琉球大学学術リポジトリ

Elementary Proof of 'The Class Number of $Q(\sqrt{e})$ is odd when l is prime,

メタデータ	言語:
	出版者: 琉球大学理工学部
	公開日: 2012-02-28
	キーワード (Ja):
	キーワード (En):
	作成者: Takaku, Akira, 高久, 章
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/23513

Elementary Proof of

'The Class Number of $Q(\sqrt{\ell})$ is odd when ℓ is prime,

Akira TAKAKU*

1. It is well known that the class number of a real quadratic field $Q(\sqrt{\ell})$ is odd when ℓ is prime. This fact readily proved by applying the genus theory for $\ell \equiv 1 \pmod{4}$ and by applying the class field theory for $\ell \equiv 3 \pmod{4}$. (Redei and Reichardt [1] treated more general cases.) In this note, we give an elementary proof without applying the class field theory in the case $\ell \equiv 3 \pmod{4}$. (m o d 4). It is also possible to prove the fact in the case $\ell \equiv 1 \pmod{4}$ by our method. In §2 we prove some preliminary lemmas and in §3 we give our proof.

NOTATIONS: we denote by Z,Q the ring of rational integers and the rational number field, respectively. Let a,b be integers, then we denote by (a,b) the highest common factor of a and b.

2. Preliminary.

Let *m* be a positive square-free integer. Let d=d(m) and h=h(m) be the discriminant and the class number of a real quadratic field $K = \mathbf{Q}(\sqrt{m})$, respectively. For an integral basis of *K*, we take 1, ω where $\omega = \sqrt{m}$ if $m \equiv 2,3$ (m o d 4) and $\omega = (-1 + \sqrt{m})/2$ if $m \equiv 1 \pmod{4}$ and we fix it. If an ideal *A* of *K* has an integral basis $a, b + c\omega(a, b, c \in \mathbf{Z})$, then we write $A = (a, b + c\omega)$. Any ideal *A* is expressed by a product of a rational integer and a primitive ideal. If ideals *A* and *B* are in the same class, then we denote $A \sim B$.

LEMMA 1. Let $A = [a,b+\omega]$, $B = [c,e+\omega]$ be two primitive ideals of $K = Q(\sqrt{m})$. Then $A \sim B$ if and only if there exists an modular transformation $\begin{pmatrix} p & q \\ r & s \end{pmatrix}$ (i.e., det $\begin{pmatrix} p & q \\ r & s \end{pmatrix} = \pm 1$, $p,q,r,s \in \mathbb{Z}$) such that $\frac{b+\omega}{a} = (p \frac{e+\omega}{c} + q)/(r \frac{e+\omega}{c} + s)$.

Proof. See [2, Theorem 5.27], for instance.

Let $z_1, z_2 \in \mathbb{Q}(\sqrt{m})$. If there exists a modular transformation $\begin{pmatrix} p & q \\ r & s \end{pmatrix}$ such that $z_2 = (pz_1 + q) / (rz_1 + s)$, then we say that z_1 and z_2 are equivalent to each other and write $z_1 \sim z_2$.

LEMMA 2. Any element of $Q(\sqrt{m})$ is equivalent to an element $x + y\sqrt{m}$ of Gm.

Received October 31, 1974

^{*} Dept. of Math., Sci.& Eng. Div., Ryuku Univ.

^{**} This is the class number in wide sense.

28 TAKAKU: Elementary Prof of 'The Class Number of $Q(\gamma'\ell)$ is odd when ℓ is prime,

Here Gm is a set of the form $x + y\sqrt{m}$: (Gm) $-1/2 \le x < 1/2, \ 0 < y, \ x^2 - my^2 \le -1,$ where $-1/2 \le x \le 0$ if $x^2 - my^2 = -1$.

Proof. The proof of Lemma 2 is similar to the case in which we determine a fundamental region of the modular group operating on the complex upper halfplane. See (2, Theorem 2.13), for instace.

LEMMA 3. Let ℓ be a prime. If $\ell \equiv 3 \pmod{8}$ (resp. $\ell \equiv 7 \pmod{8}$), then eqn $X^2 - \ell Y^2 = 2(\text{resp. } X^2 - \ell Y^2 = -2)$ has no solution.

Proof. Let $\ell \equiv 3 \pmod{6}$. Since $(\ell^2 - 1)/8 \equiv 1 \pmod{2}$, the Kronecker symbol $(8 \mid \ell) = -1$. ℓ is prime in a real quadratic field $Q(\sqrt{2})$. Hence eqn $\ell Y^2 = (X + \sqrt{2})(X - \sqrt{2})$ has no solution. In the case $\ell \equiv 7 \pmod{8}$, the proof is similar.

