琉球大学学術リポジトリ

Elementary Proof of ‘The Class Number of Q（ $\sqrt{\mathrm{e})}$ is odd when 1 is prime，

メタデータ	言語：
	出版者：琉球大学理工学部
	公開日： $2012-02-28$
	キーワード（Ja）：
	キーワード（En）： 作成者：Takaku，Akira，高久，章 メールアドレス： 所属：
hRL	http：／／hdl．handle．net／20．500．12000／23513

Elementary Proof of 'The Class Number of $\mathbf{Q}(\sqrt{\ell})$ is odd when ℓ is prime,

Akira TAKAKU*

1. It is well known that the class number of a real quadratic field $\mathbf{Q}(\sqrt{\ell})$ is odd when ℓ is prime. This fact readily proved by applying the genus theory for $\ell \equiv 1(\bmod 4)$ and by applying the class field theory for $\ell \equiv 3(\bmod 4)$. (Redei and Reichardt [1] treated more general cases.) In this note, we give an elementary proof without applying the class field theory in the case $\ell \equiv 3$ (mod 4). It is also possible to prove the fact in the case $\ell \equiv 1$ (mod 4) by our method. In $\S 2$ we prove some preliminary lemmas and in $\S 3$ we give our proof.

Notations: we denote by \mathbf{Z}, \mathbf{Q} the ring of rational integers and the rational number field, respectively. Let a, b be integers, then we denote by (a, b) the highest common facror of a and b.

2. Preliminary.

Let m be a positive square-free integer. Let $d=d(m)$ and $h=h(m)$ be the discriminant and the class number of a real quadratic field $K=\mathbf{Q}(\sqrt{m})$, respectively. For an integral basis of K, we take $1, \omega$ where $\omega=\sqrt{m}$ if $m \equiv 2,3$ (mod 4) and $\omega=(-1+\sqrt{m}) / 2$ if $m \equiv 1(\bmod 4)$ and we fix it. If an ideal A of K has an integral basis $a, b+c \omega(a, b, c \in \mathbf{Z})$, then we write $A=[a, b+c \omega]$. Any ideal A is expressed by a product of a rational integer and a primitive ideal. If ideals A and B are in the same class, then we denote $A \sim B$.

Lemma 1. Let $A=[a, b+\omega], B=[c, e+\omega]$ be two primitive ideals of $K=$ $\mathbf{Q}(\sqrt{m})$. Then $A \sim B$ if and only if there exists an modular transformation $\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)$ (i.e., det($\left.\left.\begin{array}{ll}p & q \\ r & s\end{array}\right)= \pm 1, p, q, r, s \in \mathrm{Z}\right)$ such that

$$
\frac{b+\omega}{a}=\left(p \frac{e+\omega}{c}+q\right) /\left(r \frac{e+\omega}{c}+s\right) .
$$

Proof. See [2,Theorem 5.27], for instance.
Let $z_{1}, z_{2} \in \mathbf{Q}(\sqrt{m})$. If there exists a modular transformation $\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)$ such that $z_{2}=\left(p z_{1}+q\right) /\left(r z_{1}+s\right)$, then we say that z_{1} and z_{2} are equivalent to each other and write $z_{1} \sim z_{2}$.

Lemma 2. Any element of $\mathbf{Q}(\sqrt{m})$ is equivalent to an element $x+y \sqrt{\bar{m}}$ of $G m$.

Here $G m$ is a set of the form $x+y \sqrt{m}$:
(Gm) $-1 / 2 \leq x<1 / 2,0<y, x^{2}-m y^{2} \leq-1$, where $-1 / 2 \leq x \leq 0$ if $x^{2}-m y^{2}=-1$.

Proof. The proof of Lemma 2 is similar to the case in which we determine a fundamental region of the modular group operating on the complex upper halfplane. See (2, Theorem 2.13), for instace.

Lemma 3. Let ℓ be a prime. If $\ell \equiv 3(\mathrm{mod} 8)(r e s p . ~ \ell \equiv 7(\bmod 8)$), then eqn $X^{2}-\ell Y^{2}=2\left(\right.$ resp. $\left.X^{2}-\ell Y^{2}=-2\right)$ has no solution.

