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The Ground State Energy of the Charged-Boson and -Fermion System
at the High-Density Limit*

Mitsuaki Ginoza** and Hideo KANAZAWA¥ ¥ %

Abstract

In the neutural system consisting of the charged-bosons and -nonrelativistic
fermions. the contribution A E of the interaction between components to the ground
state energy at the high-density limit is calculated in the density parameter expansion
by the method of canonical transformation. ;

The bosons which are dressed in the interaction cloud specified by a canonical
transformation parameter are introduced. They have acoustic phonon-like dispersion
relation for our choice of the parameter.

The energy AE in the unit of }32??328;/2 is calculated exactly to the second
term when the sound velocity is smaller than the Fermi velocity and is given by

5/3 2

AEc Seam 1:02 mll:rlsl T4 (mlellosrz)+0(losrg ).

(npmy e 3/2) 3w myle M g 2mmye,

where 7, is the number density of the bosons with mass m, and chargee,, 7, =

(3/4mn, )”’ m, €5, Q=2,6220-+ . =(4/9rr)m. and m,; and e; are mass and charge
of fermion, respectively.

1. Introduction

The investigations of the low energy states in many charged-particle systems (many
electron system, many charged-boson system, electron-ion system, etc.) have been carried
out by many workers.

Above all, the many electron system with background of positive charge which is
fixed and distributed uniformly has been studied especially due to both its applicability
to many electron system in metals and the interest related with many body problems
dealing with Coulomb interaction. Since the potential has no intrinsic range for the case
of Coulomb interaction, the state of such system is characterized by a single parameter:

r,=3/4=n)"m e,

where 7: is the number density of particles with mass »: and charge e¢i. The electron
correlations in the low density region, the metallic density region, and the high-density
region have been especially of great interest to many workers. The correlation energy
per particle of degenerate electron gas at the high-density limit has already been studied
enough to be given by 0.06221ogr, —0.096+0(~, logr, ), where the energy is measured in

the unit of muei/2."”
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The many charged-boson system with background of fixed and uniformly distributed
charge of opposite sign provides many interesting problems in the theory of many body
problems, though it is not easy to find any simple physical system in our vicinity
corresponding to such model. In other words, the above model provides two interesting
problems: one is the existence of the condensate and the other is the appearance of the
divergence in a conventional perturbational calculation which results from both Coulomb
interaction and the Bose statistics. Since the kinetic and the first order exchange energies
of the system are zero because of the existence of the condensate, the energy of the
system is simply that of correlation. Foldy?’ was the first to calculate this energy basing
on the Bogoliubov’'s approximation®), whose validity criterion is satisfied in the high-
density region. Even though there were some controversies over the form of the term
following Foldy’s one in the expansion of the ground state energy in terms of the density
parameter),’) the ground state energy per particle at the high-density limit has been
sufficiently investigated by now and is given by®),®—0.803y, -3/¢ +0.0280+0(r, */*), where

rz=(3/4 :rm)l’amzeg
and #: is the number density of the particles with mass 2 and charge ez. The energy

is in the unit of mze2/2. It should be noted that the energy of the boson gas (and
hence, the pressure) is negative in the high-density region.

The role of the background charge of the system described above is simply to
ensure the neutrality of the whole system. Nevertheless, the interaction between particles
and the elementary excitations which will arise when the dynamics of the background
is considered will also be of great interest. Considering that the energy and the pressure
of the charged-boson gas are negative and that the energy per particle of the system has
no minimum in the high-density region, the investigation of the background seems to be
essential for the physical behaviors of this system.

The model electron-phonon system has given an excellent basis to the study of
metals, but this is not unrelated with the facts that the disparity in mass between the
electron and the ion is large and that number density of the particles lies in metallic
region?: 8.9,

Now our concern will be with the neutral two-component system consisting of
nonrelativistic charged-fermion and charged-boson. From the neutrality condition,

n, e |=n,le, | or r,=(m/m)(le |/]e, |)r,

and therefore our system can also be characterized by a single parameter »: or #2 for
fixed m1/m2 and ei/ez. In this paper we will calculate the contribution of Coulomb
interaction between boson and fermion to the ground state energy in the form of expansion
in terms of the density parameter at the high-density limit,

