Some Differentials in the mod 3 Adams Sepectral Sequence

メタデータ	言語：
	出版者：琉球大学理工学部
	公開日： $2012-03-06$
	キーワード（Ja）：
	キーワード（En）：
	作成者：Nakamura，Osamu，中村，治 メールアドレス： 所属：
http：／／hdl．handle．net／20．500．12000／23687	
URL	

Some Differentials in the mod 3 Adams Spectral Sequence

by

Osamu Nakamura*

Let A_{p} be the mod p Steenrod algebra. J. F. Adams ij introduced a spectral sequence which has as its E_{2} term $E x t_{A_{p}}\left(H *(X), Z_{p}\right)$ and which converges to a graded algebra associated to $\pi_{*}^{s}(X ; p)$. i. e., the p-primary stable homotopy groups of X. In this paper we will study this sequence for $X=S^{\text {n }}$, $p=3$. The first problem in any use of the Adams spectral sequence is to obtain $E_{2}=E x t_{A_{3}}^{s, t}\left(Z_{3}, Z_{3}\right)$. We do this by the technique of J. P. May -5 J. J. P. May constructed another spectral sequence which has as its E_{∞} term an algebra $E^{0} E x t$, i. e. a tri-graded algebra associated to $E_{2}=E x t$. In [9], we extended (and corrected) May's computations to obtain complete information on $E_{0} E x t$ through dimension $\mathbf{3} 58$. The next problem is to obtain the differentials in the Adams spectral sequence. J. P. May [5] and S.Oka have previously determined all differentials at least in the range $t-s 77$ by using the results of the 3 -components of stable homotopy groups of sphere which have been calculated by H.Toda [12,13,14,15], J.P.May [5] and S.Oka [10]. The purpose of this paper is to evaluate the differentials in the range $28 \leqq t-s \leqq 104$. Our main result is Theorem 3.19.

Finally the auther wishes to extend his gratitude to Dr. Shichirô Oka for valuable information and discussions during this investigation.

§ 1 Algebra Structure of $E x t_{A_{3}}^{* *}\left(Z_{3}, Z_{3}\right)$

From now on we will write $H^{* *}\left(A_{3}\right)$ instead of $E x t_{A_{3}}^{* *}\left(Z_{3}, Z_{3}\right)$ for the E_{2} term of the Adams spectral sequence. The table of $H^{* *}\left(A_{3}\right)$ which will be needed for this paper is given in Appendix. Relations involving a_{0} and h_{0} are indicated by vertical and slanting lines respectively. Since we have computed $H^{* *}\left(A_{3}\right)$ by May's techniques, the products which we naturally obtained are actually the products according to the algebra structure of $E^{0} H^{* *}\left(A_{3}\right)$. The product in $H^{* *}\left(A_{3}\right)$ of

[^0]two elements always contains as a summand their product in $E \circ H^{* *}\left(A_{3}\right)$ but may possibly contain also other terms of the same bi-grading (s, t) but of lower weight in the sense of J. P. May [5]. The relations holding in $E \circ H^{* *}\left(A_{3}\right)$ which cannot be listed for reasons of space are easily obtained from [9. Theorem 3.3 and 4.3].

The following relations in $H^{* *}\left(A_{3}\right)$ differ from ones in $E{ }^{0} H^{* *}\left(A_{3}\right)$. This list is by no means complete.

PROPOSITION 1.1. We have the following relations in $H^{* *}\left(A_{3}\right)$.

a). $u \cdot h_{2}=-a_{0}^{2} c$
(58 stem)
b). $h_{0} \cdot h_{1} \mathrm{~b}_{02}=-b_{11} k$
(60 stem)
c). $h_{1} \cdot h_{1} b_{02}=b_{11}^{2}$
(68 stem)
d). $h_{1} \cdot h_{2} b_{02}=b_{01} d-c b_{11}$
(92 stem)
$h_{2} \cdot h_{1} b_{02}=b_{01} d-c b_{11}$
e). $b_{02} h_{2} \cdot g_{2}=b_{01} v_{0} \quad$ (99 stem)
f). $h_{2} \cdot h_{0} u b_{02}=-h_{0} b_{01} G$ (107 stem)

PROOF. We first consider the relation b). Let $\overline{b_{02}}$ be a cochain

$$
\begin{aligned}
& {\left[\xi_{2} \mid \xi_{2}^{2}\right]+\left[\xi_{2}^{2} \mid \xi_{2}\right]+\left[\xi_{1}^{3} \mid \xi_{1} \xi_{2}^{2}\right]+\left[\xi_{1}^{3} \xi_{2}^{2} \mid \xi_{1}\right]} \\
& -\left[\xi_{1}^{3} \xi_{2} \mid \xi_{1} \xi_{2}\right]+\left[\xi_{1}^{6} \mid \xi_{1}^{2} \xi_{2}\right]+\left[\xi_{1}^{6} \xi_{2} \mid \xi_{1}^{2}\right]
\end{aligned}
$$

in the cobar construction $F^{*}\left(A_{3}^{*}\right)$. Let $\overline{b_{01}}$ and $\overline{b_{11}}$ be cocycles

$$
\left[\xi_{1} \mid \xi_{1}^{2}\right]+\left[\xi_{1}^{2} \mid \xi_{1}\right] \text { and }\left[\xi_{1}^{3} \mid \xi_{1}^{6}\right]+\left[\xi_{1}^{6} \mid \xi_{1}^{3}\right]
$$

in $F^{*}\left(A_{3}^{*}\right)$ which represent the elements $b_{01} \in H^{2,12}\left(A_{3}\right)$ and $b_{11} \in H^{2,36}\left(A_{3}\right)$, respectively. By routine calculations, we see that $b_{02} h_{1} \in H^{3,60}\left(A_{3}\right)$ is represented by a cocycle $\overline{b_{02} h_{1}}$ in $F^{*}\left(A_{3}^{*}\right)$:

