琉球大学学術リポジトリ

COMPUTER－AIDED VERIFICATION OF THE GAUSS－BONNET FORMULA FOR CLOSED SURFACES

メタデータ	言語：
	出版者：Department of Mathematical Science，Faculty of Science，University of the Ryukyus 公開日： $2012-03-01$ キーワード（Ja）： キーワード（En）： 作成者：Kamiyama，Yasuhiko，神山，靖彦 メールアドレス： 所属： http：／／hdl．handle．net／20．500．12000／23589

COMPUTER-AIDED VERIFICATION OF THE GAUSS-BONNET FORMULA FOR CLOSED SURFACES

Yasuhiko KAMIYAMA

Abstract

If X, a compact connected closed C^{∞}-surface with Euler-Poincaré characteristic $\chi(X)$, has a Riemannian metric, and if $K: X \rightarrow \mathbb{R}$ is the Gauss-curvature and $d V$ is the absolute value of the exterior 2-form which represents the volume, then according to the theorem of Gauss-Bonnet, which holds for orientable as well as non-orientable surfaces, $\frac{1}{2 \pi} \int_{X} K d V=\chi(X)$.

When X is the standard sphere or torus in \mathbb{R}^{3}, the Gaussian curvature is well-known and we can compute the left-hand side explicitly.

Let X be a compact connected closed C^{∞}-surface of any genus. In this paper, we construct an embedding of X into \mathbb{R}^{3} or \mathbb{R}^{4} according as X is orientable or nonorientable. We equip X with the Riemannian metric as a Riemannian submanifold of \mathbb{R}^{3} or \mathbb{R}^{4}. Then, with the aid of a computer, we compute the left-hand side numerically for the cases that the genus of X is small. The computer data are sufficiently nice and coincide with the right-hand side without errors. Such nice data are obtained by converting double integrals to infinite integrals.

1 Introduction

If X, a compact connected closed C^{∞}-surface with Euler-Poincaré characteristic $\chi(X)$, has a Riemannian metric, and if $K: X \rightarrow \mathbb{R}$ is the Gauss-curvature and $d V$ is the absolute value of the exterior 2 -form which represents the volume, then according to the theorem of Gauss-Bonnet, which holds for orientable as well as non-orientable surfaces,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{X} K d V=\chi(X) \tag{1}
\end{equation*}
$$

There are two proofs for (1). The first proof is as follows (see, for example, [1] and [8]): We first prove a similar formula for a triangle in X. Next, if X is orientable, then we give a triangulation and apply the formula for each triangle. Summing up the results, we obtain (1). On the other hand, if X is non-orientable,

Received November 30, 2011.
then we take a double covering $p: \tilde{X} \rightarrow X$ such that \tilde{X} is orientable. We pull back the Riemannian metric on X by p and define a metric on \tilde{X}. Then

$$
\frac{1}{2 \pi} \int_{X} K d V=\frac{1}{4 \pi} \int_{\tilde{X}} K d V=\frac{1}{2} \chi(\tilde{X})=\chi(X)
$$

(Alternatively, if triangulate X by geodesic triangles, then we can give a proof regardless of the orientability of X.)

The other proof is valid for the case when X is a hypersurface in \mathbb{R}^{3}. (See, for example, [5].) Let $\nu: X \rightarrow S^{2}$ be the Gauss map. Then (1) is a consequence of the following two results: One is $2 \operatorname{deg} \nu=\chi(X)$ and the other is $\nu^{*} \omega_{S^{2}}=K \omega_{X}$, where ω_{M} denotes the volume form on M.

In this paper, we consider the following question: Let X be a compact connected closed C^{∞}-surface of any genus. Is it possible to construct an embedding of X into Euclidean space explicitly such that the left-hand side of (1) is numerically computable?

For special cases, we know answers to the question. Firstly, for $a>0$, we define a sphere by

$$
S^{2}(a)=\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+y^{2}+z^{2}=a^{2}\right\}
$$

Since $K=\frac{1}{a^{2}},(1)$ is nothing but an assertion that the surface area of $S^{2}(a)$ is $4 \pi a^{2}$.