In the next section we will discuss the canonical transformations to the Hamiltonian
in the high-density region. First of all, we will take for our Hamiltonian the Bogoliubov's
approximation and then canonically transform the free boson operators to the bogolon operat-
ors which are dressed in the boson-formion interaction cloud specified by a transformation
parameter, &, Then, after introducing another canonical transformation in the low
momentum region and expanding the transformed Hamiltonian in the effective boson-fermion
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interactions, we choose & p such that the long-range coupling between boson and fermion
are eliminated in the lowest order. As the result of these transformations, we obtain the
shift in the zero-point motions of the bogolon fields, the interaction between fermions
through the boson fields, and the higher-order interactions between particles. Finally, we
will show that the above expansion of the Hamiltonian converges rapidly in the high-
density region.

In section 3, the contribution AE of the boson-fermion interaction to the ground
state energy at the high-density limit is shown to be the sum of the shift in the zero-
point frequencies of the bogolon fields, of the first order perturbation energy in the
interaction between fermions through the long-range part of the boson fields, and of the
second order perturbation energy in the short-range interaction between boson and fermion.

This energy in the unit of (n, m, e;) /2 can be calculated exactly to the second term when
the sound velocity is smaller than the Fermi wvelocity and is given by

AE 4Q ny Igl Is;a (ml e, logr, )s

(?33??328;[_2'_)= B 3”‘ Rsa ms| eala“?':lﬂ 2am,e, +0(l°gfg )

Some discussions are given in section 4.

2. Canonical Transformations

We consider the neutral system consisting of charged-spinless bosons and charged-
fermions with spin# in a unit volume with periodic boundary condition. The creation
and annihilation operators for the fermion with momentm £ and spino (for the boson
with momentum ) are denoted by @j. and aj (by bf and bg), respectively. The
kinetic energy of the particle with the momentum k, € (k) =k"/2m: with the suffix 1

for fermion and 2 for boson. The Fourier transforms of the interactions between partices
in this system are given by

Vis(p) =4 weiejp™" p#0
=0 p=0 ;

where the last equality is the consiquence of the neutrality of the system. It is easy to
write down the Hamiltonian by the quantities defined above,

Foldy’) found that the validity criterion for the Bogoliubov's method applied to a
charged-boson gas is satisfied when the density is so large that there are many particles

within a sphere of the Bohr radius (mzes) . This criterion was discussed by Nosal and
Grandy® from the standpoint of quantum statistics. The average potential energy of a
boson in our system is inversely proportional to the average inter-particle spacing, which
in turn is proportional to the one-third of the average particle number density, while the
boson condensation temperature in the ideal gas is proportional to the two-thirds of the
average boson number density. Therefore, if the boson number density in our neutral
system is very high (r2<€ 1), the energy of the condensation is much larger than the
energy associated with Coulomb interaction. In this case, it is quite natural to expect
the validity criterion for the Bogoliubov's method applied to our system is satisfied. The
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Bogoliubov’s approximation consists of
(1) dropping those terms in the Hamiltonian which contain more than two creation or
destruction oprators for the bosons not in condensate, and

(2) replacing b% and bo in the remaining terms by the c-number n!, where . is the
mean occupation number of the condensate.
In the charged-boson gas with a neutralizing, uniformly distributed background, the
fraction of the condensate is?)

f=1-0.2114r*/4 4 -++-e r,<<l. 2.1)

For the Hamiltonian obtained with these approximations, we consider the following
canonical transformation:

bs =CoBs ~S8%5 2.2)
where the coefficients C» and S, are defined as follows:

C; — €2(p) "3”;‘{3)(9)’69 *F, (2.3)
St =—<2(®) Jrzr::t’;;(p)f Sl (2.4)
o)=L €2 (D) +2n, €, (D) Vualp)/E, 1", 2.5)

and we assume that C,=Cf and Sp=Sff.

The canonicality of the above transfomation is understood by showing the conservation
of the commutation relations under this transformation. &, is here unspecified, If we
choose &p,=1 for all p, the transformation (2.2) is the well-known Bogoliubov
transformation which diagonalizes the pair part of the Hamiltonian and introduce bogolons
in the charged boson gas theory. But in the system in consideration, fermions, which
are regarded as the neutralizing, uniformly distributed background in the charged boson
gas theory, can move in boson fields and have Coulomb interaction with them with
finite momentum transfers, Therefore, we set &, as follows:

& p is here unspecifed for p<< p.
and &,=1 for p=> p., (2.6)
where po=(4:rmze§m)i . The reason for setting the equations as above will become
clear as our calculation proceeds.

