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The Second Homology Group of the Quotient Space of
a Periodic Transformation
by HIROSHI MAEHARA*

Throughout this note M is a compact 2-connected triangulated manifold, T:
M-M a simplicial periodic transformation of prime period p, F the fixed point
set of T and M* the quotient space of M by T. We shall prove

Theorem. H, (M* ,Z) 2"1—1"0 (F.Z’). where “ﬁo is the reduced homology group.

1. The et F

Since T is simplicial, F is a subcomplex of M. Moreover, by P. A. Smith(1), F is
an orientable homology manifold over Z e

Proposition. I1f dim F > dim M—2, F is connecled.

Proof. We consider only the case dim F = dim M — 2. Let dim M=n and
F, be an (n—2)-dimensional component of F and let ¢ be an (n—2)-simplex of F .
Denote by & the dual 2—cell of o in the dual cellular decomposition of M, i. e. ¢ is
the union of 2—simplexes in the first barycentric subdivision of M which meet o only
at the barycenter of o . The boundary 2% of ¢ is invariant under 7 and does not
meet F,

Now assume F—F, +g&. Let a, b be vertices of F—F,, 97, respectively. Let A
be a I-chain in M-~ F, such that 9 A=a—b, and B a minimal (relative to the number
of I-simplexes) I-chain in 2% such that @ B=b—Tb. Then in some orientation of 7,

2 TB= 2%
i=1 s
where T is the chain map induced by 7. Since 2 (A—Ts A+B)=0 and
H, (M,Z)=0, there is a 2-chain C in M such
that 2C=A-T; A+B.
Then

=2T:B=a&‘.

Hence 3 T: C—7 is a 2-cycle of M.
Furthermore, F“ is an (n—2) -cycle (modp) in M mod 3 M.
Consider now the intersection number I (2 T: C-%, F,) of two cycles mod p.

Since 2= T: C—7 is homologous to zero(for H, (M,Z)=0), I (ET: C-7, FO )=0 mod p.

Received November 20, 1972
% Dept. of Math., Div. of Sci. & Eng., Univ. of the Ryukyus



20 MAEHARA: the Second Homology Group of the Quotient Space of a Periodic
Transfmation

Therefore I( = T, C,F,)=I (3, F,) mod .

But I(, F )=1and I(2 T: C'F,) =‘§:1 I(T: C, F)=pI (C, F)) =0 mod p.
This is contradiction.

2. A bomomorohism ®: H, (M, F; Z) ®Z, —H, (M",Z)

Let Z§= { 1, T,....T’d} and =: M~M" the natural projection. The
triangulation of M (subdivide M if necessary) introduces in a natural way a triangulation
into M* and = is simplicial. The chain maps induced by T, = are denoted by T, =,
respectively.

k.

Let % a, ® T 'be an element of H (M, F; Z) ®Z, and let A, be I-chains
representing a,. Then 9 A, are in F, 50 2(4, ~T.* A) =0.Thus = (4, -T'* A)
is a I-cycle of M. Since H1 (M,Z)=0, we can choose a 2-chain Bof M satisfying 9 B=

* ¢
z (4, —T* A).
Then

ox B=% (x A —n T 'A,)=0.

Hence 7, B is a 2-cycle of M".

Define & (zar®T*‘) =(=,B], where[ ]means the homology class.
D is well defined.
Proof. (i) Fix A, and let B, B’ be 2-chains satisfying
2B=0B'=3 (4 -T.' A).
Then B—B’ is a 2-cycle of M. Since H’ (M,Z)=0, there is a 3-chain C such that
o C=B-B'.Thus @ »,C==,B— =, B'.
(i) Now let A, and A|represent a, . Then there are 2-chains D,of M and
I-chains E, of F such that A, —A"_=3D‘. +E, . Let B, B’ be 2-chains such that
9B=3(A, -~T." 4),0B'=5(4; ~ T, A)).
Then, by simple caluculation,
2 (2(D,~T.'D,) +B)=23B.
Hence by (i),
(=, (=@, -T D)+B)])=(= B].
On the other hand, .
*x (X (D,~T'D,))+B)=%(x D~ T} D) += B =xB.
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Thus EW‘B]=EW.B’].
® is a homomorphism.
Proof. we show only ® (a®T"*')= ® (a®T") +® (a®T"').