Proof. Let $\ell \equiv 3(\bmod 8)$. Since $\left(\ell^{2}-1\right) / 8 \equiv 1(\bmod 2)$, the Kronecker symbol $(8 \mid \ell)=-1 . \ell$ is prime in a real quadratic field $\mathbf{Q}(\sqrt{2})$. Hence eqn $\ell Y^{2}=(X+\sqrt{2})(X-\sqrt{2})$ has no solution. In the case $\ell \equiv 7(\bmod 8)$, the proof is similar.

Lemma 4. If a prime $\ell \equiv 3(\mathrm{mod} 4)$, then $[2,-1+\sqrt{\ell}] \sim[1, \sqrt{\ell}]$.
Proof. We prove only the case $\ell \equiv 3(\mathrm{mod} 8)$, the proof of the case $\ell \equiv$ $7(\mathrm{mod} 8)$ is similar. Eqn $X^{2}-\ell Y^{2}=1$ has a solution $\{X, Y\}=\left\{x_{0}, y_{0}\right\}$ such that $y_{0} \neq 0$ (for example, take the fundamental unit of $\mathbf{Q}(\sqrt{\ell})$). Since $\ell y_{0}^{2}=$ $\left(x_{0}+1\right)\left(x_{0}-1\right) \neq 0$, there are integers y_{1}, y_{2} such that $y_{0}=y_{1} y_{2}$ and (i) $\ell y_{1}^{2}=x_{0}-1, y_{2}^{2}=x_{0}+1$ or (ii) $\ell y_{1}^{2}=x_{0}+1, y_{2}^{2}=x_{0}-1$. In the case (i), we have $y_{2}^{2}-\ell y_{1}^{2}=2$, but this contradicts Lemma 3. Hence the case (ii) holds. We have $y_{2}^{2}-\ell y_{1}^{2}=-2$. Put $s=y_{2}, r=y_{1}, \mathrm{p}=\left(y_{2}-y_{1}\right) / 2$ and $\mathrm{q}=\left(\ell y_{1}-y_{2}\right) / 2$. Since y_{1}, y_{2} are odd, p, q are integers. Then we have det $\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)=-1$ and $(-1+\sqrt{\ell}) / 2=(p \sqrt{\ell}+q) /(r \sqrt{\ell}+s)$. By Lemma $1,[2,-1+\sqrt{\ell}] \sim[1, \ell]$.

LEMMA 5. Let $\ell \equiv 3(\mathrm{mod} 4)$ be a prime and $A=[a,-b+\sqrt{\ell}](a \geq 3, b>$ $0)$ be an ideal of the real quadratic field $K=\mathbf{Q}(\sqrt{\ell})$. Suppose $(-b+\sqrt{\ell}) / a$ $\epsilon \mathrm{G}_{\ell}$. Then $[a,-b+\sqrt{\ell}] \sim[a, b+\sqrt{\ell}]$ if and only if the following condition (*) is satisfied. (*) Eqn $X^{2}-\ell Y^{2}=a^{2}$ has a solution $\left\{x_{0}, y_{0}\right\}$ such that (x_{0}, $\left.y_{0}\right)=1$ if a is odd, $\left(y_{0}, a\right)=2$ if a is even and
(i) $x_{0}-b y_{0} \equiv 0 \quad(\operatorname{moda} a)$,
(ii) $\ell y_{0}-b x_{0} \equiv 0(\bmod a)$.

