琉球大学学術リポジトリ

An Example of Blowing Down

メタデータ	言語:
	出版者: 琉球大学理工学部
	公開日: 2012-02-28
	キーワード (Ja):
	キーワード (En):
	作成者: Mori, Yasuko, 森, 泰子
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/23506

An Example of Blowing Down

Yasuko Mori*

1.

Let \tilde{X} be a complex manifold of dimension n and S a submanifold of \tilde{X} of codimension 1. We denote by (S) the complex line bundle over \tilde{X} defined by the divisor S of \tilde{X} . We assume that S has a structure of an analytic fibre bundle over a complex manifold M with fibre P^{r-1} $(r \ge 2)$, an (r-1)—dimensional complex projective space. We denote by La the fibre over $a_{\ell}M$ in the bundle $S \rightarrow M$, by (e) the complex line bundle over $La \approx P^{r-1}$ defined by the hyperplane, and by $(S)_{La}$ the restriction of (S) to La.

Nakano (2) and Fujiki-Nakano (1) have shown the following result; If the condition $(S)_{La} = (e)^{-1}$ for any $a_{\epsilon}M$ is satisfied, then there are an n-dimensional complex manifold X containing M and a holomorphic map $\Pi: \tilde{X} \to X$ such that (\tilde{X}, Π) is the monoidal transform of X with centre M and $S = \Pi^{-1}(M)$. This is obtained by an application of the cohomology vanishing theorem for a weakly 1-complete manifold with a positive line bundle.

In this paper we show the following result, which is a variant of Nakano's theorem.

Theorem. If the condition $(S)_{La} = (e)^{-k} (k \ge 2)$ for any $a \in M$ is satisfied, then we can construct an n-dimensional complex space X containing M as the singular locus and a holomorphic map $\Pi : \tilde{X} \to X$ so that (\tilde{X}, Π) is the monoidal transform of X with centre M and $S = \Pi^{-1}(M)$.

We show this theorem by an analogous argument to that of Nakano.

I understand that Akira Fujiki has a more general result on blowing down. Ours is more concrete in its construction.

I wish to thank Professor S. Nakano for useful suggestions and Professor K. Kasahara for detailed discussions.

2.

First we give an example of a monoidal transformation in which the assumption of our theorem holds.

Let $j: P^{r-1} \to P^N$ be the Veronese transformation of degree k i.e. j is given by $j(\eta^1:\ldots:\eta^r) = (M^1(\eta):\ldots:M^{N+1}(\eta))$ for a system of homogeneous coordinates $(\eta^1:\ldots:\eta^r)$ of P^{r-1} , where $M^i(\eta)$ is a moromial in η^1 , ..., η^r of degree k ($i = 1, \ldots, N+1=r H k$). $j(P^{r-1})=V$ is an (r-1)-dimensional submanifold of P^N . The cone K of V is a normal analytic set of C^{N+1} and has the vertex (O) as its

Received April 30, 1974

^{*}Dept. of Math., Sci. & Eng. Div., Univ. of the Ryukyus

unique singularity.

We form \tilde{C}^{N+1} by blowing up C^{N+1} at the origin O. \tilde{C}^{N+1} can be considered as the total space of the complex line bundle over P^N which is defined with respect to the open covering $\{U_i \mid i=1, \ldots, N+1\}$, where $U_i = \{(z^1 : \ldots : z^{N+1}) \in P^N \mid z^i \neq 0\}$, by a system of transition functions $\{\frac{z^i}{z^j}\}$. Let \tilde{K} be the inverse image of K by the projection $\tilde{p}: \tilde{C}^{N+1} \to C^{N+1}$, then \tilde{K} is the line bundle over V, which is the restriction of the bundle $(\tilde{C}^{N+1} \to P^N)$ to V.

 $\tilde{p}^{-1}(O) \subset \tilde{C}^{N+1}$ is the zero-section of the bundle $(\tilde{C}^{N+1} \rightarrow P^N)$ and $T = \tilde{p}^{-1}(O) \cap K$ is the zero-section of the bundle $(\tilde{K} \rightarrow V)$. By restricting $\tilde{p} : \tilde{C}^{N+1} \rightarrow C^{N+1}$ to \tilde{K} , we have a holomorphic map p from \tilde{K} onto K which gives a biholomorphic homeomorphism $\tilde{K} - T \approx K - O$.

