琉球大学学術リポジトリ

Note on Homotopy Type

メタデータ	言語:
	出版者: 琉球大学理工学部
	公開日: 2012-02-28
	キーワード (Ja):
	キーワード (En):
	作成者: Maehara, Ryuji
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/23535

Note on Homotopy Type

Ryuji MAEHARA*

Abstract. It will be shown that if spaces A and B have the same homotopy type then there exists a fibration $p:E \longrightarrow I$ such that $p^{-1}(0)$, $p^{-1}(1)$ are homeomorphic to A, B, respectively, where I denotes the closed interval $0 \le t \le 1$.

1. Let A and B be spaces. We will write $A \simeq B$ if A and B can be imbedded in a third space X in such a way that they are both *strong* deformation retracts of X. We will write $A \approx B$ if A and B can be imbedded in a space X and if there exists a homotopy $h_t: X \longrightarrow X$ $(0 \leq t \leq 1)$ satisfying $h_0(X) = A$, $h_1(X) = B$, $h_t \cdot h_t = h_t$ for each t (the last condition means that each h_t is a retraction of X onto its image). The purpose of this paper is to prove

Theorem. The following statements are equivalent:

- (1) A and B have the same homotopy type,
- (2) $A \simeq B$,
- (3) $A \approx B$, and
- (4) there is a fibration p:E→ I such that p⁻¹ (0), p⁻¹ (1) are homeomorphic to A, B, respectively.

2. Let $f:A \longrightarrow B$ be a map. The *mapping cylinder* of f is the quotient space obtained from the topological sum $A \cup (A \times I) \cup B$ by identifying $a \in A$ with $(a, 0) \in A \times I$ and $(a, 1) \in A \times I$ with $f(a) \in B$.

Lemma. Let $j:A \longrightarrow M$ be an inclusion map, and let X be the mapping cylinder of j. If j(A) is a deformation retract of M, then $A(=A \ge 0)$ is a strong deformation retract of X.

Proof. By the assumption, there is a retraction $r:M \longrightarrow j(A) \subset M$ and a homotopy $h_t:M \longrightarrow M$ such that $h_0 = 1_M$ (= the identity map of M), $h_1 = r$. Define retractions R_1 of X onto $A \ge I$ and R_0 of X onto $A \ge 0$ respectively by

$$R_{I}(x) = \begin{cases} r(x) & \text{for } x \in M \\ x & \text{for } x \in A \times I, \end{cases}$$
$$R_{0}(x) = PR_{I},$$

where P is the projection of A x I onto A x 0. Then to complete the proof, we need only construct homotopies H_t between 1_M and R_1 , and K_t between R_1 and R_0 in such a way that under these homotopies each point of A x 0 remains fixed.

Received: Oct. 31, 1975

^{*} Dept. of Math.

For each $a \in A$, let a^* denote the path in X given by

$$a^{*}(t) = \begin{cases} h_{1-2t}(ja) & 0 \le t \le 1/2 \\ (a, 2-2t) & 1/2 \le t \le 1 \end{cases}$$

First, we define homotopies $f_t: M \longrightarrow M$ and $g_t: A \times I \longrightarrow X$ respectively by

$$f_{1}(m) = \begin{cases} h_{2t}(m) & 0 \le t \le 1/2 \\ h_{2-2t}(r(m)) & 1/2 \le t \le 1 \\ g_{1}(a, s) = a^{*}(1-s+|\frac{1}{2}-t|s). \end{cases}$$

It is easy to verify that these homotopies satisfy the following properties:

a) $f_o=1_M$ $f_1=r_c$

 $g_0=g_1=$ the inclusion map of $A \times I$ into X,

b)
$$g_i(a, o) = (a, o)$$

c) $g_i(a, 1) = f_i(j(a))$

Now define $H_1: X \rightarrow X$ by

 $H_{t}(x) = \begin{cases} f_{t}(x) & \text{if } x \in M \\ g_{t}(a, s) & \text{if } x = (a, s) \in A \times I. \end{cases}$

By property c), H_t is well defined on X. By a), H_t is a homotopy between 1_X and $R_1 \cdot$ By b), each point of A x 0 remains fixed under $H_t \cdot$ Next, let $P_t:A \times I \longrightarrow A \times I$ be the homotopy given by

$$P_t(a, s) = (a, (1-t)s).$$

and define $K_t: X \longrightarrow X$ by $K_t = P_t \cdot R_1$. Then K_t is a homotopy between R_1 and R_0 under which the points of $A \ge 0$ are fixed. This completes the proof.

Corollary. If $f:A \longrightarrow B$ is a homotopy equivalence, then A and B are both strong deformation retracts of the mapping cylinder M_f of the map f.

Proof. The assertion on B is trivial. It is also well known that A is a deformation retract of M_f (see [1], p.45).

Consider the inclusion map $j:A \longrightarrow M_f$ and its mapping cylinder X. By the lemma, A is a strong deformation retract of X. But (X, A) is homeomorphic to $(M_f, j(A))$. Thus the assertion follows.

3. Proof of the theorem.

(1) \Rightarrow (2). This follows from the preceeding corollary.