Proof. We first prove preliminary facts in (I), (II). (I) We have $b / a<1 / 2$. In fact, if $b / a=1 / 2$, then $b^{2}-\ell \equiv 0(\bmod 2 b)$. Hence $\ell \equiv 0(\mathrm{mod} b)$ and we have $b=1$ or ℓ. If $b=1$, then $a=2$, this contradicts our assumption $a \geq 3$, If $b=\ell$, then $a=2 \ell$ and $(-b+\sqrt{\ell}) / a \notin G \ell$, this contradicts our assumption. (II) We have $\left(b^{2}-\ell\right) / a^{2} \neq-1$. In fact, if above equality holds, then $\ell=a^{2}$ $+b^{2} \equiv 1$ or $2(\bmod 4)$. Since $\ell \equiv 3(\bmod 4)$, this is impossible. From (I),
(II), we have $(b+\sqrt{\ell}) / a \in G \ell$ and $\left(b^{2}-\ell\right) / a^{2} \neq-1$. (III) Let $[a,-b+$ $\sqrt{\ell}] \sim[a, b+\sqrt{\ell}]$. Our proof is divided into three parts (A), (B), (C). (A) Let $z=(b+\sqrt{\ell}) / a$. By Lemma 1 , there exists a modular transformation $\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)$ such that $-\bar{z}=(p z+q) /(r z+s)$. Here \bar{z} is the complex conjugate of z. We have
(1) $r z \bar{z}+s \bar{z}+p z+q=0$,
hence $p=s$. Substituting $z \bar{z}=\left(b^{2}-\ell\right) / a$ and $z+\bar{z}=2 b / a$ into the formula (1), we have

$$
\begin{equation*}
-q=r \frac{b^{2}-\ell}{a^{2}}+\frac{2 p b}{a} \tag{2}
\end{equation*}
$$

Therefore $\pm 1=\mathrm{det}\left(\begin{array}{cc}p & q \\ r & s\end{array}\right)=p^{2}-q r=(p+b r / a)^{2}-\ell r^{2} / a^{2}$,i.e., p, r satisfy

$$
(a p+b r)^{2}-\ell r^{2}= \pm a^{2}
$$

Now we put $x_{0}=a p+b r, y_{0}=r$. An equation

$$
X^{2}-\ell Y^{2}= \pm a^{2}
$$

has a solution $\left\{x_{0}, y_{0}\right\}$ for one of \pm. But eqn $X^{2}-\ell Y^{2}=-a^{2}$ has no solution. In fact, if $X^{2}-\ell Y^{2}=-\mathrm{a}^{2}$ has a solution $\{X, Y\}$, then $\ell Y^{2}=(X+a$ $\sqrt{-1})(X-a \sqrt{-1})$. As $(-4 \mid \ell)=-1, \ell$ is prime in $\mathbf{Q}(\sqrt{-1})$. Hence $a \equiv 0(\mathrm{~m} \circ \mathrm{~d} \ell)$ and $\sqrt{\ell} / a<1$. Hence $(-b+\sqrt{\ell}) / a \notin G \ell$, this contradicts our assumption. Therefore $\left\{x_{0}, y_{0}\right\}$ is a solution of

$$
X^{2}-\ell Y^{2}=\mathrm{a}^{2}
$$

(B) If $\left(x_{0}, y_{0}\right)>1$, then $\left(y_{0}, a\right)=2$. Hence in this case, a is even. In fact, assume that there exists a prime ℓ_{1} such that $\ell_{1} \mid\left(y_{0}, a\right)$. We treat two cases (\mathbf{B}_{1}) $\ell_{1} \neq 2$ and $\left(\mathbf{B}_{2}\right) \ell_{1}=2$. ($\left.\mathbf{B}_{1}\right)$ Let $\ell_{1} \neq 2$. From the fromula (2) of (\mathbf{A}), we have

