琉球大学学術リポジトリ

Tangent Cones and Multiplicities of Analytic Spaces

メタデータ	言語:
	出版者: 琉球大学理工学部
	公開日: 2012-02-28
	キーワード (Ja):
	キーワード (En):
	作成者: Kato, Mitsuo, 加藤, 満生
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/23514

Tangent Cones and Multiplicities of Analytic Spaces

Mitsuo Kato*

Introduction. Let X be au analytic set in an open set in C^n and Y an analytic subset of X. In Whitney (6) various tangent cones of X at a point x of X and a tangent cone relative to Y are defined. In the case when X is equidimentional and Y smooth. Hironaka (3) states that for $p: C_X, y \rightarrow Y$, the normal cone of Y in X, the equality $\dim p^{-1}(y) = \dim X$ implies the equimultipleness of X along Y near y.

In § 1 we characterize, for an equidimentional analytic set X, the equimultipleness of X along Y in tangent cone K(X, Y) relative to Y (defined as an analytic cycle in $C^n \times C^n$). That is, if $K(Y, X)_y$ denotes the cone in C^n defined by $((y) \times C^n) \cap |K, (Y,X)| = (y) \times K(Y,X)_y$ where |K(Y,X)| denotes the support of K(Y, X), then the equimultipleness of X is equivalent to the fact that $\dim K(Y, X)_y = \dim X$ for all $y \in Y$. In this case we have, for $y \in Y, K(Y,X)_y = |C(X)_y|$ where $C(X)_y$ is the tangent cone of X at y (defined as an analytic cycle in C^n) (1.6).

In §2 we make use of the concept of normal cones in order to give another proof of a theorem on the analytic integral dependence which is stated and proved in Hironaka [2] and in Scheja [5] (see (2.3)). We also show that, given an ideal I in O_n , there is a well defined natural number m such that if $f \in O_n$ is integral over I, then f satisfies an integral equation over I of degree m.

§ 1

(1.1). We recall some notations in the analytic intersection theory (cf. Draper (1)). C^n denotes the complex number space of dimention n, On denotes the local ring of local holomorphic functions at the origin o of C^n . Let X be an equidimentional analytic set of dimention d in an open set U in C_n with $o \in X$ and L a linear subspace of C^n defined by linearly independendent linear equations $p_1(x)=0, \dots, p_d(x)=0$. For $x \in C^n$, we let x+L denote the affine

Received Oct. 31, 1974

^{*} Dept. of Math. Sci. & Eng. Div., Univ. of the Ryukyus

subspace $\{x+x' : x' \in L\}$. If, for $x \in X$, $X \cap (x+L) = \{x\}$ locally around x, then the *intersection number* i (X, x + L; x) is defined to be the covering multiplicity at x of the map $p = (p_1, \dots, p_d) : X \rightarrow C^d$, that is, the number of points in $U' \cap p^{-1}(a)$, where U' is a neighbourhood of x in C^n with $\overline{U'} \cap (X \cap (x+L)) = \{x\}$ and $a = (a_1, \dots, a_d)$ is a generic point close to p(x). Put $m(X,x) = inf\{i(X,x+L;x) : L\}$, which is called the multiplicity of X at x.

Let A be an affine subspace of C^n and Y a proper comportent of $X \cap A$, that is, Y is an irreducible comportent of $X \cup A$ with $\dim Y = d - \operatorname{codim} A$. Let $x \in Y$ be a regular point of $X \cap A$, B an affine subspace of codimension=dim Y, which intersects with Y transversally at x (then $X \cap A \cap B = \{x\}$ locally). Then i(X,A;Y) is defined to be $i(X,A \cap B; x)$ which is independent of the choices of x and B. If Y is not a proper comportent of $X \cap A$, then we define i(X,A;Y)=0.

An element (a_V) of the direct product $\exists V Z_V$, where \exists ranges all the irreducible analytic sets V in U and Z_V is the group of the integers for each V, is called an *analytic cycle* if $\{V: a_V \neq 0\}$ is locally finite in U, and in this case we denote this cycle as $\Sigma a_V V$ and in this case the analytic set $\bigcup \{V: a_V \neq 0\}$ is called *the support of* $\Sigma a_V V$ which is denoted by $|\Sigma a_V V|$. We identify an analytic set A with the analytic cycle ΣV , where Σ ranges all the irreducible comport of A.

