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Tbt Field 1beordtcat Tre:atmeat of tbe ~Bos!on .... -Fermion 

System : Ground State Energy aDd Elementary hen.noDl* 

Mitsuaki GINOZA** and "Hideo KANAZAWA*** 

Abstract 

The neutral S)'Item consinial of charged.bosons and -fermions bas been 
invett;ptcd In terms of density parameter cxpansion at tbe biBh.density limit. 

The around state encrlY of this system is calculated and accords with the result 
obtained in our previous work. 

The elementary e:llcitations in the system determined from tbe poles of the boson 
Greeo's (unction arc tbe two collective excitations in the tow momentum rClion : 
acoustic. and optical. phonon like. The life-time of the acoustic phonon approches 

infinite as s/u, -.0 where s and v, arc the sound velocity and Fermi velocity, 

respectivel)" while tbat of the optical pbonon is infinite. 

I. IatrodDCtIoa 
The charged -boson and -fermion system offers a great challenge to the theoretical 

physicists in the many body problems because of the existence of the boson condensate, 
the difficuties assx:iated with Coulomb interaction, and the effect of the interaction 
between components. 

In the previous work l ) (hereafter refered as n, we calculated the ground state energy 
of such system in tenns of density parameter expansion at the high·density limit. The 
canonical transformations introduced in tbis calculation were such that they would 
transform the bogolon field , which is in the medium of charged boson gas in the case 
when there is no interaction between components, into the boson field with the acoustic 
phonon like dispersion relation. 

The self -consistency in the calculation guarantees that the result obtained by the 
treatment adopted in I is exact. However, it will be signiricant and interesting enough 
to deepen our understanding of this system basing on an alternative method. In this 
paper, we will investigate the ground state energy and collective excitations in the 
system by the field theoretical technique. 

tn § 2, we will treat the boson condensate using the method of Hugenholtz and Pines,') 
define the density correlation function and the Green's fUnctions, give the expressions 
of the correlation energy and the boson condensate fraction using the functions defined 
above, and give the rules of the perturbational calculation of the functions. In § 3, we 
will obtain the functions defined in the previous section in the approximat ion allowed in 
the high-density region, investigate the elementary excitations given by the poles of the 
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boson Green's function and calculate the correlation energy. In § 4, some conclusions 
will be given and the problems for the future work will be pointed out. 

1. FormaUtm 
2.1 We consider the neutral system consisting of charged-spinless bosons and 
·nonrelativistic fermions with spin 1/2 in a unit volume with periodic boundary condition. 
The creation and destruction operators of fermion with momentum Ft and spin tr (boson 
with momentum k) are denoted by a;" and a, .. (by b; and b,), respectively. The 
kinetic energy of a particle with momentum k. f I (k) =k2 12m; . Fourier transforms of 
Coulomb interaction between particles, vCP)er ej =41r P_2 e .. eJ when p,*O and yep) =0 

when p=O . j =1 for fermion , j =2 for boson, m, and 81 are mass and charge of a 
particle specified by i. It is easy to write down the Hamiltonian, H, in terms of the 
quantities defined above. 

At the absolute zero of temperature, the ground state of the noninteracting system is 
characterized by the facts that all fermions fiJI the Fermi sphere perfectly and that all 
bosons occupy the zero momentum state forming the condensate . The existence of this 
condensate prevents us from applying the quantum field theoretical technique directly. 
A rather simple way of getting around this difficulty is set forth by Hugenholtz and 
Pines2} in the case of the boson system. Their method amounts to a generalization of the 
original method of Bogoliubov' ) concerning the role of b: and bo • According to their 
theory, providing that a finite fraction of the 00s0ns remain in the condensate after 
the interaction between particles is turned on, b: and bo are simply c-number. This 

c·number is wrtten, nl and it must be imposed that n. represents the number of bosons 

in the condensate. By means of this procedure the oondensate has been removed from 
the problem and with it all the difficulties involved in the application of the quantum.field 
theoretical techniques. The total number of bosons, however, is not conserved. 

We introduce the hermitian operator defined by 

where H is the Hamiltonian of our system defined above. til = :t a t. a J .. •• 

(2,1) 

n ,= I bi b, ' and "', and '" 2 are the chemical potencials of ferminn and boson • • 
respectively. b: and bo are still the operators in (2.1). As long as b: and bo represent 
operators, both H and H' provide acceptable descriptions of the interacting system. When 
we use the Bogoliubov prescription, however. the thermodynamic potencial offers a 
definite advantage, for it allows a consistent treatment of the non·conservation of particles. 