The divisor T of \tilde{K} defines a complex line bundle (T). Then

$$(T)$$
 = the normal bundle of T in \tilde{K}

- = the line bundle $(\tilde{K} \to V)$
- = the restriction $(\tilde{C}^{N+1} \rightarrow P^N) |_V$.

If we take i_{α} so that $M^{i\alpha}(\eta) = (\eta^{\alpha})^{k}$ $(\alpha = 1, ..., r)$, then V is covered by r open sets $U_{i\alpha} \supset \{(M^{i}(\eta)) \in P^{N} | (\eta^{\alpha})^{k} \neq 0\}$ $(\alpha = 1, ..., r)$. So the transition functions become $\frac{z^{i\alpha}}{z^{i\beta}} = -\frac{(\eta^{\alpha})^{k}}{(\eta^{\beta})^{k}} = \left(\frac{\eta^{\alpha}}{\eta^{\beta}}\right)^{-k}$. While the line bundle (e) on P^{r-1} is defined by a system of transition functions $\left\{\frac{\eta^{\alpha}}{\eta^{\beta}}\right\}$ with respect to the open covering $\{(\eta) \in P^{r-1} | \eta^{\alpha} \neq 0\}$ $(\alpha = 1, ..., r)$. Hence we have $(\tilde{C}^{N+1} \rightarrow P^{N}) |_{V} = (e)^{-k}$.

Thus we have obtained a situation such that the mapping $p: \tilde{K} \to K$ is holomorphic onto, $p: \tilde{K} - T \approx K - O$, $T = p^{-1}(O) \approx P^{r-1}$ and $(T)_T = (e)^{-k}$.

3.

We use the following two theorems.

Theorem 1 (Nakano). Let V be a weakly 1-complete manifold, B a complex line bundle over V and K_V the canonical line bundle of V. If $K_{V}^{-1} \otimes B$ is positive, then we have $H^q(V, O(B)) = O(q \ge 1)$.

This is a special case of theorem $1 \quad (3)$.

Theorem 2(k). If the condition $[S]_{La} = [e]^{-k}$ for any $a \in M$ is satisfied, then there is a neighbourhood V of La in \tilde{X} such that

1) if $V \cap L_b \neq \phi$, then $L_b \subset V$,

2) V is a weakly 1-complete manifold and $K_{V^{-1}} \otimes (S)_{V^{-\epsilon}}$ is positive for $\epsilon = 1, 2$.

Proof. We take a system of local coordinates $\{\zeta^1, \ldots, \zeta^m\}$ (m=n-r) with centre $a \in M$ so that the bundle $S \to M$ is trivial on the coordinate neighbourhood D=

$$\{\zeta \in C^m \mid \phi(\zeta) < 1\}$$
 of a i.e. $\prod^{-1}(D) \approx D \times P^{r-1}$, where $\phi(\zeta) = \sum_{j=1}^m |\zeta^j|^2$. Then

we have $(S)_{D\times P}=(e)^{-k}$, where we also use the notation (e) to denote the pull-back of (e) on P^{r-1} by the natural projection $D\times P \rightarrow P$.

We fix a system of homogeneous coordinates $(\eta^1 : \ldots : \eta^r)$ of P^{r-1} . $\left\{ \xi_{\alpha}^{\beta} = \frac{\eta^{\beta}}{\eta^{\alpha}} | \beta = 1, \ldots, \hat{\alpha}, \ldots, r \right\}$ is a system of inhomogeneous coordinates on the coordinate neighbourhood $U_{\alpha} = \{(\eta) \in P^{r-1} | \eta^{\alpha} \neq 0\}$ $(\alpha = 1, \ldots, r)$. (e] on $D \times P^{r-1}$ is defined by a system of transition functions $\varepsilon_{\alpha\beta} = \frac{\eta^{\beta}}{\eta^{\alpha}} = \xi_{\alpha}^{\beta}$ with respect to the open covering $\{D \times U_{\alpha} \mid \alpha = 1, \ldots, r\}$. The bundle (e] is positive by taking a "metric" $a_{\alpha} = e^{\phi(s)} \sum_{\alpha=1}^{m} |\xi_{\alpha}^{\beta}|^2$ on the fibres of (e].

We can choose a finite open covering $\{U'_{\lambda} \mid \lambda \in \Lambda\}$ of P^{r-1} and open subset V'_{λ} of \tilde{X} such that $\{U'_{\lambda}\}$ is a refinement of $\{U_{\alpha}\}$ and $V'_{\lambda} \cap S = D \times U'_{\lambda}$ for each $\lambda \in \Lambda$. We denote the refining map by $\sigma : \Lambda \to \{1, \ldots, r\}$ with $U'_{\lambda} \subset U_{\sigma(\lambda)}$.