For an irreducible analytic set V in U and an affine subspace L of C^n , the *intersection product* V·L is defined to be the analytic cycle Σi (V, L; Y)Y in U where Σ ranges all the proper components Y of $V \cap L$. For an analytic cycle $\Sigma a_V V$, an affine subspace L and an irreducible analytic set Y in U, we define $i(\Sigma a_V V, L;Y) = \Sigma a_V i(V, L;Y)$,

 $(\Sigma a_V V) \cdot L = \Sigma a_V V \cdot L = \Sigma_W i(\Sigma a_V V, L; W)W$. For equidimentional analytic set X, this definition of the intersection number coincides with the previous one. For an analytic cycle $\Sigma a_V V$ and affine subspaces L, M, we have $(\Sigma a_V V) \cdot (L \cdot M) = ((\Sigma a_V V) \cdot L) \cdot M$.

(1.2) Let X be an equidimentional analytic set of dimention d, $o \in X \subset U \subset C^n$ as in (1.1), and $o \in Y$ an analytic subset of X. Let $K^*(Y, X)$ denote the closure of $\{(y,x,z) \in U \times C^n \times C : y \in Y, z \neq 0, y+zx \in X\}$ in $U \times C^n \times C$ The analytic cycle K(Y,X) in $U \times C^n$ defined by $K^*(Y,X) \cdot (C^{2n} \times (o)) = K(Y,X) \times (o)$ is called the thangent cone relative to Y. It is clear that $|K(Y,X)| \subset Y \times C^n$. For $x \in X$, the analytic cycle $C(X)_x$ in C^n defined by $K(\{x\}, X) = (x) \times C(X)_x$ is called the tangent cone of X at x. For $y \in Y$, we define the cone $K(Y,X)_y$ in C_n by $((y) \times C^n) \cap |K(Y,X)| = (y) \times K(Y,X)_y$. Then dim $K(Y,X)_y \ge d$, since $K(Y,X)_y \supseteq K(\{y\}, X)_y = |C(X)_y|$ and dim $|C(X)_y| = d$ (Whitney (6)).

The definition of $C(X)_x$ is given in Draper (1). The set-theoretical definitions (not as cycles) of the above cones are given in (6). It is proved in (1) that, for $x \in X$ and a linear subspace M of C^n of codimention d such that X and x+M meet properly at x (hence $X \cap (x+M) = \{x\}$), the equality i(X, x+M; x) = m(X, x) holds if and only if $|C(X)_x|$ and M meet properly at o (i.e., $|C(X)_x| \cap M = \{o\}$), and in this case we have $i(C(X)_x, M; o) = m(X, x)$.

By the curve selection lemma (Milnor (4))applied to $K^*(Y, X)$, we know that $x \in C^n$ is contained in $K(Y, X)_y$ for $y \in Y$ if and only there exist real analytic curves y(t), x(t), z(t), -1 < t < 1, on Y, X, C, respectively, such that y(0) = x(0) = y, z(0) = 0, $z(t) \neq 0$ for $t \neq 0$, and the ratio (x(t)-y(t))/z(t)converges to x as t goes to O.

(1.2). Let X, Y be as in (1.2). We denote the coordinates of $C^n \times C^n \times C$ by (y,x,z). As usual, we let $O_n\{x\} \subset O_{2n}\{y,x\}$, and $O_{2n}\{y,x\} \subset O_{2n+1}\{y,x,z\}$. For $f(y,x) \in O_{2n}/I(Y \times C_n)$, expanding f(y, y+x) as $\sum_i f_i(y,x)$, where f_i is homogeneous in x of degree *i*, we define the non-negative integer r(f) so that $f_{r(f)} \in I(Y \times C^n)$ and $f_i \in I(Y \times C^n)$ for i < r(f). We let $(f) = f_{r(f)}$. For $f \in I(Y \times C^n)$, we put $r(f) = \infty$, (f) = 0.