$$
\begin{aligned}
\overline{b_{02} h_{1}} & =\overline{b_{02}} \cdot\left[\xi_{1}^{3}\right]-\overline{b_{11}} \cdot\left[\xi_{1}^{6}\right]-\left[\xi_{1}^{9}\left|\xi_{1}\right| \xi_{1}^{5}\right] \\
& -\left[\xi_{1}^{9}\left|\xi_{1}^{2}\right| \xi_{1}^{4}\right]-\left[\xi_{1}^{9}\left|\xi_{1}^{4}\right| \xi_{1}^{2}\right]-\left[\xi_{1}^{9}\left|\xi_{1}^{5}\right| \xi_{1}\right]-\left[\xi_{2}^{3}\right] \cdot \overline{b_{01}} .
\end{aligned}
$$

By routine calculations, we have that

$$
\begin{aligned}
& \delta\left\{-\bar{b}_{02} \cdot\left[\xi_{2}\right]+\left[\xi_{1}^{9}\left|\xi_{1}^{2}\right| \xi_{1} \xi_{2}\right]+\left[\xi_{1}^{9}\left|\xi_{1}\right| \xi_{1}^{2} \xi_{2}\right]+\left[\xi_{1}^{9}\left|\xi_{1} \xi_{2}\right| \xi_{1}^{2}\right]\right. \\
& \quad+\left[\xi_{1}^{9}\left|\xi_{1}^{2} \xi_{2}\right| \xi_{1}\right]+\left[\xi_{1}^{9}\left|\xi_{1}^{5}\right| \xi_{1}^{2}\right]-\left[\xi_{2}^{3}\left|\xi_{1}^{2}\right| \xi_{1}^{2}\right]+\left[\xi_{3}\left|\xi_{1}^{2}\right| \xi_{1}\right] \\
& \left.\quad+\left[\xi_{3}\left|\xi_{1}\right| \xi_{1}^{2}\right]+\left[\xi_{1}^{9}\left|\xi_{1}^{4}\right| \xi_{1}^{3}\right]+\left[\xi_{1}^{9}\left|\xi_{1}^{3}\right| \xi_{1}^{4}\right]\right\} \\
& = \\
& =\overline{b_{02} h_{1}} \cdot\left[\xi_{1}\right]-\overline{b_{11}} \cdot\left(\left[\xi_{1}^{3} \mid \xi_{2}\right]-\left[\xi_{1}^{6} \mid \xi_{1}\right]\right) .
\end{aligned}
$$

Since it is easy to see that the cocycle $\left[\xi_{1}^{3} \mid \xi_{2}\right]-\left[\xi_{1}^{6} \mid \xi_{1}\right]$ represents the element $k \in H^{2,28}\left(A_{3}\right)$, we have the relation b).

Next we consider the relation c). By tedious but routine calculations, we have

$$
\begin{aligned}
\delta & \left\{\overline{b_{02}} \cdot\left[\xi_{1}^{6}\right]-\left[\xi_{1}^{9}\left|\xi_{1}^{2}\right| \xi_{1}^{7}\right]-\left[\xi_{1}^{9}\left|\xi_{1}\right| \xi_{1}^{8}\right]+\left[\xi_{1}^{9}\left|\xi_{1}^{5}\right| \xi_{1}^{4}\right]\right. \\
& +\left[\xi_{1}^{9}\left|\xi_{1}^{4}\right| \xi_{1}^{5}\right]-\left[\xi_{1}^{9}\left|\xi_{1}^{8}\right| \xi_{1}\right]-\left[\xi_{1}^{9}\left|\xi_{1}^{7}\right| \xi_{1}^{2}\right]+\left[\xi_{2}^{3}\left|\xi_{1}^{2}\right| \xi_{1}^{4}\right] \\
& +\left[\xi_{2}^{3}\left|\xi_{1}\right| \xi_{1}^{5}\right]+\left[\xi_{2}^{3}\left|\xi_{1}^{5}\right| \xi_{1}\right]+\left[\xi_{2}^{3}\left|\xi_{1}^{4}\right| \xi_{1}^{2}\right]-\left[\xi_{3}\left|\xi_{2}\right| \xi_{1}\right] \\
& +\left[\xi_{3}\left|\xi_{1}^{3}\right| \xi_{1}^{2}\right]-\left[\xi_{2}^{3}\left|\xi_{1} \xi_{2}\right| \xi_{1}\right]+\left[\xi_{2}^{3}\left|\xi_{2}\right| \xi_{1}^{2}\right]+\left[\xi_{2}^{3}\left|\xi_{1}^{4}\right| \xi_{1}^{2}\right] \\
& \left.+\left[\xi_{1}^{9}\left|\xi_{2}^{2}\right| \xi_{1}\right]+\left[\xi_{1}^{9}\left|\xi_{1}^{3} \xi_{2}\right| \xi_{1}^{2}\right]\right\} \\
= & \overline{b_{02} h_{1}} \cdot\left[\xi_{1}^{3}\right]+\overline{b_{11}} \cdot \overline{b_{11}} .
\end{aligned}
$$

Then we have the relation c).
Next we consider the relation d). By routine calculations, we see that $h_{2} b_{v 2} \epsilon$ $H^{3,84}\left(A_{3}\right)$ is represented by a cocycle $\overline{h_{2} b_{02}}$ in $F^{*}\left(A_{3}^{*}\right)$:

$$
\overline{h_{2} b_{02}}=\left[\xi_{1}^{9}\right] \cdot \overline{b_{02}}-\left[\xi_{1}^{18}\right] \cdot \overline{b_{01}}-\left[\xi_{2}^{3}\right] \cdot \overline{b_{11}}+\left[\xi_{1}^{9}\left|\xi_{1}^{6}\right| \xi_{1}^{6}\right] .
$$

