琉球大学学術リポジトリ

The Second Homology Group of the Quotient Space of a Periodic Transformation

メタデータ	言語:
	出版者: 琉球大学理工学部
	公開日: 2012-02-28
	キーワード (Ja):
	キーワード (En):
	作成者: Maehara, Hiroshi, 前原, 濶
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/23488

The Second Homology Group of the Quotient Space of a Periodic Transformation

by Hiroshi Maehara*

Throughout this note M is a compact 2-connected triangulated manifold, $T: M \rightarrow M$ a simplicial periodic transformation of prime period p, F the fixed point set of T and M^* the quotient space of M by T. We shall prove

Theorem. $H_2(M^*,Z) \cong \widetilde{H}_o(F,Z_*)$, where \widetilde{H}_o is the reduced homology group.

1. The set F

Since T is simplicial, F is a subcomplex of M. Moreover, by P. A. Smith(1), F is an orientable homology manifold over Z_{\perp} .

Proposition. If dim $F \ge \dim M - 2$, F is connected.

Proof. We consider only the case $\dim F = \dim M - 2$. Let $\dim M = n$ and F_o be an (n-2)-dimensional component of F and let σ be an (n-2)-simplex of F_o . Denote by $\hat{\sigma}$ the dual 2-cell of σ in the dual cellular decomposition of M, i. e. $\hat{\sigma}$ is the union of 2-simplexes in the first barycentric subdivision of M which meet σ only at the barycenter of σ . The boundary $\partial \hat{\sigma}$ of $\hat{\sigma}$ is invariant under T and does not meet F.

Now assume $F - F_o \neq \emptyset$. Let a, b be vertices of $F - F_o$, $\partial \hat{\sigma}$, respectively. Let A be a 1-chain in $M - F_o$ such that $\partial A = a - b$, and B a minimal (relative to the number of 1-simplexes) 1-chain in $\partial \hat{\sigma}$ such that $\partial B = b - Tb$. Then in some orientation of $\hat{\sigma}$,

$$\sum_{i=1}^{p} T_{i}^{i} B = \partial \hat{\sigma}$$

where T_* is the chain map induced by T. Since $\partial (A - T_*A + B) = O$ and $H_1(M,Z) = 0$, there is a 2-chain C in M such that $\partial C = A - T_*A + B$. Then

$$\partial \sum_{i=1}^{p} T_{\mathfrak{s}}^{i} C = \sum_{i=1}^{p} (T_{\mathfrak{s}}^{i} A - T_{\mathfrak{s}}^{i+1} A + T_{\mathfrak{s}}^{i} B)$$
$$= \sum T_{\mathfrak{s}}^{i} B = \partial \hat{\sigma}.$$

Hence $\sum T_s^i C - \hat{\sigma}$ is a 2-cycle of M.

Furthermore, F is an (n-2) -cycle $(\mod p)$ in $M \mod \partial M$.

Consider now the intersection number $I (\Sigma T_s^i C - \hat{\sigma}, F_o)$ of two cycles mod p. Since $\Sigma T_s^i C - \hat{\sigma}$ is homologous to zero(for $H_2(M,Z) = 0$), $I(\Sigma T_s^i C - \hat{\sigma}, F_o) = 0 \mod p$.

Received November 20, 1972

*Dept. of Math., Div. of Sci. & Eng., Univ. of the Ryukyus

MAEHARA: the Second Homology Group of the Ouotient Space of a Periodic Transfmation

Therefore $I(\Sigma T_{i}^{i}C, F_{i}) = I(\widehat{\sigma}, F_{i}) \mod p$.

But $I(\hat{\sigma}, F_{\alpha}) = 1$ and $I(\Sigma, T_{\alpha}^{i}C, F_{\alpha}) = \sum_{i=1}^{p} I(T_{\alpha}^{i}C, F_{\alpha}) = pI(C, F_{\alpha}) = 0 \mod p$. This is contradiction.

2. A homomorphism Φ : H₁ (M, F; Z) $\otimes Z_{\rho} \rightarrow H_2$ (M^{*},Z)

Let $Z_{n} = \{1, T, \dots, T^{p-1}\}$ and $\pi: M \rightarrow M^*$ the natural projection. The triangulation of M (subdivide M if necessary) introduces in a natural way a triangulation into M^* and π is simplicial. The chain maps induced by T, π are denoted by T_{\sharp}, π_{\sharp} . respectively.