In Whitney (6), it is shown that $|C(X)_{o}|$ is the set of common zeros of initial forms f^{*} of all $f \in I(X)$, and that, for a hypersurface $X = \{x : f(x) = 0\}$, we have $|C(X)_{o}| = \{x : f^{*}(x) = 0\}$. We will generalize this result as follows.

Proposition. Let I(Y, X) denote the image of $I(K^*(Y,X))$ by the natural epimorphism of O_{2n+1} onto O_{2n} with the kernel $(z)O_{2n+1}$. Then

- 1) I(Y, X) is generated in O_{2n} by $I(Y \times C^n)$ and $\{(f) : f \in I(Y \times X)\}$.
- 2) If Y is irreducible, I(Y, X) is generated by $I(Y \times C^n)$ and $\{[f] : f \in I(X)\}$.
- 3) If Y is irreducible and X is a hypersurface with $I(X) = (f) O_n$, then I(Y, X) is generated by $I(Y \times C^n)$ and [f].

KATO: Tangent Cones and Multiplicities of Analytic Spaces

4) If Y is irreducible and $X = \{x: f(x)=0\}$ is a hypersurface, then we have $|K(Y,X)| = \{(y,x): y \in Y, [f](y,x)=0\}$.

Proo f: If is clear that $I(Y \times C^n) \subset I(K^*(Y, X))$. Let f(y, x) be in $I(Y \times X)/I(Y \times C^n)$, then g(y,x,z) = f(y,y+zx) is in $I(K^*(Y,X))$ and is congruent to $z^{r(f)}([f]+zg'(y,x,z))$ modulo $I(Y \times C^n)$, $g' \in O_{2n+1}$. Since z is not in any prime divisor of $I(K^*(Y,X)), [f]+zg'$ is in $I(K^*(Y,X))$. Hence [f] is in $I(K^*(Y,X)) + (z)O_{2n+1}$.

Suppose now that h(y, x, z) is in $I(K^*(Y, X))$. Expand h as $\sum a_{IJK} y^{l} x^{J} z^{K}$, where $I = (i_{1}, \dots, i_{n})$, $J = (j_{1}, \dots, j_{n})$ are multi-indices. Put $h_{m}(y, x, z) =$ $\sum_{|J|=k+m} a_{IJK} y^{I} x^{J} z^{K}$, where $|J| = j^{1} + \dots + j^{n}$, and $h^{(m)}(y, x) = h^{m}(y, x, 1)$, then $ord_{x}h^{(m)} \ge m$ and $h_{m}(y, x, z) = h^{(m)}(y, zx)z^{-m}$. For $0 \ne a \in C$, $h(y, ax, a^{-1}z) =$ $\sum a^{m}h_{m}(y, x, z)$ and we have that $h_{m} \in I(K^{*}(Y,X))$. Put $h'_{m}(y, x) = h^{(m)}(y, x-y)$ then $h'_{m} \in I(Y \times X)$ and $h^{(m)}(y, x) = h'_{m}(y, y+x)$. If $ord_{x}h^{(m)} > m$ then $h_{m} \in (z)O_{2n+1}$. If $ord_{x}h^{(m)} = m$ then $h_{m}(y, x, 0)$ is the initial form of $h^{(m)}(y, x)$ with respect to x. And if the initial form is not in $I(Y \times C^{n})$, then it is equal to $[h'_{m}]$. We thus conclude that, for each m, h_{m} is in the ideal of O_{2n+1} generated by $I(Y \times C^{n})$, $\{[f]: f \in I(Y \times X)\}$ and $(z)O_{2n+1}$, and so is h since an ideal is closed by the uniform convergence (or the maximal ideal adic topology). This proves 1).

Any g in $I(Y \times X)$ is of the from g''(y, x) + g'(y, x) f(x) with $g'' \in I(Y \times C^n)$, $f \in I(X)$. In this case r(g) = r(g'f). Recall that r(g) is the order of g, considered as an element of the ring $(O_n \{y\} / I(Y))$ [(x)] of formal power series with coefficients in $O_n \{y\} / I(Y)$. So if Y is irreducible, r(g) = r(g') + r(f) and consequently [g] is congruent to [g'](f] modulo $I(Y \times C^n)$. This proves 2) and 3).

