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Tangent Cones and Multiplicities of Analytic Spaces 

Mitsuo Kato* 

Introduction. Let X be au analytic set in an open set in en and Y 

an analytic subset of X. In Whitney (6) various tangent cones of X at a point x 

of X and a tangent cone relative to Yare defined. In the case when X is 

equidimentional and Y smooth, Hironaka (3) states that for P: ex, Y-Y, 

the normal cone of Y in X, the equality dim p-l(y)=dim X implies the 

equimultipleness of X along Y near y. 

In § 1 we characterize, for an equidimentional analytic set X, the 

equimultipleness of X along Y in tangent cone K(X. Y) relative to Y ( defined 

as an analytic cycle in enxen). That is, if K(Y, X)y denotes the cone in 

en defined by «y)xcn)n I K, (Y,X) I = (y)xK (Y,X)y where I KCY, X) I 

denotes the support of Key. X), then the equimultipleness of X is equivalent 

to the fact that dim K (Y, X) y = dim X for all y f Y. In this case we have, 

for Y f Y, K(Y, X)y= I e(X)y I where C(X)y is the tangent cone of X at y 

( defined as an analytic cycle in en) (1.6). 

In § 2 we make use of the concept of normal cones in order to give 

another proof of a theorem on the analytic integral dependence which is stated 

and proved in Hironaka (2) and in Scheja (5) ( see (2.3)). We also show that, 

given an ideal I in On' there is a well defined natural num"ber m such that if 

IE On is integral over I, then f satisfies an integral equation over I of 

degree m. 

§ 1 

(1.1). We recall some notations in the analytic intersection theory ( ef. 

Draper (1) ). en denotes the complex number space of dimention n, On denotes 

the local ring of local holomorphic functions at the origin 0 of en. Let X be an 

equidimentional analytic set of dimention d in an open set U in Cn with 0 EX 

and L a linear subspace of en defined by linearly independendent linear 

equations P1(%)=0, ... , Pd(%) =0. For % E Cn, we let %+L denote the affine 
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subspace {x+x' : x' (' L) . If. for x EX, Xn (x+L)= {x) locally arollnd x, 

then the intersection nu.mber i eX, x -/- L; x) is defined to be the covering 

multiplicity at x of the map p= (Pb ... , Pd) : X_Cd, that is, the number of 

points in U' n p -lCa), where U' is a neighbourhood of x in en \viLh U' 

n (Xn (x+L) ) = {x} and a= (al. "', ad) isa generic point close to P(x). Put 

m(X,x)=il1j (i(X,x+L;x) : L } . which is called the multiplicity of X at x. 

Let A be an affine subspace of Cn. and Y a proper compornent of X n A. 

that is, Y is an irreducible compornent of XUA with dim Y=d-codim A. Let 

x E Y be a regular point of X n A. B an affine subrpace of codimellion=dim Y, 

which intersects with Y transversally at x (then XnAnB= {x} locally). Then 

i(X.A;Y) is defined to be i(X,A nB; x) which is independent of the choices of 

x and B. If Y is not a proper compornent of XnA. then we define i(X,A;Y) = 0. 

An element (av) of the direct product lTVZV, where 1T ranges all the 

irreducible analytic sets V in U and Zv is the group of the integers for each V, 

is called an analytic cycle if {V: ftV* OJ is locally finite in V, and in this case 

\.ve denote this cycle as SavVand in this case the analytic set U {V : av*OJ 

is called the support of .savV which is denoted by I l ,'avV i. vVe identify an 

analytic set A with the analytic cycle .s V, where .s ranges all the irreducible 

compornents of A. 

For an irredu<;:ible analytic set V in U and an affine subspace L of C1l , the 

intersection pl'oduct V·L is defined to be the analytic cycle Si (V, L; Y)Y in U 

where .s ranges all the proper components Y of V n L. For an analytic cycle 

Iay V, an affine subspace L and an irreducible analytic set Y in U. \ve define 

i( Iay 11, L;Y) = .sayi(1I, L;Y). 

(IayV)oL = IayV.L= Iw i(.savV, L; Hl)lV. For equidimentional analytic set 

X, this definition of the intersection number coincides with the previolls one. 

For an analytic cycle .say V and affine subspaces L,M, we have (l'av V) 0 (1..,0111) 

(( Say V)oL)·M. 

