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10 NAKAMURA : Some Differentials in the mod 3 Adams Spectral Sequence

D). Letv; ¢ Eg ' = EJ (S0, 8% (i=1,2,3) be such that vp, = 0 and

vy, = 0. Then

d, <v,, v,, 9,> C —<(dp, v ), (léz—l)id,vz v,(:} , (‘(3_1)"+"1d,03) -
where i = t —s and i’ = t,—s,.
ii). Suppose also that vld, v, = 0 and vzdrv3 = 0, then
d, < 9,,0,,9, >C —<dy 0,0, >—(—1)i<vl, ayv,, v, >— (—1)"'|".'<v1,v2 ydy, >
Tueorem 2. 8. (R. M.F.Moss) Let v; € Eji-ti (i=1,2,3) be permanent cycles
such that v, = Oand vy, = 0. Let v; be realized in Eoo by homotopy classes
wj ¢ ('S} 4, _g; such that, 0 @, = 0 and 0,0, = 0. Assume that the
following condition (**) is satisfied.

48 1 —r—ut;+t;  y—r—u+l .
(**) Er‘+uf+-'il 1TH 41 C Er+u+l,°o for any u 20 and i=1,2,

Then the Massey product <v,,v,,v, > contains a permanent cycle that is realized

in EVY2¥STr AL Wtiatia=T42 by b olement of the Toda bracket < 0, 0,, @ >,

Tueorem 2. 9. (AF.Lawrence). Let <v1,92, 93 > be a Massey product,

o 8: b2 si.t; . s ~

where v e B = E}H(S%, 89 (i=1,2,3) and d, v =0, r—1 St <n. Assume

that

(**) E3;+s,-+1—r+m+l, b+t —r+m+l_Es,-+s,-+l—r+m+l, t,-+t,~+l—r+m+l_o
m T Tr4n—m—1 -

for r-1<m<nand 1=<i<2,
Then for v e <vl,v2, 13> we havedmv = 0, m <#n, and
. v2 0 v3 0
(dnvrv) € <(dyp! 1), (dhvzgz) ’ (dnvf* ,73) > .
T he' relation between the algebraic Steenrod powers acting Ext AP(Z iy Zp)

and 'tl;'he differentials in the Adams spectral sequence was studied by R.J.Milgram
7.
Tueorem 2. 10. (R.J.Milgram) Let & ¢ ExtAp (Zp, Zp) then there are

operations Pt, BP?, in Exti‘;{; (2,2, and d, (PiCa) = q,. BPE (@ for p
odd' prime.

§ l3'.‘ Differentals in the range 78 < t-s < 104

In this section we will consider the differentils in the range 78 <t-s< 104,

From now on we will write ( Er, 8,) and (E,,d,) for the May spectral sequence
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and the Adams’, respectively.

ProposiTion 3. 1. d, (x) = hka,

Proor . Since kbyhy = 0 and &, (hboa,) = o, (haby) = hbyah, in
E3» Massey product <£%,b, h,,ha > is defined and equal to kgbya,k in E‘4 . Since

01720 %y
kebyh, = 0 and byh,.h@ = 0 in H**(4,), we have the relation b, .ak =
<k,bolh2,h0al> in H**(A,), by Theorem 2.6. &, bk, and k@ are permanent

cycles in the Adams spectral sequence and converge to B, ¢ and «,,
respectively. Since < f,, ¢, a > €II5(8"3) = {1} and 2, = 0 (S. Oka
(10]) and ¢ ¢ < el,al,al>(H.Toda [14]), we have B,Pef < ¢ ,a ,a >
=<B,¢&,a,>a = 0 Since T§ (5%3) =0, we have ¢, = 0. Then Toda
bracket <P, ¢,x,> is defined. It is easy to check that Massey product
<k,by,h,, hya, > satisfies the condition (**) of Theorem 2.8. Then we have the
relation « f .= <f,,¢,a,>, since hbyka, converges to a BB Since
<P, @, B > T3 (Su3)/(eT(Sh3) + BT (S%:3)), T5(8%3) = (af
and f,at = 0, we have @ B28_ = § <B,,¢,a,>= B <¢,a,f > =
0, up to sign. Then izzbglka2 must be killed by some differetial. For dimensional
reasons, there is only one possible differential d3(b§1x) = hb}ka, . Then

d,(x) # 0 for some 7 such that 2<7<3. There is only one possible differential

dy(%) = hyka, .

Proposition 3. 2. d, (m) = by ub,, .