In the case of 4) let g(z) be a generator of I(X). Take a natural number k and functions g'(x), f'(x) such that f=gg', $g^k = ff'$, then by the above argument [f] is congruent to [g](g') and $[g]^k$ to [f] [f'] modulo $I(Y \times C^n)$. This proves 4), since [K(Y, X)] is the set of common zeros of functions in I(Y, X).

(1.4). Let X, Y be as in (1.2). If $\dim K(Y,X)_o=d$, then X is equimultiple along Y near o.

36

Proo f: Let $Y = \bigcup Y_i$ be the irreducible decomposition, then $K(Y, X)_o = \bigcup K(Y_i, X)_o$, hence dim $K(Y_i, X)_o = d$ for all i with $o \in Y_i$. Consequently we may assume that Y is irreducible in \bigcup (hence equidimentional). Then $K^*(Y, X) = d + r + 1$, is also equidimentional. By a coordinate linear tranceformation of C^n , if necessary, we may assume that the linear subspace $L = \{x: x_1 = \cdots = x_r = 0\}$ intersects with Y and the linear subspace $M = \{x: x_1 = \cdots = x_r = 0\}$ with $K(Y,X)_o$ properly at o, respectively. By contracting U, if necessary, we may also assume that, for any affine subspace L, parallel to and close to L, we have $Y \cap L' = \{y^1, \cdots, y^k\}$ with

- 1) $\Sigma i(Y,L';y^i) = i(Y,L;o)$. Suppose
- 2) $K(Y,X) \cdot (L' \times C^n) = \Sigma_i i(Y,L'y^i) (y^i) \times C(X)_{y^i}$.

Then $K(Y,X) \cdot (L' \times M) = \sum_{j} i(Y,L';y^{j})m(X,y^{j})((y^{j}) \times (o))$ because $i(C(X)_{y}j, M; o) = m(X,y^{j})$ (1.2). Since $\sum_{j} i(K(Y,X), L' \times M; (y^{j},o))$ remains constant when L' moves, we have

3) $\Sigma_{ji}(Y, L'; y^{j}) m(X, y^{j}) = i(Y, L; o) m(X, o).$

The upper semicontinuity of the multiplicity $m(X, y^{j}) \leq m(X, o)$ together with 1) and 3) shows the equalities $m(X, y^{j}) = m(X, o)$ for $1 \leq j \leq k$. Since L' is arbitrary, m(X,y) = m(X,o) for all $y \in Y$ close to o.

We now prove 2). Since $(K(Y,X) \cdot (L' \times C^n)) \times (o) = (K(Y,X) \times (o)) \cdot (L' \times C^n \times C)$, and $K(Y,X) \times (o) = K^*(Y,X) \cdot (C^{2n} \times (o))$, we have

4) $(K(Y,X)\cdot(L')\times C^{n}))\times(o)=(K^{*}(Y,X)\cdot(L'\times C^{n}\times C))\cdot(C^{2n}\times(o)).$

We denote $C^{2n} \times (o)$ by $\{z=o\}$, and $\{(y,x,z):z\neq o\}$ by $\{z\neq o\}$, respectively. Since $K^*(Y,X) \cup (L' \times C^n \times C) \cap \{z\neq o\} = \bigcup_{j=1}^k K^*(\{y^j\},X) \cap \{z\neq o\}$ and $K^*(Y,X) \cap (L' \times C^n \times C) \cap \{z=o\}$ (resp. $K^*(\{y^j\},X) \cap \{z=o\}$) is nowhere dense in $K^*(Y,X) \cap (L' \times C^n \times C)$ (resp. $K^*(\{y^j\},X)$), we have $K^*(Y,X) \cap (L' \times C^n \times C) = \bigcup_j K^*(\{y^j\},X)$.