By routine calculations, we have

$$
\begin{aligned}
\delta(& -\left[\xi_{1}^{12}\right] \cdot b_{02}+\left[\xi_{2}^{3}\right] \cdot \overline{b_{02}}+\left[\xi_{1}^{9} \xi_{2}^{3}\right] \cdot \overline{b_{01}}+\left[\xi_{1}^{21}\right] \cdot \overline{b_{01}} \\
& \left.+\left[\xi_{1}^{3} \xi_{2}^{3}\right] \cdot \overline{b_{11}}-\left[\xi_{1}^{12}\left|\xi_{1}^{6}\right| \xi_{1}^{6}\right]+\left[\xi_{2}^{3}\left|\xi_{1}^{6}\right| \xi_{1}^{6}\right]\right) \\
= & {\left[\xi_{1}^{3}\right] \cdot \overline{h_{2} b_{02}}-\left(\left[\xi_{1}^{9} \mid \xi_{2}^{3}\right]-\left[\xi_{1}^{18} \mid \xi_{1}^{3}\right]\right) \cdot \overline{b_{01}} } \\
& +\left(\left[\xi_{2}^{3} \mid \xi_{1}^{3}\right]-\left[\xi_{1}^{9} \mid \xi_{1}^{6}\right]\right) \cdot \overline{b_{11}} .
\end{aligned}
$$

Since it is easy to see that the cocycles $\left[\xi_{1}^{9} \mid \xi_{2}^{3}\right]-\left[\xi_{1}^{18} \mid \xi_{1}^{3}\right]$ and $\left[\xi_{2}^{3} \mid \xi_{1}^{3}\right]$ $-\left[\xi_{1}^{9} \mid \xi_{1}^{6}\right]$ represent the elements $d \in H^{2,84}\left(A_{3}\right)$ and $c \in H^{2,60}\left(A_{3}\right)$, respectively, we have the relation $h_{1} \cdot h_{2} b_{02}=b_{01} d-c b_{11}$. Similarly, we have

$$
\begin{aligned}
\delta(& -\overline{b_{02}} \cdot\left[\xi_{1}^{12}\right]+\overline{b_{02}} \cdot\left[\xi_{2}^{3}\right]+\overline{b_{11}} \cdot\left[\xi_{1}^{15}\right]+\overline{b_{11}} \cdot\left[\xi_{1}^{3} \xi_{2}^{3}\right] \\
& -\left[\xi_{1}^{9}\left|\xi_{1}^{2}\right| \xi_{1} \xi_{2}^{3}\right]-\left[\xi_{1}^{9}\left|\xi_{1}\right| \xi_{1}^{2} \xi_{2}^{3}\right]-\left[\xi_{1}^{9}\left|\xi_{1}^{2} \xi_{2}^{3}\right| \xi_{1}\right] \\
& -\left[\xi_{1}^{9}\left|\xi_{1} \xi_{2}^{3}\right| \xi_{1}^{2}\right]+\left[\xi_{2}^{3}\left|\xi_{1}^{2}\right| \xi_{1}^{10}\right]+\left[\xi_{2}^{3}\left|\xi_{1}\right| \xi_{1}^{11}\right] \\
& +\left[\xi_{2}^{3}\left|\xi_{1}^{11}\right| \xi_{1}\right]+\left[\xi_{2}^{3}\left|\xi_{1}^{10}\right| \xi_{1}^{2}\right]+\left[\xi_{1}^{9} \xi_{2}^{3}\right] \cdot \overline{b_{01}} \\
& +\left[\xi_{1}^{9}\left|\xi_{1}\right| \xi_{1}^{14}\right]+\left[\xi_{1}^{9}\left|\xi_{1}^{2}\right| \xi_{1}^{13}\right]+\left[\xi_{1}^{9}\left|\xi_{1}^{14}\right| \xi_{1}\right] \\
& \left.+\left[\xi_{1}^{9}\left|\xi_{1}^{13}\right| \xi_{1}^{2}\right]+\left[\xi_{1}^{9}\left|\xi_{1}^{4}\right| \xi_{1}^{11}\right]+\left[\xi_{1}^{9}\left|\xi_{1}^{5}\right| \xi_{1}^{10}\right]\right) \\
= & \overline{b_{02} h_{1}} \cdot\left[\xi_{1}^{9}\right]-\overline{b_{11}} \cdot\left(\left[\xi_{2}^{3} \mid \xi_{1}^{3}\right]-\left[\xi_{1}^{9} \mid \xi_{1}^{6}\right]\right) \\
& +\left(\left[\xi_{1}^{9} \mid \xi_{2}^{3}\right]-\left[\xi_{1}^{18} \mid \xi_{1}^{3}\right]\right) \cdot \overline{b_{01}} .
\end{aligned}
$$