Proor - Since ky@a, = 0 and 5, (w) = — @hc in E, , Massey product
<hya,, @y, hy ¢ > is defined and equal to k@w in E, . Since kg,.q) = 0 and
ayhc = 0in H**(4,), we have hgw = <hga 1@y, k,c > by Theorem 2.86. By
Theorem 2. 7, dz(hoalw) = d, < hyoy @y, Ry > = < hyay, @, dz(hlc)>

= <hg,,a),ab% > . Since &, (ub,) = ab? in Es . Massey product < kg,
ab? > is equal to hyaub,, in k. By Theorem 2.6. it is easy to see that kg ub,, =
<hg@,, ay ap? > . Thend,(kym) = d, (haw) = hg@uby, . For the dimensional
reasons, d,(m) = aub,, .

ProposiTiON 3. 2. d(d) = azhzboz‘

Proor . We first cqnsider the actions of @0 and B(P° to & € H228(A ). The
definition of@“ and 8 g)o is given in [4]. By the direct calculation, we have

Ay ([ey T, ] @8, 18,1@ (7, 17,])

= —la B 7 1 a,B,7,)
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and

Az ([ea |2, Q[B, 18,1 QL7 |7,D

=[a B, rila,Bry 1T + Ly B rilalB,ryla,r,

—layr L aB Ty 1B7] —Lajr lafB 7yl a,B,ry]
where a,, 8,7, €Ay (i=1,2) and let ¢* (a¢) = a’ @ a’ instead of
¢*(a) = Ta; @ ay for coproduct of a in Asy. It is easy to see that
k in H2.28 (:4.3) is represented by the cocycle

(631 &0 — (51 ¢,] in the cobar construction F* (4;). Then PO (k) is
' represented in F* (A;) by
~ Ay WLERT £o3 — (&% 8,0 ®LLEFT &, ~ [¥F] 4,10
@ (&3] &, —[&81¢,D)
= [6)1 631 — [&£18] &3], Since [£9] 23] — [&18] £0)
is a representative of d ¢ H28(4,), we have (P° (k) = d. Next, B ) is
represented in F*(A;) by
Ay (([e31 621 —C&81 6D ®é316,0—-[e31¢D
® ([&31¢,0 —[&51¢,D
[69) By — [EB1.5, — [&31.5, + [&}1 €81 ¢€)
+ 8 (= [§955] &% — [&B&)) &0 — C3( #9881 — L&Y | 9831
— (EP| &, 681 + L8P &26,0 — [&P1 51 — LR 1 &4512:
Since [£§) .5, — [£18] .3y, — [431 .5, + [&31 £§1 &%) is a represenative
of by, ¢ HI#(A), we have B(Po(k) = hby By Theorem 2.10, we have
d(d) = d, (P (&) = ¢, BP'(B) = ey,
ProposiTioN 3. 4. d,(v,) = ghb

2702

Proor - Since hyw, = — by d, we have hd,(v)) = d,(byd) = hy.&hby,. For

the dimensional réasons, we have d,(v)) = ghb,-

Prorposition 3. 6. dy(a2w) = dfub,,.

Proor . Since hodz(a{w) = dz(hoal.m) = hoa%uboz, we have dz(a%w) = a%ubo2
for the dimensional reasons.

ProposiTion 3. 6. a). d, (hx) = b} b},

b). d(gx) = hbfkby,-

ProoF - Since kykbg, in H5-8°(A3) is a permanent cycle and d(e) = &,

hb§, kb, must be killed by some, differential. It is easy to see that dz(bgl (D))

= d2 (2 = hobglbuaz, z(gxu‘”z (7)) = g4, (z) and bglb'flaZ == b01k3a2 is a
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permanent cycle. Then, for the dimensional reasons, there is only one possible
differential d,(b},8,%) = hyb§ kb, and therefore, we have d,(gzx) x 0 for r=3
or 4. Let x be a cocycle in F*(A;) which represents x ¢ H3.18(A,). Then [£1]
bgox and ([&,] &1 — [&3] §21) .5y, % are representatives of kb x ¢ H6.105
(4,) andgb,x € H7IB(A,), respectively. Since d[§3] = [§,1 ¢,],

d([&,0 — [&41 D8y = [§,] £§1.8p,-% and

(Ce21 631+ L&, 1 &,]0 — (8,1 €8D5,.%

——(Ce,1 8,0 — [631 821D % — 30€,8,0 + (601D ok,

Massey product < hy, by, b by x > is defined and equal to — gb,# in E, . Since
ds(ko) = 0 and d3(hlx) = 0 for the dimensional reasons, we have ds(gzbmx) =0
by Theorem 2.9. For dimensional reasons, we have ds(gzx) = 0, Then we have
d4(g2x) = hab"f-;lkb02 and therefore we have d4(hlx) = bglbfl for dimensional
reasons.