Let ¢ = [Aj and B, C be 2-chains such that aB=A—T:A. 8C=A-—T: A

Since
o (B+T,C)=A-T, A+ T,""A=A-T,"'4,
@ (@@T""")=[ =y (B+T,C) j=[ =, B)+( 7, C )=® (a®T")+ 2(a®T").
3. Two lemmas

Let 32 be a triangulated 2-sphere and f* :3% —M" a simplicial map.
In general the subcomplex f~* ' F of zz is not connected. We can chcose polygonal

arcs K,,...,K,, such that
( i) only the end-points of K; are in F,
( ii) interior of K; are mutually disjoint,
G~ R Y U K; is connected.
By ‘cutting’ 3° along | K; we obtain in a natural way a compact surface A,z
Let @: A®—3? bethe 'sewing’ map. The first barycentric subdivision of %* induces
a triangulation of A%, and ¢: A% - 3? is simplicial.

Lemma 1. There is a simplicial map f : A® — M such that the diagram

2
B el sulif
|
@ n
| 1 commutes.
2 [ 5
3 —Y—M

proof. put L=f"""F U U K, and let N be the regular neighborhood of L in

%%. N is a connected surface with boundary and L is a deformation retract of N.
Since the boundary of N is the union of disjoint Jordan curves, every component of
%% —N, and hence, of 3 — L is simply connected. In addition since the partial map

mw | M—F is a covering projection, there exists the lifting of f* 5% — L. Adding

the fixed point set, we obtain a map g =° — U K; =M such that = g =
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7 l =* —~UK,;. Extending g ¢ | intA?® linearly, we get a desired map f : A? =M,

Let v : EO. 1] — 3? be a simple closed curve and let v (o, 1)=J]. T
divides 3’ into two domains H* and H™.

Lemma 2. Suppose f': =° =M satisfys the following conditions:

I fJ]CM -F

2 f "t F NH™* consists of one point x,

(3) The component of F containing f* x does not meet f*H™ .
(4) f° is null-homotopic.
Then the curve 3 : (0, 1]— M which covers f* v: (o, 1)—+M" is a closed curve.

Proof. We show that f* | J: J ~ M" — F is null-homotopic in M* —F.

In case f* H~ C M*' —F, this is trivial, Assume f* H- N F # & .Let A® be
a triangulated 3-disk with $? as the boundary. Since f" : %* =M’ is nullhomoto-
pic, there isamap g: A® -- M* such that g | 2= f* . We may assume g is
simplicial. Let K be the component of g~' F containing x. Let L be the regular

neighborhood of x in %2 and N the regular neighborhood of K in A®. L and N are
2 and 3 dimensional manifolds, respectively. Note that N =*=L. put (H*—-L) U
(6N-L) = W. Then W is a surface and its boundary is just J. Since @ N is

orientable, so is W. Moreover, W C A® — g~' F. Therefore J bounds an orientable

surface in A® — g~' F, and hence f* J is homologous to zero in M* —F.
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From f* H™ [ F # & and the condition (3), we know that F is not conmected.
Hence, by proposition in section 1, codimension of F > 2, and hence, by general

position argument, =, (M—F) = =, (M) = 1. Therefore =, (M* —-F) =2,

(which is abelian) = H, (M* — F, Z). Hence, a closed curve in M* — F which
is homologous to zero in M*' —F, is necessarily homotopic to zero in M* — F.

4. & is onto

For any compact oriented triangulated manifold X (with or without boundary),
we denote by the same letter X, the fundamental cycle of X (relative or absolute).
Suppose 3? be an oriented triangulated 2-sphere.

