} B\right]+\left[\pi_{;} C\right]=\Phi\left(a \otimes T^{k}\right)+\Phi\left(a \otimes T^{t}\right) .
\end{aligned}
$$

3. Two lemmas

Let Σ^{2} be a triangulated 2 -sphere and $f^{*}: \Sigma^{2} \rightarrow M^{*}$ a simplicial map. In general the subcomplex $f^{*-1} F$ of Σ^{2} is not connected. We can choose polygonal arcs K_{1}, \ldots, K_{m} such that
(i) only the end-points of K_{i} are in F,
(ii) interior of K_{i} are mutually disjoint,
(iii) $f^{0^{-1}} F \cup \bigcup_{i} K_{i}$ is connected.

By 'cutting' Σ^{2} along $\cup K_{i}$ we obtain in a natural way a compact surface Δ^{2}.
Let $\varphi: \Delta^{2} \rightarrow \Sigma^{2}$ be the 'sewing' map. The first barycentric subdivision of Σ^{2} induces a triangulation of Δ^{2}, and $\varphi: \Delta^{2}-\Sigma^{2}$ is simplicial.

Lemma 1. There is a simplicial map $f: \Delta^{2} \rightarrow M$ such that the diagram

commutes.
proof. put $L=f^{*-1} F \cup \cup K_{i}$ and let N be the regular neighborhood of L in $\Sigma^{2} . N$ is a connected surface with boundary and L is a deformation retract of N. Since the boundary of N is the union of disjoint Jordan curves, every component of $\Sigma^{2}-N$, and hence, of $\Sigma^{2}-L$ is simply connected. In addition since the partial map $\pi \mid M-F$ is a covering projection, there exists the lifting of $f^{*} \mid \Sigma^{2}-L$. Adding the fixed point set, we obtain a map $g: \Sigma^{2}-\cup K_{i} \rightarrow M$ such that $\pi g=$
$f^{\cdot} \mid \Sigma^{2}-\cup K_{i}$. Extending $g \varphi \mid$ int Δ^{2} linearly, we get a desired map $f: \Delta^{2} \rightarrow M$.

Let $v:[0,1] \rightarrow \Sigma^{2}$ be a simple closed curve and let $v[0,1]=J . J$ divides Σ^{2} into two domains H^{+}and H^{-}.

Lemma 2. Suppose $f^{*}: \Sigma^{2} \rightarrow M^{*}$ satisfys the following conditions:
(I) $f^{*} J \subset M^{*}-F$.
(2) $f^{+^{-1}} F \cap H^{+}$consists of one point x.
(3) The component of F containing $f^{*} x$ does not meet $f^{*} H^{-}$.
(4) f^{*} is null-homotopic.

Then the curve $\tilde{v}:[0,1] \rightarrow M$ which covers $f^{*} v:[0,1] \rightarrow M \cdot$ is a closed curve.
Proof. We show that $f^{*} \mid J: J \rightarrow M^{*}-F$ is null-homotopic in $M^{*}-F$. In case $f^{*} H^{-} \subset M^{*}-F$, this is trivial. Assume $f^{*} H^{-} \cap F \neq \varnothing$. Let Δ^{3} be a triangulated 3 -disk with Σ^{2} as the boundary. Since $f^{*}: \Sigma^{2} \rightarrow M^{\text {• }}$ is nullhomotopic, there is a map $g: \Delta^{3} \rightarrow M^{*}$ such that $g \mid \Sigma^{2}=f^{*}$. We may assume g is simplicial. Let K be the component of $g^{-1} F$ containing x. Let L be the regular neighborhood of x in Σ^{2} and N the regular neighborhood of K in $\Delta^{3} . L$ and N are 2 and 3 dimensional manifolds, respectively. Note that $N \cap \Sigma^{2}=L$. put $\left(H^{+}-L\right) \cup$ $\overline{(\partial N-L)}=W$. Then W is a surface and its boundary is just J. Since ∂N is orientable, so is W. Moreover, $W \subset \Delta^{3}-g^{-1} F$. Therefore J bounds an orientable surface in $\Delta^{3}-g^{-1} F$, and hence $f^{*} J$ is homologous to zero in $M^{*}-F$.