ProrosiTion 3. 7. d,(g,G) = g,ah,by,.

Proor . Since §,(q) = — 4}k, and ap, = 0 in [;, Massey product
<v0,a0,aghl> is defined and equal to glG = a, in F]4. Since the May’s weight
of aw, and hx are 2 and 4, respectively, we have a relation ap, = 0 in H**(4,).
Then it is easy to see that g,G = <v,a,afh, > in H**(4,) by Theorem 2.6,
By Theorem 2.7, we have d,(g,G) = d, (<v,ayakh >) = <ghby, ayalh >. It
is easy to see that gah)b, = <ghbya,ah > Then we have d,(g,G) =
£,3,7,Dgy-

ProrosiTionN 3. 8. d,(ayhbya6,) = dlabt,.

Proor . Since agh by,e, = <ay,hy.gG> in H**(A,) by Theorem 2.6, we have
d(ahbya,) = d, <ayhy, 8G> = <ayhy,ghbya,> by Theorem 2, 7. Since
< @y hy, & 10,3, > = a3a,b3, by Theorem 2.6, we have d,(ayhbya,) = a}a b, .

ProposiTion 3. 8. d,(BG) = heby h,a,.

Proor - Sicce ayh b0, = <@y, &,kG>in H **(A,) by Theorem 2.6, we have
alabt, = d, (ahb,e,) = d, <6y,8,nG> = <a,g,d,(kG)> by Theorem 2.7,
Then there is only one possible differential d,(kG) = &b, h,a,.

ProrpositioN 3. 10. d,(hw) = b,G.

Proor - Since d,(hyh,w) = ad, hw + hy hub,, = kb, G by Proposition
1.1, f), we have d,(h,w) = b,G for the dimensional reasons.

All other non-zero differentials in the range ¢-s <104 are easily determined
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by the differentials listed in §2 , above propositions and the fact that E, is
a differential algebra.

Next we consider some Toda brackets.

Lemma 3. V1. hyx comverges to < a ,a B >.

Proor « Since d, () = hoka, and hoh, = 0, Massey product <k, h,ka,> is
defined and equal to hyx in E,. It is easy to check the conditions of Theorem
2.8 for this product. Then the result follows.

Lemma 3. 12, Let hyb,, converge to an element b, by, of 115, (S%3). Then we
have 3.1, by, = O

Proor . If not, we have 3'.;’,;7;'0'2 = + <a,a,B,>. Then we have 0 #
Bifg=x<aja,a>8 ==+ a <a,a,f> =+ a. 3'5;170,2 = 0.

This is a contraction.

LemMa 3. 13, hyb, 6, converges to < a ,3¢,p >.

Proor . Since d, (k) = apb, and hzbna2 = — hka,, Massey product
<bm,a0,ka2> is defined and equal to hedy @, in E, Then we have the result by
Theorem 2.8,

Lemma 8.14. Let ald converge to an element a"zo'a of T§(S°:3). Then hgha,
converges to < 41,3‘,253 >.

Proor - Since § (h,@.

2
< hya,akd> is defined and equal to Agh,a, in ’E's. By Theorem 2.6, we have a

) = ajd in the May spectral sequence, Massey product

relation hyh,a, = <hya,ald> in H**(A4,). It is easy to check the condition of
Theorem 2.8 for this product. Then the result follows.
Lemma 3. 16. g,h,a, converges to < o | ,3¢,0 >, where
p, = <al,3z,a’?d>.
Proor - Let g, be a cochain in the cobar construction F*(A}):
g =Lrylryl e ]+ Le,l &ymplrgd = Drpl §,1 757]
— [yl mol 7l + [, 1 ryryl 7] + [yl §iz,l 7]
—[r,l &3l e, e] — [83c,]l o 1 2,0 + (&3l t,7,1 o5
— (%1 rgl myrgd — [621 ttgl vgd + [€27,1 74l 7]
+ 08,1 §,ngl vyrgd — [,7,1 §,000 7od + [§,1 §57,75] 7ol
—Lé,r 1 §3rgl o0 + [&,7,1 63l rgr ] + [yl §36,1 7 7]
—[&36,m,l oyl vgd — [é3r, 1 E,m 0 vl + [6F1 §,7,7, 1 7]
+ 0638, ryr |l 2] + [§36,1 7,1 o 70 — [€3€,] 7 74l 7]
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+ (€31 &yl ryrgd + [4,1 §3r,70l 7,0 + [6,1 37yl 7,7,]

