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Elementary Proof of

*The Class Number of Q(47) is odd when ¢ is prime,

Akira TAKAKU*

1. It is well known that the class numbg; of a real quadratic field Q( v/ 7) is
odd when ¢ is prime. This fact readily proved by applying the genus theory for
¢=1(mod 4) and by applying the class field theory for =3 (mod 4).
(Redei and Reichardt [1] treated more general cases.) In this note, we give an
elementary proof without applying the class field theory in the case ¢ = 3
(mo d 4). It is also possible to prove the fact in the case £=1 (mo d 4) by
our method. In §2 we prove some preliminary lemmas and in §3 we give our
proof.

NotaTions : we denote by Z,Q the ring of rational integers and the rational
number field, respectively. Let @,b be integers, then we denote by (a,b) the
highest common facror of @ and b.

2. Preliminary.

Let m be a positive square-free integer. Let d—=d(m) and h=h(m) be the
discriminant and the class number of a real quadratic field K= Q (v/m),
respectively. For an integral basis of K ,we take 1, w where o=4m if m=2,3
(mod 4) and o=(—-1+ 4/m)/2 if m=1 (mo d 4) and we fix it, If an ideal A
of K has an integral basis @, + cw (a,b,c € Z), then we write A =(g,b+c®). Any
ideal A is expressed by a product of a rational integer and a primitive ideal. If
ideals A and B are in the same class, then we denote A~B.

LEMMA 1. Let A=[ab+«] ,B={[ce+ ] be two primitive ideals of K=
Q(¥m). Then A~B if and only if there exists an modular transformation
(‘f g) (le,det (f 3 ==+ 1, pqrsel) such that

b+ _,, e+tw e+ w
7 =t/ —— + 5.

Proof. See [2,Theorem 5.27], for instance .

Let z;,2, ¢ Q(4/m). If there exists a modular transformation (I; g) such

that z, = (pz; + ¢q)/(rz; + $), then we say that z, and z, are equivalent to

2
each other and write z ~2z,.

LEMMA 2. Any element of Q( ¥m) is equivalent to an element x+y v m of Gm.,
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Here Gm is a set of the form x + yJ/m :
(Gm) —1/2<2x< 1/2,0<y, 22— my? < — 1,
where —1/2 < x < 0if 22 — my?= — 1,

Proof. The proof of Lemma 2 is similar to the case in which we determine a
fundamental region of the modular group operating on the complex upper halfplane.
See (2, Theorem 2.13), for instace.

LEMMA 3. Let ¢ be a prime. If ¢ =3 (mod 8) (resp. £=7 (mod 8)),
then eqn X2 — ¢ Y2 = 2(resp. X% — §Y2 = —2) has no solution.

Proof. Let ¢ =3(mo d 8). Since (¢2— 1)/8 = 1(mo d 2), the Kronecker
symbol (8| ¢) = —1. ¢ is prime in a real quadratic field Q(+/2). Hence eqn

£Y?= (X+ y2)(X— 47Z) has no solution. In the case 4= 7(mod 8), the
proof is similar.

LEMMA 4. If a prime ¢ =3 (mo d 4), then [2,—1+ y7]~[1,4/ 7).

Proof. We prove only the case = 3(mo d 8), the proof of the case ¢ =
7(mo d 8) is similar. Eqn X2 — ¢Y2= 1 has a solution {X Y} = {xo, 3} such
that y, = 0 (for example, take the fundamental unit of Q(+ 2)). Since 43} =
(% + 1D (%, — 1) % 0, there are integers y,,9, such that y, = y, ¥, and ()
V4 yf:xo - l,yg-:xo + lor (i) ¢y2=x, + l,ygzxo — 1. In the case
(i), we have y2 — ¢ y2 = 2, but this contradicts Lemma 3. Hence the case (ii)

holds. We have y2 — ¢y = —2. Puts=y,, r=y . P=0,—y) /2 and
q=C(4y, — ) /2. Since y,, ¥, are odd, p, ¢ are integers. Then we have d e t
(2 9) =—1and (- 1+ v2) /2=(p yZ+2) / GV + ). By Lemma

L, (2, -1+ y7] ~ [1, ¢]

LEMMA 5. Let ¢ =3 (mo d 4) be a prime and A=[a, —b+ v/ 7] (623, b>
0) be an ideal of the real quadratic field K —=Q (/7). Suppose (—b+ /7)) /a
€Gp. Then [a,—b+ vZ]~ [a, b+ 421 if and only if the following condition
(*) is satisfied. (*) Eqn X2 — (Y? = a? has a solution (x,, y,} such that (x,,
¥y) = 1if aisodd, (), @) =2 if a is even and

(i) z—by, =0 (mod a),

(i) ¢y, —bxy =0 (mod a).