Let $\Sigma a_i \otimes T^{k_i}$ be an element of $H_i(M, F; Z) \otimes Z_k$ and let A_i be 1-chains representing a_i . Then ∂A_i are in F, so $\partial (A_i - T_i^{k_i} A_i) = 0$. Thus $\Sigma (A_i - T_i^{k_i} A_i)$ is a 1-cycle of M. Since $H_1(M,Z)=0$, we can choose a 2-chain B of M satisfying $\partial B=$ $\Sigma (A_i - T_i^{k_i} A_i).$

Then

 $\partial \pi_{\mu}B = \Sigma (\pi_{\mu}A_{\mu} - \pi_{\mu}T^{\mu}A_{\mu}) = 0.$

Hence π_B is a 2-cycle of M^* .

Define $\Phi(\Sigma a_i \otimes T^{k_i}) = [\pi_B]$, where [] means the homology class. Φ is well defined.

Proof. (i) Fix A, and let B, B' be 2-chains satisfying

 $\partial B = \partial B' = \Sigma (A, -T_{*}^{*} A).$

Then B-B' is a 2-cycle of M. Since $H_2(M,Z)=0$, there is a 3-chain C such that $\partial C = B - B'$. Thus $\partial \pi_* C = \pi_* B - \pi_* B'$.

(ii) Now let A_i and A'_i represent a_i . Then there are 2-chains D_i of M and 1-chains E_i of F such that $A_i - A'_i = \partial D_i + E_i$. Let B, B' be 2-chains such that

$$\partial B = \Sigma (A_i - T_*^{k_i} A_i), \partial B' = \Sigma (A_i' - T_*^{k_i} A_i').$$

Then, by simple caluculation,

$$\partial \left(\Sigma \left(D_{i} - T_{i}^{k} D_{i} \right) + B' \right) = \partial B.$$

Hence by (i),

$$\left[\pi_{\sharp}\left(\Sigma\left(D_{i}-T_{\sharp}^{k_{i}}D_{i}\right)+B'\right)\right]=\left[\pi_{\sharp}B\right].$$

On the other hand,

$$\pi_{\sharp} (\Sigma (D_{i} - T_{\sharp}^{k_{i}} D_{i}) + B') = \Sigma (\pi_{\sharp} D_{i} - \pi_{\sharp} T_{\sharp}^{k_{i}} D_{i}) + \pi_{\sharp} B' = \pi_{\sharp} B'.$$

20

Thus $[\pi_* B] = [\pi_* B'].$

 Φ is a homomorphism.

Proof. we show only $\Phi(a \otimes T^{k+l}) = \Phi(a \otimes T^k) + \Phi(a \otimes T^l)$.

Let a = [A] and B, C be 2-chains such that $\partial B = A - T_{\sharp}^{k} A$, $\partial C = A - T_{\sharp}^{l} A$. Since

$$\partial (B+T^{k}_{\sharp}C) = A - T^{k}_{\sharp}A + T^{k+l}_{\sharp}A = A - T^{k+l}_{\sharp}A,$$

$$\Phi (a \otimes T^{k+l}) = \left[\pi_{\sharp} (B+T^{k}_{\sharp}C)\right] = \left[\pi_{\sharp} B\right] + \left[\pi_{\sharp} C\right] = \Phi (a \otimes T^{k}) + \Phi (a \otimes T^{l}).$$

3. Two lemmas

Let Σ^2 be a triangulated 2-sphere and $f^* : \Sigma^2 \to M^*$ a simplicial map. In general the subcomplex $f^* \stackrel{-1}{} F$ of Σ^2 is not connected. We can choose polygonal arcs K_1, \ldots, K_m such that

- (i) only the end-points of K_i are in F,
- (ii) interior of K_i are mutually disjoint,
- (iii) $f^{*} \stackrel{-1}{} F \cup \bigcup_i K_i$ is connected.

By *cutting*' Σ^2 along $\bigcup K_i$ we obtain in a natural way a compact surface Δ^2 . Let $\varphi: \Delta^2 \to \Sigma^2$ be the *sewing*' map. The first barycentric subdivision of Σ^2 induces a triangulation of Δ^2 , and $\varphi: \Delta^2 - \Sigma^2$ is simplicial.

Lemma 1. There is a simplicial map $f: \Delta^2 \to M$ such that the diagram

proof. put $L = f^{*} \stackrel{-1}{} F \cup \bigcup K_i$ and let N be the regular neighborhood of L in Σ^2 . N is a connected surface with boundary and L is a deformation retract of N. Since the boundary of N is the union of disjoint Jordan curves, every component of $\Sigma^2 - N$, and hence, of $\Sigma^2 - L$ is simply connected. In addition since the partial map $\pi \mid M - F$ is a covering projection, there exists the lifting of $f^* \mid \Sigma^2 - L$. Adding the fixed point set, we obtain a map $g: \Sigma^2 - \bigcup K_i \to M$ such that $\pi g =$

22 MAEHARA: the Second Homology Group of the Quotient Space of a Periodic Transfmation

 $f^* \mid \Sigma^2 - \bigcup K_i$. Extending $g \notin \mid int \Delta^2$ linearly, we get a desired map $f : \Delta^2 \to M$.