We can take a system of local coordinates $\{z_{\frac{1}{2}}^1, \ldots, z_{\frac{1}{2}}^m, y_{\frac{1}{2}}, x_{\frac{1}{2}}^1, \ldots, x_{\frac{1}{2}}^{\hat{a}(1)}, \ldots, x_{\frac{1}{2}}^r\}$ on $V_{\frac{1}{2}}$ such that

(**)
$$\begin{cases} S \text{ is defined in } V'_{\lambda} \text{ by the local equation } y_{\lambda} = 0, \\ z_{\lambda}^{j} \mid S = \zeta^{j} \ (j = 1, \dots, m), \ x_{\lambda}^{\alpha} \mid S = \xi_{\sigma(\lambda)}^{\alpha} \ (\alpha = 1, \dots, r) \\ \text{and} \ x_{\lambda}^{\sigma(\lambda)} \equiv 1. \end{cases}$$

 $V' = \bigcup_{\lambda} V'_{\lambda}$ is a neighbourhood of La and $V' \cup S = D \times P^{r-1}$. The bundle $(S \supset V')$ is defined by a system of transition functions $e_{\lambda \mu} = \frac{y_{\lambda}}{y_{\mu}}$ with respect to the open covering $\mathfrak{B} = \{V'_{\lambda}\}$ of V'. Moreover we take y_{λ} so that $e_{\lambda \mu} \mid S = \varepsilon_{\sigma(\lambda)\sigma(\mu)}^{-k}$, and hereafter we write $\varepsilon_{\lambda \mu}$ for $\varepsilon_{\sigma(\lambda)\sigma(\mu)}$.

By the adjunction formula for canonical bundles: $K_{V' \cap S} = K_{V'} |_{V' \cap S} \otimes (S)_{V' \cap S'}$ we have $K_{V'} |_{V' \cap S} = K_{D \times P} r^{-1} \otimes (S)_{D \times P} r^{-1} = (e)^{-r} \otimes (e)^{k} = (e)^{-(r-k)}$, so we may assume that the bundle $K_{V'}$ is represented with respect to the open covering \mathfrak{B} by a system of transition functions $\{k_{\lambda \mu}\}$ with $k_{\lambda \mu} |_{S} = \mathcal{E}_{\lambda \mu}^{-(r-k)}$.

Using the fact $H^1(D \times P, O((e)^i)) = O(\ell \ge 1)$, we can extend holomorphic functions ζ^j on $D \times U'_{\lambda}$ (j = 1, ..., m) approximately to holomorphic functions on V'_{λ} ((2) p. 495), extend holomorphic cross-sections $\{\tau^i_{\lambda}\}_{\lambda}$ of $(e)^k$ on $V \cap S$ defined by $\tau_{\lambda}^i = \frac{M^i(\eta)}{(\eta^{\sigma(\lambda)})^k}$ (i = 1, ..., N+1) approximately to holomorphic cross-sections

of $[S]^{-1}$ on V. Similarly we can extend holomorphic cross-sections $\{\omega_{\lambda}^{\rho}(\varepsilon)\}$ of $(e]^{r+(\varepsilon-1)k}$ on $V \cap S$ ($\rho = 1, ..., r H r + (\varepsilon-1)k$) approximately to holomorphic cross-sections of $K^{-1} \otimes [S]^{-\varepsilon}$ on V ([1] p. 641), where $\omega_{\lambda}^{\rho}(\varepsilon) = \frac{N^{\rho}(\eta)}{(\eta^{(\sigma_{\lambda})})^{r+(\varepsilon-1)k}}$

and $N^{\rho}(\eta)$ is a monomial in η^1, \ldots, η^r of degree $r + (\varepsilon - 1)k$ ($\varepsilon = 1, 2$). As is stated in proposition 6 (2), we obtain holomorphic functions z_{λ}^{j} , t_{λ}^{i} , $w_{\lambda}^{\rho}(\varepsilon)$ on V_{λ}^{i} which satisfy the following relations in addition to (*).