Under the transformation described above, the Hamiltonian obtained with the
Bogoliubov's approximation then take the following form:

H=FEo+ AEo+Ho+Hu+H' 124+ H" 12+ H , 2.7
where
_v 0y (p)— €2(P) —noVa(p)
E, =% 5 , (2.7a)
A Eo =\;\ ﬂ’(ﬁ)‘“’n(?) (2.7'3)

] 2 '
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Hi=Ze,Wap ag, +To@) 8;8; . (2.7c)
H“=&§§ Vi) @fipe @ por@poly, (2.7d)
Hu=SZ Via(p) (no €, (0) /00)) " (B4 +8%5) afupe tp »  (2.70)

Hy=ZE Vi) (Cip 5B 5= Sip -5 B-pep) CpBy — SpBlyp) @.70)
,1

7SN PR
H =33 Vyu(p) (=€, ) (n ¢, ()/0(p)) (B +B-1)(B_5+85).2.T0)

og=(ez(p) +o; I, (2.8)
and

g
1l

i=4nn; e}/ m . (2.9)

Eand o, (p) given above are the ground state energy and elementary excitation of the

charged boson gas with the background in the Bogoliubov's approximation, respectively,
and were calculated first by Foldy?) and the energy is given as

E,/ (n, m, e3/2)=—0.803r;**+0 (r3)

As is well-known in the charged boson gas theory®),?), the correction term to be added
to the energy in the Bogoliubov’s approximation, that is, the correction produced by
considering the triad and quartet parts of the Hamiltonian and the constancy in boson
number is of order of unity in the density parameter expansion of the ground state energy
per particle. Since our treatment is based on the Bogoliubov's approximation, the error
of order of unity as described above will still remain in our calculation. Therefore, it
will be meaningless to carry out any further the calculation of the energies per particle
of order of unity or less in the following.

Note that AE and H, do not vanish unless & ,=I for all p. AE, which arises

from the shift of the frequencies of the bogolon field, is the first contribution of the
boson-fermion interaction to the ground state energy,

The interaction (2.7e) is closely analogous to the electron-phonon interaction in
metals. Nakajima® has given a simple field theoretical treatment of the electron-phonon
interaction in the presence of the electron-electron interaction. Also, Bardeen and Pines®)
have investigated the role of the electron-electron interaction in determining the electron-
phonon interaction in metals dy extending the Bohm-Pines collective description to take
into account the ionic motion. In the Bardeen and Pines theory, collective coordinates
are introduced to describe the long-range electron-ion correlation and it is shown by a
series of canonical transformations that these give rise to plasma waves and to coupled
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electron-ion waves which correspond to the longitudinal sound waves. Now, if we intro-
duce plasmon coordinates in obtaining the Hamiltonian (2.7) in the same manners as
Bardeen and Pines®’ ?), we may obtain the energy due to the shift in the zero-point
motion of the plasma oscillations which is approximately

2 [Vol+oi-0, |x3~0¢3)mmet,

where
172

ko=(d4m ik, ) =) (3.10)

and k‘ — E3?¥’ﬂ|] 1/3

As was discussed in the previous paragraph, this energy need not be calculated.
We now consider another canonical transformation from our operators

(@fo, @fo, B5, B3) to a new set of operators (Age, Afs, Bs, Bf) .
The relations between these two sets may be written as

a,, =¢ Sa, ¢S (2.11)

with similar equations for @z, , 85, and 87 . We may take S, the generating function

of our canonical transformation, to be a function of the new operators (4. , Af- , Bs, Bj)
only. The operator relationship between the old and new Hamiltonians is

H(a, a*,8,8 *)=¢ "SH (4, A*, B, B*) ¢S=H,,, @.12)

where H(A, A", B, B") represents that Hamiltonian which is the same function of

the new coordinates as H (&, a*, 8, 87) is of the old ones, When we use the same
symbols as the energy operators defined by (2.7c):+(2.7g) in the following discussions,
it should be understood that their symbols represent the operators obtained by only
replacing the old coordinates with the new ones in their corresponding expressions.

