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Tbt Field 1beordtcat Tre:atmeat of tbe ~Bos!on .... -Fermion 

System : Ground State Energy aDd Elementary hen.noDl* 

Mitsuaki GINOZA** and "Hideo KANAZAWA*** 

Abstract 

The neutral S)'Item consinial of charged.bosons and -fermions bas been 
invett;ptcd In terms of density parameter cxpansion at tbe biBh.density limit. 

The around state encrlY of this system is calculated and accords with the result 
obtained in our previous work. 

The elementary e:llcitations in the system determined from tbe poles of the boson 
Greeo's (unction arc tbe two collective excitations in the tow momentum rClion : 
acoustic. and optical. phonon like. The life-time of the acoustic phonon approches 

infinite as s/u, -.0 where s and v, arc the sound velocity and Fermi velocity, 

respectivel)" while tbat of the optical pbonon is infinite. 

I. IatrodDCtIoa 
The charged -boson and -fermion system offers a great challenge to the theoretical 

physicists in the many body problems because of the existence of the boson condensate, 
the difficuties assx:iated with Coulomb interaction, and the effect of the interaction 
between components. 

In the previous work l ) (hereafter refered as n, we calculated the ground state energy 
of such system in tenns of density parameter expansion at the high·density limit. The 
canonical transformations introduced in tbis calculation were such that they would 
transform the bogolon field , which is in the medium of charged boson gas in the case 
when there is no interaction between components, into the boson field with the acoustic 
phonon like dispersion relation. 

The self -consistency in the calculation guarantees that the result obtained by the 
treatment adopted in I is exact. However, it will be signiricant and interesting enough 
to deepen our understanding of this system basing on an alternative method. In this 
paper, we will investigate the ground state energy and collective excitations in the 
system by the field theoretical technique. 

tn § 2, we will treat the boson condensate using the method of Hugenholtz and Pines,') 
define the density correlation function and the Green's fUnctions, give the expressions 
of the correlation energy and the boson condensate fraction using the functions defined 
above, and give the rules of the perturbational calculation of the functions. In § 3, we 
will obtain the functions defined in the previous section in the approximat ion allowed in 
the high-density region, investigate the elementary excitations given by the poles of the 
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boson Green's function and calculate the correlation energy. In § 4, some conclusions 
will be given and the problems for the future work will be pointed out. 

1. FormaUtm 
2.1 We consider the neutral system consisting of charged-spinless bosons and 
·nonrelativistic fermions with spin 1/2 in a unit volume with periodic boundary condition. 
The creation and destruction operators of fermion with momentum Ft and spin tr (boson 
with momentum k) are denoted by a;" and a, .. (by b; and b,), respectively. The 
kinetic energy of a particle with momentum k. f I (k) =k2 12m; . Fourier transforms of 
Coulomb interaction between particles, vCP)er ej =41r P_2 e .. eJ when p,*O and yep) =0 

when p=O . j =1 for fermion , j =2 for boson, m, and 81 are mass and charge of a 
particle specified by i. It is easy to write down the Hamiltonian, H, in terms of the 
quantities defined above. 

At the absolute zero of temperature, the ground state of the noninteracting system is 
characterized by the facts that all fermions fiJI the Fermi sphere perfectly and that all 
bosons occupy the zero momentum state forming the condensate . The existence of this 
condensate prevents us from applying the quantum field theoretical technique directly. 
A rather simple way of getting around this difficulty is set forth by Hugenholtz and 
Pines2} in the case of the boson system. Their method amounts to a generalization of the 
original method of Bogoliubov' ) concerning the role of b: and bo • According to their 
theory, providing that a finite fraction of the 00s0ns remain in the condensate after 
the interaction between particles is turned on, b: and bo are simply c-number. This 

c·number is wrtten, nl and it must be imposed that n. represents the number of bosons 

in the condensate. By means of this procedure the oondensate has been removed from 
the problem and with it all the difficulties involved in the application of the quantum.field 
theoretical techniques. The total number of bosons, however, is not conserved. 

We introduce the hermitian operator defined by 

where H is the Hamiltonian of our system defined above. til = :t a t. a J .. •• 

(2,1) 

n ,= I bi b, ' and "', and '" 2 are the chemical potencials of ferminn and boson • • 
respectively. b: and bo are still the operators in (2.1). As long as b: and bo represent 
operators, both H and H' provide acceptable descriptions of the interacting system. When 
we use the Bogoliubov prescription, however. the thermodynamic potencial offers a 
definite advantage, for it allows a consistent treatment of the non·conservation of particles. 