$$\begin{cases} z_{\lambda}^{j} - z_{\mu}^{j} = (y_{\lambda})^{\ell} f_{\lambda \mu}^{j} \\ t_{\lambda}^{i} - e_{\lambda \mu}^{-1} t_{\mu}^{i} = (y_{\lambda})^{\ell} g_{\lambda \mu}^{i} & \text{on } V_{\lambda} \cap V_{\lambda}^{i}, \\ w_{\lambda}^{\rho} (\varepsilon) - k_{\lambda \mu}^{-1} e_{\lambda \mu}^{-\varepsilon} w_{\mu}^{\rho} (\varepsilon) = (y_{\lambda})^{\ell} h_{\lambda \mu}^{\rho} (\varepsilon) \end{cases}$$

and $\{f_{\lambda \mu} i\} \in \mathbb{Z}^1(\mathfrak{B}, O((S)^{-\ell})), \{g_{\lambda \mu} i\} \in \mathbb{Z}^1(\mathfrak{B}, O((S)^{-\ell-1})), \{h_{\lambda \mu} \ell(\varepsilon)\} \in \mathbb{Z}^1(\mathfrak{B}, O(K^{-1} \otimes (S)^{-\ell-\epsilon})) (\varepsilon=1, 2)$. These 1-cocycles are coboundaries of \mathbb{C}^{∞} sections, so we can find \mathbb{C}^{∞} functions $F_{\lambda} i, G_{\lambda} i H_{\lambda} \ell(\varepsilon)$ on V'_{λ} such that

$$\begin{split} f_{\lambda\mu}i &= F_{\lambda}i - e_{\lambda\mu} - \ell F_{\mu}i \\ g_{\lambda\mu}i &= G_{\lambda}i - e_{\lambda\mu} - \ell - 1G_{\mu}i \\ h_{\lambda\mu}\rho(\varepsilon) &= H_{\lambda}\rho(\varepsilon) - k_{\lambda\mu} - 1c_{\lambda\mu} - \ell - \epsilon H_{\mu}\rho(\varepsilon) \quad (\varepsilon = 1, 2) \\ \text{hold on } V'^{\lambda} \cap V'_{\mu}. \end{split}$$

We set

$$Z^{j} = z_{\lambda}^{j} - (y_{\lambda})^{\ell} F_{\lambda}^{j}$$

$$T_{\lambda}^{i} = t_{\lambda}^{i} - (y_{\lambda})^{\ell} G_{\lambda}^{i}$$

$$W_{\lambda}^{\rho}(\mathcal{E}) = w_{\lambda}^{\rho}(\mathcal{E}) - (y_{\lambda})^{\ell} H_{\lambda}^{\rho}(\mathcal{E}),$$

then Z^{i} is a global C^{∞} function on V', $T_{\lambda}i$ and $W_{\lambda}^{\rho}(\mathcal{E})$ are C^{∞} functions on V'_{λ} such that $T_{\lambda}i = e_{\lambda}\mu^{-1}T_{\mu}i$, $W_{\lambda}^{\rho}(\mathcal{E}) = k_{\lambda}\mu^{-1}e_{\lambda}\mu^{-\epsilon}W_{\mu}^{\rho}(\mathcal{E})$ on $V'_{\lambda} \cap V'_{\mu}$.

We set $A_{\lambda} = \sum_{i=1}^{N+1} |T_{\lambda}i|^2$ and $B_{\lambda}(\varepsilon) = \sum_{\rho} |W_{\lambda}\rho(\varepsilon)|^2$. Since $A_{\lambda} |y_{\lambda}|^2 = A_{\mu} |y_{\mu}|^2$ on $V'_{\lambda} \cap V'_{\mu}$, $\psi = \phi(Z) + e^{\phi(Z)}A_{\lambda} |y_{\lambda}|^2$

is a golbal C^{∞} function on V'.

Since $\tau_{\lambda}^{1}, \dots, \tau_{\lambda}^{i\sigma(\lambda)} = 1, \dots, \tau_{\lambda}^{N+1}$ are all the monomials in $\xi_{\lambda}^{1}, \dots, \xi_{\lambda}^{\sigma(\lambda)} = 1, \dots, \xi_{\lambda}^{r}$ of degree $\langle k$ we can take $t_{\lambda}^{1}, \dots, t_{\lambda}^{i\sigma(\lambda)} = 1, \dots, t_{\lambda}^{N+1}$ to be all the monomials in $x_{\lambda}^{1}, \dots, x_{\lambda}^{\sigma(\lambda)} = 1, \dots, x_{\lambda}^{r}$ of degree $\langle k$. Then we have (omitting the lower index λ)