Secondly, for $0<r<R$, we consider a torus whose parametrization is given by

$$
\begin{equation*}
p(u, v)=((R+r \cos u) \cos v,(R+r \cos u) \sin v, r \sin u) \tag{2}
\end{equation*}
$$

where $0 \leq u, v \leq 2 \pi$. Since $K=\frac{\cos u}{r(R+r \cos u)},(1)$ is nothing but an assertion that

$$
\frac{1}{2 \pi} \iint_{[0,2 \pi] \times[0,2 \pi]} \cos u d u d v=0
$$

Thirdly, we can embed a torus into \mathbb{R}^{4} and a Klein's bottle into \mathbb{R}^{5} such that $K=0$. (See $\S 4$.) In this case, (1) clearly holds.

But to the best of the author's knowledge, an example for higher genus case is not known. One reason of this is that computation of K is complicated. The other reason is that we do not have an effective method for the numerical computation of double integrals.

The purpose of this paper is to construct an embedding of X into \mathbb{R}^{3} or \mathbb{R}^{4} according as X is orientable or non-orientable. We equip X with the Riemannian metric as a Riemannian submanifold of \mathbb{R}^{3} or \mathbb{R}^{4}. Then, with the aid of a computer, we compute the left-hand side of (1) numerically for the cases that the genus of X is small.

The key to our method is as follows: We transform a double integral to an infinite integral. Thanks to this, we get a sufficiently nice data about the numerical computation of the left-hand side of (1).

This paper is organized as follows. In §2, we state our main results. In §3, we prove the main theorems, In $\S 4$, for our reference, we recall flat embeddings of a torus into \mathbb{R}^{4} and a Klein's bottle into \mathbb{R}^{5}.

2 Main results

Definition 1. For $g \in \mathbb{N} \cup\{0\}$, we define a subspace X_{g} of \mathbb{R}^{3} as follows:
(i) The case of even g. We set

$$
\begin{aligned}
X_{g}=\{(x, y, z) & \in \mathbb{R}^{3} ; z^{2}+\left(x^{2}+y^{2}-4\right) \\
& \left.\times \prod_{i=1}^{g}\left(\left(x-\cos \frac{2 \pi i}{g}\right)^{2}+\left(y-\sin \frac{2 \pi i}{g}\right)^{2}-\frac{1}{g^{2}}\right)=0\right\}
\end{aligned}
$$

(ii) The case of odd n. We set

$$
\begin{aligned}
X_{g}=\{(x, y, z) & \in \mathbb{R}^{3} ; z^{2}+\left(x^{2}+y^{2}-4\right)\left(x^{2}+y^{2}-\frac{1}{g^{2}}\right) \\
& \left.\times \prod_{i=1}^{g-1}\left(\left(x-\cos \frac{2 \pi i}{g-1}\right)^{2}+\left(y-\sin \frac{2 \pi i}{g-1}\right)^{2}-\frac{1}{g^{2}}\right)=0\right\} .
\end{aligned}
$$

Note that X_{g} is a closed surface of genus g. (See Figure 1.) Note also that X_{g} admits an involution $(x, y, z) \mapsto(-x,-y,-z)$.

Figure 1: X_{g} and $K_{X_{g}}$ for $1 \leq g \leq 6$.
Definition 2. We define a map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ by

$$
f(x, y, z)=\left(x^{2}-y^{2}, x y, x z, y z\right)
$$

Then we set

$$
Y_{g+1}:=f\left(X_{g}\right)
$$

Lemma 3. The space Y_{g+1} is a non-orientable surface of genus $g+1$.
Proof. We shall show that $f \mid X_{g}: X_{g} \rightarrow Y_{g+1}$ is a double covering. First, it is clear that $f(x, y, x)=f(-x,-y,-z)$. Next, we need to check the fact that for any $q \in Y_{g+1}, f^{-1}(q)$ consists of two points. The case for $g=0$ is proved in the appendix 2 of [6]. The proof remains valid for $g>0$ without changing anything.

Remark 4. It is known that a Klein's bottle admits an embedding into \mathbb{R}^{4} with parametrization

$$
p(u, v)=\left((R+r \cos u) \cos v,(R+r \cos u) \sin v, r \sin u \cos \frac{v}{2}, r \sin u \sin \frac{v}{2}\right)
$$

where $0 \leq u, v \leq 2 \pi$. (See, for example, [2, p.32].) Note that this is a natural parametrization of $f(T)$, where T is the torus given by (2).

Definition 5. (i) We equip X_{g} and Y_{g} with the Riemannian metric as Riemannian submanifolds of \mathbb{R}^{3} and \mathbb{R}^{4}, respectively.
(ii) We denote by $K_{X_{g}}$ and $K_{Y_{g}}$ the Gaussian curvature with respect to the Riemannian metric on X_{g} and Y_{g}, respectively. (Note that $K_{X_{g}} \neq K_{Y_{s+1}} \circ\left(f \mid X_{g}\right)$, since $f \mid X_{g}: X_{g} \rightarrow Y_{g+1}$ is not a local isometry.)