By making the replacemeot of b: and b. by n!. (2.1) becomes 

(2,2) 

where 

H~=I C fJ(k) - "', ) ai .. af .. + I (f2(k) -fl.,) btbJ - nOP- h (2.3) 
•• • 



60 GlNOZA·KANAZAWA: The Field Theoretical Treatment of the Charged-Boson and -Fermion 
System: Ground State Energy and Elementary Excitations 

H II = t1:v(p)e! 1: 1: at ... , .. a1'_~", a"" a s.., 
~ fa ft '''' 

H'1I = 1: 1: v(p)el ea ni (b~ + b'!:.~) a; ... 14 a, .. , , . 
• 

H 12 = 1: 1: 1:' v(P) el e) a,· . .. a .. b'''''_J b" 
~ ftq . ' 

H, = t 1: v(p)e~ no ( 2bj hp + hj h~p + hp h_ J ) , , 
HT = 1: 1: ' v(P) e:"l (b; ... ~ b~p b, + h; b_" h, ... ,,) , . , 
HQ = t 1: 1:' 1:' v(P) e~ bj."'J hj. _" b" .. bJ" 

~ J' JI> 

(2.') 

and 0) ="0 + r' b; h, - no + a; . In the above equations, the prime on the sum 

indicates that the terms with the suffix of boson operator equal to zero are excluded . 
Each term in (2.4) corresponds to each graph in Fig. 1. Since all remaining boson 

Fig 1. Various interactions in the $)'Stem. Solid line. wavy line. 
and dashed line represent fermion. boson with nonzero momentum. 
and the interactioD between the particles, respectively. 

destruction operators annihilate the non interacting ground state, it may be considered to be 
equivalent to only the Fermi sphere filled perfectly with noninteracting fermions which 
we denote by I 0> . Wick's theorem is now applicable. Though all the final expressions 
contain the extra parameter n • • since the equilibrium state of any assembly at constant 
(T, V, II- I, ~ z) minimizes the thermodynamic potential, the no may be determined from 
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the condition of the thennodynamic.equilibrium : 

a/anoE'(no, PI' PI) 1,"1',"2 =0, (2.5) 

which is an implicit relation for ne , where E' = < 'It (no, I' 1 , pI) I H' I 'It> and ..y is 
the ground state of H' given by (2.2). Also, we impose the conditions: 

<..ylnl I ..y>= n l , 

<..yln~ I ..y>= "2 - no • 

(2.6) 

(2.7) 

where nl and nz are the number of fermions and bosons in our system, respectively. 
Then, the energy of our system is given by 

E=E' -PI n l -p , n z . (2.8) 

We consider the system defined by 

H 'O.) = H~ + ).H1 , (2.9) 

where H~ and HI are defined by (2.3) and (2.4) respectively and ). is a coupling 
constant. The derivative of the ground state energy of this system with respect to ). is 

dE' ()')/d).=-(dpr/d),) IIt-(dpl/d).) n l + ).-I<..y~ I ).H. I +~> 
+<+~ I ). (dH I / d).) 1 +~ >-Pl (dno/d).), 

where V~ is the ground state of the Hamiltonian defined by (2.9) and the relations 
of (2.6) and (2.7) are used. We can show that the fourth term cancels the fifth one 

in the above equation: We obtain P 2 =<+~ I ). (dHI /dn.) I V~ > from (2.5) in the 

case of the coupling constant )., and therefore, 

<..".A I )'(dHI / d).) I v' >=<..;1 I ). (dB I I dn o)l +1 > (dno / d]..) = PI (dno / d ).). 

Using the relation (2.8) and integrating with respect to the coupling constant from 0 
to 1, we obtain the well known relation : 

E=E().=O)+f~d'A. ).-1<..;'1 ).HI 1";'>. (2.10) 

2.2 Let us define the total density correlation function, D, and the boson Green's 
~unction. G2, as follows: 

i D(fi, I-t')-<" I Tp(fi,l) p(- fi,t') I ,,> , (2.11) 

; Gz (p,t-t') = <V I Tbl (t) S; (t ' ) I V> (2.12) 

where p (p,t) and bl (I) are the Heisenberg repesntations of ~(p) and bl in the system 
defined by H'. respectively. and 

pCp) =:t el at_~ a"" + nl eJ(bl +b~l) +}; e2 b;_~ b, • 
~ . 

From (2.4), (2.10), and (2.11), the expression of the correlation energy, £ 00" • is 
given in terms of D by 

E •• " = t 1 v(fJ) f: d). foodw (211')-1 1m CDI~I' (p,w) _Dl. (P,w)) , (2.13) 
-~ 

where D (p, w) is the Fourier transfonn of D(p,t), DKI' is the total density correlation 
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function in the Hartree·Fock approximation, and ). on these functions shows the 
dependence of these on the coupling constant, explicitly. It is also shown from (2.7) and 
(2.12) that the fraction of bosons in the condensate, fC- n~ tnt ), is calculated from 
the following expression : 

/=1- Lim nil :tJ"" idlO (211")-IG2 (P, lO)e;'- , (2.14) 
'1_+0 I 

-~ 

where G2 (P, UI) is the Fourier transform of G. (p,t). In addition to C. , it is 
advantageous to introduce two similar functions 

; G, (P,t-t')~<", I T;. (1),-. (t ' ) I"'> 

iG2 (P,t-t ' ) = <'t ! TbJ (t)b~, (t') I "'> 
These functions obviously have no counterpart in the unperturbed system. 

