琉球大学学術りポジトリ
An Example of Blowing Down

| メタデータ | 言語： |
| :---: | :--- |
|  | 出版者：琉球大学理工学部 |
|  | 公開日：2012－02－28 |
|  | キーワード（Ja）： |
|  | キーワード（En）： |
|  | 作成者：Mori，Yasuko，森，泰子 |
|  | メールアドレス： |
|  | 所属： |
| URL | http：／／hdl．handle．net／20．500．12000／23506 |

# An Example of Blowing Down 

Yasuko Mori＊

1. 

Let $\tilde{X}$ be a complex manifold of dimension $n$ and $S$ a submanifold of $\tilde{X}$ of codimension 1．We denote by 〔S〕 the complex line bundle over $\tilde{X}$ defined by the divisor $S$ of $\tilde{X}$ ．We assume that $S$ has a structure of an analytic fibre bundle over a complex manifold $M$ with fibre $P^{r-1}(r \geqslant 2)$ ，an（ $r-1$ ）－dimensional complex pro－ jective space．We denote by $L a$ the fibre over $a_{\mathrm{f}} M$ in the bundle $S \rightarrow M$ ，by［ $e$ 〕 the complex line bundle over $L a \approx P^{r-1}$ defined by the hyperplane，and by $[S] L a$ the re－ striction of $[S]$ to $L a$ ．

Nakano［2］and Fujiki－Nakano［1］have shown the following result；If the condition $[S]_{L a}=[e]^{-1}$ for any $a_{\epsilon} M$ is satisfied，then there are an n－dimensional complex manifold $X$ containing $M$ and a holomorphic map $\Pi: \quad \tilde{X} \rightarrow X$ such that （ $\bar{X}, \Pi$ ）is the monoidal transform of $X$ with centre $M$ and $S=\Pi^{-1}$（M）．This is sbtained by an application of the cohomology vanishing theorem for a weakly l－complete manifold with a positive line bundle．

In this paper we show the following result，which is a variant of Nakano＇s theorem．

Theorem．If the condition $[S] L a=[e]^{-k}(k \geqslant 2)$ for any $a_{\epsilon} M$ is satisfied，then we can construct an n－dimensional complex space $X$ containing $M$ as the singular locus and a holomorphic map $\Pi: \tilde{X} \rightarrow X$ so that $(\tilde{X}, \Pi)$ is the monoidal transform of $X$ with centre $M$ and $S=\Pi^{-1}(M)$ ．

We show this theorem by an analogous argument to that of Nakano．
I understand that Akira Fujiki has a more general result on blowing down．Ours is more concrete in its construction．

I wish to thank Professor S．Nakano for useful suggestions and Professor K． Kasahara for detailed discussions．

## 2.

First we give an example of a monoidal transformation in which the assumption of our theorem holds．

Let $j: P^{r-1} \rightarrow P^{N}$ be the Veronese transformation of degree $k$ i．e．$j$ is given by $j\left(\eta^{1}: \ldots: \eta^{r}\right)=\left(M^{1}\left(r_{1}\right): \ldots: M^{N+1}(\eta)\right)$ for a system of homogeneous coordinates （ $\eta^{1}: \ldots: \eta^{r}$ ）of $P^{r-1}$ ，where $M^{i}(\eta)$ is a moromial in $\eta^{1}, \ldots$ ，$\eta^{r}$ of degree $k$（ $i=$ $1, \ldots, N+1=r H k) . \quad j\left(P^{r-1}\right)=V$ is an $(r-1)$－dimensional submanifold of $P N$ ． The cone $K$ of $V$ is a normal analytic set of $C^{N+1}$ and has the vertex（O）as its
＊Dept．of Math．，Sci．\＆Eng．Div．，Univ，of the Ryukyus
unique singularity.
We form $\check{\mathrm{C}}^{N+1}$ by blowing up $C^{N+1}$ at the origin O . $\widetilde{\mathrm{C}}^{N+1}$ can be considered as the total space of the complex line bundle over $P^{N}$ which is defined with respect to the open covering $\left\{U_{i} \mid i=1, \ldots, N+1\right\}$, where $U_{i}=\left\{\left(z^{1}: \ldots: z^{N+1}\right) \in P^{N} \mid z^{i}\right.$ $\neq \mathrm{O}\}$, by a system of transition functions $\left\{\frac{z^{i}}{z^{j}}\right\}$. Let $\tilde{K}$ be the inverse image of $K$ by the projection $\tilde{p}: \tilde{\mathrm{C}}^{N+1} \rightarrow C^{N+1}$, then $\tilde{K}$ is the line bundle over $V$, which is the restriction of the bundle ( $\widetilde{\mathrm{C}}^{N+1} \rightarrow P N$ ) to $V$.
$\tilde{p}^{-1}(\mathrm{O}) \subset \widetilde{\mathrm{C}}^{N+1}$ is the zero-section of the bundle ( $\tilde{\mathrm{C}}^{N+1} \rightarrow P^{N}$ ) and $T=\tilde{p}^{-1}(\mathrm{O})$ $\cap K$ is the zero-section of the bundle ( $\tilde{K} \rightarrow V$ ). By restricting $\tilde{p}: \tilde{\mathrm{C}}^{N+1} \rightarrow C^{N+1}$ to $\tilde{K}$, we have a holomorphic map $p$ from $\tilde{K}$ onto $K$ which gives a biholomorphic homeomorphism $\tilde{K}-T \approx K-0$.