Then we have the relation $b_{02} h_{1} \cdot h_{2}=b_{11} c-d b_{01}$.
Next we consider the relation e). Let α, β and γ be cochains

$$
\begin{aligned}
& {\left[\xi_{1}^{2} \mid \xi_{1}^{10}\right]+\left[\xi_{1} \mid \xi_{1}^{11}\right]+\left[\xi_{1}^{10} \mid \xi_{1}^{2}\right]+\left[\xi_{1}^{11} \mid \xi_{1}\right],} \\
& {\left[\xi_{1}^{3} \xi_{3} \mid \xi_{1}\right]-\left[\xi_{1}^{3} \xi_{2}^{3} \mid \xi_{1}^{2}\right]+\left[\xi_{3} \mid \xi_{2}\right]-\left[\xi_{1}^{9} \mid \xi_{2}^{2}\right]+\left[\xi_{2}^{3} \mid \xi_{1} \xi_{2}\right]}
\end{aligned}
$$

and

$$
-\left[\xi_{1}^{2} \mid \xi_{1}^{19}\right]-\left[\xi_{1} \mid \xi_{1}^{20}\right]+\left[\xi_{1}^{11} \mid \xi_{1}^{10}\right]+\left[\xi_{1}^{10} \mid \xi_{1}^{11}\right]-\left[\xi_{1}^{19} \mid \xi_{1}^{2}\right]
$$

$-\left[\xi_{1}^{20} \mid \xi_{1}\right]$,
respectively. Then $b_{02} h_{2} \in H^{3,84}\left(A_{3}\right)$ is represented by a cocycle $\overline{b_{02} h_{2}}$ in $F^{*}\left(A_{3}^{*}\right)$:

$$
\overline{b_{02} h_{2}}=\overline{b_{02}} \cdot\left[\xi_{1}^{9}\right]+\overline{b_{11}} \cdot\left[\xi_{1}^{12}\right]-\overline{b_{11}} \cdot\left[\xi_{2}^{3}\right]+\left[\xi_{1}^{18}\right] \cdot \overline{b_{01}}-\left[\xi_{1}^{9}\right] \cdot \alpha .
$$

By routine calculations, we have

$$
\begin{aligned}
\delta & \left\{\overline{b_{02}} \cdot\left(-\left[\xi_{3} \mid \xi_{1}\right]+\left[\xi_{2}^{3} \mid \xi_{1}^{2}\right]\right)-\overline{b_{11}} \cdot \beta\right. \\
& \left.-\alpha \cdot\left(-\left[\xi_{3} \mid \xi_{1}\right]+\left[\xi_{2}^{3} \mid \xi_{1}^{2}\right]\right)+\gamma \cdot\left(\left[\xi_{2} \mid \xi_{1}\right]-\left[\xi_{1}^{3} \mid \xi_{1}^{2}\right]\right)\right\} \\
= & \overline{b_{02} h_{2}} \cdot\left(\left[\xi_{2} \mid \xi_{1}\right]-\left[\xi_{1}^{3} \mid \xi_{1}^{2}\right]\right) \\
- & \overline{b_{01}} \cdot\left(-\left[\xi_{1}^{9}\left|\xi_{3}\right| \xi_{1}\right]+\left[\xi_{1}^{9}\left|\xi_{2}^{3}\right| \xi_{1}^{2}\right]+\left[\xi_{1}^{18}\left|\xi_{2}\right| \xi_{1}\right]\right. \\
- & {\left.\left[\xi_{1}^{18}\left|\xi_{1}^{3}\right| \xi_{1}^{2}\right]\right) . }
\end{aligned}
$$

It is easy to see that

$$
\left[\xi_{2} \mid \xi_{1}\right]-\left[\xi_{1}^{3} \mid \xi_{1}^{2}\right]
$$

and

$$
-\left[\xi_{1}^{9}\left|\xi_{3}\right| \xi_{1}\right]+\left[\xi_{1}^{9}\left|\xi_{2}^{3}\right| \xi_{1}^{2}\right]+\left[\xi_{1}^{18}\left|\xi_{2}\right| \xi_{1}\right]-\left[\xi_{1}^{18}\left|\xi_{1}^{3}\right| \xi_{1}^{2}\right]
$$

are representatives of $g_{2} \in H^{2,20}\left(A_{3}\right)$ and $v_{0} \in H^{3,92}\left(A_{3}\right)$, respectively. Then we have the relation e).
Next we consider the relation a). It is easy to see that $u \in H^{3,26}\left(A_{3}\right)$ is represented by a cocycle \bar{u} in $F^{*}\left(A_{3}^{*}\right)$:

$$
\begin{aligned}
\bar{u} & =\left[\tau_{2}\left|\xi_{1}\right| \tau_{1}\right]-\left[\xi_{2}\left|\tau_{1}\right| \tau_{1}\right]+\left[\xi_{2}\left|\tau_{1}\right| \xi_{1} \tau_{0}\right] \\
& -\left[\xi_{2}\left|\tau_{1} \tau_{0}\right| \xi_{1}\right]-\left[\xi_{2}\left|\tau_{0}\right| \xi_{1} \tau_{1}\right]+\left[\xi_{2}\left|\xi_{1} \tau_{0}\right| \tau_{1}\right] \\
& -\left[\tau_{2}\left|\xi_{1}^{2}\right| \tau_{0}\right]-\left[\xi_{2}\left|\xi_{1} \tau_{0}\right| \xi_{1} \tau_{0}\right]-\left[\xi_{1}^{3}\left|\xi_{1} \tau_{1}\right| \tau_{1}\right] \\
& +\left[\xi_{1}^{3}\left|\xi_{1}\right| \xi_{1} \tau_{1} \tau_{0}\right]-\left[\xi_{1}^{3}\left|\xi_{1}^{2}\right| \tau_{1} \tau_{0}\right]+\left[\xi_{1}^{3}\left|\xi_{1}^{2} \tau_{1}\right| \tau_{0}\right] \\
& -\left[\xi_{1}^{6}\left|\tau_{0}\right| \tau_{0}\right] .
\end{aligned}
$$

