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Abstract

If X, a compact connected closed C*°-surface with Euler-Poincaré characteris-
tic x(X), has a Riemannian metric, and if K : X — R is the Gauss-curvature and
dV is the absolute value of the exterior 2-form which represents the volume, then
according to the theorem of Gauss-Bonnet, which holds for orientable as well as
non-orientable surfaces, % / KdV = x(X).

X

When X is the standard sphere or torus in R3, the Gaussian curvature is
well-known and we can compute the left-hand side explicitly.

Let X be a compact connected closed C°-surface of any genus. In this paper,
we construct an embedding of X into R2 or R* according as X is orientable or non-
orientable. We equip X with the Riemannian metric as a Riemannian submanifold
of R3 or R%. Then, with the aid of a computer, we compute the left-hand side
numerically for the cases that the genus of X is small. The computer data are
sufficiently nice and coincide with the right-hand side without errors. Such nice
data are obtained by converting double integrals to infinite integrals.

1 Introduction

If X, a compact connected closed C*°-surface with Euler-Poincaré characteristic
x(X), has a Riemannian metric, and if K : X — R is the Gauss-curvature and
dV is the absolute value of the exterior 2-form which represents the volume, then
according to the theorem of Gauss-Bonnet, which holds for orientable as well as
non-orientable surfaces,

1
= fx KdV = x(X). Q)

There are two proofs for (1). The first proof is as follows (see, for example,
[1] and [8]): We first prove a similar formula for a triangle in X. Next, if X is
orientable, then we give a triangulation and apply the formula for each triangle.
Summing up the results, we obtain (1). On the other hand, if X is non-orientable,
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then we take a double covering p : X — X such that X is orientable. We pull
back the Riemannian metric on X by p and define a metric on X. Then

1 1 1 5

(Alternatively, if triangulate X by geodesic triangles, then we can give a proof
regardless of the orientability of X.)

The other proof is valid for the case when X is a hypersurface in R3. (See, for
example, [5].) Let v : X — S? be the Gauss map. Then (1) is a consequence of
the following two results: One is 2deg v = x(X) and the other is v*wg: = Kwy,
where wjys denotes the volume form on M.

In this paper, we consider the following question: Let X be a compact con-
nected closed C*°-surface of any genus. Is it possible to construct an embedding of
X into Euclidean space explicitly such that the left-hand side of (1) is numerically
computable?

For special cases, we know answers to the question. Firstly, for a > 0, we define
a sphere by

S%(a) = {(z,y, z) € R% 2% + 3% + 2% = a?}.

1
Since K = pox (1) is nothing but an assertion that the surface area of S%(a) is

4ra?

Secondly, for 0 < 7 < R, we consider a torus whose parametrization is given
by

p(u,v) = ((R+ 7cosu) cosv, (R + r cosu) sinv, rsinu), (2)
where 0 < u,v < 27. Since K = _cos;u’ (1) is nothing but an assertion
(R + r cosu)

that

i // cosu dudv = 0.
2m [0,27]) x[0,27]

Thirdly, we can embed a torus into R* and a Klein’s bottle into R® such that
K = 0. (See §4.) In this case, (1) clearly holds.

But to the best of the author’s knowledge, an example for higher genus case is
not known. One reason of this is that computation of K is complicated. The other
reason is that we do not have an effective method for the numerical computation
of double integrals.

The purpose of this paper is to construct an embedding of X into R3 or R*
according as X is orientable or non-orientable. We equip X with the Riemannian
metric as a Riemannian submanifold of R3 or R4. Then, with the aid of a computer,
we compute the left-hand side of (1) numerically for the cases that the genus of X
is small.

The key to our method is as follows: We transform a double integral to an
infinite integral. Thanks to this, we get a sufficiently nice data about the numerical
computation of the left-hand side of (1).

This paper is organized as follows. In §2, we state our main results. In §3, we
prove the main theorems, In §4, for our reference, we recall flat embeddings of a
torus into R? and a Klein’s bottle into R,



2 Main results

Definition 1. For g € NU {0}, we define a subspace X, of R3 as follows:
(i) The case of even g. We set

Xg ={(z,y,2) € R3; 2% 4+ (22 + 3% — 4)

¢ 2mi 2mi 1
X H ((:z—-cos—)2+(y—sin--—)2 - —2) = 0}.
ol g g g

(ii) The case of odd n. We set

1
Xg={(z,9,2) eR% 2>+ (2® + > - 4)(=® +° - 7

g-—1 . .
21 Lo2mo, 1 )
X T — Ccos + (y —sin — —= ) =0}
i|=[1 (( Ty —sin 9~ 5 ) =0}

Note that X, is a closed surface of genus g. (See Figure 1.) Note also that X,
admits an involution (z,y, 2) — (-z,—y, —2).
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Figure 1: X, and Kx, for 1< g <6.