(2) \Rightarrow (3). Suppose that A and B are both strong deformation retracts of a space X. Then there are homotopies h_t , $k_t: X \longrightarrow X$ satisfying the conditions: $h_0 = k_0 = 1_X$, $h_1(X) = A$, $k_1(X) = B$, $h_t(a) = a$ for $a \in A$, $k_t(b) = b$ for $b \in B$. Let X^I be the space of all the paths in X with the compact-open topology, and for $x \in X$, let x^* , $x^{\#}$ denote the paths given by

$$x^{*}(t) = k_{l}(x), \quad x^{*}(t) = h_{1-l}(x).$$

3

We define three subspaces of X^{I} as follows:

$$W = [w \in X': w(0) \in A, w(1) \in B],$$

$$A^* = [a^* \in X': a \in A],$$

$$B^* = [b^* \in X': b \in B]$$

Clearly, A^* and $B^{\#}$ are homeomorphic to A and B, respectively, and are contained in W. Thus, in order to show $A \approx B$, we need only construct a homotopy $H_t: W \longrightarrow W$ satisfying the conditions:

(*) $H_0(W) = A^*$, $H_1(W) = B^*$, $H_t \cdot H_t = H_t$ ($0 \le t \le 1$). First, we define $F_t: W \longrightarrow W$ by

$$F_{t}(w)(s) = \begin{cases} w(s) & 0 \le s \le t \\ k(w(t), \frac{s-t}{1-t}) & t \le s \le 1, t \ne 1, \end{cases}$$

where $k:X \ge I \longrightarrow X$ is the map $(x, t) \longrightarrow k_t(x)$. F_t is well defined and has the properties: (**) $F_o(w) = A^*$, $F_1 = 1_w$, $F_t \cdot F_t = F_t$.

We show the continuity of $F: W \ge I \longrightarrow W$, $F(w, t) = F_t(w)$. Clearly, F is continuous at $(w, t) \in W \ge I$ when $t \neq 1$. So, given a neighborhood V of F(w, 1) = w, we try to find a neighborhood U of w and a real number $0 \le u < 1$ such that $w' \in U$ and $u < t \le 1$ imply $F(w, t) \in V$. We may assume V to be a basic open set (containing w) of the compact open topology; namely, V = W(C, 0) for a compact set C in I and an open set 0 in X, where $W(C, 0) = [w \in W: w(s) \in 0$ for all s in C]. If $1 \notin C$, let U = W(C, 0) and

 $u = \sup [t: t \text{ in } C]$. Then, $w' \in U$ and $u < t \leq 1$ imply $F(w', t) \in V = W(C, O)$. In fact, if $s \in C$ then $s \leq u < t$, and hence, $F(w', t)(s) = F_t(w')(s) = w'(s) \in O$; thus $F(w', t) \in W(C, O)$. Now assume $1 \in C$. For each t in I, we have $k(w(1), t) = k_t(w(1)) =$ $w(1) \in O$. Hence, $w(1) \ge I$ is contained in the open subset $k^{-1}(O)$ of $X \ge I$. By the compactness of I, there is an open neighborhood G of w(1) such that $G \ge I \subset k^{-1}(O)$. By the continuity of $w: I \longrightarrow X$, we can find u < 1 so that $w([u, 1]) \subset G$. Let $U = W(C, O) \cap$ W([u, 1], G). Then $w' \in U, u < t \leq 1, s \in C$ imply $F(w', t)(s) \in O$. In fact, if $s \leq t$ then $F(w', t)(s) = w(s) \in O$, and if $t \leq s$ then

$$F(w', t)(s) = k(w'(t), \frac{s-t}{1-t}) \in k(w'[u, 1] \times I) \subset k(G \times I) \subset O.$$

Thus the continuity of F has been proved.

Next, we define a homotopy $G_t: W \longrightarrow W$ by

$$G_{t}(w)(s) = \begin{cases} h(w(t), \frac{t-s}{t}) & 0 \le s \le t, t \ne 0\\ w(s) & t \le s \le 1, \end{cases}$$

where $h(x, t) = h_t(x)$. By similar arguments as above, we can prove that $G_t(w)$ is continuous with respect to (w, t), and satisfies

(***) $G_o = 1_W$, $G_1(W) = B^*$, $G_t \cdot G_t = G_t \cdot$ Finally, define $H_t : W \longrightarrow W$ by

 $H_{t}(w) = \begin{cases} F_{21}(w) & 0 \leq t \leq 1 / 2 \\ G_{21-1}(w) & 1 / 2 \leq t \leq 1 \end{cases}$

 H_t is a well-defined homotopy, and satisfies the required conditions (*).

(3) \Rightarrow (4). Suppose that A and B are subsets of X and there exists a homotopy $h_t:X \longrightarrow X$ satisfying $h_0(X) = A$, $h_1(X) = B$, and $h_t \cdot h_t = h_t$ for all t in I. We define a subset E of X x I by $E = [(h_t(x), t): x \in X, t \in I]$, and a map $p:E \longrightarrow I$ by $p(h_t(x), t) = t$. Then, p^{-1} (0) and p^{-1} (1) are homeomorphic to A, B, respectively. Therefore, it remains only to show that p is a fibration. Let Y be an arbitrary space. Given a homotopy $f_t:Y \longrightarrow I$ and a map $g_0:Y \longrightarrow E$ such that $p \cdot g_0 = f_0$, we have to extend g_0 to a homotopy $g_t:Y \longrightarrow E$ with $p \cdot g_t = f_t$. Because the projection $p:X \times I \longrightarrow I$ is a fibration, there is a covering homotopy $g'_t:Y \longrightarrow X \times I$ of f_t , i.e., $p \cdot g'_t = f_t$. Noting that the map $R:X \times I \longrightarrow E$ given by $R(x, t) = (h_t(x), t)$ is a retraction, we let $g_t = R \cdot g'_t$. Then g_t is what we want.

(4) \Rightarrow (1). This is well known (see [2], p. 101).

REFERENCES

1. R.H. Fox, On homotopy type and deformation retracts, Annals of Mathematics Vol. 44 (1943), 40 - 50.

2. E.D. Spanier, Algebraic topology, McGraw-Hill Book Co., New York, 1966.