The divisor $T$ of $\tilde{K}$ defines a complex line bundle $[T]$. Then
$[T]=$ the normal bundle of $T$ in $\tilde{K}$
$=$ the line bundle ( $\tilde{K} \rightarrow V)$
$=$ the restriction ( $\left.\widetilde{\mathrm{C}}^{N+1} \rightarrow P^{N}\right) \mid v$.
If we take $i_{\alpha}$ so that $M^{i \alpha}(\eta)=\left(\eta^{\alpha}\right)^{k}(\alpha=1, \ldots, r)$, then $V$ is covered by $r$ open sets $U_{i \alpha} \supset\left\{\left(M^{i}(\eta)\right) \in P^{N} \mid\left(\eta^{\alpha}\right)^{k} \neq \mathrm{O}\right\} \quad(\alpha=1, \ldots, r)$. So the transition functions become $\frac{z^{i \alpha}}{z^{i \beta}}=-\frac{\left(\eta^{\alpha}\right)^{k}}{\left(\eta^{\beta}\right)^{k}}=\left(\frac{\eta^{\alpha}}{\eta^{\beta}}\right)^{-k}$. While the line bundle [e] on $\operatorname{Pr}^{r-1}$ is defined by a system of transition functions $\left\{\frac{\eta^{\alpha}}{\eta^{\beta}}\right\}$ with respect to the open covering $\left\{(\eta) \in P^{r-1} \mid \eta^{\alpha} \neq \mathrm{O}\right\}(\alpha=1, \ldots, r)$. Hence we have $\left(\tilde{\mathrm{C}}^{N+1} \rightarrow P^{N}\right) \mid V=[e]^{-k}$.

Thus we have obtained a situation such that the mapping $p: \tilde{K} \rightarrow K$ is holomorphic onto, $p: \tilde{K}-T \approx K-O, T=p^{-1}(O) \approx P^{r-1}$ and $[T]_{T}=[e]^{-k}$.

## 3.

We use the following two theorems.
Theorem 1 (Nakano). Let $V$ be a weakly 1-complete manifold, $B$ a complex line bundle over $V$ and $K_{V}$ the canonical line bundle of $V$. If $K_{V^{-1}} \otimes B$ is positive, then we have $H^{a}(V, O(B))=O(q \geqslant 1)$.

This is a special case of theorem 1 〔3〕.
Theorem 2(k). If the condition $[S]_{L a}=[e]^{-k}$ for any $a \in M$ is satisfied, then there is a neighbourhood $V$ of La in $\tilde{X}$ such that

1) if $V \cap L_{b} \neq \phi$, then $L_{b} \subset V$,
2) $V$ is a weakly 1 -complete manifold and $K_{V^{-1}} \otimes[S]_{V^{-}}$is positive for $\varepsilon=1,2$.

Proof. We take a system of local coordinates $\left\{\zeta^{1}, \ldots, \zeta^{m}\right\}(m=n-r)$ with centre $a \epsilon M$ so that the bundle $S \rightarrow M$ is trivial on the coordinate neighbourhood $D=$ $\left\{\zeta \subset C^{m} \mid \phi(\zeta)<1\right\}$ of a i. e. $\Pi^{-1}(D) \approx D \times P^{r-1}$, where $\phi(\zeta)=\sum_{j=1}^{m}\left|\zeta^{j}\right|^{2}$. Then
we have $[S] D \times P=[e]^{-k}$ ，where we also use the notation $[e]$ to denote the pull－back of［ $e]$ on $P^{r-1}$ by the natural projection $D \times P \rightarrow P$ ．

We fix a system of homogeneous coordinates（ $\eta^{1}: \ldots: \eta^{\gamma}$ ）of $P^{r-1} .\left\{\xi_{\alpha}^{\beta}=\frac{\eta^{\beta}}{\eta^{\alpha}}\right.$ $\mid \beta=1, \ldots, \hat{\alpha}, \ldots, r\}$ is a system of inhomogeneous coordinates on the coordinate neighbourhood $U_{\alpha}=\left\{\left(\eta_{j}\right)\right.$ є $\left.P^{r-1} \mid \eta^{\alpha} \neq 0\right\} \quad(\alpha=1, \ldots, r)$ ．$[e\rceil$ on $D \times P^{r-1}$ is defined by a system of transition functions $\varepsilon_{\alpha \beta}=\frac{\eta^{\beta}}{\eta^{\alpha}}=\xi_{\alpha}^{\beta}$ with respect to the open cover－ ing $\left\{D \times U_{\alpha} \mid \alpha=1, \ldots, r\right\}$ ．The bundle $[e]$ is positive by taking a＂metric＂ $a_{\alpha}=e \phi(s) \sum_{\beta=1}^{m}\left|\xi_{\alpha}^{\beta}\right|^{2}$ on the fibres of［e］．