$$\frac{\partial}{\partial \bar{x}^{\beta}} \left(\sum_{i} |T_{\lambda}i|^{2} \right) = x^{\beta} \left(1 + P_{\beta}(x) \right) + y^{\ell}() + \bar{y}^{\ell}() + |y|^{2\ell}(),$$

$$\frac{\partial^{2}}{\partial x^{\alpha} \partial \bar{x}^{\beta}} \left(\sum_{i} |T_{\lambda}i|^{2} \right) = \delta_{\alpha\beta} + Q_{\alpha\beta}(x) + y^{\ell}() + \bar{y}^{\ell}() + |y|^{2\ell}()$$

where
$$x^{\beta}(1+P_{\beta}(x)) = \sum_{i} t^{i} \frac{\partial t^{i}}{\partial x^{\beta}}$$
 ($\beta = 1, ..., r$) and

1

Bull. Sciences & Engineering Div., Univ. of the Ryukyus. (Math. & Nat. Sci.)

 $Q_{\alpha\beta}(x) = \frac{\partial}{\partial x^{\alpha}} (x^{\beta}P_{\beta}(x)) (\alpha, \beta = 1, ..., x). P_{\beta}(x) \text{ and } Q_{\alpha\beta}(x) \text{ are}$ polynomials in x_{λ}^{1} , ..., $x_{\lambda}^{(\sigma_{\lambda})}$, ..., x_{λ}^{r} of degree 2k-2.

Now we estimate the Levi form of $\psi = \phi(Z) + e^{\phi(Z)} (\sum_{i} |T_{\lambda}i|^2) |y_{\lambda}|^2$. We consider in a fixed V'_{λ} and omit the index λ . Since we can take V'_{λ} smaller, we may assume $\sum_{\alpha}' |x^{\alpha}|^2 < G$ for a large G > 0, here α runs over 1, ..., $\hat{\sigma}(\lambda), \ldots, r$ in the sum \sum_{α}' . We take $\eta > 0$ so that $\eta G < \frac{1}{3}$. If $l \ge 3$, then we have

$$\begin{aligned} -\frac{\partial^2 \psi}{\partial z^j \partial \bar{z}^k} &= \delta_{jk} + 0 \left(|y|^2 \right), \\ \frac{\partial^2 \psi}{\partial z^j \partial \bar{y}} &= e^{\phi(z)} \left(1 + \sum_{i}' |t^i|^2 \right) \left\{ y \bar{z}^j + 0 \left(|y|^2 \right) \right\}, \\ \frac{\partial^2 \psi}{\partial y \partial \bar{y}} &= e^{\phi(z)} \left(1 + \sum_{i}' |t^i|^2 \right) + 0 \left(|y|^2 \right), \\ \frac{\partial^2 \psi}{\partial z^j \partial \bar{x}^\beta} &= e^{\phi(z)} |y|^2 \left\{ \bar{z}^j x^\beta \left(1 + P_\beta(x) \right) + 0 \left(|y| \right) \right\}, \\ \frac{\partial^2 \psi}{\partial y \partial \bar{x}^\beta} &= e^{\phi(z)} \bar{y} \left\{ x^\beta \left(1 + P_\beta(x) \right) + 0 \left(|y| \right) \right\}, \\ \frac{\partial^2 \psi}{\partial y \partial \bar{x}^\beta} &= e^{\phi(z)} |y|^2 \left\{ \delta_{\alpha\beta} + Q_{\alpha\beta}(x) + 0 \left(|y| \right) \right\}. \end{aligned}$$

If y = 0 then the hermitian matrix

$$\begin{array}{c|c} \frac{\partial^{2}\psi}{\partial z\,i\,\partial\bar{z}^{\,k}} & \frac{\partial^{2}\psi}{\partial z\,i\,\partial\bar{y}} & \frac{\partial^{2}\psi}{\partial z\,i\,\partial\bar{x}^{\,\beta}} \\ & * & \frac{\partial^{2}\psi}{\partial y\,\partial\bar{y}} & \frac{\partial^{2}\psi}{\partial y\,\partial\bar{x}^{\,\beta}} \\ & * & * & \frac{\partial^{2}\psi}{\partial y\,\partial\bar{x}^{\,\beta}} \end{array} \end{array}$$
 has the form
$$\begin{array}{c} & & & \\ & * & & * & \frac{\partial^{2}\psi}{\partial x^{\alpha}\,\partial\bar{x}^{\,\beta}} \end{array} \end{array}$$
 has the form
$$\delta_{j\,k} \\ & e^{\phi(\zeta)}\left(1 + \sum_{i}^{\prime} |\tau^{i}|^{2}\right) \\ & & & & 0 \end{array} \right)$$

so this is positive semi-definite.

