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Elementary Proof of 

'The Class Number of Q( ";i) is odd when £ is prime. 

Akira TAKAKU* 

1. It is well known that the class numb:; of a real quadratic field Q( ";t) is 
odd when £ is prime. This fact readily proved by applying the genus theory for 

£ == 1 (m 0 d 4) and by applying the class field theory for £ == 3 (m 0 d 4)" 

(Redei and Reichardt [lJ treated more general cases.) In this note, we give an 

elementary proof without applying the class field theory in the case £' = 3 

(m 0 d 4). It is also possible to prove the fact in the case £ =1 (m 0 d 4) by 

our method. In § 2 we prove some preliminary lemmas and in § 3 we give our 

proof. 

NOTATIONS: we denote by Z,Q the ring of rational integers and the rational 

number field, respectively. Let a,b be integers, then we denote by (a,b) the 

highest common facror of a and b. 

2.. Preliminary. 

Let m be a positive square-free integer. Let d=d(m) and h hem) be the 

discriminant and the class number of a real quadratic field K =Q ( -1m), 
respectively. For an integral basis of K,we take 1, w where w=";m if m == 2,3 

(m 0 d 4) and w=( -1 + ,Jm)/2 if m==l (m 0 d 4) and we fix it. If an ideal A 
of K has an integral basis a,b + cW(a,b,c€ Z), then we write A=(a,b+c w ). Any 

ideal A is expressed by a product of a rational integer and a primitive ideal. ~f 

ideals A and B are in the same class, then we denote A ...... B. 

LEMMA 1. Let A= [a,b+ w J ,B= [c,e+ wJ be two primitive ideals of K = 

Q( ,,;m). Then A-B if and only i/ there exists an modular trans/ormation 

(f :) (i.e., d e t (~ ~) = ± 1, p,q,r,s f Z) such that 

b + w = (P e + w + q)/Cr e + Cl) + s). 
a c c 

Proof See [2, Theorem 5. 27J , for instance. 

Let ZI, z2 f Q( ,Jm). If there exists a modular transformation (P q) such r .s 
that %2 = (pz1 + q) / (1Z1 + s), then we say that %1 and z2 are equivalent to 

each other and write %1 ,..., %2 • 

LEMMA 2. Any element 0/ Q( -1m) is equivalent to an element x+y";m of Gm .. 
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'II'" This is the class number in wide sense. 
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Here Gm is a set of the form x + y../1ii : 

(Gm) -1/2 ~ x < 1/2, O<y, x2 - my2 ~ - 1, 

where -1 / 2 ~ x ::;;; 0 if x2 - my2 = - 1. 

Proof. The proof of Lemma 2 is similar to the case in which \ve determine a 

fundamental region of the modular group operating on the complex upper halfplane. 

See (2, Theorem 2.13), for instace. 

LEMMA 3. Let " be a prime. If t == 3 (m 0 d 8) (resp. ,,== 7 (m 0 d 8)), 

then eqn }(2 - e Y2 = 2eresp. X 2 - e Y2 == - 2) has no solution. 

Proof. Let e =3(m 0 d 8). Since (£ 2 - 1)/8 == I(m 0 d 2), the Kronecker 

symbol (8 I £) = -1. e is prime in a real quadratic field Q( ../"2). Hence eqn 

e Y2 = eX + ../"2) ex - ../"2) has no solution. In the case e = 7(m 0 d 8), the 

proof is similar. 

LEMMA 4. I/aprime £=3 (roo d 4), then [2,-I+"/1J-[I,vlJ. 
Proof. We prove only the case e == 3(m 0 d 8), the proof of the case £ == 

7(m 0 d 8) is similar. Eqn X2 - £ y2 = 1 has a solution {X,Y} == {xo, YO} such 

that Yo ~ 0 (for example, take the fundamental unit of Q( V f) ). Since e Y~ == 
(xo + 1) (xo - 1) ~ 0, there are integers Yl' Y2 such that Yo == Y1 Y2 and (i) 

e ,Yf==zo - l,y~ == %0 + 1 or (ii) eYr=xo + 1, Y~=Xo - 1. In the case 

(i), we have Y~ - e yf = 2, but this contradicts Lemma 3. Hence the case (ii) 

holds. We have Y~ - ey¥ = -2. Put S=Y2' r=Yl' P = (Y2 - Yl) /2 and 

q = ( e Yl - Y2) / 2. Since Yl ' Y2 are odd, p, q are integers. Then we have d e t c: ;) == - 1 -and (- 1 + v t) /2= (P -If +q) / (1' vi + s). By Lemma 
1, [2, -1+ "/i] - [I, e J. 

