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The Low-Temperature Specific Heat of' the <laarged-8080n and -Fermion s_ .. the HJab-DeDSiIy LImit 

Mitsuaki GINOZA* and Katsukuni YONASHIRO** 

At-tract 

The contribution of Coulomb ioteractioo betwocn boeon and fermion to the 
low-tempereture IDC\Clfic heat of thil system which is closely related to the Individual 
excitation In the Iystem il calculated exactly in the density p8I1lmeter expansion at 
the hilh·density limit. 

The specific heat of the l)'Item at tile constaot volume in the unit of the 
Sommerfeld value II liven by 

CO' Ie. " (1+(G-M)+F(')'.4.)+o('Y' »)_ 1 

where (O-M) il the Gell-Mano '& term. the function PC,,!, 4. ) i. the contribution 
of the interaction between componentl aod hal the limitiDJ behavior a. follows: 

F(,), .4.) ..... - ~-(lOg'1 4. + 1t (~-1) • (_! _) 'h+O( '1 )Ja. ')' approchCII zero for fixed 

4.. where tbe density parameter '1 "' 4m1 '~/3If' 1t 5/.,,!/3, the parameter 4 is independent 

of the deMity. and m l and'i are mass and charle of fermion, respectively. At 

this limit. F ( '1 . 4.) il tbe same order a. (O-M) in the density parameter. 
The lbarpnClS of the PermJ .urfaco i. allO jUltiried at tbi. limit. 

J . Introclactloa 

73 

In general, in the Coulomb many body system, ~e difficulty of the well·known 
divergency appears in the low momentum transfer region in the calculation of the 
energy, for example, by the conventional perturbation method. This divergency is caused 
by the long range interaction of the Coulomb field and also by the statistical nature in 
the case of the boson system. One of the interests attracted to many body theoretical 
physicists by electron gas and charged boson gas lies right on this point. Especially, 
at the high-density limit many studies have been carried out on the correlation energy 
of these systeml ). t) . 

In relation to the problem of divergency described above, it is very interesting 
theoretically and pedagogically to investigate the problem: what effect the interaction 
between components has for the properties of the system. Bassichis') studied the neutral 
system consisting of two species of bosons. As the elementary excitation in this system 
he obtained the charge density wave and mass density wave by diagonalizing the 
Hamiltonian in the Bogoliubov approximation. These excitations are quite different, 
especially in the low momentum region, from the bogolons belonging to each component 
in the case when the interaction between components does not exist. Investigating the 
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two·comp:ment system of the charged boson and fermion , Ginoza and Kanazawa6 ) 

calculated the correlation energy and the collective excitations in this system exactly at 
the high-density limit (their paper will be referred to as paper II hereafter) . but they 
did not give explicit calculation of individual excitation. 

The object of this paper is to calculate the contribution of the interaction between 
components to the low.temperature specific heat. The specific heat is the quantity that 
is closely related to the individual excitation in the system and that can be calculated 
easily in the form of density parameter expansion. 

Incidentally. the coefficient of the first order term in temperature of the specific 
heat of the high density electron gas bas been computed by GeIl·Mann l ) , Quinn and 
Ferrel'>, and Duboisl) in terms of the density parameter ~pansion. According to 
their calculation. the ratio of the specific beat at the constant volume to Sommerfeld 
value is as follows: 

C. Ie. - (1- (7/4) 11+ t 100( 7/4)1 - (7 /4)'1°:251 (loO( 7/4»' 

+1.4910g(7/4) '+4':10+0(')')1 ) -1, 

. . . . . 
where 'Y is the density parameter which will be defined later. The terms of the first 
and the second -order of ')' were obtained by GeIl·Mann and Dubois. respectively. 