Our canonical transformation is gmerated by

-3 V:z(p} #a € 2(p) Ai +3s Ag- Bp ] :
S = iGnts o )" R P IO ¢ i (B l)
where the principal parts are to be taken in the sums over the energy denominators. We
shall then demonstrate that this leads to the desired results.
The first order commutators arising from the operator Hu is

_ Viz(p) rnoez(p)y " Vu(p')
{CHeS) =G0 76 om ) Tah- e

X } AE; +plat A}"rr' (A;-i-ﬁ—ﬁ’rr A,Ecr— A;.,_ﬁ,, A‘ +ﬁ-¢)

+ CAfpopodie = AfasoBpop) A spu Apor | By
+h.c. . (2.14)
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The approximation of retaining only the diagonal terms in the round brakets in (2.14)

gives essentially the random phase approximation (R.P.A.). There are a number of

exchange terms in (2.14) which are diagonal parts of Ag+s Ajs Bs . The contribution

of these terms may be neglected when 7,p,/m,e; < 1. ® This condition is sufficiently
satisfied at the high-density limit. In the R. P, A., then, we obtain

.

i[H,+H,, ,S] =AH,— H',, , (2.15)
where

AH, = 5()9 Y 2 Vi (p) [n, €3 (D) / @5 (P) 3 (B§+ Bty Af 5 Age s
if we choose

E,=14+Vu®) T (B ., b<tbo , (2.16)
where

ch(p) Pt Mo — Nk + fo

kr €1(h+D)— e1(k)— 0 (D)

and z,_is the occupation number of the state specified by £ and o . By calculating

the first order commutator arising from the operator H’iz , the following relation is
also obtained:

i (Hyy ,S)+ H =AH,+AU 2.17)
where
AH. - ‘!‘K(i ) ?co-? Vu (P) A (ﬁ, E) A£+§in, A:t_’,n Aslq.n » (2.18)
_ 1 CH
» BB €p L€1(g+p)— €1(R)) 2—3(P)
AU = p Vu(p) Vis(p’) [ ms€o(D) €2(0")

ﬁl(»o ) ﬁ'(ﬂﬁﬁa P o (p) o (p)

o LALpeproAge—Afrpo Ag-pe ] [By Byt BTy Bp)
€1(k+p) — e1(k) — o (p)

+h.c. " (2.19)

Expanding formally (2.12) in the power series of S, putting the definition of
H(A,A*,B,B+) obtained from (2.7), collecting terms appropriately, and making use of
the relation (2.15) and (2.17), we obtain

Hn“. -_-Eu + A En +Ho ‘|"‘H11'+ AH. +AH5 (2.20)

—-is i,
+AU+h+e “H”, ¢
where

oM

=%
”}il?!_ n+2 (2AH,+2AU+n H, , S), . (2.21)
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In (2.21), CA,B) » denotes the n-th order commutation of A with B.

In the remaining of this section we will consider the problem of the convergency
of the expansion of the canonical transformation generated by (2.13) in a power series
of S, that is, (Vi2(p)/ &€, [nmoe2(p)/ @ (p)) ' The transformation is such as to
introduce new individual fermion wave functions which depend on the boson operators.
One may expect then that the expansion will converge rapidly if

3 V:zﬁl 2 €2(p) 1
1 >h<p¢) €, ) ® (p) Cei(b+d)— e (B+o(p))* . (2.22)

The numerators are small and difficulty arises only from the terms for which the energy
7)8)

denominators are correspondingly small, Let us introduce here the idea of Frihlich
who suggested omitting from the transformation operator (2.13) those terms which have
small energy denominators, i.e., those for which

| €, (B+P)—e, ()t o (PI<D

When the same is done in our transformation, we find that we can choose I’ large enough so
that (2.22) is satisfied and small enough to have a negligible effect on the self-consistent
field. . The equation (2.22) is roughly equivalent to

w2
(2 zk,fm;ei)
The relative error involved in taking the principal part summation is of order of
r

€ 3

(see Bardeen and Pines®).)

where € ¢ is the Fermi energy. Now, as we will see in next section, the leading term
of the contribution from the interaction between the components to the energy is of order
of ;! . Therfore, the error in this energy is of order of ;! /¢, . If we choose
'~z , then the error in this energy per particle is of order of »§ and the condition
of rapid convergence is (#:1/ms)r2<€1 ., Hence, we can treat these two conditions exactly
at the high-density limit (»2-—>0).