In the case of $y \neq 0$. We have

$$(1 + \sum_{i}' |t^{i}|^{2})(dy, d\bar{y}) + \sum_{\alpha}' y\bar{x}^{\alpha}(1+P_{\alpha})(dx^{\alpha}, d\bar{y})$$

+ $\sum_{\beta}' \bar{y}x^{\beta}(1+P_{\beta})(dy, d\bar{x}^{\beta}) + \sum_{\alpha,\beta}' |y|^{2}(\delta_{\alpha\beta}+Q_{\alpha\beta})(dx^{\alpha}, d\bar{x}^{\beta})$
= $|dy|^{2} + \sum_{\alpha}' |x^{\alpha}dy + ydx^{\alpha}|^{2} + \sum_{\alpha}' |x^{\alpha}|^{2} |x^{\alpha}dy + 2ydx^{\alpha}|^{2} +$

 $\sum_{\alpha < \beta}' |x^{\alpha} x^{\beta} dy + yx^{\beta} dx^{\alpha} + yx^{\alpha} dx^{\beta}|^{2} + \sum' |\dots|^{2} + \dots + \dots \sum' |\dots|^{2}$ $\geqslant |dy|^{2} + \sum_{\alpha}' |x^{\alpha} dy + y dx^{\alpha}|^{2}$ $= |dy|^{2} + \sum_{\alpha}' \{ |(1+\eta)^{\frac{1}{2}x^{\alpha}} dy + (1+\eta)^{-\frac{1}{2}y} dx^{\alpha}|^{2} - \eta |x^{\alpha}|^{2} |dy|^{2} + (1 - \frac{1}{1+\eta}) |y|^{2} |dx|^{2} \}$ $\geqslant \{1 - \eta (\sum_{\alpha}' |x^{\alpha}|^{2})\} |dy|^{2} + |y|^{2} \sum_{\alpha}' \frac{\eta}{1+\eta} |dx^{\alpha}|^{2}.$ If we take small |y| > 0, then $1 - \eta (\sum_{\alpha}' |x^{\alpha}|^{2}) + 0 (|y|^{2}) > \frac{2}{3}$ and the hermitian matrix $(\frac{\eta}{1+\eta} \delta_{\alpha\beta} + 0 (|y|))$ is positive definite, so the minimal eigen value λ of this matrix is positive. For the remaining terms in dy and $\{dx^{\alpha}\}$ are estimated as follows;

$$\sum_{\alpha}' e^{\phi(Z)} y_{\overline{a}\alpha}(dx^{\alpha}, dy) + \sum_{\beta}' e^{\phi(Z)} \overline{y} a_{\beta}(dy, d\overline{x}^{\beta})$$

$$\geq -(\sum_{\alpha}' |a_{\alpha}|) |dy|^{2} - e^{\phi(Z)} |y|^{2} \sum_{\alpha}' (e^{\phi(Z)} |a_{\alpha}|) |dx^{\alpha}|^{2},$$

where a_{α} is a quantity of O(|y|) for each α . Hence we have

$$\begin{pmatrix} dy \ dx^{\alpha} \end{pmatrix} \begin{pmatrix} \frac{\partial^2 \psi}{\partial y \ \partial \bar{y}} & \frac{\partial^2 \psi}{\partial y \ \partial \bar{x}^{\beta}} \\ \frac{\partial^2 \psi}{\partial x^{\alpha} \ \partial \bar{y}} & \frac{\partial^2 \psi}{\partial x^{\alpha} \ \partial \bar{x}^{\beta}} \end{pmatrix} \begin{pmatrix} d\bar{y} \\ dx^{\beta} \end{pmatrix}$$

 $\geq \left(e^{\phi(\mathbf{Z})} \left\{ 1 - \eta \left(\sum_{\alpha}' |x^{\alpha}|^{2} \right) + O(|y|^{2}) \right\} - \sum_{\alpha}' |a_{\alpha}| \right) |dy|^{2} + e^{\phi(\mathbf{Z})} |y|^{2} \left(\sum_{\alpha,\beta}' \left(-\frac{\eta}{1+\eta} \delta_{\alpha,\beta} + O(|y|) \right) (dx^{\alpha}, d\bar{x}^{\beta}) - \sum_{\alpha}' (e^{\phi(\mathbf{Z})} |a_{\alpha}|) |dx^{\alpha}|^{2} \right) \\ \geq \frac{7}{12} |dy|^{2} + e^{\phi(\mathbf{Z})} |y|^{2} \sum_{\alpha}' \frac{\lambda}{2} |dx^{\alpha}|^{2},$