Let ρ be a cochain

$$
\begin{aligned}
& -\left[\tau_{2}\left|\xi_{1}\right| \xi_{1}^{9} \tau_{1}\right]-\left[\tau_{2}\left|\xi_{1}^{10}\right| \tau_{1}\right]-\left[\xi_{1}^{9} \tau_{2}\left|\xi_{1}\right| \tau_{1}\right] \\
& +\left[\tau_{3}\left|\xi_{1}\right| \tau_{1}\right]+\left[\xi_{2}\left|\tau_{1}\right| \xi_{1}^{9} \tau_{1}\right]+\left[\xi_{2}\left|\xi_{1}^{9} \tau_{1}\right| \tau_{1}\right] \\
& +\left[\xi_{1}^{9} \xi_{2}\left|\tau_{1}\right| \tau_{1}\right]-\left[\xi_{3}\left|\tau_{1}\right| \tau_{1}\right]-\left[\tau_{3}\left|\xi_{1}^{2}\right| \tau_{0}\right] \\
& -\left[\xi_{3}\left|\xi_{1} \tau_{0}\right| \tau_{1}\right]+\left[\xi_{3}\left|\xi_{1}\right| \tau_{1} \tau_{0}\right]-\left[\xi_{3}\left|\xi_{1} \tau_{1}\right| \tau_{0}\right] \\
& +\left[\xi_{3}\left|\xi_{1}^{2} \tau_{0}\right| \tau_{0}\right]-\left[\xi_{2}^{3}\left|\xi_{1} \tau_{1}\right| \tau_{1}\right]+\left[\xi_{2}^{3}\left|\xi_{1}^{2} \tau_{1}\right| \tau_{0}\right] \\
& -\left[\xi_{2}^{3}\left|\xi_{1}^{2}\right| \tau_{1} \tau_{0}\right]+\left[\xi_{1}^{9} \tau_{2}\left|\xi_{1}^{2}\right| \tau_{0}\right]+\left[\tau_{2}\left|\xi_{1}^{11}\right| \tau_{0}\right] \\
& +\left[\tau_{2}\left|\xi_{1}^{2}\right| \xi_{1}^{9} \tau_{0}\right]-\left[\xi_{1}^{9} \xi_{2}\left|\xi_{1}\right| \tau_{1} \tau_{0}\right]+\left[\xi_{1}^{9} \xi_{2}\left|\xi_{1} \tau_{0}\right| \tau_{1}\right] \\
& +\left[\xi_{1}^{9} \xi_{2}\left|\xi_{1} \tau_{1}\right| \tau_{0}\right]-\left[\xi_{2}\left|\xi_{1}^{10}\right| \tau_{1} \tau_{0}\right]+\left[\xi_{2}\left|\xi_{1}^{10} \tau_{0}\right| \tau_{1}\right] \\
& +\left[\xi_{2}\left|\xi_{1}^{10} \tau_{1}\right| \tau_{0}\right]-\left[\xi_{2}\left|\xi_{1}\right| \xi_{1}^{9} \tau_{1} \tau_{0}\right]+\left[\xi_{3}\left|\xi_{1} \tau_{0}\right| \xi_{1}^{9} \tau_{1}\right] \\
& +\left[\xi_{2}\left|\xi_{1} \tau_{1}\right| \xi_{1}^{9} \tau_{0}\right]-\left[\xi_{2}\left|\xi_{1} \tau_{1} \tau_{0}\right| \xi_{1}^{9}\right]-\left[\xi_{1}^{9} \xi_{2}\left|\xi_{1}^{2} \tau_{0}\right| \tau_{0}\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\left[\xi_{2}\left|\xi_{1}^{11} \tau_{0}\right| \tau_{0}\right]-\left[\xi_{2}\left|\xi_{1}^{2} \tau_{0}\right| \xi_{1}^{9} \tau_{0}\right]+\left[\xi_{1}^{12}\left|\xi_{1} \tau_{1}\right| \tau_{1}\right] \\
& +\left[\xi_{1}^{3}\left|\xi_{1}^{10} \tau_{1}\right| \tau_{1}\right]+\left[\xi_{1}^{3}\left|\xi_{1} \tau_{1}\right| \xi_{1}^{9} \tau_{1}\right]-\left[\xi_{1}^{12}\left|\xi_{1}^{2} \tau_{1}\right| \tau_{0}\right] \\
& +\left[\xi_{1}^{12}\left|\xi_{1}^{2}\right| \tau_{1} \tau_{0}\right]-\left[\xi_{1}^{3}\left|\xi_{1}^{11} \tau_{1}\right| \tau_{0}\right]+\left[\xi_{1}^{3}\left|\xi_{1}^{11}\right| \tau_{1} \tau_{0}\right] \\
& +\left[\xi_{1}^{3}\left|\xi_{1}^{2}\right| \xi_{1}^{9} \tau_{1} \tau_{0}\right]-\left[\xi_{1}^{3}\left|\xi_{1}^{2} \tau_{1}\right| \xi_{1}^{9} \tau_{0}\right]+\left[\xi_{1}^{15}\left|\tau_{0}\right| \tau_{0}\right] \\
& +\left[\xi_{1}^{6}\left|\xi_{1}^{9} \tau_{0}\right| \tau_{0}\right]+\left[\xi_{1}^{6}\left|\tau_{0}\right| \xi_{1}^{9} \tau_{0}\right] .
\end{aligned}
$$

By tedious but routine calculations, we have

$$
\delta(\rho)=\bar{u} .\left[\xi_{1}^{9}\right]+\left(\left[\xi_{2}^{3} \mid \xi_{1}^{3}\right]-\left[\xi_{1}^{9} \mid \xi_{1}^{6}\right]\right) \cdot\left[\tau_{0} \mid \tau_{0}\right] \cdot
$$