A perturbation expansion for the functions defined above are obtained by going over 
to the interaction representation'). The energy·momentum representations of fermion bare 
Green's fUnction, boson bare Green's function , and instantoneous Coulomb interaction are 
obtained from their definions, respectively, as follows 

w , • 
G (ka,w)=(w - t:l(k)+~I+IOSgn(fl(k)-"'I»)-' • 

(2,15) 

dO) (k, 10) = ( w - E 2 (k) + '" +i 8) -I . , (2, 16) 

and lJ ( p ,w)e; ej =v(p)e; ej. Each term in the perturbation expansion is functional of 

G~O). G~O), and vei eJ and may be represented by a Feynman diagram with 

appropriate rules. A Feynman diagram of the density correlation function (called 
polarization diagram) is defined to be a diagram with two externl Coulomb lines and no 
other external line (see Fig.2). j G2 ,i (;:, and i (;2 are repretented by diagrams 
with one ingoing boson line and one outgoing boson line, two ingoing boson lines, and 
two outgoing boson lines, respectively (see Fig. 3). The analytical representation of each 
Feynman diagram is obtained from a set of rules given below, Rules for i Gt (p, w), 

j G2 (p,w) • iG2 (P, w), and j D(p,w) : 
(i) Write down all possible topologically non·equivalent connected Feynman diagrams 

construtecd from the ten elementary interactions given in Fig. 1. 
(ij) In the diagram thus obtained, flow energy and momentum in each line where 

energy and momentum are conserved in each vertex. Also assign spin index to the 
fermion line. 

(iii) Assign the following quantities to each line and vertex : 

pa,w i C:O) (pa , lO)given by 

i d G
) (p, w) given by , 

".~: .... ~ .... ; - j v (P,w), 

vertex ......... < ; el 

vertex ; et 

(2,15) 

(2,16) 
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vertex ......... ; n; e, 
"-

(iv) When~and--'-+ are equal time propergators, they correspond to i G~Q) ("a,lJ) 

i 'J IJ) and iG~C) (p, IJ) ei'J fI) • respectively, with " denoting a positive 

infinitesimal. 
(v) The analitical contribution of the diagram is the one obtained by muitipling all 

quantities assigned to all the lines and vertices In the diagam following the rules 
(ii), (iii), and (iv), integrating over the energies and momenta which are not 

determined by the conservation law (II :tfd2 f1)( ), summing over all spin variables, 
I Iri 11: 

and finally multiplying the resulting expression by ( - 1)( where l is the number of 
the fermion closed loops. 

In order to calculate D(p,IJ), it is convenient to introduce a proper polarization 
diagram defined as a polarization diagram which can not be broken up into two simpler 
polarization diagrams by cutting a single interaction line. The sum of the contributions 
from all such diagrams is denoted by i 15 (P, fI). The relation between D and li is given 
by Fig. 2, diagramatically . 

From the rules, it is easy to write down the expression of 
I 

I 
I 
I 

§J-
I 
I 

I , 

I iD 

:§J 
Fig. 2. The relation between D and IJ. 

D(p, IJ)) in terms of n(p,IJ): 
D(li,") - D(P,. )/K(P, w), 

where we define the dynamical dielectric constant K (p , lJ) as 
K(P, w) -l-v(P)D(P, w). 

(2,17) 

(2.18) 

As for the calculation of the boson Green's functions, it is useful to define a proper 
boson self-energy diagram as a diagram not consisting of two or more parts connected 
only by one wavy line. Such diagrams are classified into three groups: diagrams having 
one incoming and one outgoing wavy lines, two outgoing wavy lines . and two incoming 
wavy lines . The sum of the contributions from all diagrams belonging to each group is 
denoted by -i l: lo (p, IJ) , -il: .~(p,fI) , or -i l:1L (p,lJ) , where :tLO , 1:0., and 
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l:1I are the proper self-energies (see Fig. 3). The general structure of the perturbation 
expansion of the boson Green's functions leads, if we follow the discussion first given 
by Beliaev&) in the case of boson system, to the diagramatical represention of the algebraic 
relations among Gz (p, 0). G2 (P, 0)). and Gt (P, w) shown in Fig. 3. When these 

- + - + 
-- -iLoo 

+ --
Fi,.3. The algebraic relations among Gz (~.6». Gz (~.(J,), and C,(~.6» . 

equations are expressed analytically, they can be solved and one finds the following 
expressions: 

Gz(P. w)= (0)+ f'(P) - JU + l: lo(-fi. - O)). '.t)- I(p,W), 

GJ (~,IiJ) = C. (p,w) = - 1: 11 (~,(J}). 'it)-I (P.IiJ), 

where 

'iJ(p,@)- {@- t C ~ ,. (P,@)-~ ,.(-p,-@» } • 

- {fz(P) -Ju+ t (l:IO(~,(I) - l:IO(-~,W))} z + l:~l (~, w), 

and we used the relation l:ll (fi,liJ) = l: .. O,w) . 

(2 .19) 

(2.20) 

The usefulness of eqs. (2. 17) and (2.19) is that, given approximate expressions for 
the proper polarization and the proper seif-energies, these equations contain the result 
summing the contributions from an infinite number of diagrams so that the divergency 
in the expression for the ground state energy which appears in a finite order perturbation 
theory is eliminated. 


