By making the replacemeot of b: and b. by n!. (2.1) becomes 

(2,2) 

where 

H~=I C fJ(k) - "', ) ai .. af .. + I (f2(k) -fl.,) btbJ - nOP- h (2.3) 
•• • 
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H II = t1:v(p)e! 1: 1: at ... , .. a1'_~", a"" a s.., 
~ fa ft '''' 

H'1I = 1: 1: v(p)el ea ni (b~ + b'!:.~) a; ... 14 a, .. , , . 
• 

H 12 = 1: 1: 1:' v(P) el e) a,· . .. a .. b'''''_J b" 
~ ftq . ' 

H, = t 1: v(p)e~ no ( 2bj hp + hj h~p + hp h_ J ) , , 
HT = 1: 1: ' v(P) e:"l (b; ... ~ b~p b, + h; b_" h, ... ,,) , . , 
HQ = t 1: 1:' 1:' v(P) e~ bj."'J hj. _" b" .. bJ" 

~ J' JI> 

(2.') 

and 0) ="0 + r' b; h, - no + a; . In the above equations, the prime on the sum 

indicates that the terms with the suffix of boson operator equal to zero are excluded . 
Each term in (2.4) corresponds to each graph in Fig. 1. Since all remaining boson 

Fig 1. Various interactions in the $)'Stem. Solid line. wavy line. 
and dashed line represent fermion. boson with nonzero momentum. 
and the interactioD between the particles, respectively. 

destruction operators annihilate the non interacting ground state, it may be considered to be 
equivalent to only the Fermi sphere filled perfectly with noninteracting fermions which 
we denote by I 0> . Wick's theorem is now applicable. Though all the final expressions 
contain the extra parameter n • • since the equilibrium state of any assembly at constant 
(T, V, II- I, ~ z) minimizes the thermodynamic potential, the no may be determined from 
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the condition of the thennodynamic.equilibrium : 

a/anoE'(no, PI' PI) 1,"1',"2 =0, (2.5) 

which is an implicit relation for ne , where E' = < 'It (no, I' 1 , pI) I H' I 'It> and ..y is 
the ground state of H' given by (2.2). Also, we impose the conditions: 

<..ylnl I ..y>= n l , 

<..yln~ I ..y>= "2 - no • 

(2.6) 

(2.7) 

where nl and nz are the number of fermions and bosons in our system, respectively. 
Then, the energy of our system is given by 

E=E' -PI n l -p , n z . (2.8) 

We consider the system defined by 

H 'O.) = H~ + ).H1 , (2.9) 

where H~ and HI are defined by (2.3) and (2.4) respectively and ). is a coupling 
constant. The derivative of the ground state energy of this system with respect to ). is 

dE' ()')/d).=-(dpr/d),) IIt-(dpl/d).) n l + ).-I<..y~ I ).H. I +~> 
+<+~ I ). (dH I / d).) 1 +~ >-Pl (dno/d).), 

where V~ is the ground state of the Hamiltonian defined by (2.9) and the relations 
of (2.6) and (2.7) are used. We can show that the fourth term cancels the fifth one 

in the above equation: We obtain P 2 =<+~ I ). (dHI /dn.) I V~ > from (2.5) in the 

case of the coupling constant )., and therefore, 

<..".A I )'(dHI / d).) I v' >=<..;1 I ). (dB I I dn o)l +1 > (dno / d]..) = PI (dno / d ).). 

Using the relation (2.8) and integrating with respect to the coupling constant from 0 
to 1, we obtain the well known relation : 

E=E().=O)+f~d'A. ).-1<..;'1 ).HI 1";'>. (2.10) 

2.2 Let us define the total density correlation function, D, and the boson Green's 
~unction. G2, as follows: 

i D(fi, I-t')-<" I Tp(fi,l) p(- fi,t') I ,,> , (2.11) 

; Gz (p,t-t') = <V I Tbl (t) S; (t ' ) I V> (2.12) 

where p (p,t) and bl (I) are the Heisenberg repesntations of ~(p) and bl in the system 
defined by H'. respectively. and 

pCp) =:t el at_~ a"" + nl eJ(bl +b~l) +}; e2 b;_~ b, • 
~ . 