Theorem A. With the aid of a computer, we can compute the Gaussian curvature $K_{X_{g}}$ and $K_{Y_{g}}$.

Example 6. (i) The graphs of the function $K_{X_{g}}$ for $1 \leq g \leq 6$ are given in Figure 1. We can understand the well-known fact that the point p with $K(p)>0$ and $K(p)<0$ correspond to an elliptic and hyperbolic point, respectively.

Moreover, for even g, we define $p_{0} \in X_{g}$ to be one of two points of the form $(0,0, z)$. (Note that such a point is not defined for odd g.) Then the values of $K_{X_{g}}\left(p_{0}\right)$ are given by the following table.

Table 1: The values of $K_{X_{g}}\left(p_{0}\right)$.

g	0	2	4	6	8	10
$K_{X_{g}}\left(p_{0}\right)$	0.25	-25.526	0.882572	0.613957	0.50655	0.448304

Note that when g moves in even numbers, $K_{X_{g}}\left(p_{0}\right)$ attain maximum for $g=4$
(ii) The graphs of the function $K_{Y_{g}}$ for $1 \leq g \leq 6$ are given in the following

Figure 2.

Figure 2: $K_{Y_{g}}$ for $1 \leq g \leq 6$.
For $p_{0} \in X_{g-1}$ (where g is an odd number), we set $q_{0}:=f\left(p_{0}\right) \in Y_{g}$. Then the values of $K_{Y_{g}}\left(q_{0}\right)$ are given by the following table.

Table 2: The values of $K_{Y_{g}}\left(q_{0}\right)$.

g	1	3	5	7	9	11
$K_{Y_{g}}\left(q_{0}\right)$	-0.3125	-0.9876	-0.5236	-0.4381	-0.4020	-0.3820

Note that when g moves in odd numbers, $K_{Y_{g}}\left(q_{0}\right)$ attain minimum for $g=3$.
(ii) See Example 7 for an explicit formula of $K_{X_{g}}$ for $0 \leq g \leq 2$ and $K_{Y_{g}}$ for $g=1$ and 2.

Theorem B . (i) For X_{g} with $0 \leq g \leq 8$, there is an effective method for computing the left-hand side of (1) numerically. See the computations below (4) for the cases of $g=0$ and 1. Moreover, see σ in Table 3 in §3 for the cases of $2 \leq g \leq 8$.

Note that the results of computations agree with the right-hand side of (1) completely.
(ii) For Y_{g} with $1 \leq g \leq 5$, there is an effective method for computing the left-hand side of (1) numerically. See the computations below (10) for the cases of $g=1$ and 2. Moreover, see σ° in Table 4 in §3 for the cases of $3 \leq g \leq 5$.

Note that the results of computations agree with the right-hand side of (1) completely.

3 Proof of main theorems

We define $X_{g}^{+}:=\left\{(x, y, z) \in X_{g} ; z \geq 0\right\}$ and $X_{g}^{-}:=\left\{(x, y, z) \in X_{g} ; z \leq 0\right\}$. We write the equation for X_{g} in Definition 1 by $z^{2}+F(x, y)=0$. Then X_{g}^{+}admits a parametrization

$$
\begin{equation*}
p(u, v)=(u, v, \sqrt{-F(u, v)}) \tag{3}
\end{equation*}
$$

We use $f \circ p$ as a parametrization of Y_{g+1}.
Proof of Theorem A. (i) We show how to compute $K_{X_{g}}$ with respect to the parametrization (3). Since X_{g} is a hypersurface of \mathbb{R}^{3}, we can compute from the definition $K:=\frac{L N-M^{2}}{E G-F^{2}}$. We can find a Mathematica program in [4].