From $f^{\cdot} H^{-} \cap F \neq \varnothing$ and the condition (3), we know that F is not connected. Hence, by proposition in section 1 , codimension of $F>2$, and hence, by general position argument, $\pi_{1}(M-F)=\pi_{1}(M)=1$. Therefore $\pi_{1}\left(M^{*}-F\right) \cong Z_{p}$
(which is abelian) $\cong H_{1}\left(M^{*}-F, Z\right)$. Hence, a closed curve in $M^{*}-F$ which is homologous to zero in $M^{*}-F$, is necessarily homotopic to zero in $M^{*}-F$.

4. Φ is onto

For any compact oriented triangulated manifold X (with or without boundary), we denote by the same letter X, the fundamental cycle of X (relative or absolute). Suppose Σ^{2} be an oriented triangulated 2 -sphere.

We prove now the homomorphism defined in section 2 is onto. Since M^{*} is simply connected (M. A. Armstrong [2〕), $H_{2}\left(M^{*}, Z\right)$ is isomorphic to $\pi_{2}\left(M^{*}\right)$, and hence, any element of $H_{2}\left(M^{*}, Z\right)$ is represented by $f_{i}: \Sigma^{2}$ for some simplicial map $f^{*}: \Sigma^{2} \cdots M^{*}$, where f^{*} : is the chain map induced by f^{*}. Let Δ^{2} be the oriented surface obtained by 'cutting, Σ^{2} along $\cup K_{i}$ as in section 3 and $\varphi: \Delta^{2}-\Sigma^{2}$ the 'sewing' map. By Lemma 1. there is a smpliciail map $f: \Delta^{2} \rightarrow M$ such that πf $=f^{*} \varphi$. Let K_{i}^{+}, K_{i}^{-}be the arcs obtained from K_{i}. Orient them so that $\partial \Delta^{2}=$ $\sum_{i}\left(K_{i}^{\perp}+K_{i}^{-}\right)$. Since $f^{*} K_{i}$ meet F at their end-points,

$$
f_{\#} K_{i}^{-}=-T_{\sharp}^{k_{i}} f_{\#} K_{i}^{+} \text {for some } T^{k_{i}} \text { of } Z_{p}
$$

Then

$$
\partial f_{\ddagger} \Delta^{2}=\Sigma\left(f_{z} K_{i}^{+}+f_{z} K_{i}^{-}\right)=\Sigma\left(f_{\sharp} K_{i}^{+}-T_{z}^{k i} f_{z} K_{i}^{+}\right) .
$$

Hence, by the definition of Φ,

$$
\left.\Phi\left(\Sigma \leq f_{z} K_{i}^{+}\right] \otimes T^{k_{i}}\right)=\left[\pi: f_{z} \Delta^{2}\right.
$$

But

$$
\pi_{:} f_{\ddagger} \Delta^{2}=f_{\#}^{*} \varphi_{\#} \Delta^{2}=f_{\ddagger}^{*} \Sigma^{2} .
$$

This proves that Φ is onto.

5. Φ is one to one

We prove now Φ is one to one. Assume, for simplicity, that F consists of three components.
Let $\Delta^{2}=\left\{(x, y) \in R^{2} ; 0 \leqslant x, y \leqslant 1\right\}, R^{2}$ the Euclidean plane, and $A=(0,0), B=(1$, $0), C=(1,1) B^{\prime}=(0,1)$. Denote by $A B, B C, \cdots$ the line seguments connecting A and B, B and C, \cdots. By identifying $(t, 0)$ and $(0, t), 0 \leqslant t \leqslant 1$; $(t, 1)$ and $(1, t) 0 \leqslant \mathrm{t} \leq 1$, in Δ^{2}, we obtain a 2 -sphere Σ^{2}. Let $\varphi: \Delta^{2} \rightarrow \Sigma^{2}$ be the identification map. By triang-
ulating Δ^{2}, Σ^{2} suitably, we may assume that $\varphi: \Delta^{2} \rightarrow \Sigma^{2}$ is simlicial. Fix orientations on $\Delta^{2}, \partial \Delta^{2}$ coherently and introduce an an orientation on Σ^{2} by φ.