Definition 2. We define a map f: R® — R* by

f(z,y,2) = (2 — 9%, 2y, 22, y2).

Then we set
Yoi1:= f(Xg)-

Lemma 3. The space Yg41 18 a non-orientable surface of genus g + 1.

Proof. We shall show that f|Xg : X, — Y41 is a double covering. First, it
is clear that f(z,y,z) = f(—z,-vy,—2). Next, we need to check the fact that
for any q € Yy41, f1(q) consists of two points. The case for g = 0 is proved
in the appendix 2 of [6]. The proof remains valid for ¢ > 0 without changing
anything. O



Remark 4. It is known that a Klein’s bottle admits an embedding into R* with
parametrization

p(u,v) = (R + rcosu)cosv, (R + rcosu) sinv, rsinu cos 12—1, rsinusin g),
where 0 < u,v < 2m. (See, for example, [2, p.32].) Note that this is a natural
parametrization of f(T'), where T is the torus given by (2).

Definition 5. (i) We equip X, and Y, with the Riemannian metric as Riemannian
submanifolds of R3 and R*, respectively.

(ii) We denote by Kx, and Ky, the Gaussian curvature with respect to the
Riemannian metric on X, and Yy, respectively. (Note that Kx, # Ky,,, o(f|X,),
since f|Xg: Xy — Yy41 is not a local isometry.)

Theorem A . With the aid of a computer, we can compute the Gaussian curvature
K X and K Y-

9

Example 6. (i) The graphs of the function Kx, for 1 < g < 6 are given in Figure
1. We can understand the well-known fact that the point p with K(p) > 0 and
K (p) < 0 correspond to an elliptic and hyperbolic point, respectively.

Moreover, for even g, we define py € X, to be one of two points of the form
(0,0, 2). (Note that such a point is not defined for odd g.) Then the values of
Kx,(po) are given by the following table.

Table 1: The values of Kx,(po)-

g 0 2 4 6 8 10
Kx, (po) | 0.25 | —25.526 | 0.882572 | 0.613957 | 0.50655 | 0.448304

Note that when g moves in even numbers, Kx,(po) attain maximum for g = 4
(ii) The graphs of the function Ky, for 1 < g < 6 are given in the following
Figure 2.




K YB K Ye

Figure 2: Ky, for 1 < g <6.

For po € Xg—1 (where g is an odd number), we set go := f(po) € Yy. Then the
values of Ky, (qo) are given by the following table.

Table 2: The values of Ky, (o).

g 1 3 5 7 9 11
Ky, (q0) | —0.3125 | —0.9876 | —0.5236 | —0.4381 | —0.4020 | —0.3820

Note that when g moves in odd numbers, Ky, (go) attain minimum for g = 3.
(ii) See Example 7 for an explicit formula of Kx, for 0 < g < 2 and Ky, for
g=1and 2.



Theorem B . (i) For X, with 0 < g < 8, there is an effective method for
computing the left-hand side of (1) numerically. See the computations below (4)
for the cases of g = 0 and 1. Moreover, see o in Table 8 in §3 for the cases of
2<g<8.

Note that the results of computations agree with the right-hand side of (1)
completely.

(if) For Yy with 1 < g < 5, there is an effective method for computing the
left-hand side of (1) numerically. See the computations below (10) for the cases of
g=1 and 2. Moreover, see d° in Table 4 in §3 for the cases of 3 < g < 5.

Note that the results of computations agree with the right-hand side of (1)
completely.

3 Proof of main theorems

We define X} := {(2,y,2) € Xg;2 > 0} and X, := {(z,9,2) € X,;2 < 0}. We
write the equation for X in Definition 1 by 2% 4+ F(z,y) = 0. Then X, j‘ admits a

parametrization
p(u) ‘U) = (ua vV —F(ua ’U)) (3)

We use f op as a parametrization of Y.