Let $v : [0, 1] \to \Sigma^2$ be a simple closed curve and let v [0, 1] = J. J divides Σ^2 into two domains H^+ and H^- .

Lemma 2. Suppose $f^*: \Sigma^2 \rightarrow M^*$ satisfys the following conditions:

- (1) $f^{*}J \subset M^{*}-F$.
- (2) $f^{-1}F \cap H^+$ consists of one point x.
- (3) The component of F containing f^*x does not meet f^*H^- .
- (4) f' is null-homotopic.

Then the curve $\tilde{v}: [0, 1] \rightarrow M$ which covers $f^* v: [0, 1] \rightarrow M^*$ is a closed curve.

Proof. We show that $f^* \mid J : J \to M^* - F$ is null-homotopic in $M^* -F$. In case $f^* H^- \subset M^* -F$, this is trivial. Assume $f^* H^- \cap F \neq \emptyset$. Let Δ^3 be a triangulated 3-disk with Σ^2 as the boundary. Since $f^* : \Sigma^2 \to M^*$ is nullhomotopic, there is a map $g : \Delta^3 \to M^*$ such that $g \mid \Sigma^2 = f^*$. We may assume g is simplicial. Let K be the component of $g^{-1} F$ containing x. Let L be the regular neighborhood of x in Σ^2 and N the regular neighborhood of K in Δ^3 . L and N are 2 and 3 dimensional manifolds, respectively. Note that $N \cap \Sigma^2 = L$. put $(H^+ - L) \cup (\overline{\partial N - L}) = W$. Then W is a surface and its boundary is just J. Since ∂N is orientable, so is W. Moreover, $W \subset \Delta^3 - g^{-1} F$. Therefore J bounds an orientable surface in $\Delta^3 - g^{-1}F$, and hence $f^* J$ is homologous to zero in $M^* - F$.

From $f^* H^- \cap F \neq \emptyset$ and the condition (3), we know that F is not connected. Hence, by proposition in section 1, codimension of F > 2, and hence, by general position argument, $\pi_1(M-F) = \pi_1(M) = 1$. Therefore $\pi_1(M^*-F) \cong Z_p$ (which is abelian) $\cong H_1(M^* - F, Z)$. Hence, a closed curve in $M^* - F$ which is homologous to zero in $M^* - F$, is necessarily homotopic to zero in $M^* - F$.

4. Φ is onto

For any compact oriented triangulated manifold X (with or without boundary), we denote by the same letter X, the fundamental cycle of X (relative or absolute). Suppose Σ^2 be an oriented triangulated 2-sphere.

We prove now the homomorphism defined in section 2 is onto. Since M^* is simply connected (M. A. Armstrong (2)), H_2 (M^* , Z) is isomorphic to $\pi_2(M^*)$, and hence, any element of H_2 (M^* , Z) is represented by f^*_{i} Σ^2 for some simplicial map f^* : $\Sigma^2 - M^*$, where f^*_{i} is the chain map induced by f^* . Let Δ^2 be the oriented surface obtained by 'cutting, Σ^2 along $\bigcup K_i$ as in section 3 and φ : $\Delta^2 - \Sigma^2$ the 'sewing' map. By Lemma 1. there is a simplicial map $f : \Delta^2 \to M$ such that πf $= f^* \quad \varphi$. Let K_i^+ , K_i^- be the arcs obtained from K_i . Orient them so that $\partial \Delta^2 =$ $\Sigma = (K_i^+ + K_i^-)$. Since f^*K_i meet F at their end-points,

$$f_{\sharp}K_i^- = -T_{\sharp}^{\star}if_{\sharp}K_i^+ \text{ for some } T^{\star}i \text{ of } Z_p.$$

Then

$$\partial f_{\sharp} \Delta^{2} = \Sigma (f_{\sharp} K_{i}^{+} + f_{\sharp} K_{i}^{-}) = \Sigma (f_{\sharp} K_{i}^{+} - T_{\sharp}^{*i} f_{\sharp} K_{i}^{+}).$$

Hence, by the definition of Φ ,

$$\Phi \left(\Sigma \left[f_{\mathfrak{s}} K_{i}^{+}\right] \otimes T^{k} i\right) = \left[\pi_{\mathfrak{s}} f_{\mathfrak{s}} \Delta^{2}\right].$$

But

$$\pi_{\sharp} f_{\sharp} \Delta^2 = f_{\sharp}^* \varphi_{\sharp} \Delta^2 = f_{\sharp}^* \Sigma^2.$$

This proves that Φ is onto.

5. Φ is one to one

We prove now Φ is one to one. Assume, for simplicity, that F consists of three components.