We can choose a finite open covering $\left\{U^{\prime}{ }_{\lambda} \mid \lambda \in \Lambda\right\}$ of $P^{r-1}$ and open subset $V_{\lambda}^{\prime}$ of $\tilde{X}$ such that $\left\{U^{\prime}{ }_{\lambda}\right\}$ is a refinement of $\left\{U_{\alpha}\right\}$ and $V^{\prime}{ }_{\lambda} \cap S=D \times U^{\prime}{ }_{\lambda}$ for each $\lambda \in \Lambda$ ． We denote the refining map by $\sigma: \Lambda \rightarrow\{1, \ldots, r\}$ with $U^{\prime}{ }_{\lambda} \subset U_{\sigma(\lambda)}$ ．

We can take a system of local coordinates $\left\{z_{\lambda}^{1}, \ldots, z_{\lambda}^{m}, y_{\lambda}, x_{\lambda}^{1}, \ldots, x_{\lambda}^{\hat{\alpha}(\lambda)}\right.$ ， $\left.\ldots, x_{\lambda}^{\gamma}\right\}$ on $V_{\lambda}^{\prime}$ such that
（※）$\left\{\begin{array}{l}S \text { is defined in } V_{\lambda}^{\prime} \text { by the local equation } y_{\lambda}=0, \\ z_{\lambda}^{j}\left|S^{=}=\zeta^{j}(j=1, \ldots, m), x_{\lambda}^{\alpha}\right| S^{=\xi_{\sigma(\lambda)}^{\alpha} \quad(\alpha=1, \ldots, r),} \\ \text { and } x_{\lambda}^{\sigma(\lambda)} \equiv 1 .\end{array}\right.$
$V^{\prime}=\int_{2} V_{\lambda}^{\prime}$ is a neighbourhood of La and $V^{\prime} \cup S=D \times P^{r-1}$ ．The bundle $S 〕 V^{\prime}$ is defined by a system of transition functions $e_{2 \mu}=\frac{y_{2}}{y_{\mu}}$ with respect to the open covering $\mathfrak{B}=\left\{V_{\lambda}^{\prime}\right\}$ of $V^{\prime}$ ．Moreover we take $y_{\lambda}$ so that $e_{\lambda \mu} \mid S=\varepsilon_{\sigma(\lambda) \sigma(\mu)}{ }^{-k}$ ，and hereafter we write $\varepsilon_{i \mu}$ for $\varepsilon_{\sigma(\lambda) \sigma(\mu)}$ ．

By the adjunction formula for canonical bundles：$K_{V}{ }^{\prime} \cap s=K_{V^{\prime}} \mid V^{\prime} \cap s \otimes[S]_{V^{\prime} \cap S^{\prime}}$ we have $K_{V} V^{\prime} \mid V^{\prime} \cap S=K_{D \times P^{r-1}} \otimes[S]_{D \times P^{-1}}=[e]^{-r} \otimes[e]^{k}=[e]^{-(r-k)}$ ，so we may assume that the bundle $K_{V}$ ，is represented with respect to the open covering $\mathfrak{B}$ by a system of transition functions $\left\{k_{\lambda \mu}\right\}$ with $k_{\lambda \mu} \mid S=\varepsilon_{\lambda \mu}^{-(r-k)}$ ．

Using the fact $H^{1}\left(D \times P, O\left(\left[e \jmath^{\prime}\right)\right)=O(\ell>1)\right.$ ，we can extend holomorphic functions $\zeta^{j}$ on $D \times U_{2}^{\prime}(j=1, \ldots, m)$ approximately to holomorphic functions on $V_{i}^{\prime}(〔 2\rceil$ p．495），extend holomorphic cross－sections $\left\{\tau^{i}\right\}_{\lambda}$ of $[e]^{k}$ on $V \cap S$ defined by $\tau_{\lambda}^{i}=\frac{M^{i}(\eta)}{\left(\gamma^{\sigma}(\lambda)\right)^{k}}(i=1, \ldots, N+1)$ approximately to holomorphic cross－sections of $[S]^{-1}$ on $V$ ．Similarly we can extend holomorphic cross－sections $\left\{\omega_{\lambda}^{\rho}(\varepsilon)\right\}$ of $[e]^{r+(\varepsilon-1) k}$ on $V \cap S(\rho=1, \ldots, r H r+(\varepsilon-1) k)$ approximately to holomorphic cross－sections of $K^{-1} \otimes[S\rfloor^{-\varepsilon}$ on $V(〔 1 〕 \mathrm{p} .641)$ ，where $\omega_{\lambda}^{\rho}(\varepsilon)=\frac{N^{\rho}(\eta)}{\left(\eta^{(\sigma \alpha)}\right)^{r+(r-1) \mathrm{k}}}$
and $N^{\rho}(\eta)$ is a monomial in $\eta^{1}, \ldots, \eta^{r}$ of degree $r+(\varepsilon-1) k(\varepsilon=1,2)$. As is stated in proposition 6 [2], we obtain holomorphic functions $z_{\lambda}^{j}$, $t_{\lambda}^{i}, w_{\lambda}^{p}(\varepsilon)$ on $V_{\lambda}^{\prime}$ which satisfy the following relations in addition to (*).

