琉球大学学術リポジトリ
Tangent Cones and Multiplicities of Analytic Spaces

メタデータ	言語：
	出版者：琉球大学理工学部
	公開日： $2012-02-28$
	キーワード（Ja）：
	キーワード（En）： 作成者：Kato，Mitsuo，加藤，満生 メールアドレス： 所属：
hRL	http：／／hdl．handle．net／20．500．12000／23514

Tangent Cones and Multiplicities of Analytic Spaces

Mitsuo Kato*

Introduction. Let X be au analytic set in an open set in C^{n} and Y an analytic subset of X. In Whitney [6] various tangent cones of X at a point x of X and a tangent cone relative to Y are defined. In the case when X is equidimentional and Y smooth, Hironaka [3] states that for $p: C X, Y \rightarrow Y$, the normal cone of Y in X, the equality $\operatorname{dim} p^{-1}(y)=\operatorname{dim} X$ implies the equimultipleness of X along Y near y.

In § 1 we characterize, for an equidimentional analytic set X, the equimultipleness of X along Y in tangent cone $K(X, Y)$ relative to Y (defined as an analytic cycle in $\left.C^{n} \times C^{n}\right)$. That is, if $K(Y, X)_{y}$ denotes the cone in C^{n} defined by $\left((y) \times C^{n}\right) \cap|K,(Y ; X)|=(y) \times K(Y, X) y$ where $|K(Y, X)|$ denotes the support of $K(Y, X)$, then the equimultipleness of X is equivalent to the fact that $\operatorname{dim} K(Y, X) y=\operatorname{dim} X$ for all $y \in Y$. In this case we have, for $y \in Y, K(Y, X)_{y}=\left|C(X)_{y}\right|$ where $C(X)_{y}$ is the tangent cone of X at y (defined as an analytic cycle in C^{n}) (1.6).

In § 2 we make use of the concept of normal cones in order to give another proof of a theorem on the analytic integral dependence which is stated and proved in Hironaka [2] and in Scheja [5] (see (2.3)). We also show that, given an ideal I in O_{n}, there is a well defined natural number m such that if $f \in O_{n}$ is integral over I, then f satisfies an integral equation over I of degree m.
(1.1). We recall some notations in the analytic intersection theory (cf. Draper (1)). C^{n} denotes the complex number space of dimention n, On denotes the local ring of local holomorphic functions at the origin o of C^{n}. Let X be an equidimentional analytic set of dimention d in an open set U in C_{n} with $o \in X$ and L a linear subspace of C^{n} defined by linearly independendent linear equations $p_{1}(x)=0, \cdots, p_{d}(x)=0$. For $x \in C^{n}$, we let $x+L$ denote the affine

Received Oct. 31, 1974

* Dept. of Math. Sci. \& Eng. Div., Univ. of the Ryukyus
subspace $\left\{x+x^{\prime}: x^{\prime} \in L\right\}$. If, for $x \in X, X \cap(x \div L)=\{x\}$ locally around x, then the intersection number i $(X, x+L ; x)$ is defined to be the covering multiplicity at x of the map $p=\left(p_{1}, \cdots, p_{d}\right): X \rightarrow C^{d}$, that is, the number of points in $U^{\prime} \cap p^{-1}(a)$, where U^{\prime} is a neighbourhood of x in $C^{n 2}$ with U^{\prime}, $\cap(X \cap(x+L))=\{x\}$ and $a=\left(a_{1}, \cdots, a_{d}\right)$ is a generic point close to $p(x)$. Put $m(X, x)=\inf \{i(X, x+L ; x): L\}$, which is called the multiplicity of X at x.

Let A be an affine subspace of C^{n} and Y a proper compornent of $X \cap A$, that is, Y is an irreducible compornent of $X \cup A$ with $\operatorname{dim} Y=d-\operatorname{codim} A$. Let $x \in Y$ be a regular point of $X \cap A, B$ an affine subrpace of codimenion $=\operatorname{dim} Y$, which intersects with Y transversally at x (then $X \cap A \cap B=\{x\}$ locally). Then $i(X, A ; Y)$ is defined to be $i(X, A \cap B ; x)$ which is independent of the choices of x and B. If Y is not a proper compornent of $X \cap A$, then we define $i(X, A ; Y)=0$.

An element $\left(a_{V}\right)$ of the direct product $\pi_{V} Z_{V}$, where π ranges all the irreducible analytic sets V in U and Z_{V} is the group of the integers for each V, is called an analytic cycle if $\left\{V: a_{V} \neq 0\right\}$ is locally finite in U, and in this case we denote this cycle as $\Sigma a_{V} V$ and in this case the analytic set $\cup\left\{V: a_{V} \neq 0\right\}$ is called the support of $\Sigma a_{V} V$ which is denoted by $\left|\Sigma a_{V} V\right|$. We identify an analytic set A with the analytic cycle ΣV, where Σ ranges all the irreducible compornents of A.