LEMMA 4. If a prime $\ell \equiv 3 \pmod{4}$, then $[2, -1 + \sqrt{\ell}] \sim [1, \sqrt{\ell}]$.

Proof. We prove only the case $\ell \equiv 3 \pmod{9}$, the proof of the case $\ell \equiv 7(\mod 8)$ is similar. Eqn $X^2 - \ell Y^2 = 1$ has a solution $\{X,Y\} = \{x_0, y_0\}$ such that $y_0 \neq 0$ (for example, take the fundamental unit of $\mathbb{Q}(\sqrt{\ell})$). Since $\ell y_0^2 = (x_0 + 1)(x_0 - 1) \neq 0$, there are integers y_1, y_2 such that $y_0 = y_1 y_2$ and (i) $\ell y_1^2 = x_0 - 1, y_2^2 = x_0 + 1$ or (ii) $\ell y_1^2 = x_0 + 1, y_2^2 = x_0 - 1$. In the case (i), we have $y_2^2 - \ell y_1^2 = 2$, but this contradicts Lemma 3. Hence the case (ii) holds. We have $y_2^2 - \ell y_1^2 = -2$. Put $s = y_2, r = y_1$, $p = (y_2 - y_1)/2$ and $q = (\ell y_1 - y_2)/2$. Since y_1, y_2 are odd, p, q are integers. Then we have $d \in t$ $\binom{p}{r} = -1$ and $(-1 + \sqrt{\ell})/2 = (p \sqrt{\ell} + q)/(r \sqrt{\ell} + s)$. By Lemma 1, $[2, -1 + \sqrt{\ell}] \sim [1, \ell]$.

LEMMA 5. Let $\ell \equiv 3 \pmod{4}$ be a prime and $A = [a, -b + \sqrt{\ell}]$ $(a \ge 3, b > 0)$ be an ideal of the real quadratic field $K = Q(\sqrt{\ell})$. Suppose $(-b + \sqrt{\ell}) / a \in G_{\ell}$. Then $[a, -b + \sqrt{\ell}] \sim [a, b + \sqrt{\ell}]$ if and only if the following condition (*) is satisfied. (*) Eqn $X^2 - \ell Y^2 = a^2$ has a solution $\{x_0, y_0\}$ such that $(x_0, y_0) = 1$ if a is odd, $(y_0, a) = 2$ if a is even and

- (i) $x_0 by_0 \equiv 0$ (mod a),
- (ii) $\ell y_0 bx_0 \equiv 0 \pmod{a}$.

Proof. We first prove preliminary facts in (I), (II). (I) We have b/a < 1/2. In fact, if b/a=1/2, then $b^2 - \ell \equiv 0 \pmod{2b}$. Hence $\ell \equiv 0 \pmod{b}$ and we have b=1 or ℓ . If b=1, then a=2, this contradicts our assumption $a \ge 3$. If $b=\ell$, then $a=2\ell$ and $(-b+\sqrt{\ell}) / a \notin G\ell$, this contradicts our assumption. (II) We have $(b^2 - \ell) / a^2 \neq -1$. In fact, if above equality holds, then $\ell = a^2 + b^2 \equiv 1$ or 2 (m o d 4). Since $\ell \equiv 3 \pmod{4}$, this is impossible. From (I), (II), we have $(b + \sqrt{\ell}) / a \in G \ell$ and $(b^2 - \ell) / a^2 \neq -1$. (III) Let $[a, -b + \sqrt{\ell}] \sim [a, b + \sqrt{\ell}]$. Our proof is divided into three parts (A), (B), (C). (A) Let $z = (b + \sqrt{\ell}) / a$. By Lemma 1, there exists a modular transformation $\begin{pmatrix} p & q \\ r & s \end{pmatrix}$ such that $-\overline{z} = (pz+q) / (rz+s)$. Here \overline{z} is the complex conjugate of z. We have

(1)
$$rz\bar{z}+s\bar{z}+pz+q=0$$
,

hence p=s. Substituting $z\bar{z}=(b^2 - \ell)/a$ and $z+\bar{z}=2b/a$ into the formula (1), we have

(2) $-q = r \frac{b^2 - \ell}{a^2} + \frac{2pb}{a}.$

Therefore $\pm 1 = d$ e t $\begin{pmatrix} p & q \\ r & s \end{pmatrix} = p^2 - qr = (p+br/a)^2 - \ell r^2 / a^2$, i.e., p, r satisfy $(ap+br)^2 - \ell r^2 = \pm a^2$.