and $\left\{f_{\lambda \mu}{ }^{i}\right\} \in Z^{1}(\mathfrak{B}, O([S]-\ell)),\left\{g_{\lambda \mu}{ }^{i}\right\} \in Z^{1}\left(\mathfrak{B}, O\left([S]^{-t-1}\right)\right),\left\{h_{\lambda \mu} \rho(\varepsilon)\right\}$ $\in Z^{1}\left(\mathfrak{B}, O\left(K^{-1} \otimes[S]-\ell-\imath\right)\right)(\varepsilon=1,2)$. These 1-cocycles are coboundaries of $C^{\infty}$ sections, so we can find $C^{\infty}$ functions $F_{\lambda}{ }^{j}, \mathrm{G}_{\lambda}{ }^{i} H_{\lambda}{ }^{\rho}(\varepsilon)$ on $V_{\lambda}^{\prime}$ such that
$\mathrm{f}_{\lambda \mu}{ }^{j}=F_{\lambda} j^{j}-e_{\lambda \mu}-\ell F_{\mu} ;$
$\mathrm{g}_{\lambda \mu}{ }^{i}=G_{\lambda}{ }^{i}-e_{\lambda \mu}-\ell-1 G_{\mu} i$
$\mathrm{h}_{\lambda \mu} \mu^{\rho}(\varepsilon)=H_{\lambda}{ }^{\rho}(\varepsilon)-k_{\lambda \mu}-1 c_{\lambda \mu}-\ell-\cdot H_{\mu}^{\rho}(\varepsilon) \quad(\varepsilon=1,2)$
hold on $V^{\prime} \lambda \cap V^{\prime}{ }_{\mu}$.
We set
$\begin{cases}Z^{j} & =z_{\lambda}^{j}-\left(y_{\lambda}\right) \iota F_{\lambda}{ }^{j} \\ T_{\lambda} i & =t_{\lambda}{ }^{i}-\left(y_{\lambda}\right) \iota G_{\lambda} i \\ W_{\lambda}^{\rho}(\varepsilon) & =w_{\lambda}^{\rho}(\varepsilon)-\left(y_{\lambda}\right) \ell H_{\lambda}^{\rho}(\varepsilon),\end{cases}$
then $Z^{i}$ is a global $C^{\infty}$ function on $V^{\prime}, T_{\lambda}{ }^{i}$ and $W_{\lambda}{ }^{\rho}(\varepsilon)$ are $C^{\infty}$ functions on $V^{\prime}{ }_{\lambda}$ such that $T_{\lambda} i=e_{\lambda \mu}-1 T_{\mu} i, W_{\lambda} \rho(\varepsilon)=k_{\lambda} \mu^{-1} e_{\lambda \mu}-{ }^{\prime} W_{\mu} \rho(\varepsilon)$ on $V_{\lambda}^{\prime} \cap V^{\prime}{ }_{\mu}$.

We set $\mathrm{A}_{\lambda}=\sum_{i=1}^{\mathrm{N}+1}\left|T_{\lambda} i\right| 2$ and $B_{\lambda}(\varepsilon)=\sum_{\rho}\left|W_{\lambda}{ }^{\rho}(\varepsilon)\right| 2$.
Since $A_{\lambda}\left|y_{\lambda}\right|^{2}=A_{\mu}\left|y_{\mu}\right| 2$ on $V_{\lambda}^{\prime} \cap V_{\mu}^{\prime}$,