(1.2) Let X be an equidimenetional analytic set of dimention d, 

o E Xc UcCn as in (1.1), and 0 E Y an analytic subset of X. Let K*(Y, X) denote 

the closure of {(Y,x,z) f UxCnxC : y f Y, z*O, y+zx f Xl in VxCnxC The 

analytic cycle K(Y,X) in UxCn defined by K*(Y.X)o(C2n x(0)) =K(Y,X)x(o) 

is called the thangent cone relative to Y. It is clear that I K(Y, X ) ! c Yx Cn. 
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For x £ X, the analytic cycle C(X)x in Cn defined by K( (x} ,X)=(x) xC(X)x is 

called the t'lngent cone of X at x. For y f Y, we define the cone K(Y,x)y in Cn 

by ((y) xCn) n I K(Y, X) , =(y) xK(Y,X)y. Then dim K(Y,X)y ";?d, since 

K(Y,X)y~K( {y} , X\= I C (X)y I and dim I C(X)y I =d (Whitney (6). 

The defininition of C(X)x is given in Draper (1). The set-theoretical 

definitions (not as cycles) of thc above cones are given in (6). It is proved 

in (1) that, for x f X and a linear subspace M of Cn of codimention d such that 

X and x+M meet properly at x (hence Xn (x + 114)= {x} ), the equality 

i(X, x+M; x)=m(X,x) holds if and only if I C(X)x I and M meet properly at 

o (i.e., I C(X)x I nM= to} ), and in this case we have i(C(X)x' lvJ;o) =m(X,x). 

By the curve selection lemma (Milnor (4) )applied to K *(Y. X), we know 

that x f Cn is contained in K(Y, X)y for y f Y if and only there exist real 

analytic curves y(t), x(t), z(t), -1< t< 1, on Y, X, C, respectively, such that 

yeO) = x(O) = y, z(O)= 0, z(t) :;60 for t*O. and the ratio (x(t)-y(t))/zCt) 

converges to x as t goes to 0. 

(1.2). Let X, Y be as in 0,2). We denote the coordinates of CnxCuxC 

by (y,x,z). As usual, we let 0n{x} c02n {y,x} , and 02n{Y'x} c02n+l{Y'x,z} . For 

/ (y, x) f 02n/I(YxCn), expanding fCy, y+x) as Ii f iCy, x), where f i is 

homogeneous in x of degree i, we define the non-negative integer r( f) so that 

(ref) fl(YxC
n
) and fi fl(YxC

D
) for i<r(f)· We let Cf)=/r(f)' For 

( f I(YxCn), we put r( f)= 00, C/) =0. 

In Whitney (6), it is shown that I C(X)o I is the set of common zeros 

of initial forms / * of all f f leX), and that, for a hypersurface X = {x : f (x) 

=O} , we have 1 C(X)o 1 = {x : f* (x)=o}. We will generalize this result as 

follows. 

Proposition. Let I(Y, X) denote the imllge of I(K*(Y,X) by the natur'1,l 

epimorqhism of 02u+l onto 02n with the kernel (z)02n+1' Then 

1)I(Y,X)isgeneratedin02n byl(YxCn)and {C/): ffl(YxX)}. 

2) If Y is irreducible, I(Y, X) is generated by I(Yx Cn) and {( I) : 
/ £ leX)} . 

3) I ( Y is irreducible and X is fl hypersurface with lCX) = ( () On, then 

I(Y. X) is generated by I(YxCn) and (/). 
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4) If Y is irreducible and X= {x: f(x)=O} is a hypersurface. then we have 

I K(Y,X) I = {(y,x) : y f Y, [fJ(y,x)=O} . 

Proo f: If is clear that I(YxCn
) cI(K*(Y, X)). Let f (y, x) be 111 

I(YxX)/I(Yxen), then g(y.x.z)=f(y,y+zx) is in I(K*(Y,x)) and IS congruent 

to zr(f) (( I) +zg' (y, x, z)) modulo I(Y xeD), g' E 02n+1' SInce z is not in any 

prime divisor of I(K*(Y, X)), (f) +zg' is in I(K*(Y, X)). Hence ( f) is in 

I(K*(Y, X)) + (Z)02n+l' 

Suppose now that hey. x, z) is in I(K*(Y, X)). Expand h as J:aUK/xJzK, 

where I = (iI' .... in)' J = (h, "', jn) are multi-indices, Put hm (y, x, z) = 

J: 111 =k+m'lUKyIxJzK, where I J I =i+'''+jn, and h(m)(y,x)=hm(y, x, 1), then 

ordxh (m) ~m and hm(Y, x, z) = h(m)(y. zx)z -m. For 0* a E C, hey. ax, a -lz) = 

Iamhm(y.x,z) and we have that hm f I(K*(Y.X)). Put h'm(y, x)=h(m\y, x-y) 

then h' E I(YxX) and hem) (y, x) = h' (Y. y+x). If ord hem) > m then 
m m x 

hm E (z)02n+1' If ordxh(m)= mthen hm (y,x,O) is the initial form of h tm ) (Y,x) 

with respect to x. And if the initial form is not in I(Yx CD), then it is equal 

We thus conclude that, for each m, h m is in the ideal of 0 
2n+1 

generated by I(Y x CD), {( f): f f I(Y xX)} and (z)02n+l' and so is h since 

an ideal is closed by the uniform convergence (or the maximal ideal adic 

topology). This proves 1). 