Proof. We first prove preliminary facts in (I), (II). (I) We have b/a<1/2.
In fact, if b/a=1/2, then $2 — ¢ =0 (mo d 2b). Hence ¢ =0 (mo d b) and
we have b=1 or ¢. If b=1, then @a=2, this contradicts our assumption a>3.
If b=¢, then a=2¢ and (-b+4 y7) / aéGe, this contradicts our assumption.
(II) We have (82 — ¢) /a2 ¥ —1. In fac't. if above equality holds, then ¢—ga?
+b2=1or2(mod 4). Since ¢=3 (mo d 4), this is impossible. From (I),
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(1), we have (b+ ¢y2) /acG ¢ and (82 —¢) /a® * — L. (111) Let [a, — & +
VZ] ~ [@, b+ 4 Z]. Our proof is divided into three parts (A), (B), (C). (A)
Let 2z = (b+y¢) /a. By Lemma 1, there exists a modular transformation
(f g) such that — 7 = (pz+q) / (#z2+s). Here 7z is the complex conjugate of

z. We have

€] rzz+sz+ pz+4q—=0,
hence p—s. Substituting zz=(#% — ¢ )/a and z2+z=2b/a into the formula (1),
we have

b — ¢ 2
@ —g=

Therefore xl=de t (f,’ Z =p? — qr = (p+brfa) — 412 /@ i.e., p, r saiisfy
(ap+dr)t — g9r2= + a?.
Now we put xo = @p+br, yo = 7. An equation
X2 — ¢4Y2= =+ a?
has a solution (%0, yo} for one of +. But eqn X2 — g4Y2=— g2 has no
solution. In fact, if X2 — ¢ Y2 =— a? has a solution {X, Y} , then 4¥2= (X+a
V=I) (X—ay—=1). As (—41¢)=—-1, ¢ is prime in Q(4—I). Hence
¢=0 (mod ¢) and y¢/a<l. Hence (—b+ 4 7)/a&Gp, this contradicts our
assumption. Therefore {xo0, yo0} is a solution of
X2 —gY2=aZ,
(B) If (%0, 30 )>1, then (o, @) = 2. Hence in this case, 4 is even. In -fact,
assume that there exists a prime g1 such that Z1 | (90, @). We treat two cases

(B1) 1= 2and (Bz) ¢1=2. (B1) Let £1 % 2. From the fromula (2) of(A),
we have

2 —
—ag =0 " o,

Hence 2pb=0 (mo d £1). We have (g, b)=1. In fact, if there is a prime €3
such that £z | (@, &), then =¢(mo d £2) since b2=¢ (mo d a). Hence
g2=¢ and ¢ =4£2< |b]|<2a If ¢ =3, there is not an ideal [@, —b+ v 7] such

that ¢>3, >0 and (—b+ v7)/aeGe. 1f ¢ #3, then we have (—b+ v7)/a &

G¢. Therefore we have (p, £1)=2¢1. Hence de t (f g)——*d et (ﬁo g) =0
(mod ¢41), this is a contradiction. (Bz) Let £1=2. If there exist a prime £32
+2 such that g2] (y0,a), then the proof is reduced to the above case (B1). We
may assume that (0 ,a) is a power of 2. But we have g0 (mo d 4).(In fact,
if a=0 (mod 4), then we have 2=¢g=3(mod 4) since 2=¢ (mod a).
This is impossible.) Hence (s ,2)=2. Since #=yo0 and ap+br=2x0, we have xo —
byo =0 (mo d &). From (2), we have — ¢ yo +2bxo —b2y0o =0 (mo d ). Hence
— 4y +bx0o=0( mod a). (C) Let (x0 ,yo)=1, then a-is odd. In fact, if @ is
even, we have 4(a/2)2=(x0o + yo ¥ ¢) (%0 — yo +/¢). Let P be a prime ideal of
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Q (v/7¢) such that (2) =P2, then P2 [x0+y0 2 or P2 |xy— 30 2. In any
case, we have 2 | (x0 ,y0 ). This contradicts our assumption. The proof that {xo
.yo} satisfies eqns (i), (ii) of Lemma 5 is similar to the case (B). Sufficiency
part of Lemma 5 is provd in § 3.