$$
-a q=y_{0} \frac{b^{2}-\ell}{a}+2 p b
$$

Hence $2 p b \equiv 0(\bmod \ell 1)$. We have $(a, b)=1$. In fact, if there is a prime ℓ_{2} such that $\ell_{2} \mid(a, b)$, then $b^{2} \equiv \ell\left(\bmod \ell_{2}\right)$ since $b^{2} \equiv \ell \quad(\bmod a)$. Hence $\ell 2=\ell$ and $\ell=\ell 2<|b|<2 a$. If $\ell=3$, there is not an ideal $[a,-b+\sqrt{\ell}]$ such that $a \geq 3, b>0$ and $(-b+\sqrt{\ell}) / a \in G \ell$. If $\ell \neq 3$, then we have $(-\mathrm{b}+\sqrt{\ell}) / a$ \& $G \ell$. Therefore we have $\left(p, \ell_{1}\right)=\ell_{1}$. Hence det $\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}p & q \\ y_{0} & s\end{array}\right) \equiv 0$ (mod $\ell 1$), this is a contradiction. (\mathbf{B}_{2}) Let $\ell_{1}=2$. If there exist a prime ℓ_{2} $\neq 2$ such that $\ell_{2} \mid\left(y_{0}, a\right)$, then the proof is reduced to the above case (B_{1}). We may assume that $\left(y_{0}, a\right)$ is a power of 2 . But we have $a \neq 0$ (mod 4). (In fact, if $a \equiv 0(\bmod 4)$, then we have $b^{2} \equiv \ell \equiv 3(\bmod 4)$ since $b^{2} \equiv \ell(\bmod a)$. This is impossible.) Hence $\left(y_{0}, a\right)=2$. Since $r=y_{0}$ and $a p+b r=x_{0}$, we have x_{0} $b y_{0} \equiv 0(\mathrm{mod} a)$. From (2), we have $-\ell y_{0}+2 b x_{0}-b^{2} y_{0} \equiv 0(\mathrm{mod} a)$. Hence $-\ell y_{0}+b x_{0} \equiv 0(\bmod a)$. (C) Let $\left(x_{0}, y_{0}\right)=1$, then a is odd. In fact, if a is even, we have $4(a / 2)^{2}=\left(x_{0}+y_{0} \sqrt{\bar{\ell}}\right)\left(x_{0}-y_{0} \sqrt{\ell}\right)$. Let P be a prime ideal of
$\mathbf{Q}(\sqrt{\ell})$ such that (2) $=P^{2}$, then $P^{2} \mid x_{0}+y_{0} \sqrt{\bar{\ell}}$ or $P^{2} \mid x_{0}-y_{0} \sqrt{\ell}$. In any case, we have $2 \mid\left(x_{0}, y_{0}\right)$. This contradicts our assumption. The proof that $\left\{x_{0}\right.$,y_{0}] satisfies eqns (i), (ii) of Lemma 5 is similar to the case (B). Sufficiency part of Lemma 5 is provd in § 3.

3. Proof.

By Lemma 1 and 2, we may count non equivalent ideals $A=[a, b+\sqrt{\bar{\ell}}]$ of $\mathbf{Q}(\sqrt{\ell})$ such that $a>0$ and $(b+\sqrt{\ell}) / a \in G \ell$. (i) If $b=0$ and $(-b+\sqrt{\ell}) / a \epsilon$ $G \ell$, then ideal $[a,-b+\sqrt{\ell}]=[1, \omega]$. If $a<3$ and $(-b+\sqrt{\ell}) / a \in G \ell$, then $[a,-b+\sqrt{\ell}]=[1, \omega]$ or $[2,-1+\sqrt{\ell}]$. (In fact, we have $a=1$ or 2. If $a=1$, then $|b / a| \leqslant 1 / 2$ and $b=0$. If $a=2$, then $b=0$ or $b=1$. Since $b^{2} \equiv \ell(m o d a)$, b is odd. Hence $b=1$.) By Lemma 4, $[2,-1+\sqrt{\ell}] \sim[1, \sqrt{\ell}]$,i.e., these two ideals are in the principal class. (ii) Let $[a,-b+\sqrt{\ell}]$ be an ideal such that $a \geq 3, b>0$ and $(-b+\sqrt{\ell}) / a \in G \ell$. Then if we prove

$$
[a,-b+\sqrt{\ell}] \sim[a, b+\sqrt{\ell}] \longmapsto[a,-b+\sqrt{\ell}] \sim[2,-1+\sqrt{\ell}]
$$

then our conclusion is obtained. The sufficiency part (\hookleftarrow) is obvious. To prove the necessity part (\Rightarrow), we may prove the following lemma, since the necessity part of Lemma 5 holds. The following lemma also prove the sufficiency part of Lemma 5.

Lemma 6. Let $\ell \equiv 3(\mathrm{mod} 4)$ be a prime. Let $A=[a,-b+\sqrt{\ell}]$ be an ideal of $\mathbf{Q}(\sqrt{\ell})$ such that $a \geq 3, b>0$ and $(-b+\sqrt{\ell}) / a \in G \ell$. If the condition (*) of Lemma 5 holds, then $[a,-b+\sqrt{ } \bar{\ell}] \sim[2,-1+\sqrt{\ell}]$.