if |y| > 0 is small enough. Similarly we can estimate the terms containing $\{dz^{j}, dy\}$ and the terms containing $\{dz^{j}, dx^{\alpha}\}$, Then we can make

the Levi form of $\psi \ge \frac{1}{2} \left(\sum_{j=1}^{m} |dz^{j}|^{2} + |dy|^{2}\right)$ for small |y| > 0 and for small $\phi(z) = \sum_{i} |z^{i}|^{2}$.

Therefore we see that the Levi form of ψ is positive semidefinite on an open subset of V' where |y| and |z| are small enough.

We set $C_{\lambda}(\epsilon) = B_{\lambda}(\epsilon) e^{\ell \psi}$. Then $\{C_{\lambda}(\epsilon)\}_{\lambda}$ is a "metric" on the fibres of the bundle $K_{V}(-1) \otimes [S]_{V}(-\epsilon)$ for $\epsilon = 1, 2$. If $l \ge 3$ the coefficient matrix of the curvature form of this "metric" has the form

Bull. Sciences & Engineering Div., Univ. of the Ryukyus. (Math. & Nat. Sci.)

$$l = \frac{\partial^2}{\partial \zeta^i} \left(\sum_{j=1}^m |\zeta^j|^2 \right)$$

$$l e^{\phi(\zeta)} \left(1 + \sum_{i=1}^{N+1} |\tau^i|^2\right)$$

$$- \frac{\partial^2}{\partial \xi^\alpha} \frac{\partial \varphi^\beta}{\partial \xi^\beta} \log(\sum_{\rho} |\omega^\rho(\varepsilon)|^2)$$

on S and this matrix is positive definite. Hence the bundle $K_{V'}^{-1} \otimes (S_{V'}^{-\epsilon})$ is positive for small |y| ($\varepsilon = 1, 2$). $V = \{p_{\varepsilon}V' | \psi(p) < \delta\}$ is relatively compact in V' for a small $\delta > 0$. So V is weakly 1-complete with respect to the C^{∞} function $\overline{\psi} = (1 - \frac{\psi}{\delta})^{-1}$ on V and the bundle $K_{V}^{-1} \otimes (S_{V'}^{-\epsilon})$ is positive for $\varepsilon = 1, 2$.

4. Construction of X

For each a ϵ M we take a neighbourhood V of La as in theorem 2(k). Then we have $V \cap S \approx D \times \mathbf{P}^{r-1}$ and $(S)_V \cap S = (e)^{-k}$.

Exact sequences of sheaves: $0 \to O((S)^{-1}) \to O_V \to O_V \cap_S \to 0$ and $0 \to O((S)^{-2}) \to O((S)^{-1}) \to O_V \cap_S ((S)_V \cap_S^{-1}) \to 0$ induce long exact sequences of cohomology groups, then the restrictions $\Gamma(V, O_V) \to \Gamma(V \cap S, O_V \cap_S)$ and $\Gamma(V, O((S)^{-1})) \to \Gamma(V \cap S, O((e)^k))$ are surjective since $H^1(V, O((S)^{-\epsilon})) = 0$ ($\epsilon = 1, 2$) by theorem 1.

Hence there are extensions $z^{j} \in \Gamma(V, O_{V})$ of local coordinates ζ^{j} on D (here we regard ζ^{i} to be an element of $\Gamma(D \times \mathbf{P}, O)$) $(j=1, \ldots, m)$ and extensions $\{f_{\lambda} i\}_{\lambda} \in \Gamma(V, O((S)^{-1}))$ of holomorphic cross-sections $\{\tau_{\lambda} i\}_{\lambda} \in \Gamma(V \cap S, O([e]^{k}))$ $(i = 1, \ldots, N+1)$ (here we cover V By V'_{λ} 's). We here $f^{i} = y_{\lambda}f_{\lambda}i \in \Gamma(V, \mathfrak{F}(S))$ $\mathfrak{F}(S)$) $(i = 1, \ldots, N+1)$ by an isomorphism $\Gamma(V, \mathfrak{F}(S)) \approx \Gamma(V, O([S]^{-1}))$, where $\mathfrak{F}(S)$ is the ideal sheaf of S.