Proof of Theorem A. (i) We show how to compute K x, with respect to the parametriza-
tion (3). Since X, is a hypersurface of R3, we can compute from the definition

— M2
K = % We can find a Mathematica program in [4].

Alternatively, we can use the Brioschi formula ([4]), which holds for any Rie-
mannian 2-dimensional manifold: We set
E=py-pu, F=py-py and G =p, - py.
Then
E(E,G, — 2F,G, + G?) " F(E,G, - E,G, - 2E,F, — 2F,G, + AF,F,)
4(EG — F?2)?2 4(EG — F2)?
G(EuGy —2E,Fy + E})  Eyy —2Fyy + Gua
A(EG — F?)2 2(EG - F?)

K=

(ii) We use the Brioschi formula for the parametrization f o p. 0

Example 7. (i) Since Xo = 5%(2), we have Kx, = §.
(ii) We have
le = _&1
(23]

where

a1 =4u® + 8u8(20% — 5) + 3u? (8v* — 40v% + 41) + 2 (85 — 60v* + 123v% — 80)
+ 4% — 4008 + 123v* — 16002 + 100



and

2
ag = (4u6 + 3ut(4v? — 7) + 6uZ(2v? — Tv? + 5) + 45 — 21v* + 300 — 4) .

(iii) We have
B
Kx, = —64—,
e 2

where
B1 =18432u'? + 4608u'?(28v? — 51) + 2304u!°(168v* — 56402 + 473)
+ 576u8(112008 — 5160v* + 747602 — 3755)
+ 24u°%(26880v® — 14976005 + 271808v* — 20515202 + 59175)
+ 6u? (6451200 — 40320008 + 771840v° — 565184v* 4 7842002 + 75507)
+ 1204%(10752v'2 — 7142400 + 1223040® — 38848v° — 26262v*
+ 4895102 — 22464)
+ (40 + 3)3(288v% — 259205 + 7590v* — 10260v® + 4901)

and
B2 = (2304u1° + 768u8(15v% — 26) + 96u’(240v* — 70402 + 617)

+ 96u®(240v° — 864v* 4 10830% ~ 715)

+ 3u?(3840v% — 14336v° + 14176v* ~ 710402 + 8619)
2

+ (4v? + 3)%(1440° — 696v* + 82502 + 64)) .

(iv) We have

—12u?(v? - 4) + 48v% — 80

Ky, = .
Y1 7 (9ute? + 3uv?(302 — B) + 16)2
(v) We have
KYg = :Yl)
Y2
where

1 =51ul® 4 12614 (1002 — 73) — 12u12(250% + 23102 — 448)
— 4u'(3661° + 399v* — 4257v? + 3716)
+ u8(—21900® + 2940v® 4 19728v* — 4096002 + 18528)
— 4u®(366v'° — 73508 — 4038v° + 12140v* — 919202 + 1552)
— 4u? (7502 4 39900 — 439208 + 121400° — 9120v* — 110402 + 1984)
+ 4u?(30v'* — 69302 + 4257v'° — 102400° + 91920 4 11040*
— 593602 + 1728)
+ 5106 — 8760 + 5376v'% — 14864v'° + 18528v° — 6208°
— 7936v* + 691202 — 1280



and

- =(9u12 +2ul%(270% — 59) + u¥(1350* — 68607 + 564)
+ 4u8(45v° — 367v* 4 71402 — 304)
+ u*(1350® — 1468v° + 4584v* — 474002 + 1168)
+ u?(54v'° — 68608 + 28560° — 4740v* + 28162 — 480)
2
+ 9012 — 1180 + 5640 — 1216v° + 1168v* — 48002 + 64) .

Next we try to compute the left-hand side of (1) for X = X,.
The case g = 0 is clear. For g > 1. note that

1 2
ﬁfx Kx,dV = 5/)(; Kx,dV. @)

We consider the case g = 1. Applying the polar conversion (u,v) = (r cos 8, rsin 8),
(4) equals to

2 [ /2 —rV/=4r® + 2177 — 30r? 4 4(4r® — 40r° + 123r* — 160r® +100) ,
2T 0 1

Vrd = 512 4 4(4r8 — 2174 + 30r2 — 4)2
=0.