For an irreduçible analytic set V in U and an affine subspace L of C^{n}, the intersection product $V \cdot L$ is defined to be the analytic cycle $\Sigma i(V, L ; Y) Y$ in U where Σ ranges all the proper components Y of $V \cap L$. For an analytic cycle $\Sigma a_{\mathrm{v}} V$, an affine subspace L and an irreducible analytic set Y in U, we define $i\left(\Sigma a_{\mathrm{V}} V, L ; Y\right)=\Sigma a_{\mathrm{v}} i(V, L ; Y)$,
$\left(\Sigma a_{\mathrm{v}} V\right) \cdot L=\Sigma a_{\mathrm{v}} V \cdot L=\Sigma_{\mathrm{w}} i\left(\Sigma a_{\mathrm{v}} V, L ; W\right) W$. For equidimentional analytic set X, this definition of the intersection number coincides with the previous one. For an analytic cycle $\Sigma a_{\mathrm{v}} V$ and affine subspaces L, M, we have $\left(\Sigma a_{\mathrm{v}} V\right) \cdot(L \cdot M)$ $=\left(\left(\Sigma a_{\mathrm{v}} V\right) \cdot L\right) \cdot M$.
(1.2) Let X be an equidimenetional analytic set of dimention d, $o \in X \subset U \subset C^{\mathrm{n}}$ as in (1.1), and $o \in Y$ an analytic subset of X, Let $K^{*}(Y, X)$ denote the closure of $\left\{(y, x, z) \in U \times C^{\mathrm{n}} \times C: y \in Y, z \neq 0, y+z x \in X\right\}$ in $U \times C^{\mathrm{n}} \times C$ The analytic cycle $K(Y, X)$ in $U \times C^{\text {n }}$ defined by $K^{*}(Y, X) \cdot\left(C^{2 n} \times(0)\right)=K(Y, X) \times(0)$ is called the thangent cone relative to Y. It is clear that $\mid K(Y, X)!\subset Y \times C^{n}$.

For $x \in X$, the analytic cycle $C(X)_{\mathrm{x}}$ in C^{n} defined by $K(\{x\}, X)=(x) \times C(X)_{\mathrm{x}}$ is called the tangent cone of X at x. For $y \in Y$, we define the cone $K(Y, X)_{y}$ in C_{n} by $\left((y) \times C^{\mathrm{n}}\right) \cap|K(Y, X)|=(y) \times K(Y, X)_{y}$. Then $\operatorname{dim} K(Y, X)_{\mathrm{y}} \geq d$, since $K(Y, X)_{\mathrm{y}} \supset K(\{y\}, X)_{\mathrm{y}}=\left|C(X)_{\mathrm{y}}\right|$ and $\operatorname{dim}\left|C(X)_{\mathrm{y}}\right|=d$ (Whitney [6]).

The defininition of $C(X)_{\mathrm{x}}$ is given in Draper (1). The set-theoretical definitions (not as cycles) of the above cones are given in [6]. It is proved in (1) that, for $x \in X$ and a linear subspace M of C^{n} of codimention d such that X and $x+M$ meet properly at x (hence $X \cap(x+M)=\{x\}$), the equality $i(X, x+M ; x)=m(X, x)$ holds if and only if $\left|C(X)_{\mathrm{x}}\right|$ and M meet properly at o (i.e., $\left|C(X)_{\mathrm{x}}\right| \cap M=\{o\}$), and in this case we have $i\left(C(X)_{\mathrm{x}}, M ; o\right)=m(X, x)$.

By the curve selection lemma (Milnor (4))applied to $K^{*}(Y, X)$, we know that $x \in C^{\mathrm{n}}$ is contained in $K(Y, X)_{y}$ for $y \in Y$ if and only there exist real analytic curves $y(t), x(\mathrm{t}), z(\mathrm{t}),-1<t<1$, on Y, X, C, respectively, such that $y(0)=x(0)=y, \quad z(0)=0, z(t) \neq 0$ for $t \neq 0$, and the ratio $(x(t)-y(t)) / z(t)$ converges to x as t goes to O.
(1.2). Let X, Y be as in (1,2). We denote the coordinates of $C^{\mathrm{n}} \times C^{\mathrm{n}} \times C$ by (y, x, z). As usual, we let $O_{\mathrm{n}}\{x\} \subset O_{2 \mathrm{n}}\{y, x\}$, and $O_{2 \mathrm{n}}\{y, x\} \subset O_{2 \mathrm{n}+1}\{y, x, z\}$. For $f(y, x) \in O_{2 \mathrm{n}} / I\left(Y \times C_{\mathrm{n}}\right)$, expanding $f(y, y+x)$ as $\Sigma_{\mathrm{i}} f_{\mathrm{i}}(y, x)$, where f_{i} is homogeneous in x of degree i, we define the non-negative integer $r(f)$ so that $f_{\mathrm{r}(\mathrm{f})} \in I\left(Y \times C^{\mathrm{n}}\right)$ and $f_{\mathrm{i}} \in I\left(Y \times C^{\mathrm{n}}\right)$ for $i<r(f)$. We let $\left\{f 〕=f_{\mathbf{r}(\mathrm{f})}\right.$. For $f \in I\left(Y \times C^{\mathrm{n}}\right)$, we put $r(f)=\infty,\{f 〕=0$.