Then we have the relation a).
Last we consider the relation e). Let ρ be the cochain defined in proof of a) and μ be $\left[\tau_{0}\left|\xi_{1}^{2} \tau_{0}\right| \xi_{1}\right]-\left[\tau_{0}\left|\xi_{1}^{2}\right| \xi_{1} \tau_{0}\right]+\left[\tau_{0}\left|\xi_{1} \tau_{0}\right| \xi_{1}^{2}\right]$
$-\left[\tau_{0}\left|\xi_{1}\right| \xi_{1}^{2} \tau_{0}\right]+\left[\tau_{0}\left|\xi_{1}^{2}\right| \tau_{1}\right]-\left[\xi_{1} \tau_{0}\left|\xi_{1}\right| \tau_{1}\right]$
$+\left[\xi_{1} \tau_{0}\left|\xi_{1}^{2}\right| \tau_{0}\right]+\left[\tau_{1}\left|\xi_{1}\right| \tau_{1}\right]-\left[\tau_{1}\left|\xi_{1}^{2}\right| \tau_{0}\right]$.
Then, by the tedious but routine calculations, we see that $u b_{02} h_{0} \in H^{6,78}\left(A_{3}\right)$ is represented by a cocycle $\overline{u b_{02} h_{0}}$ in $\mathrm{F}^{*}\left(A_{3}^{*}\right)$:

$$
\begin{aligned}
\overline{u b_{02} h_{0}}= & u \cdot \overline{b_{02}} \cdot\left[\xi_{1}\right]+u \cdot \overline{b_{11}} \cdot\left[\xi_{2}\right]-\rho \cdot \overline{b_{01}} \cdot\left[\xi_{1}\right] \\
& +\left(\left[\xi_{2}^{3} \mid \xi_{1}^{3}\right]-\left[\xi_{1}^{9} \mid \xi_{1}^{6}\right]\right) \cdot \mu \cdot\left[\xi_{1}\right] \cdot
\end{aligned}
$$

Let ν and \bar{G} be

$$
\begin{aligned}
& -\left[\tau_{3}\left|\xi_{1}\right| \tau_{1}\right]+\left[\xi_{3}\left|\tau_{1}\right| \tau_{1}\right]+\left[\tau_{3}\left|\xi_{1}^{2}\right| \tau_{0}\right] \\
& +\left[\xi_{3}\left|\xi_{1} \tau_{0}\right| \tau_{1}\right]-\left[\xi_{3}\left|\xi_{1}\right| \tau_{1} \tau_{0}\right]+\left[\xi_{3}\left|\xi_{1} \tau_{1}\right| \tau_{0}\right] \\
& -\left[\xi_{3}\left|\xi_{1}^{2} \tau_{0}\right| \tau_{0}\right]+\left[\xi_{2}^{3}\left|\xi_{1} \tau_{1}\right| \tau_{1}\right]-\left[\xi_{2}^{3}\left|\xi_{1}^{2} \tau_{1}\right| \tau_{0}\right] \\
& +\left[\xi_{2}^{3}\left|\xi_{1}^{2}\right| \tau_{1} \tau_{0}\right]+\left[\xi_{1}^{9}\left|\xi_{2}\right| \xi_{1} \tau_{1} \tau_{0}\right]
\end{aligned}
$$

and
$-\left[\xi_{1}^{9}\right] \cdot \rho-\nu \cdot\left[\xi_{1}^{9}\right]$, respectively, Let \bar{c} be the representative $\left[\xi_{2}^{3} \mid \xi_{1}^{3}\right]-\left[\xi_{1}^{9} \mid \xi_{1}^{6}\right]$ of $c \in H^{2,60}\left(A_{3}\right)$. Since $\delta\left(\left[\xi_{1}^{9}\right] \cdot \rho+\nu \cdot\left[\xi_{1}^{9}\right]\right)$
$=-\left[\xi_{i}^{9}\right] \cdot \bar{c} \cdot\left[\tau_{0} \mid \tau_{0}\right]-\bar{c} \cdot\left[\tau_{0}\left|\tau_{0}\right| \xi_{1}^{9}\right] \quad$ in $F^{*}\left(A_{3}^{*}\right)$ and $\boldsymbol{\delta}_{3}(G)$
$=-a_{0}^{2} h_{2} c$ in the May spectral sequence, the cochain \bar{G} is a representative of G in some sense. It is easy to see that

$$
\begin{aligned}
& \quad \delta\left(\nu \cdot \bar{b}_{02} \cdot\left[\xi_{1}\right]+\nu \cdot \overline{b_{11}} \cdot\left[\xi_{2}\right]+\tau \cdot\left[\tau_{0}\left|\tau_{0}\right| \xi_{2} \mid \xi_{1} \xi_{2}^{2}\right]\right. \\
& \quad+\bar{c} \cdot\left[\tau_{0}\left|\tau_{0}\right| \xi_{1} \xi_{2} \mid \xi_{2}^{2}\right]+\bar{c} \cdot\left[\tau_{0}\left|\tau_{0}\right| \xi_{2}^{2} \mid \xi_{1} \xi_{2}\right] \\
& +\bar{c} \cdot\left[\tau_{0}\left|\tau_{0}\right| \xi_{1} \xi_{2}^{2} \mid \xi_{2}\right]+\bar{c} \cdot\left[\tau_{0}\left|\xi_{1} \tau_{0}\right| \xi_{2} \mid \xi_{2}^{2}\right] \\
& \\
& \left.+\bar{c} \cdot\left[\tau_{0}\left|\xi_{1} \tau_{0}\right| \xi_{2}^{2} \mid \xi_{2}\right]-\bar{c} \cdot\left[\tau_{0} \mid \tau_{1}\right] \cdot \overline{b_{02}}\right) \\
& \\
& \equiv\left[\xi_{1}^{9}\right] \cdot \overline{u b_{02} h_{0}}-G \cdot \overline{b_{01}} \cdot\left[\xi_{1}\right] \text { modulo terms which have the May's } \\
& \text { weight (the weight associated to May spectral sequence) less than } 5 \text { or have }
\end{aligned}
$$