In .our work. we will first replace the uniformly distributed and fixed background 
cbarge in thi~ idealized one-component system by the charged boson ·~as of equal charge, 
and then take account of the dynamics of this boson gas. The collective excitation of 
the charged·boson and -fermion system at the high density limit are, according to paper 
II, the optical and acoustic phonons. Therefore, as the main contribution of the collective 
excitations to the specific heat is the order of T' resulting from the acoustic phonon, 
the main contribution comes from the individual excitation. Now, our concern is to see, 
by performing exact calculation, what part in the expansion above will be affected by the 

interaction between components. 
For the case when the properties of the system can be calculated by expanding 

in terms of the strength of interaction, Luttingerl ) proved that the sharp Fermi swiace 
exists in the many body fermion system at absolute zero temperature since the 
imaginary part of the proper self-energy in many body fermion system is proportional 
to the square of the energy measured from chemical potential and therefore that the 
coefficient of the term of the first order in temperature in the specific heat at constant 
volume can be calculated from the self-energy at the absolute zero temperature. 

In the sufficiently high density region we will assume that our problem is in 
similar situation with that of Luttinger. 

In section 2, the contribution of the interaction between components to the 
specific heat and the imaginary part of the fermion proper self energy will be calculate 
din terms of density parameter expansion. 

In section 3. we will discuss the criterion for the Bogoliubov prescription, give 
some conclusion obtained by our exact calculation. and discuss the points suggestive of 
(i) the breakdown of the sharpness of the Fermi surface and (ii) the concept of the 
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background with a fixed and uniformly distributed charge which is introduced into an 
idealized one-component charged particle system. 

2. Calculation 

We consider the neutral system consisting of charged.bosons and -fermions whose 
mass, charge, spin, and number density are m l ' e l ' t and n l ' and m, ' et ' D, and n2 ' 

respectively, with the first group referring to the charged-fermion. and the second group 
to charged·boson This system is specified by three independent parameter m1lm. 

e l let , and n l = I e2le , I nt • In this section, we will calculate the low·temperature specific 

heat of the system in the" density parameter expansion for the fixed ml Iml and el let 
at the high-density limit. The density parameter 7 is defined as 

'Y = (4ntl e~ 131/ 1 7r 1/1 n: /3 ) . 

Let us define the fermion Green 's function GI as follows: 

(2.1) 

where"," is the exact ground state of the system and aj,, (t) and at,,(t) are the 

Heisenberg representations of destruction operator a ~ and creation operator at.,. of a 

fermion in the state specified with momentum k and spin IT , respectively. In this 
system, we can not apply directly the technique of the quantum field theory to the 
perturbation calculation of the funct ion (2.1) because of the existence of the boson 
condensate in the noninteracting system. This difficulty can be avoided by the method 
of Hugenho\tz·Pines. The discussion of this point is given in paper II in detail. We 
regard the definition (2.1) as the one obtained after such procedure. In addition to the 
definition of (2.1), the readers can refer to paper II about the Feynman diagram 
expansion in the perturbation calculation of (2.1), the rules for diagram, and the 
definitions of the otber qantities related to the following discussion, 

Now, let us denote the proper fermion self-energy as 1: I (k u, E). The Fourier 
transform of (2.1) is given by the following equation. 

GI (k IT, () = c ( - f I (k) + II- I - l;1 <k u, () ) - ! . 
where (I (k) and II- I are tbe kinetic energy of fermion with momentum k and 
chemical potential. respectively. The rules given in paper II are for iGI (ku, E) and 
·i 1:;l (NIT, (). According to the work of Luttinger' ), the low-temperature specific 
heat at constant volume can be calculated by the proper 

following equation: 

c. (1 m. a " k . I J -. - C;-= +-kf' ak-1: 1 (RU, f ( » k=k/ ' 

where (k) is the solution of 

E-f1(k)+II-I- l:~(k (J', £)=0, 

fermion self-energy from the 

(2.2) 

(2.3) 

l:~is the real part of :II. and k/ =(37r' nl )1/1, Therefore, the perturbation calculation 

of the specific heat is reduced to that of the proper fennion self-energy. 
1:1 can be expanded by the effective interaction(as for the definition. see Fig. 4 in 
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paper II) as follows: 

Fig. 1. The expansion of tbe proper fermion self-energy by the 
effective interaction. 