We define a holomorphic map $\Phi: V = \bigcup_{\lambda} V'_{\lambda} \to \mathbb{C}^m \times \tilde{\mathbb{C}}^{N+1}$ by $\Phi(p) = ((z^1(p), \ldots, z^m(p)), (f^1(p), \ldots, f^{N+1}(p)), (f^1(p): \ldots: f^{N+1}(p))$ for any $p \in V$. Φ is of rank *n* at any point of *La* and $\Phi(La) \approx (0) \times P^{r-1}$. Therefore we can take a neighbourhood *W* of *La* and a neighbourhood $D' \subset D$ of $O \in \mathbb{C}^m$ such that $\Phi(W) = D' \times \tilde{K}$. $D' \times \tilde{E}$ is obtained by blowing up $\Delta^* = D' \times K$ with centre $\Gamma = D' \times (0)$. By a biholomorphic homeomorphism $p: D' \times \tilde{K} - D' \times T \approx D' \times K - D' \times (0)$ we have $\Pi: W - S \approx \Delta^* - \Gamma$. We can identify Γ with a neighbourhood of *a* in *M*.

We construct such Da', Wa, Δa^* , Γa and $\Pi a : Wa \to \Delta a^*$ for each $a \in M$, then we have $\Pi a : Wa - S \approx \Delta a^* - \Gamma a$, $S = \Pi a^{-1}(\Gamma a)$, $\Pi a : S \to \Gamma a$ is a \mathbf{P}^{r-1} -bundle, $(S)_{Lb} = (e)^{-k}$ for any $b \in Da'$.

If $Wa \cap Wb \neq \phi$ we have the following commutative diagram:

Mori: An Example of Blowing Down

$$Wa \supset Wa \cap Wb \stackrel{id}{=} Wa \cap Wb \subset Wb$$

$$\Pi a \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \Pi b$$

$$\Delta^*a \subset \Pi a(Wa \cap Wb) \stackrel{\phi ab}{\longrightarrow} \Pi b(Wa \cap Wb) \subset \Delta^*b.$$

Then a holomorphic mapping $\phi_{ab} = \prod_b \circ id \circ \prod_a^{-1} : \prod_a (Wa \cap Wb) - \Gamma_a \rightarrow \prod_b (Wa \cap Wb) - \Gamma_b$ can be naturally extended to a continuous mapping $\phi_{ab} : \prod_a (Wa \cap Wb) \rightarrow \prod_b (Wa \cap Wb)$ and this becomes a biholomorphic homeomorphism. Since Δ^* is a normal analytic set of C^{m+N+1} , $\phi_{ab} : \prod_a (Wa \cap Wb) \rightarrow \prod_b (Wa \cap Wb)$ gives an isomorphism of complex spaces. Hence $\{\Delta^*a\}$ and $\{\Gamma_a\}$ can be patched together and form a complex space X^* and the singular locus of X^* respectively (the latter is an analytic subspace of X^* which is biholomorphic to M). Since the open sets $\bigcup_a Wa - S$ of \tilde{X} and $X^* - M$ are biholomorphic by \prod_a on each Wa - S, we can patch $\tilde{X} - S$ and X^* , thus we obtain a complex space X.

$$\Pi = \begin{cases} id & \text{on } \tilde{X} - S \\ \Pi a & \text{on } Wa \end{cases}$$
 is a holomorphic mapping from \tilde{X} onto X and we have

 $\begin{array}{ll} \label{eq:starsest} \ensuremath{\mathbbm{T}} : \ensuremath{\tilde{X}} & -S \approx X - M, \ensuremath{S} = \ensuremath{\mathbbm{T}}^{-1} (M), \ensuremath{\mathbbm{T}} : \ensuremath{S} \rightarrow M \ensuremath{\text{ is a }} P^{r-1} - \ensuremath{\text{bundle}}, \ensuremath{(S)_{\text{L}a}} \\ = (e)^{-k} \ensuremath{\text{ for any }} a \ensuremath{\epsilon} M \subset X. \ensuremath{\mbox{This completes the proof of the theorem.}} \end{array}$

References

- A. Fujiki S. Nakano, Supplement to "On the inverse of monoidal transformation", Publ. RIMS, Kyoto Univ., 7 (1971-72); 637-644.
- [2] S. Nakano, On the inverse of monoidal transformation, ibid., 6 (1970-71), 483-502.
- S. Nakano, Vanishing theorems for weakly 1-complete manifolds I, (to appear in Publ. RIMS, Kyoto Univ., 10 (1973-74)).