the May's weight 5 and the weight, associated to the spectral sequence defined in 〔9〕, greater than 1 . For the dimensional and filtrational reasons, we have the relation
$h_{2} \cdot u b_{02} h_{0}=G b_{01} h_{0}+\varepsilon a_{0}^{6} h_{3}$, where $\varepsilon \in Z_{3}$.
Since $d_{2}\left(h_{2}\right)=a_{0} b_{11}$ (Theorem 2.1.) and $d_{2}\left(h_{0} w\right)=h_{0} u b_{02}$ (Theorem 2. 4.) in the $\bmod 3$ Adams spectral sequence, we have $d_{2}\left(h_{2} h_{0} w\right)=h_{2} \cdot h_{0} u b_{02}=$ $-h_{0} b_{01} G-\varepsilon \cdot a_{0}^{6} h_{3}$, up to sign. Then we have a non-zero differential $d_{2}\left(h_{2} w\right)$. By the dimensional considerations, we have $\mathrm{d}_{2}\left(h_{2} w\right)=b_{01} G$, up to sign. Then we have $\varepsilon=0$ and therefore we have the relation f).

§ 2. Some known results on the mod 3 Adms spectral sequence

From now on we neglect the non-zero coefficient of the differentials and the relations in the mod 3 Adams spectral sequence.

The following five theorems for the differentials and elements surviving to E_{∞} were verified by using the results of the stable homotopy groups of sphere and the statement that E_{r} is a differential algebra by J. P. May [5] (in the range $t-s \leqq 32$ and partially in the range $t-s \geqq 33$) and by S. Oka the rest.

Theorem 2.1. (H. H. Gershenson [2] . A. Liulevicius [4]. R.J. Milgram [7]. N.Shimada and T. Yamanoshita [11] . H. Toda [12])

$$
d_{2}\left(h_{\mathrm{i}}\right)=a_{0} b_{\mathrm{i}-11} \text { for } i \geqq 1
$$

Theorem 2. 2. (H.Toda $[12,13,14,15])$
a). $d_{2}\left(g_{2}\right)=g_{1} b_{01}$
b). $d_{2}(u)=a_{1} b_{01}$
c). $d_{5}\left(b_{11}\right)=h_{0} b_{01}^{3}$
d). $d_{5}\left(h_{1} b_{02}\right)=b_{01}^{3} k$
e). $d_{6}\left(e_{1}\right)=b_{01}^{6}$

THEOREM 2. 3. (J.P.May [5])
a). $d_{3}\left(a_{0}^{4} h_{2}\right)=b_{01} a_{1}^{2}$
b). $d_{2}\left(a_{1}^{j} u\right)=a_{1}^{j+1} b_{01}$ for $0 \leqq j, j \not \equiv 1 \bmod 3$.

Theorem 2. 4. (S.Oka [10])
a). $d_{2}(c)=a_{0} h_{1} b_{02}$
b). $d_{3}\left(a_{0}^{2} c\right)=h_{0} b_{01}^{2} b_{11}$
c). $d_{2}\left(g_{2} a_{2}\right)=e_{2}$
d). $d_{2}(f)=h_{0} b_{01}^{3} b_{11}$
e). $d_{3}\left(a_{0}^{8} a_{2} u\right)=b_{01} a_{1}^{5}$
f). $d_{2}\left(a_{2} u\right)=\ell$
g). $d_{2}\left(h_{0} w\right)=h_{0} u b_{02}$
h). $d_{2}\left(g_{1} w\right)=g_{1} u b_{02}$

Remark. All other non-zero differentials in the range $t-s \leqq 77$ are easily determined by the differentials listed in the above four theorems and the statement that E_{r} is a differential algebra.

Theorem 2.6. (J. P. May [5] and S. Oka) E_{∞} for $t-s \leqq 76$ (and corresponding generators of $\pi_{*}^{s}\left(S^{0}: 3\right)$) are given in Table A.

Table A.

$t-s$	$\pi s_{*}^{s}\left(S_{0}: 3\right)$	survivor (corresponding generator)
0	Z	$a_{0}^{i}(c)$
1	0	
2	0	$h_{0}\left(\alpha_{1}\right)$
3	Z_{3}	
4	0	
5	0	
6	0	$g_{1}\left(\alpha_{2}\right)$
7	Z_{3}	
8	0	
9	0	
10	Z_{3}	$a_{0} h_{1}, a_{0}^{2} h_{1}\left(\alpha_{3}^{\prime}\right)$
11	Z_{9}	
12	0	$h_{0} b\left(\alpha_{1} \beta_{1}\right)$
13	Z_{3}	
14	0	
15	Z_{3}	
16	0	$g_{1}\left(\alpha_{4}\right)$
17	0	
18	0	
19	Z_{3}	
20	Z_{3}	$b_{1}^{2}\left(\beta_{1}^{2}\right)$
21	0	
22	0	$h_{0} b^{2}\left(\alpha_{1} \beta_{1}^{2}\right), a_{0}^{2} u, a_{0}^{3} u\left(\alpha_{6}^{\prime}\right)$
23	$Z_{3}+Z_{9}$	

Table A. (continued)