Now we put $x_0 = ap+br$, $y_0 = r$. An equation

$$X^2 - \ell Y^2 = \pm a^2$$

has a solution $\{x_0, y_0\}$ for one of \pm . But eqn $X^2 - \ell Y^2 = -a^2$ has no solution. In fact, if $X^2 - \ell Y^2 = -a^2$ has a solution $\{X, Y\}$, then $\ell Y^2 = (X + a \sqrt{-1}) (X - a \sqrt{-1})$. As $(-4 \mid \ell) = -1$, ℓ is prime in $\mathbb{Q}(\sqrt{-1})$. Hence $a \equiv 0 \pmod{\ell}$ and $\sqrt{\ell}/a < 1$. Hence $(-b + \sqrt{\ell})/a \notin G_\ell$, this contradicts our assumption. Therefore $\{x_0, y_0\}$ is a solution of

 $X^2 - \ell Y^2 = a^2.$

(B) If $(x_0, y_0) > 1$, then $(y_0, a) = 2$. Hence in this case, a is even. In fact, assume that there exists a prime ℓ_1 such that $\ell_1 \mid (y_0, a)$. We treat two cases (B₁) $\ell_1 \neq 2$ and (B₂) $\ell_1 = 2$. (B₁) Let $\ell_1 \neq 2$. From the fromula (2) of(A), we have

$$-aq=y_0\frac{b^2-\ell}{a}+2pb.$$

Hence $2pb\equiv 0 \pmod{d} \ell_1$. We have (a, b)=1. In fact, if there is a prime ℓ_2 such that $\ell_2 \mid (a, b)$, then $b^2 \equiv \ell \pmod{d} \ell_2$ since $b^2 \equiv \ell \pmod{d} a$. Hence $\ell_2 = \ell$ and $\ell = \ell_2 < |b| < 2a$. If $\ell = 3$, there is not an ideal $[a, -b + \sqrt{\ell}]$ such that $a \ge 3$, b > 0 and $(-b + \sqrt{\ell})/a \in G_\ell$. If $\ell \neq 3$, then we have $(-b + \sqrt{\ell})/a \notin G_\ell$. Therefore we have $(p, \ell_1) = \ell_1$. Hence det $\binom{p}{r} \binom{q}{s} = d$ et $\binom{p}{y_0} \binom{q}{s} \equiv 0$ $(m \circ d \ell_1)$, this is a contradiction. (B₂) Let $\ell_1 = 2$. If there exist a prime $\ell_2 \neq 2$ such that $\ell_2 \mid (y_0, a)$, then the proof is reduced to the above case (B₁). We may assume that (y_0, a) is a power of 2. But we have $a \not\equiv 0 \pmod{d}$ 4). (In fact, if $a \equiv 0 \pmod{d}$, then we have $b^2 \equiv \ell \equiv 3 \pmod{d}$ since $b^2 \equiv \ell \pmod{d}$ a. This is impossible.) Hence $(y_0, a) = 2$. Since $r = y_0$ and $ap + br = x_0$, we have $x_0 - by_0 \equiv 0 \pmod{d}$. From (2), we have $-\ell y_0 + 2bx_0 - b^2 y_0 \equiv 0 \pmod{d}$. In fact, if a is even, we have $4(a/2)^2 = (x_0 + y_0 \sqrt{\ell}) (x_0 - y_0 \sqrt{\ell})$. Let P be a prime ideal of

30 TAKAKU: Elementary Prof of 'The Class Number of $Q(\sqrt{\ell})$ is odd when ℓ is prime.

Q $(\sqrt{\ell})$ such that $(2) = P^2$, then $P^2 | x_0 + y_0 \sqrt{\ell}$ or $P^2 | x_0 - y_0 \sqrt{\ell}$. In any case, we have $2 | (x_0, y_0)$. This contradicts our assumption. The proof that $\{x_0, y_0\}$ satisfies eqns (i), (ii) of Lemma 5 is similar to the case (B). Sufficiency part of Lemma 5 is proved in § 3.

3. Proof.

By Lemma 1 and 2, we may count non equivalent ideals $A = [a, b + \sqrt{\ell}]$ of $\mathbf{Q}(\sqrt{\ell})$ such that a > 0 and $(b + \sqrt{\ell})/a \in G\ell$. (i) If b = 0 and $(-b + \sqrt{\ell})/a \in G\ell$, then ideal $[a, -b + \sqrt{\ell}] = [1, \omega]$. If a < 3 and $(-b + \sqrt{\ell})/a \in G\ell$, then $[a, -b + \sqrt{\ell}] = [1, \omega]$ or $[2, -1 + \sqrt{\ell}]$. (In fact, we have a = 1 or 2. If a = 1, then $|b/a| \leq 1/2$ and b = 0. If a = 2, then b = 0 or b = 1. Since $b^2 \equiv \ell \pmod{a}$, b is odd. Hence b = 1.) By Lemma 4, $[2, -1 + \sqrt{\ell}] \sim [1, \sqrt{\ell}]$, i.e., these two ideals are in the principal class. (ii) Let $[a, -b + \sqrt{\ell}]$ be an ideal such that $a \geq 3$, b > 0 and $(-b + \sqrt{\ell})/a \in G\ell$. Then if we prove

 $[a, -b + \sqrt{\ell}] \sim [a, b + \sqrt{\ell}] \longleftrightarrow [a, -b + \sqrt{\ell}] \sim [2, -1 + \sqrt{\ell}]$, then our conclusion is obtained. The sufficiency part (\Leftrightarrow) is obvious. To prove the necessity part (\Rightarrow), we may prove the following lemma, since the necessity part of Lemma 5 holds. The following lemma also prove the sufficiency part of Lemma 5.