Hereafter we assume that g > 2. Let 7 : X, — R? be the projection defined
by n(z,y,2) = (z,y). We set D := n(X,) and

A(ua U) = KX, (u’ v)\/E(u) 'U)G(u: 'U) - F(u’v)2’ (5)

where E, F and G are defined with respect to the parametrization p in (3). Then
by the definition of dV/, we have

(4) = % / /D Alw,v) dudv. (©)

Probably, the most simple method to compute (6) using Mathematica is to
translate it as an integral over a rectangle: We set
(r,6) == 7+ A(rcos@,rsin ) if (rcos@,rsinf) € D
BP0 if (r cos 6, 7sin 8) ¢ D.

Moreover, for a fixed g, we set

=/
= — r,0) drdf. 7
pi= o 021x(0.24] u(r,0) (M

Then, we have (6) = p.

The number p is computable using the Mathematica command
“NIntegrate[%p,[r, 0],{r,0,2},{6,0,2x}]". The data are given in Table 3, but
unfortunately they are not so good. Hence, we convert (7) to an infinite integral.



Definition 8. We fix g > 2.
(i) We set

B(r,0) :=r- A(rcos8,rsin8).
(i) We set

g% + g2 cos 20 — v/24/—g% cos? 6 + g4 cos? O cos 20 + 2g2 cos? 6
k1 (6) = 2g2 cos 6

and

ka(6) := g% + 92 cos20 + v/21/—g%cos? 0 + g4 cos20cos20+2g2cos20
292 cos 8

(iii) We set
R:= {(3,0);1 <s<oo and OSOSarcsiné}

Q= {0 <r 2wt woind o)

and

= 1 T
=4q(r0);=<r<2 and arcsin-<6< ——>.
9s {( )g g 9—1}

(We define @, and Q. later, but we do not need them for the moment.)

(iv) We set
// <k1(0) ) k1(0) dsdf if g is even
// (k‘(e)“ g-,e) Elf;)lid d8  if g is odd
A i= //RB (-’ﬂ‘z_—2 +2,0) #g dsdf

/\1:

I

and

/ B(r,0) drdd  if g is even
Qs

]

)\3 :
/ /~ B(r,0) drdf  if g is odd.
Qs



(v) We set
gza:)v if g is even
1
27 =
3

49— 4 P
o Z s if g is odd.

—

i=
Lemma 9. For all g > 2, we have (7) =o0.

Proof. (i) The case of even g.
We define closed subspaces P; (1 < i < 3) of D as follows:

o P;: The domain surrounded by a circle (u — 1)2 + v = 31; and lines v = 0
and v = (arcsin %)u.

e Pp: The domain surrounded by circles (u —1)% +v? = J5 and u® +v* = 4
and a line v = (arcsin 1 )u.

e P3: The domain surrounded by a circle 42 +v? = 4 and lines v = (arcsin %)u
and v = -’g}u.

(See Figure 3.)

D A

/R P

0

Figure 3: P; for g = 4.

For 1 <1< 3, we set

Gi:= //Pa A(u,v) dudv.



Then we have

3
49
©®) =5 ; G (8)
About {;, we apply the polar conversion as in the case for ¢ = 1. For that
purpose, we fix § and determine the lengths from the origin to the intersection
points of a circle and a line:

1
(u—1)2+v2=-g—2- and v = (tant)u.

For that purpose, we define h;(t) and ha(t) (where hy(0) < ho(6)) as indicated in
the following Figure 4. Then the lengths are given by }:ﬁ)— and %.i—gl It is easy
to see that these lengths coincide with k1(8) and k(6) in Definition 8 (ii).

. ha(6)
/‘ e
. *
.
‘.‘ hl!o! ".
s cos@

L~

.

;;1(9) ;tz(o)

Figure 4: hy(t) and ha(2).

If we define
Q1 := {(r,());Og'rskl(O) and OSGSarcsiné},

then

G = / /Q B(r,0) drds ©)

k(6
Moreover, we convert r by r = —%2

AL

(where we keep 6), then (9) is converted to



Next, we define @ appropriately and convert {2 as in (9). Then, converting r
—2+ kao(t
by r= —+—2—(—) + 2, we obtain As.

8
Finally, using Q3 in Definition 7 (iii), we convert (3 as in (9). Then we obtain
Az. This completes the proof for even g.

(ii) The case of odd g. _
For 1 < i £ 3, we define P; by the following Figure 5.