From (2.4), (2.10), and (2.11), the expression of the correlation energy, £ 00" • is 
given in terms of D by 

E •• " = t 1 v(fJ) f: d). foodw (211')-1 1m CDI~I' (p,w) _Dl. (P,w)) , (2.13) 
-~ 

where D (p, w) is the Fourier transfonn of D(p,t), DKI' is the total density correlation 
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function in the Hartree·Fock approximation, and ). on these functions shows the 
dependence of these on the coupling constant, explicitly. It is also shown from (2.7) and 
(2.12) that the fraction of bosons in the condensate, fC- n~ tnt ), is calculated from 
the following expression : 

/=1- Lim nil :tJ"" idlO (211")-IG2 (P, lO)e;'- , (2.14) 
'1_+0 I 

-~ 

where G2 (P, UI) is the Fourier transform of G. (p,t). In addition to C. , it is 
advantageous to introduce two similar functions 

; G, (P,t-t')~<", I T;. (1),-. (t ' ) I"'> 

iG2 (P,t-t ' ) = <'t ! TbJ (t)b~, (t') I "'> 
These functions obviously have no counterpart in the unperturbed system. 

A perturbation expansion for the functions defined above are obtained by going over 
to the interaction representation'). The energy·momentum representations of fermion bare 
Green's fUnction, boson bare Green's function , and instantoneous Coulomb interaction are 
obtained from their definions, respectively, as follows 

w , • 
G (ka,w)=(w - t:l(k)+~I+IOSgn(fl(k)-"'I»)-' • 

(2,15) 

dO) (k, 10) = ( w - E 2 (k) + '" +i 8) -I . , (2, 16) 

and lJ ( p ,w)e; ej =v(p)e; ej. Each term in the perturbation expansion is functional of 

G~O). G~O), and vei eJ and may be represented by a Feynman diagram with 

appropriate rules. A Feynman diagram of the density correlation function (called 
polarization diagram) is defined to be a diagram with two externl Coulomb lines and no 
other external line (see Fig.2). j G2 ,i (;:, and i (;2 are repretented by diagrams 
with one ingoing boson line and one outgoing boson line, two ingoing boson lines, and 
two outgoing boson lines, respectively (see Fig. 3). The analytical representation of each 
Feynman diagram is obtained from a set of rules given below, Rules for i Gt (p, w), 

j G2 (p,w) • iG2 (P, w), and j D(p,w) : 
(i) Write down all possible topologically non·equivalent connected Feynman diagrams 

construtecd from the ten elementary interactions given in Fig. 1. 
(ij) In the diagram thus obtained, flow energy and momentum in each line where 

energy and momentum are conserved in each vertex. Also assign spin index to the 
fermion line. 

(iii) Assign the following quantities to each line and vertex : 

pa,w i C:O) (pa , lO)given by 

i d G
) (p, w) given by , 

".~: .... ~ .... ; - j v (P,w), 

vertex ......... < ; el 

vertex ; et 

(2,15) 

(2,16) 
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vertex ......... ; n; e, 
"-

(iv) When~and--'-+ are equal time propergators, they correspond to i G~Q) ("a,lJ) 

i 'J IJ) and iG~C) (p, IJ) ei'J fI) • respectively, with " denoting a positive 

infinitesimal. 
(v) The analitical contribution of the diagram is the one obtained by muitipling all 

quantities assigned to all the lines and vertices In the diagam following the rules 
(ii), (iii), and (iv), integrating over the energies and momenta which are not 

determined by the conservation law (II :tfd2 f1)( ), summing over all spin variables, 
I Iri 11: 

and finally multiplying the resulting expression by ( - 1)( where l is the number of 
the fermion closed loops. 

In order to calculate D(p,IJ), it is convenient to introduce a proper polarization 
diagram defined as a polarization diagram which can not be broken up into two simpler 
polarization diagrams by cutting a single interaction line. The sum of the contributions 
from all such diagrams is denoted by i 15 (P, fI). The relation between D and li is given 
by Fig. 2, diagramatically . 

From the rules, it is easy to write down the expression of 
I 

I 
I 
I 

§J-
I 
I 

I , 

I iD 

:§J 
Fig. 2. The relation between D and IJ. 