LEMMA 5. Let e =3 (m 0 d 4) be a Prime and A=[a, -b+ ../fJ (a~3, b> 

0) be an ideal of the real quadratic field K = Q (../f). Suppose (-b+ vi) / a 
f G.e. Then [a, - b + -Ii] - [a, b+ Ji] if and only if the following condition 

(*) is satisfied. (*) Eqn X2 - e Y2 == a2 has a solution {xo' Yo} such that (xo' 

Yo) = 1 if a is odd, (Yo' a) =2 if a is even and 

(i) %0 - byo == 0 (m 0 d a) , 

(ii) e Yo - bxo == 0 (m 0 d a). 

Proof. We first prove preliminary facts in (I), (II). (I) We have b/a < 1/2. 

In fact, if b/a=1/2, then b2 - t =0 (m 0 d 2b). Hence t = 0 (m 0 d b) and 

we have b=1 or e. If 11=1, then a=2 , this contradicts our assumption a~3. 

If b== e, then 0=2 t and (-b+ -11) / a~G l', this contradicts our assumption. 

(II) We have (b2 - t) /a2 ~ -1. In fact. if above equality holds. then t =a2 

+b2 = 1 or 2 (m 0 d 4). Since ~ =3 em 0 d 4), this is impossible. From (I), 
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(II), we have (b+ ~f"l) /a € G e and (b2 - e) /a2 :\= - 1. (III) Let [a, - b + 

JeJ - [a, b+ JiJ. Our proof is divided into three parts (A), (B), (C). (A) 

Let z = (b+ -Ie) / a. By Lemma 1, there exists a modular transformation 
(p q) such that - z = (pz+q) / (1'z+s). Here z is the complex conjugate of 

.1' s 

z. We have 

(1) rzz+sz+ pz+q=O, 
hence p s. Substituting zz=(b2 - e )/a and z+z=2b/a into the formula (1), 

we have 
b2 - e 2pb 

(2) - q=1' 2 +-. a a 
Therefore ± 1 = d e t Ct i)_p2 - q1' = (p+b1'/a)2 - .8 y2 /a2 , i.e., p, l' satisfy 

Cap+br)2 - e 1'2 = ± a2 • 

Now we put Xo = ap+br, yo = r. An equation 

X 2 - e Y2= ± a2 

has a solution {xo, yo} for one of ±. But eqn X2 - .8 y2 = - a2 has no 

solution. In fact, if X2 - .8 y2 = - a2 has a solution {X, YJ , then t Y2 = (X +a 

J-=l) (X -a J~). As (-4 It) = - I, t is prime in Q( J-=1). Hence 

a=O (m 0 de) and Je /a< 1. Hence (-b+ -Je)/a6;,G£, this contradicts our 

assumption. Therefore {xo, yo} is a solution of 

X2 - e y2= a2 • 

(B) If (xo , yo ) >1, then (yo , a) = 2. Hence in this case, a is even. In· fact, 

assume that there exists a prime .8 1 such that tl I (yo, a). We treat two cases 

CHI) t 1 =\:: 2 and (Hz) t 1 = 2. (HI) Let .8 1 :\= 2. From the fromula (2) ofCA), 

we have 
b2- e 

- aq = yo -a-+ 2pb. 

Hence 2pb=0 (m 0 d .8 1). We have (a, b)=1. In fact, if there is a prime £2 

such that £2 I (a, b), then b2== t Cm 0 d £z) since b2 ==.8 (m 0 d a). Hence 

£2 = e and e = £2< I b 1 < 2a. If t =3, there is not an ideal [a, -b+ Ji] such 

that a~3, b >0 and (-b+ Jc)/af:G e. If e =1=3, then we have (-b+ .Je)/a Ifc 

G.e. Therefore we have (P, il)=£I. Hence de t ct ~)=d e t (to i) ==0 

em 0 del), this is a contradiction. (B2) Let il=2. If there exist a prime i2 

*2 such that t 21 (yo ,a), then the proof is reduced to the above case (BI). We 

may assume that (Yo ,a) is a power of 2. But we have a:t:O Cm 0 d 4). (In fact, 
if a==O (mod 4), then we ha~e b2 == t =3 (m 0 d. 4) since b2 == t Cm 0 d a). 