Alternatively, we can use the Brioschi formula ([4]), which holds for any Riemannian 2-dimensional manifold: We set

$$
E=p_{u} \cdot p_{u}, F=p_{u} \cdot p_{v} \quad \text { and } \quad G=p_{v} \cdot p_{v}
$$

Then

$$
\begin{aligned}
K=\frac{E\left(E_{v} G_{v}-2 F_{u} G_{v}+G_{u}^{2}\right)}{4\left(E G-F^{2}\right)^{2}} & +\frac{F\left(E_{u} G_{v}-E_{v} G_{u}-2 E_{v} F_{v}-2 F_{u} G_{u}+4 F_{u} F_{v}\right)}{4\left(E G-F^{2}\right)^{2}} \\
& +\frac{G\left(E_{u} G_{u}-2 E_{u} F_{v}+E_{v}^{2}\right)}{4\left(E G-F^{2}\right)^{2}}-\frac{E_{v v}-2 F_{u v}+G_{u u}}{2\left(E G-F^{2}\right)}
\end{aligned}
$$

(ii) We use the Brioschi formula for the parametrization $f \circ p$.

Example 7. (i) Since $X_{0}=S^{2}(2)$, we have $K_{X_{0}}=\frac{1}{4}$.
(ii) We have

$$
K_{X_{1}}=-\frac{\alpha_{1}}{\alpha_{2}}
$$

where

$$
\begin{aligned}
\alpha_{1}= & 4 u^{8}+8 u^{6}\left(2 v^{2}-5\right)+3 u^{4}\left(8 v^{4}-40 v^{2}+41\right)+2 u^{2}\left(8 v^{6}-60 v^{4}+123 v^{2}-80\right) \\
& +4 v^{8}-40 v^{6}+123 v^{4}-160 v^{2}+100
\end{aligned}
$$

and
$\alpha_{2}=\left(4 u^{6}+3 u^{4}\left(4 v^{2}-7\right)+6 u^{2}\left(2 v^{4}-7 v^{2}+5\right)+4 v^{6}-21 v^{4}+30 v^{2}-4\right)^{2}$.
(iii) We have

$$
K_{X_{2}}=-64 \frac{\beta_{1}}{\beta_{2}},
$$

where

$$
\begin{aligned}
\beta_{1}= & 18432 u^{14}+4608 u^{12}\left(28 v^{2}-51\right)+2304 u^{10}\left(168 v^{4}-564 v^{2}+473\right) \\
& +576 u^{8}\left(1120 v^{6}-5160 v^{4}+7476 v^{2}-3755\right) \\
& +24 u^{6}\left(26880 v^{8}-149760 v^{6}+271808 v^{4}-205152 v^{2}+59175\right) \\
& +6 u^{4}\left(64512 v^{10}-403200 v^{8}+771840 v^{6}-565184 v^{4}+78420 v^{2}+75507\right) \\
& +12 u^{2}\left(10752 v^{12}-71424 v^{10}+122304 v^{8}-38848 v^{6}-26262 v^{4}\right. \\
& \left.\quad+48951 v^{2}-22464\right) \\
& +\left(4 v^{2}+3\right)^{3}\left(288 v^{8}-2592 v^{6}+7590 v^{4}-10260 v^{2}+4901\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\beta_{2}= & \left(2304 u^{10}+768 u^{8}\left(15 v^{2}-26\right)+96 u^{6}\left(240 v^{4}-704 v^{2}+617\right)\right. \\
& +96 u^{4}\left(240 v^{6}-864 v^{4}+1083 v^{2}-715\right) \\
& +3 u^{2}\left(3840 v^{8}-14336 v^{6}+14176 v^{4}-7104 v^{2}+8619\right) \\
& \left.+\left(4 v^{2}+3\right)^{2}\left(144 v^{6}-696 v^{4}+825 v^{2}+64\right)\right)^{2} .
\end{aligned}
$$

(iv) We have

$$
K_{Y_{1}}=\frac{-12 u^{2}\left(v^{2}-4\right)+48 v^{2}-80}{\left(9 u^{4} v^{2}+3 u^{2} v^{2}\left(3 v^{2}-8\right)+16\right)^{2}}
$$