3. Proof.

By Lemma 1 and 2, we may count non equivalent ideals A = [a, b+ 4 ¢] of
Q(v/?) such that 2>0 and (b+ v2)/a €¢G¢. (i) If b=0 and (—d+ V) /a €
G ¢, then ideal [@, =0+ v 7] = [1, @]. If a<3 and (—b+ v Z)/a € G¢, then
(@, —b+yZ]1=1[1, @]or[2 —1+ 7] (In fact, we have a=1 or 2. If a=1,
then |b/a| £1/2 and b=0. If a=2, then b=0 or b=1. Since 2 =¢ (mo d a),
b is odd. Hence b=1.) By Lemma 4, [2, —1+ /7] ~ [1, +7] .i.e. these two
ideals are in the principal class. (ii) Let [¢, —b4+ +/ 2] be an ideal such that
a>3, b>0 and (—b+ +/¢)/a € G¢. Then if we prove

(e, —b+ v 2] ~ [ab+ VE1l—la,—b+ y2] ~ [2, -1+ /7],
then our conclusion is obtained. The sufficiency part (¢=) is obvious. To prove
the necessity part (=), we may prove the following lemma, since the necessity
‘part of Lemma 5 holds. The following lemma also prove the sufficiency part of
Lemma 5.

LEMMA 6. Let ¢ =3 (mo d 4) be a prime. Let A = [a, —b+ 4 ¢] be an
ideal of Q (¥ 7) such that a =23, b>0 and (=b+y?)/a ¢ G¢. If the
condition (*) of Lemma 5 holds, then [(a, —b+ v 2] ~ [2, —14+ 4/ Z ]

Proof. Let ({xo0,y} be a solution of eqn X2 — ¢ Y2 =q2 which satisfies the
condition (*) of Lemma 5. (I) Let a be even, i.e., (30,8) = 2. If a=2, then
b=1. Hence we may assume g+2. We have a0 (mo d 4) since eqn X2 = ¢ =3
(mo d 4) has no solution. From £yZ = (%0 +a)(%0 —a) # 0, there exist
positive integers y1,y2 snch that yo = y1 52 and (A) ¢y} = 20+ a,y2 = %0 —a
or (B) ¢ y = %0 — a3 = % + a. We treat only about the case (A) and write
(resp. ...) about the corresponding fact of the case (B). Since (30 ,0) = 2, we
have (x0, a)=2 and (31 ,8) =(y2,a) = 2. We have
@ . 32— 05 = —2a (resp. 3} — £ = 2a)

Put r = 31,5 = (1 + ¥2) /2. From the formula (3), y1 and y2 are both even or

both odd. Hence s € Z. From eqn (i) of the condition (*) of Lemma 5, we have
x—by=y:(02—byn)=0(mod a).

Put a=2a1 , then we have (¥2,a1) = 1 since (a1 ,2) = 1. Hence

@. »—-bn=0(mod am).

From eqn (i|i) of the condition (*) of Lemma 5, we have y2(4y1— by2) =0

(mod a). Hence

G én-by=0(mod a).
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Put p = (—7b—r+2s) /a,q=(—7+2s+r £ —2bs)/(2a). From the formulas (4), (5),
we have
—r+2s+70 —2bs=y0 (4 —1+On + y2) (1-b) = 0 (mod 4),
—r+2+rg—2bs=(n—-by»)+ (2—-dn)=0(mod &)
and —7b—r+4+2s=y2 —dbn =0 (mod @ ),
since Y0 =0(mod 4,y +y=0(mod 2)and1 —b=0(mo d 2). Hence
p,q € Z since b is odd. We have de t (f g = (¥2 — 25D /(28) =—1 (resp,

= 1) and (—=b+ v ¢)/a=(pz+q)/(rz+s), where 2=(—1+ ¢ ¢)/2. (II) In the case
in which g is odd, the proof is similar to one of the case (I).
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