3. The energy at the high-density limit

The Hamiltonian (2.20) can be treated by perturbation theory in which Hj is the
unperturbed Hamiltonian, The contribution of the interactions A U, Ak, and e-iS H”12 €S
to the energy per particle vanish at the high-density limit (see Appendix C), so that
the high-density limit Hamiltonian is

H =E,+ AE,+H, +H,+AH +AH, ; 3.1)

AH, is the interaction between fermions through the long-range part of boson fields
and A H, is the short-range interaction between boson and fermion.

The first-order perturbation energy is
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EY = E + AE

where

E _=-0.916r7" (n, m, e} /2) ;
_ _ 3.2
AE. J"ﬁ«ﬁ) E,Vu ® MBR) ng, A —ng05) - 3.2)
The second-order perturbation energy is

E® — AEb + (Second Order in H,,+ AH_)
where
b 03 e (1—Ng4po)
B<po ) ko Vi (2) ws(p) ei(k)— e (B+P)—ws(p) . (3.3)

In order to estimate the second and higher order contributions of the interaction
H,+AH, , we approximate ) (B,k) 6 (p,—p) with the averaged constant A which is

defined as

AE =%

)

L &

xﬁ_ﬁ“f zq A (.5:5) ﬂﬁ-’r (1_”§+§
2 n (1-n
B<po ) ke BT

~O (7, log7: )

TR (3.4)

By following the Gell-Mann and Bruckner's calculation” of the correlation energy of an
electron gas at the high-density limit, we can estimate the contribution of the second and
higher order in the interaction given by H, +AH, , which is

$,2 023 me(l=ngep) npeU-npp) Vi (9) U+ 0"
: ’ €1(+D)+ e1(k' —P)— € 1(k)— €1(R")

=(0.062210g7, +0(12) ) + A+ N)? nymy et /2 . (3.5)

From (3.4) and (3.5), it is obvious that the contribution of A H, to this energy per

particle vanishes at the high-density limit.
Since AH, represents the short-range interaction, the effect of screening by

fermions may be neglected. The fourth-order perturbation energy of AH, , AEW , is of
order of 7§ n,mye; » Therefore, in our calculation, the contributions from A H, to the

ground state energy per particle is only AE, given by (3.3).
From the discussions thus far, the contribution of the boson-fermion interaction to
the ground state energy at the high-density limit is obtained as

AE= A E, + AE, + AE,

The dispersion relation for the introduced bosons can be expanded as follows:

0} I—E«P o saaiin

wld) oy 0l it )
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Using this expansion in the expression (2.7) and refering to the Appendix A, we obtain
f-\Eo=*ian) Coz ki/ wni” €,) (& (B, w)+g (B,—0))
+0 (r2)ny mo ey . (3.6)

In the order estimation of the second term in (3.6), we used the (A.8) as & 58 By the
definition of g,, we also get

AE =—1% K(z;uj Cotkl/op®e,) (&b 0)—g (h—0)), 3.7
AE =-% 2 (0ik/ 0, 0') ga(b o) . (3.8)

Using the expression (A.2), we can calculate (3.6), (3.7), and (3.8), and then obtain
the contribution from the boson-fermion interaction to the ground state energy which is
calculated exactly to the second term in the density parameter expansion. The result is
(see Appendix B),

A E¢+ AE + AE, 4Q m eg m.e logr, »
T3 e . 3.9
(n,m g2 Ftama T ( g, )"+ O (logr,), (3.9)
where '
S 1
=, dx —————75 =2.6220-

Q o x C1+‘1‘x‘ :I 172
a=(4/9=)'"

4. Discussion and conclusions

Taking the Bogoliubov's approximation for the given Hamiltonian and performing
a series of canonical transformations, we obtain the effective Hamiltonian at the high-
density limit given by (3.1). In the Hamiltonian obtained this way, there is no long-
range interaction between boson and fermion.

It is shown exactly that the dispersion relation of the introduced boson is acoustic
phonon-like in the low momentum region for s/v,—>0, where s and v, are the sound

velocity and Fermi velocity, respectively. It is shown also for the momentum much smaller
than the Thomas-Fermi screening constant that the solution of this type satisfies the
dispersion relation approximately for sfv< 1.

The contribution of the boson-fermion interaction to the ground state energy is
calculated exactly to the second term in the expansion in the density parameter r, and
is given by (3.9).