We prove now the homomorphism defined in section 2 is onto. Since M*® is
simply connected (M. A. Armstrong (2) ), H, (M*, Z) is isomorphic to =,(M" ),

and hence, any element of H, (M*, Z) is represented by f°,. 3* for some simplicial
map f* : E° -- M*, where f°, is the chain map induced by f*.Let A® be the
oriented surface obtained by ’cutting, * along U K; as in section 3 and ¢ : A?—-3?
the 'sewing’ map. By Lemma 1. there is a smpliciail map f : A® — M such that = f
= f* ¢. Let K}, K; be the arcs obtained from K;. Orient them so that 9 A* =
% (K, + K[). Since f* K; meet F at their end-points,

f+ K7 =—-T:f f K} for some T*i of Z,.
Then

af,A*=32 (f, K+ foK]) =3 (fy K'.'—T:*' f+K}).
Hence, by the definition of @,

g (Ef:f. K,-rj®T*") o] [’l's fs Az
But

7y f4 &2=f; @4 Az=f; >
This proves that ¢ is onto.

5, & is one to one

We prove now & is one to one. Assume, for simplicity, that F consists of three
components.

Let A?={ (x5 ¢ R*:0&x y<1}, R® the Euclidean plane, and A=(0,0),B=(1,

0), C=(1,1) B’ =(0,1).Denote by AB, BC,---the line seguments connecting A and B, B
and C,:--. By identifying (£,0) and (0,1), 0L t<£ I, (t,1) and (It) 0 £ t £ 1, in

A?, we obtain a 2-sphere %*. Let ¢ : A* = 3%be the identification map. By triang-



24 MAEHARA: the Second Homology Group of the Quotient Space of a Periodic
Transfmation

ulating A%, %% suitably, we may assume that ¢ : A*—3%* is simlicial. Fix

orientations on A* , 9 A® coherently and introduce an an orientation on =% by ¢ .
c
B C W

h 4

Rx. G v

~

A P B a

Pick one vertex from each component of /' and denote them by a, b, c.
Let v: AB — M and w : BC—M be simplicial maps (subdivide A? if necessary)
such that vA = a, vB = b = wB, w C= ¢. Since codim F > 2 by proposition in
section 1, we may assume that ¥ and w meet F only at their end-points.

Since |: v, A Bj ; [ w, BC j are generators of H, (M, F; Z), any element h of
H,(M,F;Z) ®Z, is written as '

h=vAB)RT +(w,BC)QT' , T", T' « Z,.
Define two maps v’ : AB’ — M, w’: B’C—M by the equations

v’ (0,)=T*v(1,0), w’ (t,D)=T' w(lt), 0& t £ 1.
Then

r ’

w,CB" = — T wy;BC, v,B’A =-T, v, AB.
Since M is simply connected, there is a simplicial map f : A? — M which coinsdes
with v, w, w’, v’ on 2 A% , and since codim F> 2, we may assume that f(inf A?)
M F is empty. Since 2 A? =AB + BC + CB’' + B'A,

8 fy A= v, AB—T" v, AB+ w, BC — T, w, BC.

4
Then, by the definition of ®, ®h= (=, f, A" ].

From the definition of v/, w’, it follows that there is a simplicial map f* : 22 ~M°*
such that = f = f* ¢.

Then @ h= (=, f, A, J=[f, ¢, 82 )=(f; 2*].
We now show that if ® A = 0, 2=0. Let P, @ be the mid-points of AB, AB’,
respectively. Then ¢ P= ¢ @, and /] =¢PQ is a Jordan curve in 32.

J divides %? into two domains. Denote by H* the domain containing ¢ A and by H~
the other. Since H, (M* ,Z)= n,(M*'), ®h=0 means that f* is null homotopic.

Now we can apply Lemma 2. The curve f| PQ : PQ — M which covers f' ¢: PQ
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—-M*, is closed, and hence, fP = f@. On the other hand, fQ = v’ @ =T vP=
T* fP, Thus fP = T* fP. But fP is in M — F, this means T" = 1.

Similarly T/ = 1. Therefore » = 0.

6. Proof of Theorem
From the reduced homology exact sequence of (M, F), I?o (F\Z)= H, (M,F;

Z), and since ?I., (F, Z,) gﬁo (F,.2) ® Zﬁ, it is sufficient to show that

H,(MF; Z) ® Z , =H,(M"*,Z). The homomorphism ¢ defined in section 2 is onto

and one to one, hence ¢ is an isomorphism. This proves Theorem.
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