(v) We have

$$
K_{Y_{2}}=\frac{\gamma_{1}}{\gamma_{2}}
$$

where

$$
\begin{aligned}
\gamma_{1}= & 51 u^{16}+12 u^{14}\left(10 v^{2}-73\right)-12 u^{12}\left(25 v^{4}+231 v^{2}-448\right) \\
& -4 u^{10}\left(366 v^{6}+399 v^{4}-4257 v^{2}+3716\right) \\
& +u^{8}\left(-2190 v^{8}+2940 v^{6}+19728 v^{4}-40960 v^{2}+18528\right) \\
& -4 u^{6}\left(366 v^{10}-735 v^{8}-4038 v^{6}+12140 v^{4}-9192 v^{2}+1552\right) \\
& -4 u^{4}\left(75 v^{12}+399 v^{10}-4392 v^{8}+12140 v^{6}-9120 v^{4}-1104 v^{2}+1984\right) \\
& +4 u^{2}\left(30 v^{14}-693 v^{12}+4257 v^{10}-10240 v^{8}+9192 v^{6}+1104 v^{4}\right. \\
& \left.\quad-5936 v^{2}+1728\right) \\
& +51 v^{16}-876 v^{14}+5376 v^{12}-14864 v^{10}+18528 v^{8}-6208 v^{6} \\
& \quad-7936 v^{4}+6912 v^{2}-1280
\end{aligned}
$$

and

$$
\begin{aligned}
\gamma_{2}= & \left(9 u^{12}+2 u^{10}\left(27 v^{2}-59\right)+u^{8}\left(135 v^{4}-686 v^{2}+564\right)\right. \\
& +4 u^{6}\left(45 v^{6}-367 v^{4}+714 v^{2}-304\right) \\
& +u^{4}\left(135 v^{8}-1468 v^{6}+4584 v^{4}-4740 v^{2}+1168\right) \\
& +u^{2}\left(54 v^{10}-686 v^{8}+2856 v^{6}-4740 v^{4}+2816 v^{2}-480\right) \\
& \left.+9 v^{12}-118 v^{10}+564 v^{8}-1216 v^{6}+1168 v^{4}-480 v^{2}+64\right)^{2} .
\end{aligned}
$$

Next we try to compute the left-hand side of (1) for $X=X_{g}$.
The case $g=0$ is clear. For $g \geq 1$. note that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{X_{g}} K_{X_{g}} d V=\frac{2}{2 \pi} \int_{X_{g}^{+}} K_{X_{g}} d V . \tag{4}
\end{equation*}
$$

We consider the case $g=1$. Applying the polar conversion $(u, v)=(r \cos \theta, r \sin \theta)$, (4) equals to

$$
\frac{2}{2 \pi} \int_{0}^{2 \pi} \int_{1}^{2} \frac{-r \sqrt{-4 r^{6}+21 r^{4}-30 r^{2}+4}\left(4 r^{8}-40 r^{6}+123 r^{4}-160 r^{2}+100\right)}{\sqrt{r^{4}-5 r^{2}+4}\left(4 r^{6}-21 r^{4}+30 r^{2}-4\right)^{2}} d r d \theta
$$

$=0$.
Hereafter we assume that $g \geq 2$. Let $\pi: X_{g} \rightarrow \mathbb{R}^{2}$ be the projection defined by $\pi(x, y, z)=(x, y)$. We set $D:=\pi\left(X_{g}\right)$ and

$$
\begin{equation*}
A(u, v):=K_{X_{g}}(u, v) \sqrt{E(u, v) G(u, v)-F(u, v)^{2}}, \tag{5}
\end{equation*}
$$

where E, F and G are defined with respect to the parametrization p in (3). Then by the definition of $d V$, we have

$$
\begin{equation*}
(4)=\frac{2}{2 \pi} \iint_{D} A(u, v) d u d v . \tag{6}
\end{equation*}
$$

Probably, the most simple method to compute (6) using Mathematica is to translate it as an integral over a rectangle: We set

$$
\mu(r, \theta):= \begin{cases}r \cdot A(r \cos \theta, r \sin \theta) & \text { if }(r \cos \theta, r \sin \theta) \in D \\ 0 & \text { if }(r \cos \theta, r \sin \theta) \notin D\end{cases}
$$

Moreover, for a fixed g, we set

$$
\begin{equation*}
\rho:=\frac{2}{2 \pi} \iint_{[0,2] \times[0,2 \pi]} \mu(r, \theta) d r d \theta \tag{7}
\end{equation*}
$$

Then, we have (6) $=\rho$.
The number ρ is computable using the Mathematica command
"NIntegrate $\left[\frac{2}{2 \pi} \mu[r, \theta],\{r, 0,2\},\{\theta, 0,2 \pi\}\right]$ ". The data are given in Table 3, but unfortunately they are not so good. Hence, we convert (7) to an infinite integral.