In Whitney [6], it is shown that $\left|C(X)_{0}\right|$ is the set of common zeros of initial forms f^{*} of all $f \in I(X)$, and that, for a hypersurface $X=\{x: f(x)$ $=0\}$, we have $\left|C(X)_{0}\right|=\left\{x: f^{*}(x)=0\right\}$. We will generalize this result as follows.

Proposition. Let $I(Y, X)$ denote the image of $I\left(K^{*}(Y, X)\right)$ by the natural epimorqhism of $O_{2 \mathrm{n}+1}$ onto $O_{2 \mathrm{n}}$ with the kernel $(z) O_{2 \mathrm{n}+1}$. Then

1) $I(Y, X)$ is generated in $O_{2 \mathrm{n}}$ by $I\left(Y \times C^{\mathrm{n}}\right)$ and $\{[f\}: f \in I(Y \times X)\}$.
2) If Y is irreducible, $I(Y, X)$ is generated by $I\left(Y \times C^{\mathrm{n}}\right)$ and $\{[f]$: $f \in I(X)\}$.
3) If Y is irreducible and X is a hypersurface with $I(X)=(f) O_{\mathrm{n}}$, then $I(Y, X)$ is generated by $I\left(Y \times C^{\mathrm{n}}\right)$ and $[f]$.
4) If Y is irreducible and $X=\{x: f(x)=0\}$ is a hypersurface, then we have

$$
|K(Y, X)|=\{(y, x): y \in Y,[f](y, x)=0\} .
$$

Proo f : If is clear that $I\left(Y \times C^{\mathrm{n}}\right) \subset I\left(K^{*}(Y, X)\right)$. Let $f(y, x)$ be in $I(Y \times X) / I\left(Y \times C^{\mathrm{n}}\right)$, then $g(y, x, z)=f(y, y+z x)$ is in $I\left(K^{*}(Y, X)\right)$ and is congruent to $z^{\mathbf{r}(f)}\left([f]+z g^{\prime}(y, x, z)\right)$ modulo $I\left(Y \times C^{\mathbf{n}}\right), g^{\prime} \in O_{2 \mathrm{n}+1}$. Since z is not in any prime divisor of $I\left(K^{*}(Y, X)\right),[f]+\boldsymbol{z g} g^{\prime}$ is in $I\left(K^{*}(Y, X)\right)$. Hence $[f]$ is in $I\left(K^{*}(Y, X)\right)+(z) O_{2 n+1}$.

Suppose now that $h(y, x, z)$ is in $I\left(K^{*}(Y, X)\right)$. Expand h as $\Sigma a_{\mathrm{IJK}} y^{1} x^{\mathrm{j}} z^{\mathrm{K}}$, where $I=\left(i_{1}, \cdots, i_{\mathrm{n}}\right), J=\left(j_{1}, \cdots, j_{\mathrm{n}}\right)$ are multi-indices. Put $h_{\mathrm{m}}(y, x, z)=$ $\Sigma_{|\mathrm{J}|=\mathrm{k}+\mathrm{m}{ }^{2} \mathrm{JJK}} y^{\mathrm{I}} x^{\mathrm{J}} z^{\mathrm{K}}$, where $|J|=j^{1}+\cdots+j^{\mathrm{n}}$, and $h^{(\mathrm{m})}(y, x)=h^{\mathrm{m}}(y, x, 1)$, then ord $_{\mathrm{x}} h^{(\mathrm{m})} \geq m$ and $h_{\mathrm{m}}(y, x, z)=h^{(\mathrm{m})}(y, z x) z^{-\mathrm{m}}$. For $0 \neq a \in C, h\left(y, a x, a^{-1} z\right)=$ $\Sigma a^{\mathrm{m}} h_{\mathrm{m}}(y, x, z)$ and we have that $h_{\mathrm{m}} \in I\left(K^{*}(Y, X)\right)$. Put $h_{\mathrm{m}}^{\prime}(y, x)=h^{(\mathrm{m})}(y, x-y)$ then $h_{\mathrm{m}}^{\prime} \in I(Y \times X)$ and $h^{(\mathrm{m})}(y, x)=h_{\mathrm{m}}^{\prime}(y, y+x)$. If ord $\boldsymbol{x} h^{(\mathrm{m})}>m$ then $h_{\mathrm{m}} \in(z) O_{2 \mathrm{n}+1^{-}}$If $\operatorname{ord}_{\mathrm{x}} h^{(\mathrm{m})}=m$ then $h_{\mathrm{m}}(y, x, 0)$ is the initial form of $h^{(\mathrm{m})}(y, x)$ with respect to x. And if the initial form is not in $I\left(Y \times C^{\mathbf{n}}\right)$, then it is equal to $\left[h_{\mathrm{m}}^{\prime}\right]$. We thus conclude that, for each m, h_{m} is in the ideal of $O_{2 \mathrm{n}+1}$ generated by $I\left(Y \times C^{\mathrm{n}}\right)$, $\{[f]: f \in I(Y \times X)\}$ and $(z) O_{2 \mathrm{n}+1}$, and so is h since an ideal is closed by the uniform convergence (or the maximal ideal adic topology). This proves 1).