$t-s$	$\pi_{*}^{S}\left(S^{0}: 3\right)$	survivor (corresponding generator)
26	Z_{3}	$k\left(\beta_{2}\right)$
27	Z_{3}	$h_{0} a_{1}^{2}\left(\alpha_{7}\right)$
28	0	
29	Z_{3}	$h_{0} k\left(\alpha_{1} \beta_{2}\right)$
30	Z_{3}	$b^{3}\left(\beta_{1}^{3}\right)$
31	Z_{3}	$g_{1} a_{1}^{2}\left(\alpha_{8}\right)$
32	0	
33	0	
34	0	
35	Z_{27}	$a_{0}^{6} h_{2}, a_{0}^{7} h_{2}, a_{0}^{8} h_{2}\left(\alpha_{9}^{\prime}\right)$
36	Z_{3}	$b k\left(\beta_{1} \beta_{2}\right)$
37	Z_{3}	$h_{0} b_{11}\left(\varepsilon^{\prime}\right)$
38	Z_{3}	$h_{0} h_{2}\left(\varepsilon_{1}\right)$
39	$Z_{3}+Z_{3}$	$h_{0} b k\left(\alpha_{1} \beta_{1} \beta_{2}\right), h_{0} a_{1}^{3}\left(\alpha{ }_{10}\right)$
40	Z_{3}	$b^{4}\left(\beta_{1}^{4}\right)$
41	0	
42	Z_{3}	$g_{1} h_{2}\left(\varepsilon_{2}\right)$
43	Z_{3}	$g_{1} a_{1}^{3}\left(\alpha_{11}\right)$
44	0	
45	Z_{9}	$b h_{2}, a_{0} b h_{2}(\varphi)$
46	Z_{3}	$b^{2} k\left(\beta_{1}^{2} \beta_{2}\right)$
47	$Z_{3}+Z_{9}$	$h_{0} b b_{11}\left(\beta_{1} \varepsilon^{\prime}\right), a_{0}^{2} a_{1}^{2} u, a_{0}^{3} a_{1}^{2} u\left(\alpha_{12}^{\prime}\right)$
48	0	
49	Z_{3}	$h_{0} b^{2} k\left(\alpha_{1} \beta_{1}^{2} \beta_{2}\right)$
50	Z_{3}	$b_{5}^{5}\left(\beta_{1}^{5}\right)$
51	Z_{3}	$h_{0} a_{1}^{4}\left(\alpha_{13}\right)$
52	Z_{3}	$k^{2}\left(\beta_{2}^{2}\right)$
53	0	
54	0	$h_{0} k^{2}\left(\alpha_{1} \beta_{2}^{2}\right), g_{1} a_{1}^{4}\left(\alpha_{14}\right)$
55	$Z_{3}+Z_{3}$	
56	0	
57	0	
58	0	

Table A. (continued)

$t-s$	$\pi_{*}^{s}\left(S^{0}: 3\right)$	survivor (corresponding generator)
59	Z_{9}	$a_{0}^{2} a_{1}^{3} u, a_{0}^{3} a_{1}^{3} u\left(\alpha_{15}^{\prime}\right)$
60	0	
61	0	$b k^{2}\left(\beta_{1} \beta_{2}^{2}\right)$
62	Z_{3}	$h_{0} a_{1}^{5}\left(\alpha_{16}\right)$
63	Z_{3}	
64	0	$h_{0} b k^{2}\left(\alpha_{1} \beta_{1} \beta_{2}^{2}\right)$
65	Z_{3}	$g_{1} a_{1}^{5}\left(\alpha_{17}\right)$
66	0	$b_{11}^{2}(\lambda)$
67	Z_{3}	
68	Z_{3}	$a_{0}^{10} a_{2} u, a_{0}^{11} a_{2} u, a_{0}^{12} a_{2} u\left(\alpha_{18}^{\prime \prime}\right)$
69	0	$b 2 k^{2}\left(\beta_{1}^{2} \beta_{2}^{2}\right)$
70	0	$k a_{2}\left(\beta_{5}\right)$
71	Z_{27}	$h_{0} b k_{02}(\mu), h_{0} b k^{2}\left(\alpha_{1} \beta_{1}^{2} \beta_{2}^{2}\right), h_{0} a_{1}^{6}\left(\alpha_{19}\right)$
72	Z_{3}	
73	0	

The matric Massey products in algebraic spectral sequences were studied by J.P.May (6). We quote some of his results which we use in this paper.

Theorem 2. 6. (J.P.May). Let $\left\langle v^{1}, v^{2}, v^{3}\right\rangle$ be defined in E_{r+1} term of the May spectral sequence. Assume that $v^{i} \in E_{r+1}^{p i, q i, t i}$ and that v^{i} converges to w^{i}, where $\left\langle w^{1}, w^{2}, w^{3}\right\rangle$ is defined in $H^{* *}\left(A_{3}\right)$. Assume further that the following condition (*) is satisfied.

```
(*) If \((p, q, t)=\left(p_{i+1}+p_{i}, q_{i+1}+q_{i}, t_{i+1}+t_{i}\right), i=1\) or 2 , then
\(E_{r+u+1}^{p-r-u} q+r+u-1, t \quad\left(E_{r+u+1 \infty}\right.\) for \(u \geqq 0\).
```

Then any element of $\left\langle\nu^{1}, v^{2}, v^{3}\right\rangle$ is a permanent cocycle which converges to an element of $\left\langle w^{1}, w^{2}, w^{3}\right\rangle$.

The matric Massey products in the Adams spectral sequence were studied by R.M.F.Moss [8] and A.F.Lawrence [3]. We quote some of their results which we use in this paper.

Theorem 2. 7, (R.M.F.Moss).

[^0]: Received: Oct. 31, 1974

 * Dept. of Math., Sci. \& Eng.Div., Univ. of the Ryukyus