D(p, IJ)) in terms of n(p,IJ): 
D(li,") - D(P,. )/K(P, w), 

where we define the dynamical dielectric constant K (p , lJ) as 
K(P, w) -l-v(P)D(P, w). 

(2,17) 

(2.18) 

As for the calculation of the boson Green's functions, it is useful to define a proper 
boson self-energy diagram as a diagram not consisting of two or more parts connected 
only by one wavy line. Such diagrams are classified into three groups: diagrams having 
one incoming and one outgoing wavy lines, two outgoing wavy lines . and two incoming 
wavy lines . The sum of the contributions from all diagrams belonging to each group is 
denoted by -i l: lo (p, IJ) , -il: .~(p,fI) , or -i l:1L (p,lJ) , where :tLO , 1:0., and 
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l:1I are the proper self-energies (see Fig. 3). The general structure of the perturbation 
expansion of the boson Green's functions leads, if we follow the discussion first given 
by Beliaev&) in the case of boson system, to the diagramatical represention of the algebraic 
relations among Gz (p, 0). G2 (P, 0)). and Gt (P, w) shown in Fig. 3. When these 

- + - + 
-- -iLoo 

+ --
Fi,.3. The algebraic relations among Gz (~.6». Gz (~.(J,), and C,(~.6» . 

equations are expressed analytically, they can be solved and one finds the following 
expressions: 

Gz(P. w)= (0)+ f'(P) - JU + l: lo(-fi. - O)). '.t)- I(p,W), 

GJ (~,IiJ) = C. (p,w) = - 1: 11 (~,(J}). 'it)-I (P.IiJ), 

where 

'iJ(p,@)- {@- t C ~ ,. (P,@)-~ ,.(-p,-@» } • 

- {fz(P) -Ju+ t (l:IO(~,(I) - l:IO(-~,W))} z + l:~l (~, w), 

and we used the relation l:ll (fi,liJ) = l: .. O,w) . 

(2 .19) 

(2.20) 

The usefulness of eqs. (2. 17) and (2.19) is that, given approximate expressions for 
the proper polarization and the proper seif-energies, these equations contain the result 
summing the contributions from an infinite number of diagrams so that the divergency 
in the expression for the ground state energy which appears in a finite order perturbation 
theory is eliminated. 
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3 . Calculations at lhe higb-derulity limit 

In this section, we will calculate the "proper" quantities defined above at the 
high.(lensity limit, investigate the collective excitations and calculate the correlation 
energy. 

The effective interaction is defined by the diagramaticai equation given by Fig. 4 

Zlll -- ----+---
Fig. 4. The defioition of the effective interaction. 

and is el eJ v(P,I») /K(p,I»), where K (p,lD) is given by (2.18). The proper 
polarization diagrams are classified in terms of the order in this effective interaction 
and the zeroth· and the first-order diagrams are shown in Fig. 5 and Fig. 6, respectively. 

-- --(a) (b) (0 ) 
Fig. 5. The zeroth-order proper polarization diagrams. 

(a) (b) (0) (d) 

Fig. 6. The first-order proper polarization diagrams 

According to the theory of an electron gas" • only the proper polarization diagram 
corresponding to Fig. 5 (a) contributes to the lowest order term in the density parameter 
expansion of the correlation energy of the electron gas and the diagrams correspnding 
to Fig. 6 (a) and 6 (b) contribute to the next order term. On the other hand, as is well 
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known in the charged boson gas theoryl) , the diagrams which contain the interaction 
HT or Ho (see Fig. I) such as Fig. 6 (c) and 6 (d) contribute to the higher order tenns 
in the density parameter expansion of the correlation energy of the charged boson gas 
than the diagrams Fig. 5 (b) and (c) by the three·fouths or more power of the density 
parameter. Therefore, we consider only the zeroth order diagrams as the proper polarization. 
This yields the error of order of unity in the correlation energy per particle at the 
high-density limit. 