Any g in $I(Y \times X)$ is of the from $g^{\prime \prime}(y, x)+g^{\prime}(y, x) f(x)$ with $g " \in I\left(Y \times C^{\mathrm{n}}\right), \quad f \in I(X)$. In this case $r(g)=r\left(g^{\prime} f\right)$. Recall that $r(g)$ is the order of g, considered as an element of the ring ($O_{\mathrm{n}}[y] / I(Y)$) [$\left.[x]\right]$ of formal power series with coefficients in $O_{\mathrm{n}}\{y\} / I(Y)$. So if Y is irreducible, $r(g)=r\left(g^{\prime}\right)+r(f)$ and consequently $[g]$ is congruent to $[g][f]$ modulo $I\left(Y \times C^{\mathrm{n}}\right) . \quad$ This proves 2) and 3).

In the case of 4) let $g(z)$ be a generator of $I(X)$. Take a natural number k and functions $g^{\prime}(x), f^{\prime}(x)$ such that $f=g g^{\prime}, g^{k}=f f^{\prime}$, then by the above argument $[f]$ is congruent to $[g]\left[g^{\prime}\right)$ and $[g]^{\mathbf{k}}$ to $[f]\left[f\right.$ '] modulo $I\left(Y \times C^{\mathbf{n}}\right)$. This proves 4), since $|K(Y, X)|$ is the set of common zeros of functions in $I(Y, X)$.
(1.4). Let X, Y be as in (1.2). If $\operatorname{dim} K(Y, X)_{o}=d$, then X is equimultiple along Y near o.

Proof: Let $Y=\cup Y_{\mathbf{i}}$ be the irreducible decomposition, then $K(Y, X)_{0}=$ $\cup K\left(Y_{\mathrm{i}}, X\right)_{\mathrm{o}}$, hence $\operatorname{dim} K\left(Y_{\mathrm{i}}, X\right)_{\mathrm{o}}=d$ for all i with $o \in Y_{\mathrm{i}}$. Consequently we may assume that Y is irreducible in U (hence equidimentional). Then $K^{*}(Y, X)=$ $d+r+1$, is also equidimentional. By a coordinate linear tranceformation of C^{n}, if necessary, we may assume that the linear subspace $L=\left\{x: x_{1}=\cdots=x_{\mathrm{r}}=0\right\}$ intersects with Y and the linear subspace $M=\left\{x: x_{1}=\cdots=x_{d}=0\right\}$ with $K(Y, X)$ 。 properly at o, respectively. By contracting U, if necessary, we may also assume that, for any affine subspace L, parallel to and close to L, we have $Y \cap L^{\prime}=\left\{y^{1}, \cdots, y^{\mathbf{k}}\right\} \quad$ with

1) $\Sigma \mathrm{i}\left(Y, L^{\prime} ; y^{\mathbf{j}}\right)=\mathrm{i}(Y, L ; o) . \quad$ Suppose
2) $K(Y, X) \cdot\left(L^{\prime} \times C^{\mathrm{n}}\right)=\Sigma_{\mathrm{j}} \mathrm{i}\left(Y, L^{\prime} y^{\mathrm{j}}\right)\left(y^{\mathrm{j}}\right) \times C(X)_{\mathrm{y}^{\mathrm{j}}} \quad$.

Then $K(Y, X) \cdot\left(L^{\prime} \times M\right)=\Sigma_{j} i\left(Y, L^{\prime} ; y^{\mathbf{j}}\right) m\left(X, y^{\mathbf{j}}\right)\left(\left(y^{\mathbf{j}}\right) \times(0)\right)$ because $i\left(C(X)_{\mathbf{y}} \mathbf{j}, M ; 0\right)=$ $m\left(X, y^{\mathbf{j}}\right) \quad(1,2)$. Since $\Sigma_{\mathrm{j}} i\left(K(Y, X), L^{\prime} \times M ;\left(y^{\mathbf{j}}, o\right)\right)$ remains constant when L ' moves, we have
3) $\Sigma_{\mathrm{j}} \mathrm{i}\left(Y, L^{\prime} ; y^{\mathrm{j}}\right) m\left(X, y^{\mathrm{j}}\right)=i(Y, L ; o) m(X, o)$.

The upper semicontinuity of the multiplicity $m\left(X, y^{j}\right) \leqq m(X, o)$ together with 1) and 3) shows the equalities $m\left(X, y^{j}\right)=m(X, o)$ for $1 \leq j \leq k$. Since L^{\prime} is arbitrary, $m(X, y)=m(X, o)$ for all $y \in Y$ close to o.

We now prove 2). Since $\left(K(Y, X) \cdot\left(L^{\prime} \times C^{\mathrm{n}}\right)\right) \times(0)=(K(Y, X) \times(0)) \cdot\left(L^{\prime} \times\right.$ $\left.C^{\mathrm{n}} \times C\right)$, and $K(Y, X) \times(0)=K^{*}(Y, X) \cdot\left(C^{2 \mathrm{n}} \times(0)\right)$, we have
4) $\left.\left(K(Y, X) \cdot\left(L^{\prime}\right) \times C^{\mathrm{n}}\right)\right) \times(0)=\left(K^{*}(Y, X) \cdot\left(L^{\prime} \times C^{\mathrm{n}} \times C\right)\right) \cdot\left(C^{2 \mathrm{n}} \times(0)\right)$.