$$
\psi=\phi(Z)+e \phi(Z) A_{\lambda}\left|y_{\lambda}\right|^{2}
$$

is a golbal $C^{\infty}$ function on $V^{\prime}$.
Since $\tau_{\lambda} 1, \cdots, \tau_{\lambda}^{i \sigma(\lambda)} \equiv 1, \cdots, \tau_{\lambda}^{N+1}$ are all the monomials in $\xi_{\lambda} 1, \ldots$, $\xi_{\lambda}^{\sigma(\lambda)} \equiv 1, \ldots, \xi_{\lambda}^{r}$ of degree $<k$ we can take $t_{\lambda}^{1}, \ldots, t_{\lambda}^{i \sigma(\lambda)} \cong 1, \ldots, t_{\lambda}^{\mathrm{N}+1}$ to be all the monomials in $x_{\lambda}{ }^{1}, \ldots, x_{\lambda}^{\sigma(\lambda)} \widehat{\equiv}, \ldots, x_{\lambda}{ }^{r}$ of degree $\leqslant k$. Then we have (omitting the lower index $\lambda$ )
$\frac{\partial}{\hat{\partial} \bar{x}^{\beta}}\left(\sum_{i}\left|T_{\lambda} i^{i}\right|^{2}\right)=x^{\beta}\left(1+P_{\beta}(x)\right)+y^{\ell}(\quad)+\bar{y}^{\ell}(\quad)+|y|^{2 \ell}(\quad)$, $\frac{\partial^{2}}{\partial x^{\alpha} \hat{\sigma}^{\beta}}\left(\sum_{i} \mid T_{\lambda} i^{2}\right)=\delta_{\alpha \beta}+Q_{a \beta}(x)+y^{\prime}(\quad)+\bar{y}^{\prime}(\quad)+|y|^{2 \ell}(\quad)$,
where $x^{\beta}\left(1+P_{\beta}(x)\right)=\sum_{i} t^{i} \frac{\partial \bar{E}^{i}}{\partial \bar{x}^{\beta}} \quad(\beta=1, \ldots, r)$ and
$\mathrm{Q}_{\alpha \beta}(x)=\frac{\partial}{\partial x^{\alpha}}\left(x^{\beta} P_{\beta}(x)\right)(\alpha, \beta=1, \ldots, x) . \quad P_{\beta}(x)$ and $\mathrm{Q}_{\alpha \beta}(x)$ are polynomials in $x_{\lambda}{ }^{1},,, ., x_{\lambda}\left(\sigma_{\lambda}\right), \ldots, x_{\lambda}{ }^{r}$ of degree $2 k-2$.

Now we estimate the Levi form of $\psi=\phi(Z)+e \phi(z)\left(\sum_{i}\left|T_{\lambda} i^{i}\right| 2\right)\left|y_{\lambda}\right|{ }^{2}$. We consider in a fixed $V^{\prime}{ }_{\lambda}$ and omit the index $\lambda$. Since we can take $V^{\prime}{ }_{\lambda}$ smaller, we may assume $\sum_{\alpha}^{\prime}\left|x^{\alpha}\right|^{2}<G$ for a large $G>0$, here $\alpha$ runs over $1, \ldots$, $\widehat{\sigma(\lambda)}, \ldots, r$ in the sum $\sum_{\alpha}^{\prime}$. We take $\eta>0$ so that $\eta G<\frac{1}{子}$. If $l \geqslant 3$, then we have

$$
\begin{aligned}
& \frac{\hat{o}^{2} \psi}{\partial z^{j} \hat{\partial} \bar{z}^{\mathrm{k}}}=\delta_{j k}+0\left(|y|^{2}\right), \\
& \frac{\partial^{2} \psi}{\partial z^{j} \partial \bar{y}}=e^{\phi(z)}\left(1+\sum_{i}^{\prime}\left|t^{i}\right|^{2}\right)\left\{y \bar{z}^{j}+0\left(|y|^{2}\right)\right\}, \\
& \frac{\partial^{2} \psi}{\partial y \partial \bar{y}}=e^{\phi(z)}\left(1+\sum_{i}^{\prime}|t i|^{2}\right)+0\left(|y|^{2}\right), \\
& \frac{\partial^{2} \psi}{\partial z^{j} \partial \bar{x}^{\beta}}=e^{\phi(z)}|y|^{2}\left\{\bar{z}^{j} x^{\beta}\left(1+P_{\beta}(x)\right)+0(|y|)\right\}, \\
& \frac{\partial^{2} \psi}{\hat{\partial} y \partial \bar{x}^{\beta}}=e^{\phi(z)} \bar{y}\left\{x^{\beta}\left(1+P_{\beta}(x)\right)+0(|y|)\right\}, \\
& \frac{\partial^{2} \psi}{\partial x^{\alpha} \partial \bar{x}^{\beta}}=e^{\phi(z)}|y|^{2}\left\{\delta_{\alpha \beta}+Q_{\alpha \beta}(x)+0(|y|)\right) \text {. } \\
& \text { If } y=0 \text { then the hermitian matrix }
\end{aligned}
$$