Definition 8. We fix $g \geq 2$.
(i) We set

$$
B(r, \theta):=r \cdot A(r \cos \theta, r \sin \theta)
$$

(ii) We set

$$
k_{1}(\theta):=\frac{g^{2}+g^{2} \cos 2 \theta-\sqrt{2} \sqrt{-g^{4} \cos ^{2} \theta+g^{4} \cos ^{2} \theta \cos 2 \theta+2 g^{2} \cos ^{2} \theta}}{2 g^{2} \cos \theta}
$$

and

$$
k_{2}(\theta):=\frac{g^{2}+g^{2} \cos 2 \theta+\sqrt{2} \sqrt{-g^{4} \cos ^{2} \theta+g^{4} \cos ^{2} \theta \cos 2 \theta+2 g^{2} \cos ^{2} \theta}}{2 g^{2} \cos \theta} .
$$

(iii) We set

$$
\begin{aligned}
& R:=\left\{(s, \theta) ; 1 \leq s<\infty \quad \text { and } \quad 0 \leq \theta \leq \arcsin \frac{1}{g}\right\} \\
& Q_{3}:=\left\{(r, \theta) ; 0 \leq r \leq 2 \quad \text { and } \quad \arcsin \frac{1}{g} \leq \theta \leq \frac{\pi}{g}\right\}
\end{aligned}
$$

and

$$
\tilde{Q}_{3}:=\left\{(r, \theta) ; \frac{1}{g} \leq r \leq 2 \quad \text { and } \quad \arcsin \frac{1}{g} \leq \theta \leq \frac{\pi}{g-1}\right\} .
$$

(We define Q_{1} and Q_{2} later, but we do not need them for the moment.)
(iv) We set

$$
\begin{aligned}
& \lambda_{1}:= \begin{cases}\iint_{R} B\left(\frac{k_{1}(\theta)}{s}, \theta\right) \frac{k_{1}(\theta)}{s^{2}} d s d \theta & \text { if } g \text { is even } \\
\iint_{R} B\left(\frac{k_{1}(\theta)-\frac{1}{g}}{s}+\frac{1}{g}, \theta\right) \frac{k_{1}(\theta)-\frac{1}{g}}{s^{2}} d s d \theta \quad \text { if } g \text { is odd }\end{cases} \\
& \lambda_{2}:=\iint_{R} B\left(\frac{k_{2}(\theta)-2}{s}+2, \theta\right) \frac{-k_{2}(\theta)+2}{s^{2}} d s d \theta
\end{aligned}
$$

and

$$
\lambda_{3}:= \begin{cases}\iint_{Q_{3}} B(r, \theta) d r d \theta & \text { if } g \text { is even } \\ \iint_{\tilde{Q}_{3}} B(r, \theta) d r d \theta & \text { if } g \text { is odd. }\end{cases}
$$

(v) We set

$$
\sigma:= \begin{cases}\frac{4 g}{2 \pi} \sum_{i=1}^{3} \lambda_{i} & \text { if } g \text { is even } \\ \frac{4 g-4}{2 \pi} \sum_{i=1}^{3} \lambda_{i} & \text { if } g \text { is odd. }\end{cases}
$$

Lemma 9. For all $g \geq 2$, we have $(7)=\sigma$.
Proof. (i) The case of even g.
We define closed subspaces $P_{i}(1 \leq i \leq 3)$ of D as follows:

- P_{1} : The domain surrounded by a circle $(u-1)^{2}+v^{2}=\frac{1}{g^{2}}$ and lines $v=0$ and $v=\left(\arcsin \frac{1}{g}\right) u$.
- P_{2} : The domain surrounded by circles $(u-1)^{2}+v^{2}=\frac{1}{g^{2}}$ and $u^{2}+v^{2}=4$ and a line $v=\left(\arcsin \frac{1}{g}\right) u$.
- P_{3} : The domain surrounded by a circle $u^{2}+v^{2}=4$ and lines $v=\left(\arcsin \frac{1}{g}\right) u$ and $v=\frac{\pi}{g} u$.
(See Figure 3.)

Figure 3: P_{i} for $g=4$.

For $1 \leq i \leq 3$, we set

$$
\zeta_{i}:=\iint_{P_{i}} A(u, v) d u d v .
$$

Then we have

$$
\begin{equation*}
(6)=\frac{4 g}{2 \pi} \sum_{i=1}^{3} \zeta_{i} \tag{8}
\end{equation*}
$$

About ζ_{1}, we apply the polar conversion as in the case for $g=1$. For that purpose, we fix θ and determine the lengths from the origin to the intersection points of a circle and a line:

$$
(u-1)^{2}+v^{2}=\frac{1}{g^{2}} \quad \text { and } \quad v=(\tan t) u
$$

For that purpose, we define $h_{1}(t)$ and $h_{2}(t)$ (where $h_{1}(\theta) \leq h_{2}(\theta)$) as indicated in the following Figure 4. Then the lengths are given by $\frac{h_{1}(\bar{\theta})}{\cos \theta}$ and $\frac{h_{2}(\theta)}{\cos \theta}$. It is easy to see that these lengths coincide with $k_{1}(\theta)$ and $k_{2}(\theta)$ in Definition 8 (ii).