We denote $C^{2 n} \times(0)$ by $\{z=0\}$, and $\{(y, x, z): z \neq 0\}$ by $\{z \neq 0\}$, respectively. Since $K^{*}(Y, X) \cup\left(L^{\prime} \times C^{\mathrm{n}} \times C\right) \cap\{z \neq 0\}=\cup \underset{\mathrm{j}=1}{\mathrm{k}} K^{*}\left(\left\{y^{\mathbf{j}}\right\}, X\right) \cap\{z \neq 0\}$ and $K^{*}(Y, X) \cap\left(L^{\prime} \times C^{\mathrm{n}} \times C\right) \cap\{z=0\}$ (resp. $\left.K^{*}\left(\left\{y^{\mathrm{j}}\right\}, X\right) \cap\{z=0\}\right)$ is nowhere dense in $K^{*}(Y, X) \cap\left(L^{\prime} \times C^{\text {n }} \times C\right)$ (resp. $K^{*}\left(\left\{y^{j}\right\}, X\right)$), we have $K^{*}(Y, X) \cap\left(L^{\prime} \times C^{\mathrm{n}} \times C\right)=\cup_{\mathbf{j}} K^{*}\left(\left\{y^{\mathbf{j}}\right\}, X\right)$.

Let $x^{\mathbf{o}}$ be a regular point of X, then $\left(y^{\mathbf{j}}, x^{\mathrm{o}}-y^{\mathbf{j}}, 1\right)$ is a regular point of $K^{*}\left(\left\{y^{j}\right\}, X\right)$, Note that each component of $K^{*}\left(\left\{y^{\mathbf{j}}\right\}, X\right)$ contains a regular point of such a form. Choose linearly independent linear functions $p_{1}(x)$, $\cdots, p_{\mathrm{d}}(x)$ so that the affine subspace $A=\left\{x: p_{\mathrm{i}}\left(x-x^{0}\right)=0\right.$, for $\left.1 \leq i \leq n\right\}$ meets X transversally at x°. Then the affine subspace $B=\left\{(y, x-y, 1): y \in C^{\mathrm{n}}, x \in A\right\}$ of $C^{2 \mathrm{n}+1}$ meets $K^{*}\left(\left\{y^{\mathrm{j}}\right\}, X\right)$ transversally at $\left(y^{\mathrm{j}}, x^{\mathrm{o}}-y^{\mathrm{j}}, 1\right)$. we consider the holomorphic map p of $K^{*}(Y, X)$ into $C^{\mathrm{r}+\mathrm{d}+1}$ defined by
$p(y, x, z)=\left(y_{1}, \cdots, y_{r}, p_{1}(x+y), z\right)$. locally around ($\left.y^{j}, x^{0}-y^{j}, 1\right)$. For a generic point ($b_{1}, \cdots, b_{\mathrm{r}}, a_{1}, \cdots, a_{\mathrm{d}}, c$) close to ($y_{\mathrm{j}}^{\mathrm{j}}, \cdots, y_{\mathrm{r}}^{\mathrm{j}}, p_{1}^{\prime}\left(x^{0}\right), \cdots, p_{\mathrm{d}}\left(x^{0}\right), 1$), there are exactly $i=i\left(Y, L^{\prime} ; y^{\mathbf{j}}\right)$ points $q^{1}, \cdots, q^{\mathbf{i}}$ of Y such that $\left(q_{1}^{\mathbf{s}}, \cdots, q_{\mathrm{r}}^{\mathbf{s}}\right)=\left(b_{1}, \cdots, b_{\mathrm{d}}\right)$, for $1 \leq s \leq \mathrm{i}$. Fix s, and put $a_{t}^{\prime}=c a_{\mathrm{t}}+(1-c) p_{\mathrm{t}}\left(q^{3}\right)$, then $p_{\mathrm{t}}\left(x+q^{\mathrm{s}}\right)=a_{\mathrm{t}}$ is equivalent to $p_{\mathrm{t}}\left(q^{\mathrm{a}}+c x\right)=a_{\mathrm{t}}$, for $1 \leq t \leq d$. The latter system of equations determines the unique point $q^{\mathbf{s}}+c x$ of X close to x^{0}, whence the former system determines the unique point x close to $x^{0}-y^{\mathbf{j}}$. This concludes that the covering multiplicity of p at $\left(y^{\mathbf{j}}, x^{0}-y^{\mathbf{j}}, 1\right)$, which is equal to $i\left(K^{*}(Y, X),\left(L^{\prime} \times C^{\mathrm{n}+1}\right)\right.$ $\left.\cap B ;\left(y^{\mathbf{j}}, x^{0}-y^{\mathbf{j}}, 1\right)\right)$, is $i\left(Y, L^{\prime} ; y^{\mathbf{j}}\right)$. Thus we have $K^{*}(Y, X) \cdot\left(L^{\prime} \times C^{\mathrm{n}+1}\right)=$ $\Sigma_{j} i\left(Y, L^{\prime} ; y^{\mathbf{j}}\right) K^{*}\left(\left\{y^{\mathbf{j}}\right\}, X\right)$. Taking the intersection products of the both sides with $\{z=0\}$, we have, by 4), $K(Y, X) \cdot\left(L^{\prime} \times C^{\mathrm{n}}\right) \times(0)=\sum i\left(Y, L^{\prime} ; y^{\mathrm{j}}\right)\left(y^{\mathrm{j}}\right) \times$ $C(X)_{\mathrm{y}}^{\mathrm{j}} \times(0) . \quad$ This proves 2).
(1.5) Let X, Y be in (1.2). If X is equimultiple along Y near o, then $K(Y, X)_{0}=\left|C(X)_{0}\right|$.