As for the proper boson seif-energies, the above discussion is equivalent to consid
ering the contribution from only the diagrams shown in Fig. 7 to them. In Fig. 7, the 

t---- 1---- 1-___ _ 
----~ ---- ----~ 

Fia 7. The dia.raml contributing to the proper boson lelf -enerJiea at the 
hip·density limit. 

doubly dashed line is the effective interaction in the case when the proper polarization 
in Fig. 4 is replaced with the one in Fig. 5(a). 

where 

As the results, we obtain as follows 

D(P, (Ij) =D~~) (p, (Ij) + Di:) (/J , (Ij), (3.I) 

I "k(l - n.i.Ia) _ _ 
W- £I (R+P>+fl (k) +i8 

(3.2) 

_-c_~n~pp(~lF.-~n~I~.k~)",-o~ ' 
(Ij + f I (R+ p) ( I (k) i 8 j 

(3.3) 

D ~~ ) (P, OJ) = e~ n2 I" -::c--:--1l.,,,,.--
0)- ft (P)+i8 OJ + f I ~P) -r81 (3.4) 

c (p,w) = 1 - y (P)D~~) (p,(Ij) , (3.5) 

and ni .. is the occupation nurnber of the fermion state specified by It and (T. In the 
equations obtained above, we used / = 1 and J1.2 =0, which are the consequence of the 
self-consistency of our discussions. 

Let us investigate the collective excitations basiog on the results obtained above . 
The dispersion relations of bosons are obtained frorn the poles of the boson Green's 
function. Frorn (2.19), (2 .20), (3.2) , and (3.5), we can obtain the following equation: 
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I-v (P)DI~)(P , (I) -v(P) D~:) (P ,(I)=O. (3.6) 

T his equation is also obtained from K (p,(I)=O by making use of (2.18) and (3.1). 
For real (l), the real part and imaginary part of (3.3) are, respectively. 

R. Dl~)(P,(I)= -(k: /8") (go (P,(I) + go (P,- (I)) (3.7) 

and 

ImDi~) (P , (J) =0, 

__ m, e~ k~ 
- 4" P 0 - (ml (I) /kl P - P/2k, ) 2 ) , 

for pZ /2m,+k,p/m, >(J»\k'P/m , ~p2/2m l 

= 0, for (1)< pZ /2ml -k, Plml and p<2kl (3.8) 

where k. = (4)>1, e! hi /rr)'I, kl =( 3,..2 HI )1/', and 

£ I <k+ P) £ I (k) 
(3.9) 

The (P, IV) space can be divided into four regions according to ImD~~) as shown by 

the dashed lines in Fig. 8. 

w , 
I , 

tM I 
(1) , , , , ....... - ... , , " , 

I , , , , ~ , , ~ 

lw:..r.f ' ' \ • I ~ I 
\ 

, 
~ 

, 
[II \ 

, , 
\ , 
\ 
\ 

, , 'Ull 
\ 

0 IIf 2kt P 
Fi8. 8, The collective excitations in the system which are determined from 

the poles of the boson Green's func tion are sketched by solid lines. 
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Let US consider the solutions of the equation given by (3.6). Since Iml)C,~} (p,w) 

and ImD~!}(p,w) are not zero for real w, the solutions are complex functions of 

momentum P and the ratio of the imaginary part to the real one in each solution is, in 
general. finite. Only the solutions especially when these ratios are sufficently small have 
the meaning as the elementary excitations of this system. Let us write such solutions as 
w=wt-iw,for w. »w, . From (3.6) making use of (3.4) and (3.5) we get 

(U) I w )= - (w~ 12( 2
) 1m E- 1 (p, U),), , , , 

U); = 41rni eZ I mj , 

(3.10) 

(3.11) 

which are the classical plasma frequencies of the fennion(i=l) and the boson (i=2) 

components. repectively. 
It is now straightforword to investigate the dispersion relations of the elementary 

excitation by (3.10) and (3.11) with the use of (3.7), (3.8), and (3.9). As the results 
we obtain as follows: 

(i) optical phonon which lies in the longwavelength region above the continuum. 

U) ~ w (p) = (t': (p) +w:ReE-1(p, WG») I/J~ (w~ +w~) lIZ (3.12) , . , 

(w /w )=0. , , 
The boson component, by its polarizability, acts to shift the plasmon frequency 

'" W to (U)~+U)~) , ' 
(ii) acoustic phonon. 

U). ,= w.(P)= (t':(p)+ReE-'(p, 

---7Sp for p«k. 
---7WB(P) for p»k. 