Figure 4: $h_{1}(t)$ and $h_{2}(t)$.

If we define

$$
Q_{1}:=\left\{(r, \theta) ; 0 \leq r \leq k_{1}(\theta) \quad \text { and } \quad 0 \leq \theta \leq \arcsin \frac{1}{g}\right\}
$$

then

$$
\begin{equation*}
\zeta_{1}=\iint_{Q_{1}} B(r, \theta) d r d \theta \tag{9}
\end{equation*}
$$

Moreover, we convert r by $r=\frac{k_{1}(\theta)}{s}$ (where we keep θ), then (9) is converted to λ_{1}.

Next, we define Q_{2} appropriately and convert ζ_{2} as in (9). Then, converting r by $r=\frac{-2+k_{2}(t)}{s}+2$, we obtain λ_{2}.

Finally, using Q_{3} in Definition 7 (iii), we convert ζ_{3} as in (9). Then we obtain λ_{3}. This completes the proof for even g.
(ii) The case of odd g.

For $1 \leq i \leq 3$, we define \tilde{P}_{i} by the following Figure 5 .

Figure 5: \tilde{P}_{i} for $g=5$.

If we define

$$
\tilde{\zeta}_{i}:=\iint_{\tilde{P}_{i}} A(u, v) d u d v,
$$

then, in contrast to (8), we have

$$
(6)=\frac{4 g-4}{2 \pi} \sum_{i=3}^{3} \tilde{\zeta}_{i} .
$$

First, about $\tilde{\zeta}_{i}$, we first apply polar conversion, then convert by

$$
r=\frac{k_{1}(t)-\frac{1}{g}}{s}+\frac{1}{g} .
$$

Then we obtain λ_{1}.
Second, since $\tilde{\zeta}_{2}=\zeta_{2}$, the argument for even g remains valid and we obtain λ_{2}. Third, $\tilde{\zeta}_{3}$ is converted to λ_{3}. This completes the proof of Lemma 9.

Proof of Theorem B (i). The cases for $g=0$ and 1 are proved already. With the aid of a computer, we compute λ_{i} and σ for $2 \leq g \leq 8$. The results are as follows.

Table 3: The values ρ, λ_{i} and σ for X_{g} with $2 \leq g \leq 8$.

g	ρ	λ_{1}	λ_{2}	λ_{3}	σ
2	-1.97542	-0.434019	-2.15234	1.01556	-2
3	-3.64478	-2.05477	-2.17813	1.09131	-4
4	-5.97797	-0.491114	-2.22446	0.359384	-6
5	-7.68207	-1.92189	-2.45524	1.23553	-8
6	-9.98756	-0.4837	-2.31766	0.183367	-10
7	-11.9391	-1.86038	-2.59831	1.31709	-12
8	-13.9779	-0.469199	-2.39838	0.118686	-14

Here ρ is defined in (7). Thus σ is much accurate than ρ.
Proof of Theorem B (ii). The above proof of Theorem B (i) for X_{g} works for Y_{g+1} after slight modifications. We indicate where to change. Similarly to (5), we define

$$
A^{\circ}(u, v):=K_{Y_{g+1}}(u, v) \sqrt{E(u, v) G(u, v)-F(u, v)^{2}}
$$

where E, F and G are defined with respect to a parametrization $f \circ p$ of Y_{g+1}. Since $f(p(D))=Y_{g+1}$, instead of (6), we have

$$
\begin{equation*}
\frac{1}{2 \pi} \iint_{Y_{g+1}} K_{Y_{g+1}} d V=\frac{1}{2 \pi} \iint_{D} A^{\circ}(u, v) d u d v \tag{10}
\end{equation*}
$$