Proos: Assume $K(Y, X)_{0} \subset\left|C(X)_{0}\right|$ then by a coordinate linear transformation of C^{n}, we may assume that the linear subspace $M=\left\{x: x_{1}=\right.$ $\left.\cdots=x_{\mathrm{d}}=0\right\}$ intersects with $\left|C(X)_{0}\right|$ properly at o, and $e_{\mathrm{n}}=(0, \cdots, 0,1)$ is in $K(Y, X)_{0}$ but not in $\left|C(X)_{0}\right|$. Then $i(X, M ; 0)=m(X, 0)$. Since the map $y \rightarrow i(X, y+M ; y)$ is upper semicontinuous, we have $m(X, o)=i(X, M ; 0) \geq i(X, y+$ $M ; y) \geq m(X, y)=m(X, o)$. This proves the equality $i(X, y+M ; y)=m(X, y)$ which is equivalent to the fact that $|C(X) y|$ and M meet properly at o. Note that $O_{\mathrm{d}} \rightarrow O_{\mathrm{n}} / I(X)$ is finite injective. Let $f\left(x^{\prime}, x_{\mathrm{n}}\right)=x_{\mathrm{n}}^{\mathrm{m}}+\sum_{\mathrm{j}=1}^{\mathrm{m}} a_{\mathrm{j}}\left(x^{\prime}\right) x_{\mathrm{n}}^{\mathrm{m}-\mathrm{j}}$, with $x^{\prime}=\left(x_{1}, \cdots, x_{\mathrm{d}}\right)$, be the minimal polynomial of $x_{\mathrm{n}} \bmod . I(X)$ over O_{d}. Then $\mathrm{m}=\mathrm{m}(X, 0)$. Since e_{n} is not in $\left|C(X)_{\mathrm{y}}\right|$, the order of a_{j} at y is $\geq j$, for $1 \leq j \leq m$ and $y \in Y$.

Let $y(t), x(t), z(t)$ be real analytic curves defining e_{n} as stated in (1.2), and put $f_{\mathrm{t}}(x)=f(x+y(t))$. Since $\operatorname{ord}_{\mathrm{x}} f_{\mathrm{t}}(x)=m$, the initial form f_{t}^{*} of f_{t} coverges to $f_{\mathrm{o}}^{*}=f^{*}$ as t goes to o. Put $e(t)=(x(t)-y(t)) / z(t)$. Then we have $0=f_{\mathfrak{t}}(z(t) e(t))=z(t)^{m}\left(f_{\mathrm{t}}^{*}(e(t))+z(t) g(t)\right)$ with some real analytic function g. Since $z(t) \neq 0$ for $t \neq 0$, we have $f_{\mathrm{t}}^{*}(e(t))+z(t) g(t)=0$ for all t. But this cannot occur since $f_{0}^{*}(e(0))=f^{*}\left(e_{\mathrm{n}}\right)=1$. This contradiction proves that $K(Y, X)_{0}^{-} \subset\left|C(X)_{0}\right|$ and hence $K(Y, X)_{0}=\left|C(X)_{0}\right|$.
(1.4) and (1.5) may be combined into the following theorem.
(1.6). Theorem. Let $X \ni$ о be an equidimentional analytic set in a neighbourhood of o in $C^{n}, Y \ni$ o an analytic subset of X, then the following statements are equivalent:

1) X is equimultiple along Y.
2) $\operatorname{dim} K(Y, X)_{0}=\operatorname{dim} X$.
3) $K(Y, X)_{0}=\left|C(X)_{0}\right|$.
(1.7). Let X, Y be as in (1.6) and we assume Y is smooth. Let $p: C_{\mathrm{X}, \mathrm{Y}} \rightarrow Y$ be the normal cone of Y in X (Hironaka [3]), and $T(Y)_{0}$ be the tangent space of Y at o. Then $K(Y, X)_{0}$ is isomorphic to $p^{-1}(o) \times T(Y)_{0}$ as reduced analytic spaces, and (1.6) says that the equimultipleness of X along Y is equivalent to the normally pseudo-flatness of X along Y in the sense of [3].
(1.8). Corollary to (1.6). $K(X, X)_{0}\left(=C_{5}(X)_{0}[6]\right)$ has the same dimention as X if and only if X is smooth at o.