Any g in I(YxX) is of the from g"ey, x) + g '(y, x) f ex) with 

g" E I(Yxen
), f E I(X). In this case r(g)=r (g 'f). Recall that reg) is 

the order of g, considered as an element of the ring (On {y} II (Y)) ((x)) of 

formal power series with coefficients in On {y} II(Y). SO if Y is irreducible. 

r(g)=r(g')+r e I) and consequently (g) is congruent to [g')( f J modulo 

I(Yx Cn
). This proves 2) and 3). 

In the case of 4) let g(z) be a generator of leX). Take a natural number 

k and functions g'(x), f'(x) such that I=gg', gk= 1 f', then by the above 

argument (I) is congruent to (g)(g') and (g)k to (f) (f') modulo I(YxCn
). 

This proves 4). since i K(Y, X) I is the set of common zeros of functions in 

I(Y, X). 

(1.4). Let X, Y be as in (1.2), If dim K(Y, X)o=d, then X is equimultiple 

along Y near o. 
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Proo f : Let Y = U Y i be the irreducible decomposition, then K(Y, X)o = 

UK(Yi'X)o' hence dim K(Yi , X\=d for all i with 0 E Y i• Consequently we may 

assume that Y is irreducible in U (hence equidimentional). Then K*(Y, X)= 

d+r+ 1, is also equidimentional. By a coordinate linear tranceformation of 

CD, if necessary, we may assume that the linear subspace L= {x :x1 = ... =xr=O} 

intersects with Yand the linear subspace M= {x:x1=",=Xd=O} with K(Y,X)o 

properly at 0, respectively. By contracting U, if necessary, we may also 

assume that. for any affine subspace L, parallel to and close to L, we have 

YnL'= (/, ... ,yk} with 

1) .2;'i(Y,L,;yj )=i(Y,L;o). Suppose 

2) K(Y,X).(L' xCn)=.2;' j i(Y,L' yj) (yi) xC(X)yj . 

Then K(y,x)'(L' xM)=.2;' i(Y,L';yj)m(X,yj) ((yj) X (0)) because i(C(X)yj, M; 0)= 

m(X,yj) (1.2). Since 

L' moves, we have 

I.i (K(Y, X), L' xM; (yj,o)) remains constant when 
1 

3) .2;' iCY, L';yj)m(X,yj) = iCY, L; 0 )m(X, 0). 

The upper semicontinuity of the multiplicity m(X, yj) ~m (X,o) together with 

1) and 3) shows the equalities m(X,yi)=m (X, 0) for 1 ~ j ~k. Since L' is 

arbitrary, m(X,y) =m (X,o) for all y E Y close to 0. 

We now prove 2). Since (KCY,X)-(L'xCD
)) X (0)= (KCY,X) X (o))·(L' X 

CDxC), and K(Y,X) X (o)=K*(Y ,x). (C2n x (0)), we have 

4) (K(Y,X).(L') xCn)) X (o)=(K*(Y,X).(L' xCoxC)).(C2n x(o)). 

We denote C2D
X (0) by {Z=o} , and {(y,x,z) :z::¢=o} by {Z::¢=o} , respectively. 

Since K *(Y, X) u (L' X CD X C) n {z::¢=o} = U j~l K *( {yj} ,X) n {z ::¢=o} and 

K *(y, X) n (L' X Cn 
X C) n {z=o} (resp. K*( {yj} ,X) n {z=o} ) is nowhere 

dense in K*(Y, X) n (L' xCllxC) (resp. K*( {yj} ,X)), we have 

K*(Y,x) n (L' X Cn x C)= U j K*( {yj} ,X). 