Let x° be a regular point of X, then $(y^{j}, x^{\circ} - y^{j}, 1)$ is a regular point of $K^{*}(\{y^{j}\}, X)$, Note that each component of $K^{*}(\{y^{j}\}, X)$ contains a regular point of such a form. Choose linearly independent linear functions $p_{1}(x)$, $\dots, p_{d}(x)$ so that the affine subspace $A = \{x: p_{i}(x-x^{\circ})=0, f \text{ or } 1 \le i \le n\}$ meets X transversally at x° . Then the affine subspace $B = \{(y,x-y,1): y \in C^{n}, x \in A\}$ of C^{2n+1} meets $K^{*}(\{y^{j}\}, X)$ transversally at $(y^{j}, x^{\circ} - y^{j}, 1)$. we consider the holomorphic map p of $K^{*}(Y,X)$ into C^{r+d+1} defined by

37

 $p(y, x, z) = (y_1, \dots, y_r, p_1(x+y), z).$ locally around $(y^j, x^o - y^j, 1)$. For a generic point $(b_1, \dots, b_r, a_1, \dots, a_d, c)$ close to $(y_1^j, \dots, y_r^j, p_1^-(x^o), \dots, p_d(x^o), 1)$, there are exactly $i=i(Y,L';y^j)$ points q^1, \dots, q^i of Y such that $(q_1^s, \dots, q_r^s) = (b_1, \dots, b_d)$, for $1 \le s \le i$. Fix s, and put $a_t^* = ca_t + (1-c)p_t(q^s)$, then $p_t(x+q^s) = a_t$ is equivalent to $p_t(q^s+cx) = a_t$, for $1 \le t \le d$. The latter system of equations determines the unique point q^s+cx of X close to x^o , whence the former system determines the unique point x close to $x^o - y^j$. This concludes that the covering multiplicity of p at $(y^j, x^o - y^j, 1)$, which is equal to $i(K^*(Y, X), (L' \times C^{n+1}) \cap B; (y^j, x^o - y^j, 1))$, is $i(Y, L'; y^j)$. Thus we have $K^*(Y, X) \cdot (L' \times C^{n+1}) = \sum_j i(Y, L'; y^j) K^*(\{y^j\}, X)$. Taking the intersection products of the both sides with $\{z=0\}$, we have, by 4), $K(Y, X) \cdot (L' \times C^n) \times (o) = \sum i(Y, L'; y^j) (y^j) \times C(X)_y^r \times (o)$. This proves 2).

(1.5) Let X,Y be in (1.2). If X is equimultiple along Y near o, then $K(Y,X)_{o} = |C(X)_{o}|$.

Proof: Assume $K(Y, X)_{o} \subset |C(X)_{o}|$ then by a coordinate linear transformation of C^{n} , we may assume that the linear subspace $M = \{x:x_{1} = \cdots = x_{d} = 0\}$ intersects with $|C(X)_{o}|$ properly at o, and $e_{n} = (0, \cdots, 0, 1)$ is in $K(Y,X)_{o}$ but not in $|C(X)_{o}|$. Then i(X, M; o) = m(X, o). Since the map $y \rightarrow i(X, y + M; y)$ is upper semicontinuous, we have $m(X, o) = i(X, M; o) \geq i(X, y + M; y) \geq m(X, o)$. This proves the equality i(X, y + M; y) = m(X, y) which is equivalent to the fact that |C(X)y| and M meet properly at o. Note that $O_{d} \rightarrow O_{n}/I(X)$ is finite injective. Let $f(x', x_{n}) = x_{n}^{m} + \sum_{j=1}^{m} a_{j}(x') x_{n}^{m-j}$, with $x' = (x_{1}, \cdots, x_{d})$, be the minimal polynomial of $x_{n} \mod I(X)$ over O_{d} . Then m = m(X, o). Since e_{n} is not in $|C(X)_{y}|$, the order of a_{j} at y is $\geq j$, for $1 \leq j \leq m$ and $y \in Y$.