Proof. Let $\left\{x_{0}, y_{0}\right\}$ be a solution of eqn $X^{2}-\ell Y^{2}=a^{2}$ which satisfies the condition (*) of Lemma 5. (I) Let a be even, i.e., $\left(y_{0}, a\right)=2$. If $a=2$, then $b=1$. Hence we may assume $a \neq 2$. We have $a \neq 0(\mathrm{mod} 4)$ since eqn $X^{2} \equiv \ell \equiv 3$ (mod 4) has no solution. From $\ell y_{0}^{2}=\left(x_{0}+a\right)\left(x_{0}-a\right) \neq 0$, there exist positive integers y_{1}, y_{2} snch that $y_{0}=y_{1} y_{2}$ and (A) $\ell y_{1}^{2}=x_{0}+\mathrm{a}, \mathrm{y}_{2}^{2}=x_{0}-a$ or (B) $\ell y_{1}^{2}=x_{0}-a, y_{2}^{2}=x_{0}+a$. We treat only about the case (A) and write (resp....) about the corresponding fact of the case (B). Since (y_{0}, a) $=2$, we have $\left(x_{0}, a\right)=2$ and $\left(y_{1}, a\right)=\left(y_{2}, a\right)=2$. We have
(3) $\quad y_{2}^{2}-\ell y_{1}^{2}=-2 a$ (resp. $y_{2}^{2}-\ell y_{1}^{2}=2 a$.)

Put $r=y_{1}, s=\left(y_{1}+y_{2}\right) / 2$. From the formula (3), y_{1} and y_{2} are both even or both odd. Hence $s \in \mathbf{Z}$. From eqn (i) of the condition (*) of Lemma 5, we have

$$
x_{0}-b y_{0} \equiv y_{2}\left(y_{2}-b y_{1}\right) \equiv 0(\bmod a)
$$

Put $a=2 a_{1}$, then we have $\left(y_{2}, a_{1}\right)=1$ since $\left(a_{1}, 2\right)=1$. Hence

$$
\begin{equation*}
y_{2}-b y_{1} \equiv 0\left(\bmod a_{1}\right) . \tag{4}
\end{equation*}
$$

From eqn (ii) of the condition (*) of Lemma 5, we have $y_{2}\left(\ell y_{1}-b y_{2}\right) \equiv 0$ (moda). Hence

$$
\begin{equation*}
\ell y_{1}-b y_{2} \equiv 0\left(\bmod a_{1}\right) . \tag{5}
\end{equation*}
$$

Put $p=(-r b-r+2 s) / a, q=(-r+2 s+r \ell-2 b s) /(2 a)$. From the formulas (4), (5), we have

$$
-r+2 s+r \ell-2 b s=y_{0}(\ell-1)+\left(y_{1}+y_{2}\right)(1-b) \equiv 0(\mathrm{mod} 4)
$$

$$
-r+2 s+r \ell-2 b s \equiv\left(\ell y_{1}-b y_{2}\right)+\left(y_{2}-b y_{1}\right) \equiv 0\left(\bmod a_{1}\right)
$$

and $-r b-r+2 s \equiv y_{2}-b y_{1} \equiv 0\left(\mathrm{mod} a_{1}\right)$,
since $y_{0} \equiv 0(\bmod 4), y_{1}+y_{2} \equiv 0(\bmod 2)$ and $1-b \equiv 0(\mathrm{mod} 2)$. Hence $p, q \in \mathrm{Z}$ since b is odd. We have $\mathrm{det}\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)=\left(y_{2}^{2}-\ell y_{1}^{2}\right) /(2 a)=-1$ (resp. $=1)$ and $(-b+\sqrt{\ell}) / a=(p z+q) /(r z+s)$, where $z=(-1+\sqrt{\ell}) / 2$. (II) In the case in which a is odd, the proof is similar to one of the case (I).

References

1. Redei, L. and Reichardt, H., Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlk"rpers, J. für reine und angew. Math. 170 (1934) 69-74.
2. Takagi, T., Shoto Seisuron Kogi (2 ${ }^{\text {nd }}$ ed.) (in Japanese) Kyoritsu, Tokyo, 1971.