Let Xo be a regular point of X. then (yj,xo 
- yj, 1) is a regular point of 

K*( {yj} ,X), Note that each component of K*( {yi} ,X) contains a regular 

point of such a form. Choose linearly independent linear functions PI (x), 

''',Pd(x) so that tne affine subspace A= {x:pi(x-xo)=o, for l::;;i~n} meets 

X transversally at xo. Then the affine subspace B= [(y,x- y,l):y E Cn
, Xf A} 

of C2n+1 meets K*( {yi} ,X) transversally at (yi,xO_yj,l). we consider the 

holomorphic map p of K*(Y,X) into Cr +d+1 defined by 
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P(y, x, z) = (YI, "', Yr ' PI (x+ Y), z). locally around (yJ,xo - yJ,l). For a generic 

point (bl'· .. ,br , 'Zl' .. ·,ad,c) close to (y~ , ... ,y~ ,p; (xo),···,piXo).1), there are exactly 

i=i(Y,L';yJ) points i, ... ,qi of Y such that (q81' ... ,q8
r
) =(b

1
, ... ,b

d
), for 1 ~s~i. 

Fix s, and put a't = cat + (l-c)Pt (qs), then Pt (X+q8) = at is equivalent to 

pt(ql+cx)=at , for l~t~d. The latter system of equations determines the 

unique point ql +cx of X close to xO, whence the former system determines 

the unique point x close to XO 
- yj. This concludes that the covering 

multiplicity of P at (yi, XO - yJ. 1), which is equal to i(K*(Y, X), (L' X cn+1
) 

nB; (y1, XO - yj, 1), is iCY, L'; yJ). Thus we have K* (y, X) • (L' X Cn+I)= 

I ,;(Y,L';I) K*( (yi} ,X). Taking the intersection products of the both sides 

with {z=O}, we have, by 4), K(Y, X)·(L' xcn) x(o) = Ii(Y, L';yJ) (yj) X 

C(X)J X (0). This proves 2). 

(1.5) Let X,Y be in (1.2). If X is equimultiple along Y near 0, then 

K(Y,X)o= I C(X)o I . 

Proo): Assume K (Y, X)o c Ie (X)o I then by a coordinate linear 

transformation of Cn, we may assume that the linear subspace M = {x :x1 = 

... =xd=O} intersects with I C(X)o I properly at 0, and en=(O, ... ,O, 1) is in 

K(Y,x)o but not in I C(X\ I . Then leX, M; o)=m(X, 0). Since the map 

y--+i(X,y+M;y) is upper semicontinuous, we have m(X,o)=i (X,M;o) ~i(X, y+ 

M;y)~m (X,y) = m(X,o). This proves the equality i(X,y+M;y)=m(X,y) which 

is equivalent to the fact that I C(X)y I and M meet properly at o. Note that 

O ° / leX) . f" ••• L I (' ) m m (') m-j ·th d- n IS Illite lllJectlve. et x ,Xn =Xn + I j=I aj x Xn ,WI 

x'=(Xl""'Xd)' be the minimal polynomial of xn mod. leX) over 0d' Then 

m=mCX,o). Since en is not in I C(X)y I, the order of aj at y is~j, for 

1 ~ j 5:. m and y f Y. 
Let y(t),x(t),z(t) be real analytic curves defining en as stated in (1.2), 

and put It (x)= I (%+y(t)). Since ordx/t (x)=m, the initial form ft* of 

It coverges to 10* = 1* as t goes to 0. Put e(t) = (xCt)- yCt)) / z(t). 

Then we have 0= f t(z(t) e (t)) = zCt)m( I t*(e(t») + z(t)g(t») with some real 

analytic function g. Since z(t)::I=O for t::l=O, we have It *(e(t)) +z(t) g(t)=O for 

all t. But this cannot occur since fo *(e(o))=/*(en) = 1. This contradiction proves 

that K(Y ,x)~ c I CeX)o I and hence K(Y,x)o = I CeX)o I· 
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(1.4) and (1.5? may be combined into the following theorem. 

(1.6). Theorem. Let X :1 0 be an equidimentional analytic set in a neighbour

hood of 0 in Cn
, Y:1 0 an analytic subset of X, then the following statements are 

equivalent: 

1) X is equimultiple along Y. 

2) dim K(Y,X)o =dim X. 

3) K(Y,X)o= 1 C(X)o I • 

0.7). Let X, Y be as in ,(1.6) and we assume Y is smooth. Let 

p : Cx.y-Y be the normal c~ne of Y in X CHironaka (3)), and T(Y) 0 be the 

tangent space of Y at o. Then K(Y,X)o is isomorphic to P-1Co) X T(Y)o as re

duced analytic spaces, and (1.6) says that the equimultipleness of X along Y is 

equivalent to the normally pseudo-flatness of X along Y in the sense of [3J. 

(1.8). Corollary to (l.6). K(X,X) (=C
5
(X) [6J) has the same dimention 

o 0 

as X if and only if X is smooth at o. 