LEMMA 6. Let $\ell \equiv 3 \pmod{4}$ be a prime. Let $A = [a, -b + \sqrt{\ell}]$ be an ideal of $Q(\sqrt{\ell})$ such that $a \geq 3$, b > 0 and $(-b + \sqrt{\ell})/a \in G\ell$. If the condition (*) of Lemma 5 holds, then $[a, -b + \sqrt{\ell}] \sim [2, -1 + \sqrt{\ell}]$.

Proof. Let $\{x_0, y_0\}$ be a solution of eqn $X^2 - \ell Y^2 = a^2$ which satisfies the condition (*) of Lemma 5. (1) Let a be even, i.e., $(y_0, a) = 2$. If a=2, then b=1. Hence we may assume $a \neq 2$. We have $a \neq 0 \pmod{4}$ since eqn $X^2 \equiv \ell \equiv 3 \pmod{4}$ has no solution. From $\ell y_0^2 = (x_0 + a)(x_0 - a) \neq 0$, there exist positive integers y_1, y_2 such that $y_0 = y_1 y_2$ and (A) $\ell y_1^2 = x_0 + a, y_2^2 = x_0 - a$ or (B) $\ell y_1^2 = x_0 - a, y_2^2 = x_0 + a$. We treat only about the case (A) and write (resp....) about the corresponding fact of the case (B). Since $(y_0, a) = 2$, we have $(x_0, a) = 2$ and $(y_1, a) = (y_2, a) = 2$. We have

(3)
$$y_2^2 - \ell y_1^2 = -2a$$
 (resp. $y_2^2 - \ell y_1^2 = 2a$.)

Put $r = y_1$, $s = (y_1 + y_2)/2$. From the formula (3), y_1 and y_2 are both even or both odd. Hence $s \in \mathbb{Z}$. From eqn (i) of the condition (*) of Lemma 5, we have $x_0 - by_0 \equiv y_2 (y_2 - by_1) \equiv 0 \pmod{a}$.

Put $a=2a_1$, then we have $(y_2, a_1) = 1$ since $(a_1, 2) = 1$. Hence (4) $y_2 - by_1 \equiv 0 \pmod{a_1}$.

From eqn (ii) of the condition (*) of Lemma 5, we have $y_2(\ell y_1 - by_2) \equiv 0$ (m o d a). Hence

(5) $\ell y_1 - by_2 \equiv 0 \pmod{a_1}$.

Bull. Sciences & Engineering Div., Univ. of the Ryukyus. (Math. & Nat. Sci.)

Put $p = (-rb - r + 2s) / a, q = (-r + 2s + r \ell - 2bs) / (2a)$. From the formulas (4), (5), we have

$$-r+2s+r\,\ell-2bs=y_0\,(\,\ell-1)+(y_1+y_2\,)\,(1-b)\equiv 0\,(\mathrm{mod}\ 4),\\ -r+2s+r\,\ell-2bs\equiv(\,\ell\,y_1-by_2\,)+(y_2-by_1\,)\equiv 0\,(\mathrm{mod}\ a_1\,)$$

and $-rb-r+2s \equiv y_2 - by_1 \equiv 0 \pmod{a_1}$, since $y_0 \equiv 0 \pmod{d}$, $y_1 + y_2 \equiv 0 \pmod{d}$ and $1 - b \equiv 0 \pmod{d}$. Hence $p, q \in \mathbb{Z}$ since b is odd. We have d e t $\binom{p}{r} \binom{q}{s} = (y_2^2 - \ell y_1^2)/(2a) = -1 \pmod{p}$ = 1 and $(-b + \sqrt{\ell})/a = (pz+q)/(rz+s)$, where $z = (-1 + \sqrt{\ell})/2$. (II) In the case in which a is odd, the proof is similar to one of the case (I).

References

- Redei, L. and Reichardt, H., Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlk"rpers, J. für reine und angew. Math. 170 (1934) 69-74.
- 2. Takagi, T., Shoto Seisuron Kogi (2nd ed.) (in Japanese) Kyoritsu, Tokyo, 1971.