Let y(t), x(t), z(t) be real analytic curves defining e_n as stated in (1.2), and put $f_t(x) = f(x+y(t))$. Since $ord_x f_t(x) = m$, the initial form f_t^* of f_t coverges to $f_o^* = f^*$ as t goes to o. Put e(t) = (x(t) - y(t)) / z(t). Then we have $0 = f_t(z(t) e(t)) = z(t)^m (f_t^*(e(t)) + z(t)g(t))$ with some real analytic function g. Since $z(t) \neq 0$ for $t \neq 0$, we have $f_t^*(e(t)) + z(t)g(t) = 0$ for all t. But this cannot occur since $f_o^*(e(o)) = f^*(e_n) = 1$. This contradiction proves that $K(Y,X)_o^* \subset |C(X)_o|$ and hence $K(Y,X)_o^* = |C(X)_o|$. Bull. Sciences & Engineering Div., Univ of the Ryukyus. (Math. & Nat. Sci.)

(1.4) and (1.5) may be combined into the following theorem.

(1.6). Theorem. Let $X \ge o$ be an equidimentional analytic set in a neighbourhood of o in C^n , $Y \ge o$ an analytic subset of X, then the following statements are equivalent:

- 1) X is equimultiple along Y.
- 2) dim $K(Y,X)_{o} = dim X$.
- 3) $K(Y,X)_{0} = |C(X)_{0}|$.

(1.7). Let X, Y be as in (1.6) and we assume Y is smooth. Let $p: C_{X,Y} \to Y$ be the normal cone of Y in X (Hironaka [3]), and $T(Y)_o$ be the tangent space of Y at o. Then $K(Y,X)_0$ is isomorphic to $p^{-1}(o) \times T(Y)_o$ as reduced analytic spaces, and (1.6) says that the equimultipleness of X along Y is equivalent to the normally pseudo-flatness of X along Y in the sense of [3].

(1.8). Corollary to (1.6). $K(X,X)_o$ (= $C_5(X)_o$ [6]) has the same dimension as X if and only if X is smooth at o.

§ 2.

(2.1). Let $F_1 = (f_1, \dots, f_r)$ be a holomorphic map germ from (C^n, o) to (C^r, o) , and $F_o = (f_o, F_1)$ from (C^n, o) to (C^{r+1}, o) . We let *i* represent 0 or 1. Let the coordinates of $C^n \times C^{r+1-i} \times C$ be (x, y, z), where *y* denotes (y_o, y_1, \dots, y_r) or (y_1, \dots, y_r) according to the value of *i*. Put $Y_i = F_i^{-1}(o)$ and let X_i^* be the closure of $\{(x, F_i(x)/z, z) : 0 \neq z \in C\}$ in $C^{n+r+2-i}$. The equicimentional (dimention = n) analytic cycle $N(F_i)$ defined by $X_i^* \cdot \{z=0\} = N(F_i) \times (o)$ is called the normal cone of the (not necessarily) reduced analytic subset $(Y_i, O_n/(F_i)O_n)$ in (C^n, O_n) . For $x \in Y_i$, the cone $N(F_i)_x$ in C^{r+1-i} is defined by $|N(F_i)| \cap (x \times C^{r+1-i}) = (x) \times N(F_i)x$.

Let I_i be the ideal in $O_{n+r+1-i} \{x,y\}$ such that $(I_i, z) O_{n+r+2-i} = I(X_i^*) + (z)O_{n+r+2-i}$. Then the normal cone of $(Y_i, O_n/(F_i)O_n)$ in (C^n, O_n) defined in [2] or [3] is essentially equal to the analytic space $(|N(F_i)|, O_{n+r+1-i}/I_i)$.

(2.2). By the curve selection lemma applied to X_0^* , y_0 -axis is not contained in $|C(X_0^*)_0|$ (or equivalently y_0 -axis is not contained in $N(F_0)_0$) if and only if for any holomorphic curve x(t): { $t \in C$: |t| < 1} $\rightarrow C^n$ with x(0) = 0, we have ord_t $f_0(x(t)) \ge inf_{1 \le j \le r}$ ord_t $f_j(x(t))$. In this case we have

 $m(X_0^*, o) = m(X_1^*, o).$

Note that if f_0 is integral over (f_1, \dots, f_r) , the above condition is satisfied. The converse is also true as proved in [2] or [5]. We will give here an elementary proof of this. So, assume y_0 -axis is not contained in $|C(X_0^*)_0|$.