In the electron gas, the diagram corresponding to the first term in Fig. 1 yields the 
Gell-Mann's term in the specific heat and the type of diagrams such as the second and 
third terms in Fig. 1 produce the DuBois'. In our problem, the most important effect 
of the interaction between components, if it exists, should be contained in the first 
term in Fig. 1. Hence, using the rules given in paper II, we obtain 

J 
'dw (0) 2 

l;1 Uo-, f)=l; ..!2 - G (k+pu, w+£)v(p)e / K(p, w), 
p " 1 I 

(2.4) 

where K(p, w) is the dynamical dielectric constant of this system and is given by 
(2.18) in paper II in terms of the proper polarization O(p,w). f)(p,w) is also expanded 
by the effective interaction and the zero·order diagram is given by Fig. 2. 

(.) (b) (0) 
Fir. 2. The zero_order diagrams eontributing to ii)(6,m) 

Taking the contribution of only Fig. 2(a) to if) and calculating the specific heat by 
using (2.4), we can get the Gell·Mann's tenn, The polarization given by Fig, 2 (b) 
and (c) represent the dynamics of the boson background in the fermion gas, Our 
interest lies right on the contribution of these diagrams. 

From (2.4), 

ml a ~.(' 
kf ail 6<1 "u, f (k!!J =R. 1 J~~~ 7i~ aak- G~O) (~+pu, w + E (k»!;i::;~. (2.5) 

, ·-'f 
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Calculating the solution of (2.3) by iteration consistently and substituting it into (2.5), 
we get (see Appendix) 

(2.5)-(1)+(1). 

where 

=- ~ jl+-{-Iog ~ I +F('f.A)+O('Y 2
), 

(2.Ga) 

(I) = ReIJJ.d1J) v(p)e! m, G(O)'U+pu fl)+l(k)- (0) a 
j 2'1tK(P,IJ)'Ii"f I • 1'1 ali 

(f 1 (l+p) - (, (k») I -O(7'log'Y), 
(2.6b) 

11_11, 

A =3ml 411 14m, ez ) (2.8) 

(I) is the contribution from the transition mechanism on the Fermi surface as is 
obvious from its definition. The other mechanism contributes to (II). From (2.2), 
(2 .6a), and (2 .6b) we get 

(2 .9) 

In this result, the second and third terms in the square· braket are the Gell·Mann's 
term and the contribution of the interaction between components which will be discussed 
in the following section in detail. respectively. 

We can calculate the imaginary part of the proper fermion self·energy from (2.4) 
and obtain (see Appendixb) 
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. l ~ "f t 91] J~ x' 
-8 (-f"/) _ +6- (4b:)1/2 odx (x' +"1%' +'Y/~) ! 

I (.; 1 '''' ) ( .) (.; 1 'I' . ) 8 - (- -) --x 0 - --- 8 (-~) --x 
4'16. ff ~/ 4'16. f/ 

• <*) I J. 
We will also discuSs this result in detail in the following section. 

3, Disc:ussions and Conclwdons 
In case when the properties of the system can be calculated by expanding in terms 

of the strength of the interaction, the low-temperature specific. heat is calculated by 

(2.2) which is justified on the basis of the existence of the sharp Fermi surface and is 
given by (2 .9). This result is closely related to the individual excitation in the system. 
Also, the imaginary part of the proper fermion seif-energy is calculated and is given 
by (2.10). The calculations performed above are based on the Bogoliubov prescription 
of the boson condensate whose criterion is satisfied when there exist many bosons in the 

Bohr sphere whose radius is given hy (m: e!) - I, Therefore, the parameter .6., 1f, and "f 
" must satisfy the following inequality: 

"f ., Z/ 3 IJ.. -II ' < ! , 

Fig. 3, Bogoliubov's criterion is ~tisfied in the sbaded regiOD, 

where 1f =(ml ez/3mz el), The above inequality is shown in Fig. 3. Let us fix 1f 

and .6. in the region shown in Fig. 3. At the limit of 'Y -~O. (2.9) and (2.10) 
become as follows: 