We compute this.
First, using Example 7 (iv) and (v), we can compute the integrals of (10) for Y_{1} and Y_{2}. The results are exactly 1 and 0 , respectively. For example, similarly to the case X_{1}, the computation for Y_{1} is given as follows:

$$
\begin{aligned}
(10) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{2} \frac{16 \sqrt{2} r\left(3(-1+\cos 4 t) r^{4}+96 r^{2}-160\right)}{\sqrt{\left(-r^{2}+4\right)\left(9(1-\cos 4 t) r^{6}+24(-1+\cos 4 t) r^{4}+128\right)^{3}}} d r d \theta \\
& =1
\end{aligned}
$$

Next, for Y_{g+1} with $g \geq 2$, we change Definition 8 as follows: First, we change (i) to the definition:

$$
B^{\circ}(r, \theta):=r \cdot A^{\circ}(r \cos \theta, r \sin \theta)
$$

We use (ii) and (iii) as it is. About (iv), we substitute B° for B and define λ_{i}°. About (v), we define

$$
\sigma^{\circ}:= \begin{cases}\frac{2 g}{2 \pi} \sum_{i=1}^{3} \lambda_{i}^{\circ} & \text { if } g \text { is even } \\ \frac{2 g-2}{2 \pi} \sum_{i=1}^{3} \lambda_{i}^{\circ} & \text { if } g \text { is odd. }\end{cases}
$$

Lemma 9°. For all Y_{g+1} with $g \geq 2$, we have (10) $=\sigma^{\circ}$.
Proof. The proof is quite similar to that of Lemma 9.
Similarly to (7), we define ρ° as follows: Extending the function $B^{\circ}(r, \theta)$ to $\mu^{\circ}(r, \theta):[0,2] \times[0,2 \pi] \rightarrow \mathbb{R}$, we set

$$
\rho^{\circ}:=\frac{1}{2 \pi} \iint_{[0,2] \times[0,2 \pi]} \mu^{\circ}(r, \theta) d r d \theta
$$

Now similarly to Table 3, we have the following table.

Table 4: The values $\rho^{\circ}, \lambda_{i}^{\circ}$ and σ° for Y_{g} with $3 \leq g \leq 5$.

g	ρ°	λ_{1}°	λ_{2}°	λ_{3}°	σ°
3	-0.945098	-1.65875	-1.10731	1.19526	-1
4	-1.92215	-2.5315	-1.15509	0.544998	-2
5	-2.94932	-1.6532	-0.785998	0.0830011	-3

Thus σ° is much accurate than ρ°.

4 Flat embeddings

For our reference, we recall flat embeddings.
Proposition 10. (i) (The Clifford torus.) We embed $S^{1} \times S^{1}$ into \mathbb{R}^{4} by

$$
\left\{(x, y, z, w) \in \mathbb{R}^{4} ; x^{2}+y^{2}=1 \quad \text { and } \quad z^{2}+w^{2}=1\right\}
$$

Then $K=0$ everywhere.
(ii) We embed a Klein's bottle into \mathbb{R}^{5} by the parametrization

$$
(u, v) \mapsto\left(\cos u \cos v, \sin u \cos v, 2 \cos \frac{u}{2} \sin v, 2 \sin \frac{u}{2} \sin v, \cos v\right)
$$

where $(u, v) \in[0, \pi] \times[0, \pi]$. Then $K=0$ everywhere.
Proof. (i) Since the covering map $\mathbb{R}^{2} \rightarrow S^{1} \times S^{1}$ is a local isometry, the result follows. (ii) is taken from [3, p.115]. The paper gives [7] as a reference. We can compute K using the Brioschi formula in $\S 3$.

References

[1] M. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, N.J., 1976.
[2] M. do Carmo, Riemannian Geometry, Birkhäuser, Boston, MA, 1992.
[3] D. Freedman, An incremental algorithm for reconstruction of surfaces of arbitrary codimension, Comput. Geom. 36 (2007), 106-116.
[4] A. Gray, Modern Differential geometry of Curves and Surfaces with Mathematica, 2nd ed., CRC Press, Boca Raton, FL, 1998.
[5] V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, Englewood Cliffs, NJ, 1974.
[6] D. Hilbert and S. Cohn-Vossen, Geometry and Imagination, Chelsea Publishing 1952 (Reprinted in 1999 by AMS).
[7] B. O'Neill, http://www.math.ucla.edu/~bon/tompkins.html.
[8] I.M. Singer and J.A. Thorpe, Lecture Notes on Elementary Topology and Geometry, Springer-Verlag, New York, 1996.

Department of Mathematical Sciences
Faculty of Science
University of the Ryukyus
Nishihara-cho, Okinawa 903-0213
JAPAN