Let $\Delta^2 = \{ (x,y) \in \mathbb{R}^2 ; 0 \leq x, y \leq 1 \}$, \mathbb{R}^2 the Euclidean plane, and A = (0,0), B = (1, 0), C = (1,1), B' = (0,1). Denote by AB, BC, \dots the line seguments connecting A and B, B and C, \dots . By identifying (t,0) and $(0,t), 0 \leq t \leq 1$; (t,1) and $(1,t), 0 \leq t \leq 1$, in Δ^2 , we obtain a 2-sphere Σ^2 . Let $\varphi : \Delta^2 \to \Sigma^2$ be the identification map. By triang-

MAEHARA: the Second Homology Group of the Quotient Space of a Periodic Transfmation

ulating Δ^2 , Σ^2 suitably, we may assume that $\varphi : \Delta^2 \to \Sigma^2$ is similicial. Fix orientations on Δ^2 , $\partial \Delta^2$ coherently and introduce an an orientation on Σ^2 by φ .

Pick one vertex from each component of F and denote them by a, b, c. Let $v: AB \to M$ and $w: BC \to M$ be simplicial maps (subdivide Δ^2 if necessary) such that vA = a, vB = b = wB, wC = c. Since codim F > 2 by proposition in section 1, we may assume that v and w meet F only at their end-points. Since $[v_{4} A B]$, $[w_{4} BC]$ are generators of $H_{1}(M, F; Z)$, any element h of

 $H_1(M, F; Z) \otimes Z_p$ is written as

$$h = \left(v_{\sharp} A B \right) \otimes T^{k} + \left(w_{\sharp} B C \right) \otimes T^{\prime} , T^{k} , T^{\prime} \in Z_{p}.$$

Define two maps $v': AB' \rightarrow M, w': B'C \rightarrow M$ by the equations

$$v'(0,t) = T^k v(t,0), w'(t,1) = T^l w(1,t), 0 \leq t \leq 1$$

Then

$$w'_{*}CB' = -T'_{*}w_{*}BC, v'_{*}B'A = -T'_{*}v_{*}AB$$

Since M is simply connected, there is a simplicial map $f: \Delta^2 \to M$ which coinsdes with v, w, w', v' on $\partial \Delta^2$, and since codim F > 2, we may assume that $f(int \Delta^2)$ \cap F is empty. Since $\partial \Delta^2 = AB + BC + CB' + B'A$,

$$\partial f_{\sharp} \Delta^2 = v_{\sharp} AB - T_{\sharp}^k v_{\sharp} AB + w_{\sharp} BC - T_{\sharp}^l w_{\sharp} BC.$$

Then, by the definition of Φ , $\Phi h = \left[\pi_{*} f_{*} \Delta^{2}\right]$.

From the definition of v', w', it follows that there is a simplicial map $f^*: \Sigma^2 \to M^*$ such that $\pi f = f^* \varphi$.

Then $\Phi h = \left(\pi_{\sharp} f_{\sharp} \Delta_{2}\right) = \left(f_{\sharp} \varphi_{\sharp} \Delta^{2}\right) = \left(f_{\sharp} \Sigma^{2}\right).$

We now show that if Φ h = 0, h=0. Let P, Q be the mid-points of AB, AB', respectively. Then $\varphi P = \varphi Q$, and $J = \varphi PQ$ is a Jordan curve in Σ^2 .

I divides Σ^2 into two domains. Denote by H^+ the domain containing φ A and by $H^$ the other. Since $H_2(M^*, Z) = \pi_2(M^*)$, $\Phi h = 0$ means that f^* is null homotopic. Now we can apply Lemma 2. The curve $f \mid PQ : PQ \rightarrow M$ which covers $f^* \notin : PQ$

24

 $\rightarrow M^*$, is closed, and hence, fP = fQ. On the other hand, $fQ = v'Q = T^*vP = T^*fP$. Thus $fP = T^*fP$. But fP is in M - F, this means $T^* = 1$. Similarly $T^I = 1$. Therefore h = 0.

6. Proof of Theorem

From the reduced homology exact sequence of (M, F), \widetilde{H}_0 $(F,Z) \cong H_1(M,F;$ Z), and since $\widetilde{H}_0(F, Z_p) \cong \widetilde{H}_0(F,Z) \otimes Z_p$, it is sufficient to show that $H_1(M,F; Z) \otimes Z_p \cong H_2(M^*,Z)$. The homomorphism Φ defined in section 2 is onto and one to one, hence Φ is an isomorphism. This proves Theorem.

Reference

- (1) P. A. Smith, Transformations of finite period II, Annals of Math., 40 (1939), 690-711.
- (2) M. A. Armstrong, On the fundamental group of an orbit space, Proc. Camb. Phil. Soc., 61 (1965), 639-646.