_C~= [ 1 - .'L 11+1.IOg .-2.-i +J·llogr.6. + 1r (.6. - l) (.1.) 1/ 1 +0(')') I J - 1(31) 
C. 42416 24 . . • 
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Im~I(" ,)=_J!L~ I_ ·_·_ · '/~"'"' ~ R , k 256./2 ... I 

x [0 (-'-)- 8 (-- '- ) J rf r,. (3.2) 

At this limit, the imaginary part of the proper fermion self.energy is proportional to 
( f f f f)2 and, according to Luttinger' s discussion, this means the existence of the 

sharp Fermi surface in this system at the absolute zero temperature. Therefore, it is 
justified that the formula (2,2) can yield the specific heat at this limit exactly. We 
conclude that the low·temperature specific heat is given exactly by (3.1). This exact 
result, which is the same order as the Gell·Mann's term in the density parameter, 
shows that the effect of the interaction between components to the specific heat and 
hence to the individual excitation in the system can not always be neglected. The 
imaginary part of the proper fermion self·energy in case when we neglect the interaction 
between components isl), f) 

_k, r f [,,"7 1/2 < __ ,_ )2 + ... J [0 (-'-) - 8(- - ' - ) J 
k % r, ff f,. 

(3.3) 

The comparison of (3.2) with (3.3) indicates that the sharpness of the Fermi sunace 
tends to be enhanced by the interaction between components as the density becomes 
higher and higher. 

Let us consider the case for 6. -00 with 7 fixed in the high density rea-ion. 
Then (2.9) and (2.10) become as follows; 

-~: = [ 1 -4~ 1 1+~- log ; ! +O('Y
2

) J. (3.4) 

I",l;I(/icr, f) =- k'kf, [1;6 -!' [-{7[ + ."";6
1

/

2 

x [0 ( - '- ) - 8 (- --~ ) J. ff (, 

(-)+ ..... . " J " 
(3.5) 

In(3.5), the first term is proportional to (f I f f)' but this term vanishes at 6. - 00. 

Therefore, the results (3.4) and (3.5) at this limit accords with the ones in the case 
when the interaction between components is neglected. Incidentally, if 

(ml 1m2) - 0 and (el fez ) ... oo (3.6) 

at the stage of our Hamiltonian we can obtain the Hamiltonian which describes the 
idealized charged fermion ststem with the neutralizing, fixed and uniformly distributed 
background charge. However. (3.6) formally becomes, in our parameters. as follows: 

'1-0 and 6 - Ox rx- . (3.1) 

For the indefiniteness of the latter, our result obtained above seems to imply that .6. -00. 

The parameter .6. has the physical meaning which is prolXlrtional to the fourth power 
of the ratio of the static screening length in the charged·boson gas to the one in the 
charged·fermion gas, while 'I is proportional to the square of the ratio of the classical 
plasma frequency of the charged.boson gas to the one of the charged·fennion gas. 
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Finally, in (3.5), the condition which the first tenn is much smaller than the 
second is as fo llows: 

-'->~--'O,as tJ.-oofor fixed 'Y . 
if tJ.'Y 

(3.9) 

The condition (3.9) seems to suggest that the sharpness of the Fermi sucface is 
guaranteed only at tJ. _00 and breaks down as tJ. becomes finite. 

Appendix A. Calculations of (2.6a) and (2.6b) 
From Fig. 2, the dynamical dielectric oonstant is obtained by the rules given in 

paper IT as follows: 
k' 

K(~, (I) = l+p~Qo (fi,fA}), 

4" [ (0) (0)) where Qo(p,(I) =- ki DII (,li,fA}) + Du (p,(I) , 

J 
f I (k)+ f 1 (k+fi)) 

[fA} £2 ~P)+j8 
ks = (4ml e! kf I 7r )./2 

kf= (3"2 111 )1/3 

fA} + f 2 ~P) i 8 J, 

(A.I) 

(A.2) 

(A.3) 

(A.4) 

£ I (p) is the kinetic energy of a boson with momentum p, and ni" is the occupation 
number in the state specified with momentum k and spin u, respectively. 