Pick one vertex from each component of F and denote them by a, b, c.
Let $v: A B \rightarrow M$ and $w: B C \rightarrow M$ be simplicial maps (subdivide Δ^{2} if necessary) such that $v A=a, v B=b=w B, w C=c$. Since $\operatorname{codim} F>2$ by proposition in section 1, we may assume that v and w meet F only at their end-points.
Since $\left[v_{\sharp} A B\right],\left[w_{\sharp} B C\right]$ are generators of $H_{1}(M, F ; Z)$, any element h of $H_{1}(M, F ; Z) \otimes Z_{p}$ is written as

$$
h=\left[v_{\sharp} A B\right] \otimes T^{k}+\left[w_{\sharp} B C\right] \otimes T^{t}, T^{k}, T^{t} \in Z_{p}
$$

Define two maps $v^{\prime}: A B^{\prime} \rightarrow M, w^{\prime}: B^{\prime} C \rightarrow M$ by the equations

$$
v^{\prime}(0, t)=T^{k} v(t, 0), w^{\prime}(t, 1)=T^{t} w(1, t), 0 \leqq t \leqslant 1
$$

Then

$$
w_{\sharp}^{\prime} C B^{\prime}=-T_{\sharp}^{t} w_{\sharp} B C, \quad v_{\sharp}^{\prime} B^{\prime} A=-T_{\sharp}^{k} \quad v_{\sharp} A B
$$

Since M is simply connected, there is a simplicial map $f: \Delta^{2} \rightarrow M$ which coinsdes with $v, w, w^{\prime}, v^{\prime}$ on $\partial \Delta^{2}$, and since $\operatorname{codim} F>2$, we may assume that f (int Δ^{2}) $\cap F$ is empty. Since $\partial \Delta^{2}=A B+B C+C B^{\prime}+B^{\prime} A$, व $f_{\sharp} \Delta^{2}=v_{\ddagger} A B-T_{\ddagger}^{k} v_{\sharp} A B+w_{q} B C-T_{\sharp}^{l} w_{z} B C$.

Then, by the definition of $\Phi, \Phi h=\left[\pi_{\#} f_{\sharp} \Delta^{2}\right]$.
From the definition of v^{\prime}, w^{\prime}, it follows that there is a simplicial map $f^{*}: \Sigma^{2} \rightarrow M^{*}$ such that $\pi f=f^{*} \varphi$.
Then $\Phi h=\left[\pi_{z} f_{z} \Delta_{2}\right]=\left[f_{z}^{*} \varphi_{z} \Delta^{2}\right]=\left[f_{;}^{*} \Sigma^{2}\right]$.
We now show that if $\Phi h=0, h=0$. Let P, Q be the mid-points of $A B, A B^{\prime}$, respectively. Then $\varphi P=\varphi Q$, and $J=\varphi P Q$ is a Jordan curve in Σ^{2}.
J divides Σ^{2} into two domains. Denote by H^{+}the domain containing φA and by H^{-} the other. Since $H_{2}\left(M^{*}, Z\right)=\pi_{2}\left(M^{*}\right), \Phi h=0$ means that f^{*} is null homotopic.
Now we can apply Lemma 2. The curve $f \mid P Q: P Q \rightarrow M$ which covers $f^{*} \varphi: P Q$
$\rightarrow M^{*}$, is closed, and hence, $f P=f Q$. On the other hand, $f Q=v^{\prime} Q=T^{k} v P=$ $T^{k} f P$. Thus $f P=T^{k} f P$. But $f P$ is in $M-F$, this means $T^{k}=1$.

Similarly $T^{t}=1$. Therefore $h=0$.

6. Proof of Theorem

From the reduced homology exact sequence of $(M, F), \widetilde{H}_{0}(F, Z) \cong H_{1}(M, F$; Z), and since $\widetilde{\mathrm{H}}_{0}\left(F, Z_{p}\right) \cong \widetilde{\mathrm{H}}_{0}(F, Z) \otimes Z_{p}$, it is sufficient to show that $H_{1}(M, F ; Z) \otimes Z_{p} \cong H_{2}\left(M^{*}, Z\right)$. The homomorphism Φ defined in section 2 is onto and one to one, hence Φ is an isomorphism. This proves Theorem.

Reference

〔1〕 P. A. Smith, Transformations of finite period II, Annals of Math., 40 (1939), 690-711.
(2) M. A. Armstrong, On the fundamental group of an orbit space, Proc. Camb. Phil. Soc., 61 (1965), 639-646.