(Wi I w.) (X (ml ez 13m2 el )'/1 

W.»)1 /1 , 

where s=(m, el / 3m2 el )1 .'1 (kf Iml) , 

(3.13) 

(3.14) 
and W B (P) is the bogolon belonging to the boson component in the case 
when the interaction between components is neglected as given in the following: 

(j) a (P) = (f! (P) + w: ) 1/' • (3.15) 

It is perhaps interesting that as the momentum of excitation increases there is 
a continuous change in the energy of the elementary excitation from tbat 
appropriate to the sound wave to that appropriate to single particle excitation 
along the oogolon excitation line. 

Tbe sketch of these excitations is given in Fig. 8. 
By putting the total density correlation function obtained from (2. 17), (2.18), and 

(3.1) and the function in Hartree·Fock approximation which is given by 

DHF (p,w) =D;~) (Ji,w)+Di:' (p,w) with the coupling constant A being written 

explicitly, into (2.13) we obtain 
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, . 
E =E +E +AE . 

•• " eorr <0 " 

=(O,0622Iogr, + O(ri» ) HI m l e! 1 2. 

v(P)DW(ji,w) ] 
>..v(P) D~~/ (ji.Qj) 

= ( -0,B03r;'" +0 (r:) J nz m l e; 1 2. 

4 E= l: Joo d Qj 1m Jog l-v;P) Df~ ) (ji, w) -v(P) Di~)( ji, w) 

, G 2" n[I-v(p)Dj:>(ji,w)] 
,-, 

and the density parameter ri is defined by ri = (314 "ni ) 1/3 ml e;, 

(3.16) 

In the above. E:G .. and E:Grr are the correlation energies of the fermion and the boson 

components. respectively. in the case when the interaction between components is 
neglected. I1E is the contribution of the boson·fermion interaction to the correlation en· 
ergy of our system. 

Making use of (3. 4) • we can rewrite (3.16) as 

E - • J~ d" I 1 -''':.'_--''c.:"(,,P,-) ,,-j":';:,,',,-.,'-c('-;P'" ":.),-+,-,-i S:. ~-. --mog-
p G 21r Ctl t _ CtI! (P) +i.3 

where 

4E, = 1-rf:dCtlC8(f!(P) +CtI~ReE-I(p.w) - a)t) - 8(Qj~-Ctl2)J (3.17) 

and 

(3.18) 

In obtaining (3,17) and (3.18), we used the relation that 1m log z = 11' 8 (-Ret) + 
tan-I (lmz/Rez), In the case of slvi ::;; I where VI is the Fermi velocity, the 
caJcul~tion of (3.17) and( 3.18) will be given in Appendix A. The energy given by 

(3.17) corresponds to the contribution from the shifts of the zero-point motions of optical 
phonon and acoustic phonon. Re G -'(P,fJl) in the argument of the 8 ·function in (3.17) 

can be written as E; I (1 + E ! 1 E: ) with the real and imaginary parts of E (P. w). 

The contribution from E U E: to the energy may be the effect of the finiteness of the 
life·time of elementary excitation. but it should be emphasized that this contribution is 
of order of unity in the density parameter expansion of energy per particle. 4 Eland 
.l.Ez are equal to the first· and second·tenns of (3.9) in the paper I. so that our result 
obtained. here accords with the one in the paper I. 

.. . Coochllktns 
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The main conclusions about the neutral charged·boson and ·fermion system at the 
high·density limit investigated in this paper are the following points: 
(i) The contribution of the boson.fermion interaction to the ground state energy is 

calculated for S/VI S I and accords with the result obtained in the paper I. This 
result gives the exact terms in the density parameter expansion of the groud state energy. 

(ii) The elementary excitations in this system determined from the poles of the boson 
Green function are the two collective excitations in the low momentum region: acoustic. 
and optical.phonon like. The lifetime of the acoustic.phonon like elementary excitation 
approaches infinite as S/VI ~ 0 where sand Vr are the sound velocity and Fermi 
velocity, respectively. 