§ 2. 

(2.1). Let FI =(f1.···.[r) be a hofomorphic map germ from (Cn,o) to 'CCr,o}. 

and Fo=(fo' F1) from (Cn.o) to (Cr+1,o). We let i represent 0 or 1. Let the 

coordinates of C
nxCr

+1-i xC be (x;y,z). where y denotes (Yo,Jl""'Yr) or (Yl'''',Jr) 

according to the value of i. Put Y.=F.-\o) and let ,X.* be the closure of {(x, 
1 1 1 ' 

Fi(x)/z, z) : O*z E C} in Cn+r+2
-

i
. The equieimentional (dimention = n) analytic 

cycle N(Fi) defined by Xi *. {z= OJ =N(Fi ) X (0) is called the normal cone of the 

(not necessarily) 'reduced analytic subset (Yi,On/(F)Oo) in (Co,On)' For x E Y i• 

the cone N(F)x in Cr +1
-

i is defined by I N(Fi) I n ex X cr +1
-

i
) = ex) x NCFi)x . 

Let Ii be the ideal in 0n+r+l-i {x,y} such that (Ii. z) 0n+r+2_i=I(X/)+ 

(z)O + +2" Then the normal cone of (Y.,O I(F.)O ) in (Co,O) defined in [2J n r -1 1 0 1 n . n 

or [3J is essentially equal to the analytic space ( I NCF) I , ° n+r+l-/ Ii)' 

(2.2). By the curve selection lemma applied to Xo*, yo-axis is not 

contained in I C(Xo*)o I (or equivalently Yo -axis is not contained in N (Fo)o) if 

and only if for any holomorphic curve xCt) : {t f C: I t I <I} ~Cn with x (0) = 
O. we have ordt fo ex (t)) ~ in! 1 < j < r ordt/j (x(t). In this case w~ have 
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m(Xo*, 0) = m (Xl*, 0). 

Note that if 10 is integral over (11 , ... ,/r), the above condition is satisfied. 

The converse is also true as proved in [2) or [5J. We will give here an 

elementary proof of this. So, assume Yo -axis is not contained in I C(Xo*)o I . 
Choose linearly inedependent linear functions Po(x,y', z), "', Pn(X,Y', z) 

with y' = (YI , ... , Yr) so that the map p = (Po, •.• ,pn) : Xo* -+ Cn+l has the 

covering multiplicity m=m(Xo*,o) at o. 

Then p* : 0 n+l -+ 0 n+r+2 / I (X /) is a finite injection. Let g (Po' ... , Pn , 

Yo) = Y~ + a1 (P) y~-1 + ... + am (P) be the minimal polynomial of Yo mod. 

/(Xo *) over 0n+l' Then ord a j ~ j for l~j~m and hex, y, z) = y;:a + Ij!.1 a j (P 

(x, y', z)) y~-j is in I exo *). Expand aj ( P (x, y' z)) as I JK a JJK (x)y'JzK and 

put at (x,y', z) = I I J I =J+K ajJK (x) y' JzK, where J = (jl' "', jr) is multi

indices and I J I denotes ji + ... + jr' Tnen ordy' at ~ j and by the similar 

argument as in (1.3) h* = ym + I!11l a.*ym- j is in I (X *). This implies the 
o J= J 0 0 

equality 10 (x)m + l'j!1 at (x, FI (x), 1) f;:-j = 0 which is an integral equa-

tion over (fi, "', Ir ) of degree m. 

We summarize this result as follows. 

(2.3). Let 11, "', Ir be elements of the maximal ideal of On, and m= 

m(Xl*,o) be as in (2.2). Then lor leOn, the following statements are equivalent: 

1) I is integral over (11, "', Ir). 
2) I satisfies an integral equation over (f1, ''',/r) of degree m. 
3) For any curve x(t) : {t f C: I t I ~ I} -+Cn with x (0) = 0, 

ordt I(x(t))~inl 1~j~r ordt jj (x(t)), 

(2.4). Remark. In (2.2) the essential condition for P : Xo* -+ cn+ l is that 

P is independent of Yo. If Fl = (11, "', In) : Cn -+ Cn is a finite (mt·sheeted) 

holomorphic map germ, then we can choose P as po = z, Pi = Yj for 1::; j ::; n. 

In such a case if / is integral over (/1, ... , fn) we obtain an integral equation 

over (f1, ... , In) of degree m'. For example, if Ie On has an isolated singu

larity at 0, then f satisfies an integral equation over (a / / a Xl, ... , a 1/ a Xn ) 

of degree = the Milnor number 01 f. 
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