$$
\S \quad 2
$$

(2.1). Let $F_{1}=\left(f_{1}, \cdots, f_{\mathrm{r}}\right)$ be a holomorphic map germ from $\left(C^{\mathrm{n}}, o\right)$ to $\left(C^{\mathrm{r}}, o\right)$, and $F_{0}=\left(f_{0}, F_{1}\right)$ from $\left(C^{\mathrm{n}}, o\right)$ to $\left(C^{r+1}, o\right)$. We let i represent 0 or 1 . Let the coordinates of $C^{\mathrm{n}} \times C^{\mathrm{r}+1-\mathrm{i}} \times C$ be $(x ; y, z)$, where y denotes $\left(y_{\mathrm{o}}, y_{1}, \cdots, y_{\mathrm{r}}\right)$ or $\left(y_{1}, \cdots, y_{\mathrm{r}}\right)$ according to the value of i. Put $Y_{\mathrm{i}}=F_{\mathrm{i}}^{-1}(o)$ and let X_{i}^{*} be the closure of $\mathfrak{K}(x$, $\left.\left.F_{\mathrm{i}}(x) / z, z\right): 0 \neq z \in C\right\}$ in $C^{\mathrm{n}+\mathrm{r}+2-\mathrm{i}}$. The equieimentional (dimention $=n$) analytic cycle $\mathrm{N}\left(F_{\mathrm{i}}\right)$ defined by $X_{\mathrm{i}}^{*} \cdot\{z=0\}=N\left(F_{\mathrm{i}}\right) \times(o)$ is called the normal cone of the (not necessarily) reduced analytic subset $\left(Y_{\mathrm{i}}, O_{\mathrm{n}} /\left(F_{\mathrm{i}}\right) O_{\mathrm{n}}\right)$ in ($C^{\mathrm{n}}, O_{\mathrm{n}}$). For $x \in Y_{\mathrm{i}}$, the cone $N\left(F_{\mathbf{i}}\right)_{\mathbf{x}}$ in $C^{\mathrm{r}+1-\mathbf{i}}$ is defined by $\left|N\left(F_{\mathbf{i}}\right)\right| \cap\left(x \times C^{\mathrm{r}+1-\mathbf{i}}\right)=(x) \times N\left(F_{\mathbf{i}}\right)_{x}$.

Let I_{i} be the ideal in $O_{\mathrm{n}+\mathrm{r}+1-\mathrm{i}}\{x, y\}$ such that $\left(I_{\mathrm{i}}, z\right) O_{\mathrm{n}+\mathrm{r}+2-\mathrm{i}}=I\left(X_{\mathrm{i}}^{*}\right)+$ $(z) O_{n+\mathbf{r}+2-\mathbf{i}}$ Then the normal cone of $\left(Y_{i}, O_{n} /\left(F_{i}\right) O_{n}\right)$ in $\left(C^{n}, O_{n}\right)$ defined in [2] or [3] is essentially equal to the analytic space $\left(\left|N\left(F_{\mathrm{i}}\right)\right|, O_{\mathrm{n}+\mathbf{r}+1-\mathbf{i}} / I_{\mathrm{i}}\right)$.
(2,2). By the curve selection lemma applied to $X_{0}{ }^{*}, y_{0}$-axis is not contained in $\left|C\left(\mathrm{X}_{0}\right)_{0}\right|$ (or equivalently y_{0}-axis is not contained in $\left.N\left(F_{0}\right)_{0}\right)$ if and only if for any holomorphic curve $x(t):\{t \in C:|t|<1\} \rightarrow C^{\mathrm{n}}$ with $x(0)=$ 0 . we have ordt $f_{\mathrm{o}}(x(t)) \geq \inf _{1 \leq \mathrm{j}} \leq \mathrm{r} \operatorname{ord}_{\mathrm{t}} f_{\mathrm{j}}(x(t))$. In this case we have
$m\left(X_{0}{ }^{*}, o\right)=m\left(X_{1}{ }^{*}, o\right)$.
Note that if f_{o} is integral over ($f_{1}, \cdots, f_{\mathrm{r}}$), the above condition is satisfied. The converse is also true as proved in [2] or [5]. We will give here an elementary proof of this. So, assume y_{0}-axis is not contained in $\left|C\left(X_{0}{ }^{*}\right)_{0}\right|$.

Choose linearly inedependent linear functions $p_{0}\left(x, y^{\prime}, z\right), \cdots, p_{\mathrm{n}}\left(x, y^{\prime}, z\right)$ with $y^{\prime}=\left(y_{1}, \cdots, y_{\mathrm{r}}\right)$ so that the map $p=\left(p_{0}, \cdots, p_{\mathrm{n}}\right): X_{0}{ }^{*} \rightarrow C^{\mathrm{n}+1}$ has the covering multiplicity $m=m\left(X_{0}{ }^{*}, o\right)$ at o.