In the discussions above, the order estimation of the terms which contribute to
the ground state energy were carried out by making use of (A.8) as the transformation
parameter, € , . The expression (A.8) for & » is exact for s/v,~O and approximate for
s/v,< 1. That €, is given by (A.8) is equivalent to saying that the dispersion relation
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of the introduced boson is acoustic phonon-like.

The dispersion relation (2.5) describes such boson mode that has infinite life-time
for any value of s/v, since the solution of (2.5) corresponding to the boson mode is real
due to our choice of the expressions (2.6) and (2.16) as & » The life-time of an actual
mode, however, will be finite in general for finite value of s/v¢. For our calculation,
however, the boson mode described above is introduced. Therefore, it is not surprising
if there exists such an unphysical case that the solution of acoustic phonon-like disappeares
for s/v,.>1 in our dispersion relation as shown in Appendix B. It is essential in our
treatment whether or not we can calculate the exact result, but there is no reason in
our calculation why we can not conclude that the result given by (3.9) is exact to the
second term of the expansion in the density parameter 7, for s/v, < L

Appendix A. The dispersion relation of the introduced bosons
From the equation (2.6) and (2.16), the parameter & iy of our canoical transforma
tion can be expressed as follows:

E,=1+% (k, /13" (& (B, 0(P))+ & (B—0 ($))) 6(po—p) ., (A.D)

where,

& (B, o (p))=1247¢ 3 ne, I-np,5,)
kL ke G h)— ¢, )+ a(p)

= +8 1-8

=_9%x__x2{x (1+u,) + (1-82) log rzT*_ (1—S2) log T_I}
0=/, ., P LA
=2 \ 4y + +) log 7= Sl (A.2)
x =P|’1kt y
u,= 0 (Pp)/2xe, , (A3)
and

Sy =x/2t u,

Since x<p,/k, ~r} for p<p,, <1 for p<p, in the high-density region. When

(A.2) is expanded for fixed u ” in a power series of x, we get

8 (D, 0 (D) + g (B, — 0 (P)) =2 Cao (u,)+a; (uy)x* +-+0] (A.4)
where
1-u
a, (up)=1+§u, loglmﬂ . (A.5)
P
1
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Since the terms higher than the second in the expansion of (A.4) can be neglected in
the case of high-density limt, (A.1) and (2.5) become as follows:

Ep=1+ Ch, /D)% ay (u,) 0 (po — P) . (A.6)
o(p) =sp Cao (u,)+ (p/k,)* ) 7} p<po
=o_ (9 p>po (A.7)

where s is the velocity defined by s =w,/k, .

Since #,<< (s/v, a} ) owing to (A.7) where v, =k, /m,, u,—> 0
(hence a,=1) especially in the case of

(s/v,) = (mye, /3mue; )t —>0 .

Then (A.6) and (A.7) become as follows:

E,=14+ (k. /9)* 0(po —P) ; (A.8)
o(p)=sp (1+ (p/k,)*) p<p,
=o_(p) P>, : (A.9)

Therefore, in this case the dispersion relation of the introduced bosons becomes that of
acoustic phonon in the low momentum region which is quite different from that of
bogolons in the charged boson gas. The sketch of the dispersion relation is shown in Fig. A.L

we

bagolon
Wa

Y kS Pa ,P

Fig.Al. The sketch of the dispersion relation (solid line) of the introduced boson.

When p <k, , we can investigate the dispersion relation given by (A.7) for finite
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value of s/v, . Using the definition of “, given by (A.3), (A.7) can be rewritten as
follows:

2 -2
a, (u,) = (s/vy) u, . (A.10)
The solutions of this equation are shown in Fig. A. II as the intersectioins of the graphs

a, (u,) and (s/v; )gu;z

Fig. All. The acoustic phonon like solutions which are shown as the intersections of
the graphs ¢, (x,) shown by solid line and (s/v) % ;’ shown by dashed line.