so this is positive semi-definite.
In the case of $y \neq 0$. We have

$$
\begin{aligned}
(1 & \left.+\sum_{i}^{\prime}\left|t^{i}\right| 2\right)(d y, d \bar{y})+\sum_{\alpha}^{\prime} y \bar{x}^{\alpha}\left(1+P_{\alpha}\right)\left(d x^{\alpha}, d \bar{y}\right) \\
& +\sum_{\beta}^{\prime} \bar{y} x^{\beta}\left(1+P_{\beta}\right)\left(d y, d \bar{x}^{\beta}\right)+\sum_{\alpha, \beta}^{\prime}|y|^{2}\left(\delta_{\alpha \beta}+Q_{\alpha \beta}\right)\left(d x^{\alpha}, d_{\bar{x}}^{\beta}\right) \\
= & |d y|^{2}+\sum_{\alpha}^{\prime}\left|x^{\alpha} d y+y d x^{\alpha}\right|^{2}+\sum_{\alpha}^{\prime}\left|x^{\alpha}\right|^{2}\left|x^{\alpha} d y+2 y d x^{\alpha}\right|^{2}+
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\alpha}^{\prime}\left|x^{\alpha} x^{\beta} d y+y x^{\beta} d x^{\alpha}+y x^{\alpha} d x^{\beta}\right|^{2}+\Sigma^{\prime}|\ldots|^{2}+\ldots+\ldots \Sigma^{\prime}|\ldots|^{2} \\
\geqslant & |d y|^{2}+\sum_{\alpha}^{\prime}\left|x^{\alpha} d y+y d x^{\alpha}\right|^{2} \\
= & |d y|^{2}+\sum_{\alpha}^{\prime}\left\{\left|(1+\eta)^{3 / 3} x^{\alpha} d y+(1+\eta)^{-1 / 2 y d x^{\alpha}}\right|^{2}-\left.\left.\eta\right|^{\alpha}\right|^{2}|d y|^{2}+\right. \\
& \left.\left(1-\frac{1}{1+\eta}\right)|y|^{2}|d x|^{2}\right\} \\
\geqslant & \left\{1-\eta\left(\sum_{\alpha}^{\prime}\left|x^{\alpha}\right|^{2}\right)\right\}|d y|^{2}+|y|^{2} \sum_{\alpha}^{\prime} \frac{\eta}{1+\eta}\left|d x^{\alpha}\right|^{2} .
\end{aligned}
$$

If we take small $|y|>0$, then $1-\eta\left(\sum_{\alpha}^{\prime}\left|x^{\alpha}\right|^{2}\right)+0\left(|y|^{2}\right)>2 / 3$ and the hermitian matrix $\left(\frac{\eta}{1+\eta} \delta_{\alpha \beta}+0(|y|)\right)$ is positive definite, so the minimal eigen value $\lambda$ of this matrix is positive. For the remaining terms in dy and $\left\{d x^{\alpha}\right\}$ are estimated as follows;

$$
\begin{aligned}
& \sum_{\alpha}^{\prime} e^{\phi(z)} y_{\mathrm{a} \alpha}^{-}\left(d x^{\alpha}, d y\right)+\sum_{\beta}^{\prime} e^{\phi(z)} \bar{y} a_{\beta}\left(d y, d_{\bar{x}^{\beta}}\right) \\
& \geqslant-\left(\sum_{\alpha}^{\prime}\left|a_{\alpha}\right|\right)|d y|^{2}-e^{\phi(z)}|y|^{2} \sum_{\alpha}^{\prime}\left(e^{\phi(z)}\left|a_{\alpha}\right|\right)\left|d x^{\alpha}\right|^{2}
\end{aligned}
$$

where $\mathrm{a}_{\alpha}$ is a quantity of $O(|y|)$ for each $\alpha$. Hence we have

$$
\left(\begin{array}{ll}
\left(d y d x^{\alpha}\right)
\end{array}\left(\begin{array}{cc}
\frac{\delta^{2} \psi}{\partial y \hat{\partial} \bar{y}} & \frac{\partial^{2} \psi}{\partial y \partial \bar{x}^{\beta}} \\
-\frac{\partial^{2} \psi}{\partial x^{\alpha} \hat{\sigma} \bar{y}} & \frac{\partial^{2} \psi}{\partial x^{\alpha} \partial \bar{x}^{\beta}}
\end{array}\right)\binom{d \bar{y}}{d x^{\beta}}\right.
$$

$\geqslant\left[e \phi(z)\left\{1-\eta\left(\sum_{\alpha}^{\prime}\left|x^{\alpha}\right|^{2}\right)+O\left(|y|^{2}\right)\right\}-\sum_{\alpha}^{\prime}\left|a_{\alpha}\right|\right]|d y|^{2}+$ $e^{\phi(z)}|y|^{2}\left[\sum_{\alpha}^{\prime}\left(\frac{\eta}{1+\eta} \delta_{\alpha \beta}+O(|y|)\right)\left(d x^{\alpha}, d_{\bar{x}}{ }^{\beta}\right)-\Sigma_{\alpha}^{\prime}\left(e^{\phi(z)}\left|a_{\alpha}\right|\right)\left|d x^{\alpha}\right|^{2}\right]$ $\geqslant \frac{7}{12}|d y|^{2}+e^{\phi(z)}|y|^{2} \sum_{\alpha}^{\Sigma^{\prime}} \frac{\lambda}{2}\left|d x^{\alpha}\right|^{2}$,
if $|y|>0$ is small enough. Similarly we can estimate the terms containing $\left\{d z^{j}, d y\right\}$ and the terms containing $\left\{d z^{j}, d x^{\alpha}\right\}$,
Then we can make
the Levi form of $\psi \geqslant \frac{1}{2}\left(\sum_{j=1}^{m}\left|d z^{i}\right|^{2}+|d y|^{2}\right)$ for small $|y|>0$ and for small $\phi(z)=\sum_{j}\left|z^{i}\right|^{2}$.