Then $p^{*}: O_{\mathrm{n}+1} \rightarrow O_{\mathrm{n}+\mathrm{r}+2} / I\left(X_{0}^{*}\right)$ is a finite injection. Let $g\left(p_{0}, \cdots, p_{\mathrm{n}}\right.$, $\left.y_{\mathrm{o}}\right)=y_{\mathrm{o}}^{\mathrm{m}}+a_{\mathrm{i}}(p) y_{\mathrm{o}}^{\mathrm{m}-1}+\cdots+a_{\mathrm{m}}(p)$ be the minimal polynomial of y_{o} mod. $I\left(X_{0}^{*}\right)$ over $O_{\mathrm{n}+1}$. Then ord $a_{\mathrm{j}} \geq j$ for $1 \leq j \leq m$ and $h(x, y, z)=y_{0}^{\mathrm{m}}+\sum_{\mathrm{j}=1}^{\mathrm{m}} a_{\mathrm{j}}(p$ $\left.\left(x, y^{\prime}, z\right)\right) y_{0}^{\mathrm{m}-\mathrm{j}}$ is in $I\left(X_{\mathrm{o}}^{*}\right)$. Expand $a_{\mathrm{j}}\left(p\left(x, y^{\prime} z\right)\right)$ as $\Sigma_{\mathrm{JK}} a_{\mathrm{jJK}}(x) y^{\prime} \mathrm{J}^{\mathrm{K}}$ and put $a_{\mathrm{j}}{ }^{*}\left(x, y^{\prime}, z\right)=\Sigma_{|\mathrm{J}|=\mathrm{j}+\mathrm{K}} a_{\mathrm{jJK}}(x) y^{\prime} \mathrm{J}_{z} \mathrm{~K}$, where $J=\left(j_{1}, \cdots, j_{\mathrm{r}}\right)$ is multiindices and $|J|$ denotes $j_{1}+\cdots+j_{r^{*}}$. Then ord ${ }_{y}, a_{j}{ }^{*} \geq j$ and by the similar argument as in (1.3) $h^{*}=y_{0}^{\mathrm{m}}+\sum_{\mathrm{j}=1}^{\mathrm{m}} a_{\mathrm{j}}^{*} y_{\mathrm{o}}^{\mathrm{m}-\mathrm{j}}$ is in $I\left(X_{\mathrm{o}}{ }^{*}\right)$. This implies the equality $f_{0}(x)^{\mathrm{m}}+\sum_{\mathrm{j}=1}^{\mathrm{m}} a_{\mathrm{j}}^{*}\left(x, F_{1}(x), 1\right) f_{\mathrm{o}}^{\mathrm{m}-\mathrm{j}}=0$ which is an integral equation over (f_{1}, \cdots, f_{r}) of degree m.

We summarize this result as follows.
(2.3). Let $f_{1}, \cdots, f_{\mathrm{r}}$ be elements of the maximal ideal of O_{n}, and $m=$ $m\left(X_{1}{ }^{*}, o\right)$ be as in (2.2). Then for $f \in O_{\mathrm{n}}$, the following statements are equivalent :

1) f is integral over (f_{1}, \cdots, f_{r}).
2) f satisfies an integral equation over (f_{1}, \cdots, f_{r}) of degree m.
3) For any curve $x(t):\{t \in C:|t| \leq 1\} \rightarrow C^{n}$ with $x(0)=0$, ordt $f(x(t)) \geq$ inf $_{1 \leq \mathrm{j} \leq \mathrm{r}}$ ordt $f_{\mathrm{j}}(x(t))$,
(2.4). Remark. In (2.2) the essential condition for $p: X_{0}{ }^{*} \rightarrow C^{n+1}$ is that p is independent of y_{0}. If $F_{1}=\left(f_{1}, \cdots, f_{\mathrm{n}}\right): C^{\mathrm{n}} \rightarrow C^{\mathrm{n}}$ is a finite ($m^{\text {r }}$-sneeted) holomorphic map germ, then we can choose p as $p_{0}=z, p_{i}=y_{j}$ for $1 \leq j \leq n$. In such a case if f is integral over (f_{1}, \cdots, f_{n}) we obtain an integral equation over ($f_{1}, \cdots, f_{\mathrm{n}}$) of degree m^{\prime}. For example, if $f \in O_{\mathrm{n}}$ has an isolated singularity at o, then f satisfies an integral equation over ($\partial f / \partial x_{1}, \cdots, \partial f / \partial x_{\mathrm{n}}$) of degree $=$ the Milnor number of f.

References

[1] Draper, R.N. Intersection theory in analytic geometry, Math. Ann. 180 (1969) 205-219.
[2] Hironaka, H. Introduction to the theory of infinitely near singular points, Lecture note at Madrid Univerity. 1971,

Bull. Sciences \& Engineering Div., Univ of the Ryukyus. (Math. \& Nat. Sci.)
[3] , Normal cones in analytic Whitney stratifications, IHES Publ. Math. 36(1969), 127-138.
[4] MiInor, J. Singular Points of Complex Hypersurfaces, Annals of Math. Studies. 61 (1968).
[5] Scheja, G. Multiplizitäten ergleich unter Vervendung von Testkurven, Commentarii Math. Helvet. 44 (1969), 438-445.
[6] Whitney, H. Comlex Analytic Varieties, Addison-Wesley, 1972.