Since we may choose any solutions in specifying the canonical transformation
parameter & , we will take the value corresponding to the solution A as the parameter

& ,- Then since ao(up)%i in this choice for (s/v,) < 1, the equation (A.8) and (A.9)
hold approximately also for (s/v) £ 1

Appendix B. The calculation of (3.6), (3.7), and (3.8)
From (A.2) we obtain the expansion in terms of S+ and S_, that is,

for P{ pa

J, I Sz,ﬂ.s +S 2n+3 1
] ] ) + o T =2 1 —_E i ~ ' (B.l)
8 (B, 0 (P) + g, (B,— 0 ($)) " Fece TEntD@ntd) S
18 g -8 )
y Sl ¥ = ~x2 : ' 2
& (B o(p) —g (h—w()=2 {“P log u, 4% nan n(n+1) I B2

for p > 2,
oo 2n4-3 2n43

5 f 1 S S
L (Do(P))=02—x),1+u, log u,——=2 e to-
= |\ B TR Tnr D 2nt D)
2n+2 2n+2 l

13 s -S.
4x nmi n(n+1) f
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f1 18 |1+S+_|l
+ 0 (x- Nz ame raate 1 g F f - (B.3)

The integration after substitution of (B.1) into (3.6), gives

AE, 4m e 1 5
AT T e g O &

where we made use of (A.8) and (A.9) as & ’a.nd w (p), respectively, in the calculation
of the order estimation in (B.4). The contribution from the second term of (B.1) to
(B.4) is of order of unity.

When (B.2) is put into (3.7), the contribution from the first term of (B.2) is

n,m,e; 2m.e, log u,
2 ( ™ m,e, ) fp '

where the leading term can be calculated exactly and is given as follows:

21 2 o ", M,
( Zrm, ) og 7, +0(logr,) 2

The contributim_ from the second term of (B. 2) is O () (n,m,e;) /2. Hence,

AE 1 mlel

a

(n,met/2) 2 \ Zmmpe,

log 7,) +0(ogr,). (B.5)

The integration after substitution of (B.3) into (3.8) yields

AE, 4m e

=— fdx i
(n,m,et/2) 3 xtamelrit J TV g4

1 me, log 7, 2
paill e . B.6
= ) +o0ogr,) (B.6)
In these calculations, the first and second terms in the braket of the first term of
(B.3) contribute to the first and second terms of (B.6), respectively, and the contribution
from the second term of (B.3) to (3.6) is of order of unity.
Finally, (3.9) is obtained by adding (B.4), (B.5), and (B.6) together.

Appendix C. The contribution from e~ H[,eS AU, and A.

First of all, let us estimate the contribution of e~* H7, €’ to the ground state
energy on the basis of the perturbation theory, where H, is regarded as the unperturbed
Hamiltonian and the remaining operators in the Hamiltonian (2.20) are the perturbations.
Since the energy contribution of each term in the expansion of canonically transformed
Hamiltonian generated by (2.13) in the power series of S may converge rapidly as is
shown in the last part of section 2, we will estimate only the contribution of the first
term H”,, to the ground state energy. The lowest-order perturbation energy of H”, is

(see (2.71)) ,
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AB"=3 Vi) (Clp_s Sh +Cijp Sip-pi Cp Sp ) MBB), (€.
P

1]

where Cp and S’ are defined by (2.3) and (2.4), respectively, and

' ne, =n,, ) w
MG B) =2 B —c,G+P-0(p)—a(15 B S

We can estimate the order of magnitude of A E” by noticing that the dominant
contribution in the sum over § in (C. 1) is in the low momentum region. The dependence
of AE” on the dentsiy parameter is as follows:

AE” ~ 1/4
omerzy O e ' ©9

Next, let us consider the contribution of AU given by (2.19). The terms with
P’ =—p, which are excluded in the expression (2.19), are used to eliminate the interaction
H, as is seen from the equation (2.17). Each term in the interaction AU is quadratic
in the boson variables multiplied by the nondiagonal product of fermion operators such as
A}, 54504 This is the same character with that of H” ,. Moreover, AU consists of
terms higher in order than H”,, in the power series expansion of S. Therefore, the
contribution of AU to the ground state energy per particle may vanish.

Finally, it is obvious that the main contribution of 4 given by (2.21) to the
ground state energy arises from n=1:

h=-4(2an+H,5]) . . 4
Calculating the commutator, we obtain

= =gy 172 ™
k=4, 2 ZAGH (1= €' Vi) (no €2 (p) /0(5)) * (B, +BLy)

At A,

This interaction is of exactly the same character as H’,, except that this is smaller
than H',, by afactor of <\ ($,k) (I—-€,') > ~n/t

2<po

k~ky

Therefore, & can be neglected at the high-density limit.
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