Superfluidity and superconductivity have been discussed in connection with 
astrophysical system I). A typical model is a neutral mixture of Alpha particles and 
electrons. Fetter j

) demonstrated that an interacting charged·boson gas exhibits a 
Meissner effect. According to our investigation, the tw{)-(X)mponent system is expected 
to differ from the charged·boson gas in the physical behaviors as pointed out by Fetter. 
We are hoping to investigate these points further, 

Appendix A. Calculation of (3.17) and (3.18) 
Let us calculate !J..El given by (3.17). It should be emphasized that only the 

values of c (P, (II) for real Q) are used in our calculation since the integration over (II 

is performed along the real axis. we set 

E(P,Q)= E,(P, (1) +iE
I 

(P,(II) , 

where c, (P,(II)=l - v(P) ReD~~) (p,(II) 

s(/J,Q)= -v(P) ImD~~) (p,UJ) , and ReD~~) (P,Q)) and 1m Di~)(p,Q)) 

are given by (3.7) and (3.9), respectively. 
According to the division shown in Fig. 8, (8.17) can be rewritten 

as 

(A.I) 

!J..EI = t~ IIdw 0 (f:(P)+Q):s - I(/J,(II ) - wl)-I""dWO«(IIi-(IIt) 
, (1) 0 

+ fd(ll 0 (f:(P) +w~ E-1(P,UJ) - (II %) 
(OJ 

+cfd(ll+fdW)(Ju:(p)+(II;ReS - '{p , Q)) - Q) t )l, (A .2) 
CI) no 

where(l), ( II), etc. on the integral signs indicate the integration in each region in Fig. 8. 
In the last term in the curly braket in (A .2) , it is easy to see that for p«k" 

f(lV )=O if S <VI where VI is the Fermi velocity defined by kl Im l . We will 

calculate (A.2) for s < VI. In this case. (A.2) is given as 

(A.3) 
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where Wo (p) and w. (p) are given by (3.12) and (3.13) ,respectively, and k~= ((II~ 

+ w:)i IVI. The first term in (A. 3) is the contribution from the shift of the 

zerOoJXIint motion of the plasmon : 

AE :::::;: I , (.J--'w""+-'--~W:;T2 -WI) ...... (ml/m2)O("~)n2ml e~ 
pl'r oo . , .J\{k. ) 1 I 

where", is the density parameter of ou~ system and is Qefined by ", =(3141rn, )111 

ml e:. The second term in (A.3) is the contribution from the shift of the zero·JXIint 

motion of bogolon to that of the acoustic phonon. We see from (3.10), (3.11), and 
(A.3) that the contribution from · the fact thatEl:;o1:0 may . be understood as the effect 
of the finiteness of the life· time of the acoustic phonon on the ground state energy. 

Expanding (3 .13) in the JXIwer series of (II! w ;'(Re E _I (P, w. ) -1) and putting 

the expression obtained into tbe second term in (A .3), we obtain 
w' , 

A E . ... . OI • = t 1: (II (,til , . 1 ] +O(i"~ )nl ma e~. , 

where we used E.(P,W .) = 1+k:/p2 and EI(P,w.)=2m~ e!w. p-' in' the order 

estimation. It is easily shown that the effect of considering the life· time of the acoustic 
phonon to the ground state energy is 

Therefore, 

1 
E. 

w: _I 
AE = t:t--- (lf (P,IiJ.)-l) +0 (,,:}tJlnlle! 

o<n"l. /I (I) B R 

where we used the results given in Appendix B of the paper I. 

(A.4) 

Next, let us calculate I1EI given by (3.18). By going over to the non·dimensional 
integration of (3.18), we obtain 

3 I' • I' _"'2 
2 I 1 dx X d" 

1r a"l D 0 

(4am , ea "1/31rml e l ) (2a", u) 
X tan-I (l:z+4ar,a~ (u)1r 1)2+(2a",u)Z j' 

• ( 12 )' _~(~4,a~m~,~,~,~r~.~/~3~",m=.~'~' )T(~X~'~+~4,:-,a_r~, Fa~. _"_-_',--) u - ml x m z -
(Xl +4 a"l ao (u) 1r - I)' + (2 a"j u)t 

l-u where a =(4/91r)1/3, n =(ml /m2) (el lei )1/1 rt, ao (u)=l+ t ulog l+u . 

Since 

3 I*·n'l II-"" D 
2;;-a',z- dx x' du "" -0(". ), ,. . 

(A.5) 

we may pUt the lower cut, (k. /kl), into the integration with respect to x. Now it is 
easy to calculate (A.S). Negie<:ting 4arl aD (u)/1r and 2a", u in comparison with x' 
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in the integrand of (A.S) and performing the integration, we obtain 

'E, ~ (_ml e. logrz )' +0(1 ) ) ( ' / 2) ... 21rmze, ogr2 " 2 m! e2 • 

The sum of (A.4) and (A.6) gives the (3.9) in the paper I. 
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