Therefore we see that the Levi form of $\psi$ is positive semidefinite on an open subset of $V^{\prime}$ where $|y|$ and $|z|$ are small enough.

We set $C_{\lambda}(s)=B_{\lambda}(s) e^{\ell \psi}$. Then $\left\{C_{\lambda}(d)\right\}_{\lambda}$ is a "metric" on the fibres of the bundle $K v^{-1} \otimes[S] \mathrm{v}^{-\quad-}$ for $\varepsilon=1$, 2. If $l \geqslant 3$ the coefficient matrix of the curvature form of this "metric" has the form

$$
\left(\begin{array}{ll}
l \frac{\partial^{2}}{\partial \zeta^{j} \partial_{\zeta}^{\bar{\zeta}} \mathrm{k}}\left(\sum_{j=1}^{\mathrm{m}}\left|\zeta^{j}\right| 2\right) & \\
& \left.l e^{\phi(\zeta)\left(1+\sum_{i=1}^{N+1}\left|\tau^{i}\right| 2\right.}\right) \\
& \frac{\partial^{2}}{\partial \xi^{\alpha} \partial \bar{\xi}^{\beta}} \log \left(\sum_{\rho}\left|\omega^{\rho}(\varepsilon)\right| 2\right)
\end{array}\right)
$$

on $S$ and this matrix is positive definite. Hence the bundle $K v^{-1} \otimes[S] v^{--}$is positive for small $|y| \quad(\varepsilon=1,2) . V=\left\{p \in V^{\prime} \mid \psi(p)<\delta\right\}$ is relatively compact in $V^{\prime}$ for a small $\delta>0$. So $V$ is weakly 1 -complete with respect to the $C^{\infty}$ function $\bar{\psi}=\left(1-\frac{\psi}{\delta}\right)^{-1}$ on $V$ and the bundle $K v^{-1} \otimes[S] \mathrm{v}^{-8}$ is positive for $\varepsilon=1,2$.

## 4. Construction of $X$

For each a $\epsilon \mathrm{M}$ we take a neighbourhood $V$ of $L a$ as in theorem $2(k)$. Then we have $V \cap S \approx D \times \mathbf{P}^{r-1}$ and $[S] V \cap s=[e]^{-k}$.

Exact sequences of sheaves: $0 \rightarrow O\left([S]^{-1}\right) \rightarrow O_{V} \rightarrow O_{V} \cap s \rightarrow 0$ and $0 \rightarrow$ $O\left([S\rfloor^{-2}\right) \rightarrow O\left([S\rfloor^{-1}\right) \rightarrow O_{V} \cap s\left([S\rceil_{V} \cap s^{-1}\right) \rightarrow 0$ induce long exact sequences of cohomology groups, then the restrictions $\Gamma(V, O v) \rightarrow I^{\prime}\left(V \cap S, O_{V} \cap s\right)$ and $\Gamma(V$, $\left.O\left([S]^{-1}\right)\right) \rightarrow I^{\prime}\left(V \cap S, O\left([e\rceil^{\mathrm{k}}\right)\right)$ are surjective since $H^{1}\left(V, O\left([S\rceil^{-\varepsilon}\right)\right)=0 \quad(\varepsilon=$ $1,2)$ by theorem 1.

Hence there are extensions $z^{j} \in \Gamma(V, O \mathrm{~V})$ of local coordinates $\zeta^{j}$ on $D$ (here we regard $\zeta^{i}$ to be an element of $\left.I(D \times \mathbf{P}, O)\right)(j=1, \ldots, m)$ and extensions $\left\{f_{\lambda}{ }^{i}\right\}_{\lambda} \in \Gamma\left(V, O\left([S]^{-1}\right)\right)$ of holomorphic cross-sections $\left\{\tau_{\lambda}{ }^{i}\right\}_{\lambda} \in \Gamma\left(V \cap S, O\left([e]^{\mathrm{k}}\right)\right)$ ( $i=1, \ldots, N+1$ ) (here we cover $V$ By $V_{\lambda}^{\prime}$ 's). We heve $f^{i}=y_{\lambda} f_{\lambda}{ }^{i} \in \Gamma(\mathrm{~V}$, $\mathfrak{F}(S))(i=1, \ldots, N+1)$ by an isomorpnism $\Gamma(V, \mathfrak{F}(S)) \approx \Gamma\left(V, O\left([S]^{-1}\right)\right)$, where $\mathfrak{F}(S)$ is the ideal sheaf of $S$.