Choose linearly inedependent linear functions $p_0(x, y', z), \dots, p_n(x, y', z)$ with $y' = (y_1, \dots, y_r)$ so that the map $p = (p_0, \dots, p_n) : X_0^* \to C^{n+1}$ has the covering multiplicity $m = m(X_0^*, o)$ at o.

Then $p^*: O_{n+1} \to O_{n+r+2} / I(X_o^*)$ is a finite injection. Let $g(p_o, \dots, p_n, y_o) = y_o^m + a_1(p) y_o^{m-1} + \dots + a_m(p)$ be the minimal polynomial of y_o mod. $I(X_o^*)$ over O_{n+1} . Then ord $a_j \ge j$ for $1 \le j \le m$ and $h(x, y, z) = y_o^m + \sum_{j=1}^m a_j(p)$ $(x, y', z) y_o^{m-j}$ is in $I(X_o^*)$. Expand $a_j (p(x, y'z))$ as $\sum_{jK} a_{jjK}(x)y^{j}Z^K$ and put $a_j^*(x, y', z) = \sum_{|J|=j+K} a_{jjK}(x)y^{j}J^K$, where $J = (j_1, \dots, j_r)$ is multiindices and |J| denotes $j_1 + \dots + j_r$. Then $ord_y, a_j^* \ge j$ and by the similar argument as in (1.3) $h^* = y_o^m + \sum_{j=1}^m a_j^* y_o^{m-j}$ is in $I(X_o^*)$. This implies the equality $f_o(x)^m + \sum_{j=1}^m a_j^*(x, F_1(x), 1) f_o^{m-j} = 0$ which is an integral equation over (f_1, \dots, f_r) of degree m.

We summarize this result as follows.

(2.3). Let f_1 , ..., f_r be elements of the maximal ideal of O_n , and $m = m(X_1^*, o)$ be as in (2.2). Then for $f \in O_n$, the following statements are equivalent:

- 1) f is integral over (f_1, \dots, f_r) .
- 2) f satisfies an integral equation over (f_1, \dots, f_r) of degree m.
- 3) For any curve x(t): { $t \in C$: $|t| \leq 1$ } $\rightarrow C^n$ with x(0) = 0,

ord_t $f(x(t)) \ge inf_{1 \le j \le r}$ ord_t $f_j(x(t))$,

(2.4). Remark. In (2.2) the essential condition for $p : X_0^* \to C^{n+1}$ is that p is independent of y_0 . If $F_1 = (f_1, \dots, f_n) : C^n \to C^n$ is a finite (m'-sheeted) holomorphic map germ, then we can choose p as $p_0 = z$, $p_i = y_j$ for $1 \le j \le n$. In such a case if f is integral over (f_1, \dots, f_n) we obtain an integral equation over (f_1, \dots, f_n) of degree m'. For example, if $f \in O_n$ has an isolated singularity at o, then f satisfies an integral equation over $(\partial f/\partial x_1, \dots, \partial f/\partial x_n)$ of degree = the Milnor number of f.

References

- [1] Draper, R.N. Intersection theory in analytic geometry, Math. Ann. 180 (1969) 205-219.
- [2] Hironaka, H. Introduction to the theory of infinitely near singular points, Lecture note at Madrid University. 1971,

Bull. Sciences & Engineering Div., Univ of the Ryukyus. (Math. & Nat. Sci.) 41

- [3] —, Normal cones in analytic Whitney stratifications, IHES Publ. Math. 36(1969), 127—138.
- [4] Milnor, J. Singular Points of Complex Hypersurfaces, Annals of Math. Studies. 61 (1968).
- [5] Scheja, G. Multiplizitäten ergleich unter Verwendung von Testkurven, Commentarii Math. Helvet. 44 (1969), 438-445.
- [6] Whitney, H. Comlex Analytic Varieties, Addison-Wesley, 1972.