This is impossible.) Hence (yo ,a)= 2. Since r=yo and ap+br=xo , we have Xo -

byo =0 (m 0 d a). From (2), we have - t yo +2bxo -b2 yo =0 Cm 0 d a). Hence 

- t yo + bxo = OC mod a). (C) Let exo ,yo)= 1, then a-is odd. In fact, if a is 

even, we have 4 (a/2)2= (xo + yo Je) (xo - yo -It). Let P be a prime ideal of 
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Q (-Il) such that (2) =P2 , then p2 I Xo + yo -11 or p2 I Xo - yo -11. In any 

case, 'we have 2 I (xo ,yo). This contradicts our assumption. The proof that {xo 

,yo} satisfies eqns (i), (ii) of Lemma 5 is similar to the case (B). Sufficiency 
part of Lemma 5 is provd in § 3. 

S. Proof. 

By Lemma 1 and 2, we may count non equivalent ideals A = [a, b+ -liJ of 

Q( -11) such that a >0 and (b+ -11) / a f: G t. (i) If b=O and (-b+ -11) / a £ 

G t, then ideal [a, -b+ -I1J = [1, CIJ J. If a<3 and (-b+ -If) /a f: G t, then 

[a, -b+ -I1J = [1, CIJ J or [2, -1+ .viJ. (In fact, we have a= 1 or 2. If a= 1, 

then I b/a I ~ 1/2 and b=O. If a=2, then b=O or b= 1. Since b2 = t (m 0 d a), 

b is odd. Hence b= 1.) By Lemma 4, [2, -1+ -I1J - [1, -IfJ ,i.e., these two 
ideals are in the principal class. (ii) Let [a, -b+ -I1J be an ideal such that 

a~3, b>O and (-b+ -If)/a E G t. Then if we prove 

[a, -b+ "lJ - [a,b+ "lJ~[a,-b+ -I1J - [2, -1+ -I1J, 
then our concl usion is obtained. The sufficiency part (¢:3) is obvious. To prove 

the necessity part (c::», we may prove the following lemma, since the necessity 

'part of Lemma 5 holds. The following lemma also prove the sufficiency part of 

Lemma 5. 

LEMMA 6. Let t =3 (m 0 d 4) be a prime. Let A = [a, -b+ -I1J be an 

ideal of Q (.vi) such that a ~3, b >0 and (-b+ -11) /a f: G e. If the 

condition .C*) of Lemma 5 holds, then [a, -b+ -IIJ - [2, -1+ "lJ. 

Proof. Let {xo ,yo} be a solution of eqn X 2 - t Y2 =a2 which satisfies the 

co'ndition (*) of Lemma 5. (1) Let a be even, i.e., (yo ,a) = 2. If a= 2, then 

b= 1. Hence we may assume a*2. We have a~O (m 0 d 4) since eqn X2 = t =3 

(m 0 d 4) has no solution. From t Y5 = (xo + a)(xo - a) * 0, there exist 

positive integers Yl ,Y2 snch that yo = Yl Y2 and (A) e yj = Xo + a,y~ = xo - a 

or CB) t · yf = Xo - a,yi = %0 + a. We treat only about the case (A) and write 

(resp •..• ) about the corresponding fact of the ' case (B). Since (yo ,a) = 2, we 

have (xo, a)=2 and (YI,a) =(Y2 ,a) = 2. We have 

(3) , y~ - t yf = .-2a Crespo y~ - £ yf = 2a.) 

Put r = Yl ,s = (Yl + Y2) /2. From the formula (3), YI and Y2 are both even or 

both odd. Hence s E Z. From eqn (i) of the condition C*) of Lemma 5, we have 

%0 - byo = Y2 (Y2 - bYl) = 0 Cm 0 d a). 
Put a= 2al , then we have (Y2 ,al) = 1 since Cal ,2) = 1. Hence 

(4) . ' Y2 - bYl == 0 (m 0 d al). 

From eqn (i,i) of the condition (*) of Lemma 5, we have Y2 ( t YI - bY2) = 0 

(~,o d a). Hence 

(5) t YI - bY2 = 0 (m 0 d al). 
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Put p = (-rb-r+2s) /a,q=( -r+2s+r i -2bs)/(2a). From the fonnulas (4), (5), 

we have 

-r+2s+r e -2bs=yo (.e -1)+(Yl + .12) (I-b) == 0 (m 0 d 4), 

-r+2s+re -2bs==(tYl - bY2) + (Y2 - bYl) == 0 (rna d al) 

and -rb-r+2s==Y2 - bYl == 0 (m 0 d a}), 

since Yo == 0 (m 0 d 4), Yl + Y2 == 0 (m 0 d 2) and 1 - b == 0 (m 0 d 2). Hence 

p, q € Z since b is odd. We have d e t Ct ~) = (Yi - t.1P/(2a) =-1 (resp. 

= 1) and (-b+ Ji)/a=(pz+q)/(rz+s), where z=( -1+ -17)/2. (II) In the case 

in which a is odd, the proof is similar to one of the case (I). 
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