We define a holomorphic map $\Phi: V=\bigcup_{2} V_{\lambda}^{\prime} \rightarrow \mathbf{C}^{\mathrm{m}} \times \tilde{\mathrm{C}}^{\mathrm{N}+1}$ by $\Phi(p)=$ $\left(\left(z^{1}(p), \ldots, z^{\mathrm{m}}(p)\right), \quad\left(f^{1}(p), \ldots, f^{\mathrm{N}+1}(p)\right),\left(f^{1}(p): \ldots: f^{\mathrm{N}+1}(p)\right)\right.$ for any $p \in V . \Phi$ is of rank $n$ at any point of $L a$ and $\Phi(L a) \approx(0) \times P^{r-1}$. Therefore we can take a neighbourhood $W$ of $L a$ and a neighbourhood $D^{\prime} \subset D$ of $O_{\epsilon} \mathbf{C}^{m}$ such that $\Phi(W)=D^{\prime} \times \tilde{K} . \quad D^{\prime} \times \tilde{E}$ is obtained by blowing up $\Delta^{*}=D^{\prime} \times K$ with centre $\Gamma=D^{\prime} \times(0)$. By a biholomorphic homeomorphism $p: D^{\prime} \times \tilde{K}-D^{\prime} \times T \approx$ $D^{\prime} \times K-D^{\prime} \times(0)$ we have $\pi: W-S \approx \Delta^{*}-\Gamma$. We can identify $\Gamma$ with a neighbourhood of $a$ in $M$.

We construct such $D a^{\prime}, W a, \Delta a^{*}, \Gamma a$ and $\Pi a: W a \rightarrow \Delta a^{*}$ for each $a \in M$, then we have $\Pi a: W a-S \approx \Delta a^{*}-\Gamma a, \quad S=\Pi a^{-1}(\Gamma a), \Pi a: S \rightarrow \Gamma a$ is a $\mathbf{P}^{r-1}$-bundle, $[S]_{\mathrm{Lb}}=[e]^{-k}$ for any $b \in D a^{\prime}$.

If $W a \cap W_{b} \neq \phi$ we have the following commutative diagram:


Then a holomorphic mapping $\phi a \mathrm{~b}=\Pi_{b}{ }^{\circ}{ }^{i d}{ }^{\circ} \Pi_{a}^{-1}: \Pi a(W a \cap W b)-\Gamma a \rightarrow$ $\Pi_{\mathrm{b}}(W a \cap W b)-\Gamma_{\mathrm{b}}$ can be naturally extended to a continuous mapping $\phi a \mathrm{~b}: \Pi_{a}$ $(W a \cap W b) \rightarrow \Pi_{b}(W a \cap W b)$ and this becomes a biholomorphic homeomorphism． Since $\Delta^{*}$ is a normal analytic set of $C^{m+N+1}, \phi a b: \Pi_{a}(W a \cap W b) \rightarrow \Pi_{b}(W a \cap W b)$ gives an isomorphism of complex spaces．Hence $\left\{\Delta^{*} a\right\}$ and $\{\Gamma a\}$ can be patched together and form a complex space $X^{*}$ and the singular locus of $X^{*}$ respectively （the latter is an analytic subspace of $X^{*}$ which is biholomorphic to $M$ ）．Since the open sets $\bigcup_{a} W a-S$ of $\tilde{X}$ and $X^{*}-M$ are biholomorphic by $\Pi a$ on each $W a-S$ ， we can patch $\tilde{X}-S$ and $X^{*}$ ，thus we obtain a complex space $X$ ．
$\Pi=\left\{\begin{array}{l}i d \text { on } \tilde{X}-S \\ \prod_{a} \text { on } W a\end{array} \quad\right.$ is a holomorphic mapping from $\tilde{X}$ onto $X$ and we have
$\Pi: \tilde{X}-S \approx X-M, S=\Pi^{-1}(M), \Pi: S \rightarrow M$ is a $\mathbf{P}^{r-1}-$ bundle，$[S\rceil_{\mathrm{L} a}$ $=[e]^{-k}$ for any $a \in M \subset X$ ．This completes the proof of the theorem．

## References

〔1〕 A．Fujiki－S．Nakano，Supplement to＂On the inverse of monoidal transformation＂， Publ．RIMS，Kyoto Univ．， 7 （1971－72）；637－644．
〔2〕 S．Nakano，On the inverse of monoidal transformation，ibid．， 6 （1970－71），483－502．
［3］S．Nakano，Vanishing theorems for weakly 1－complete manifolds II，（to appear in Publ．RIMS，Kyoto Univ．， 10 （1973－74））．