From (A.2) , (A.3) , and (AA) we obtain, by expanding in terms of Plkf. 

Qo(x,O) =tJ. - 'x - 2+1- }2 xz+ ........ . 

where x =Plk/". R(u)=l-u tan - ' (1/u), and R, (u)=-I/(2(I+u)2), 
The integration of (I) with respect to fA} yields 

(1) = ('Y 14) f: dx Re K(;,O) [+- ~ ] 
=('114) 11+-1- log ("114) + F ('Y,tJ.)+o('Y') 

where we used (A.l) and (A.S) and 

.... tJ. -;,1 J,' dZ- ",7Cc'J"'..."T7) 
'.... Z2+'YZ+'Y/tJ.· 

Next, we will calculate (2.6b). (2.6b) is equal to 

CII)= Re::EJ~d!£. [ J )' 
I 2" (I)+£I(k) fd.E+p)+i8sgn(IR+fil kf) 

x 1-K(P,fl) 2 R./J 
K(/J, fl) .) v(p)e , ~ 

(A.5) 

(A.G) 

(A.7) 
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Instead of carrying out the integration with respect to 0) along the real axis, we 
obtained the integration along the imaginary axis by performing analytical continuation. 
Hence we transform IJ) into a pure imaginary number iux. 

(I1"1= _'Y-=-Re f~ duf! d", '" f"'rdrR(u)r~ +(R(u)2mzu/ml)'+a-1 
~ BJ'C -_ -I (iu ",y 0 x' + (2)>uu ml 2r 2+'Y(A- 1+R(u) 

:::: 'Y 210g7', 

Appendix B Calculation of (2,10) 
From(2.4) 

I-::&. (kcr,f) = I",::&ffd~ /0) 
; 2J'C f-w-fdk-Pl+PI +i8sgn(k-pj-kf) 

xv(p)l-K(fi. w• ) 
K(p, 0)0) 

where we used the following identity: 

Fig, 4. Contours of the inte,ration in (I). 

Changing the path of integration from tbe real axis to the path shown in Fig, 4 and 
dropping tbe integration on the imaginary axis because one can show by using the 
property of K(p, w) that it is real, we obtain 

1 
1"'::&1 (ku,t) = 1 ... ::& v(P) 

I 

(kr - I Ji- fi I ) : • 

K(.6,o)o) 
K(p,lda) 

10 (wo ) 0 ( I k - P I - kf) - 0 (- Wo ) e 

(B.1) 

where (1)0 = f - f 1 (k- p) + p. ~o>, and 0 (x) = 1 for x> 0, and 0 for x<O. From (A,I) , 

and (A.2), (A.3), and (AA) 
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I.I-K(P, .,) .,. 
K(p ••• ) 

1 
IK(p ••• ) I ' 

{3 (w, - f J (P»+ 8 (alO + f J (p) I 
The substitution of (B. 2)into (8.1) yields 

(B. 2) 

JdP ce(,)-e(-,») 
• 

[8(J- 2mJ f p) e(-, )-e 

(J~-P) 0 (f)] 

where we approximated K (J, alo) in (8.2) by K(P,O) . 

Nondimensionalizing the above equation with use of momentum in the unit of k/ and 
energy in the unit of the Fermi energy f f, we obtain 

The results for two cases described below are shown as follows: 

(i) 7 ' 0 for fixed .6. 

kf 'f I " 'f' 'f' f J 1t I ' .\' I ')= ---r- .6 "t () + 
III' 256J2 f/ -I92'1 ~ '''! 

(0 ( ~f) - 8 (-~)]. 

( ii) .6 - 00 for "t which is fixed with su((icient high-density region. 

1 l kf f / I • kf I ' I 1t '11/1 f ) 
,Nl;I(RO'" ,f) =--,;- 164 T ~+-96 (""1/)1+''', 

- 8 (- ._' - ) ) 
'f • 
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