T

D 2

N
/

N
N
o
G

0

Figure 5: P, for g = 5.

Gi= /-/}Si A(u,v) dudv,

then, in contrast to (8), we have

If we define

First, about Z;, we first apply polar conversion, then convert by

ki(t) -1
7‘=L(_)_._g
s

+

@I

Then we obtain A;.
Second, since (2 = (2, the argument for even g remains valid and we obtain ).
Third, (s is converted to A3. This completes the proof of Lemma 9. a -

Proof of Theorem B (i). The cases for ¢ = 0 and 1 are proved already. With the
aid of a computer, we compute A; and o for 2 < g < 8. The results are as follows.



Table 3: The values p, A\; and o for X, with2< g <8.

g I AL A2 A3 o

2 [ —1.97542 || —0.434019 | —2.15234 | 1.01556 | —2
3 | —3.64478 || —2.05477 | —2.17813 | 1.09131 —4
4 | —=5.97797 | —0.491114 | —2.22446 | 0.359384 | —6
5| —7.68207 || —1.92189 | —2.45524 | 1.23563 | -8
6 [ —9.98756 —0.4837 | —2.31766 | 0.183367 | —10
71 —11.9391 || —1.86038 | —2.59831 | 1.31709 | —12
8 | —13.9779 || —0.469199 | —2.39838 | 0.118686 | —14

Here p is defined in (7). Thus ¢ is much accurate than p. ]

Proof of Theorem B (it). The above proof of Theorem B (i) for Xy works for Yy41
after slight modifications. We indicate where to change. Similarly to (5), we define

A°(u,v) := Ky,,, (u,v)v E(u,v)G(u,v) — F(u,v)?,

where E,F and G are defined with respect to a parametrization f o p of Yy41.
Since f(p(D)) = Yy41, instead of (6), we have

1 1 .
e / - Ky,,, dV = 2—7f//DA (u,v) dudv. (10)

We compute this.

First, using Example 7 (iv) and (v), we can compute the integrals of (10) for
Y; and Y,. The results are exactly 1 and 0, respectively. For example, similarly
to the case X, the computation for Y; is given as follows:

2m 2 _ 4 2 _
(10) = 1 / / 16v/2r(3(—1 + cos 4t)r* + 9672 — 160) drdo
27f 0 0 \/(_'r.2
1

+4) (9(1 - cos4t)rS + 24(—1 + cos 4t)r4 + 128)°

Next, for Y41 with g > 2, we change Definition 8 as follows: First, we change
(i) to the definition:
B°(r,0) :=r- A°(r cos 8, rsinb).
We use (ii) and (iii) as it is. About (iv), we substitute B° for B and define A;.
About (v), we define

3
29 0 P
o E Al if g is even

i=1

20-2¢ -
- ,-Z:f)\i if g is odd.



Lemma 9° . For all Yyy1 with g > 2, we have (10) = o°.

Proof. The proof is quite similar to that of Lemma 9.

Similarly to (7), we define p° as follows: Extending the function B°(r,#8) to

p(r,6) : [0,2] x [0,27] — R, we set

1
° = — °(r,0) drd#.
p 2m / /[0,2]x[0,21r]# (r.6)

Now similarly to Table 3, we have the following table.

Table 4: The values p°, A? and o° for Yy with 3 < g < 5.

i~ X 3 X [
3 | —0.945098 || —1.65875 | —1.10731 1.19526 | —1
4| -1.92215 —2.5315 | —1.15509 | 0.544998 | —2
5| —2.94932 —1.6532 | —0.785998 | 0.0830011 | —3
Thus o° is much accurate than p°. O

4 Flat embeddings

For our reference, we recall flat embeddings.
Proposition 10. (i) (The Clifford torus.) We embed S* x S! into R* by
{z,9,2,w) eRY 2> + 42 =1 and 22 +w?=1}

Then K =0 everywhere.
(i) We embed a Klein's bottle into R® by the parametrization

. u . U,
(u,v) — (cosucosv,sinucosv,2cos — sinv, 2sin - sinv, cosv),
) ) 2 2 ’

where (u,v) € [0,7] % [0,7]. Then K =0 everywhere.

Proof. (i) Since the covering map R? — S! x S! is a local isometry, the result
follows. (ii) is taken from [3, p.115]. The paper gives [7] as a reference. We can
compute K using the Brioschi formula in §3. a
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