+ [&,1 &3ryl vy — [6,1 63l ryryrgdl — [€37,1 &3] 7]

+ [&8ryl vyl o] + L6311 &3r,7 1 v d + L83 &37,1 7,7 ,]

— [&S§l 2yl vpr ] — [é§lvyryinyd — [E363] o7, ]

— [&3&,1 & el 7] — [€,1 838,01 7y7p) — [838,1 &3r, 7, 7))

+ (881 &, ) vyegd — L8631 638y, vyvgd — [636,1 &7, | 7,7 ]

+ (€88, ryloyrgl + L8885, 0 v 7ol o] + (68, &,7,1 7]

— L8811 & mpr 1 o] — [881 &yl vyr o] + [88r,] &,] v 7]

— [&fr 1 Efl oy + L8 Syl zyrd — [EF1 & 7,0 7 7]

— L8631 &tlrpryrod + D831 &1 rymymod + [E5€,1 647,701 7]

— (&3¢l €ymgl myrod + LEYE, 1 el 7ymod + LEF] &y7y | 770
Let g, and a be

ao= ey leled+ Dol éelegd— Loyl é,]e,r,
— eyl rgin d+ 08 lryrgl e d - 0831 zyrgl 7]
—LEyr L &ymplrd + [8fr L rgrgd + D6 1 v 78,1 7]
— (e}l rgl ol + L& 1 470l 7y7] |
and
a = (691 6,0 — [&6916,8280 — [Pl &0 —_[&]°1 €3] + (6581 4]
+ [éP1 &30
By the tedious but routine calculations, we see that hh,a, is represented by
(6.0 .a —[&)) . [P .aq + a. [yl vyl 7]
Let B be
(ol 631 70 — Drgl 681 7,0 + [€37 .1 €3] 7]
— (631 v 631 v 3 + CE1 €31 oyrgd + D671 €370l 7] -
T3t 1 £l e, ] — [&Br | &3l e, + [£8] £3r 1 ¢,
— (&8 63l o, 7] — (&8 eyl v + [Pz, &3] 7]

— [&rgl 61831 o] + [E1 &, 6871 7o — [éPryl €31 7]
—[&8 §drglzod + [EPBrgl &4z + [6Pr ] 631 7]
Since Massey product <&, %, hyh,a,> is represented by o
(L&, 637 — L6 1700 . CLéN G — L6 .g)

+ [6].8.-[zpl vy d =[] a.[zy] 7y] 7]
— [, 1 6.0.C[¢9 .5 — (8881 .57 )
= ([&,l7 ] — [ c]). CL60 .3 — [&181.5D
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+ [§].8.-[zyl vy =[] .. [zgl 7ol 74l

+ [§,7,0 - CLETI 640 — (6B £11) . [yl vyl 7]

— 0&,7,] - CL891 .4 — [E11.2D),
we have <k, ay, kyh,a,> = gha, in H**(As). Then, by Theorem 2.8. we have
the result.

Lemma 3. 18. by k.6, converges to < a, a,, p >.

Proor . We make use the same notation of the proof of Lemma 3. 15. Let
# and v be

[&,1 831 =z, ~[&;| §¥] =,] — &.[7,]

+ (&P &1 e ) + L6Y] &,88] .1 — [&17] &3] =]

—CEBl &4l ] —[E &, 1 e 0+ 6B E,l,]
and

[E19] §,63] — [&11] 631 — [£19] &41 + [&2] €3] — [£9] £2¢3)

+ [4RIER + LEP| 8,0 + [&3L &,5,) — [6PF1 6,0 —LEPL #,6,0
Since Massey product <y, k), hyh,a, > is represented by

(L&, 162 + (621 6,10 (695 — [£81.57)

+ L8 0.8 . [rgl e + [€,0. 0.0ty 7] 7]

+LeR.a[ry] 1 7o),
we have <k, hy, hha,> = byh,a, in H **(Aa)' Then, by Theorem 2. 8. we
have the result.

Lemma 3. 17. by b, a, converges to < B, ,a, f.>.

Proor - Since d,(g,) = by,g, and b,b,,6, = g,ka,, Massey produet <8,,,8,,ka,>
is defined and equal to &yb,,a, in E,. Then, by Theorem 2.8, we have the result.

Lemma 3. 18. by, converges to < B, &, ji, by > -

Proor . By Theorem 2. 1. d,(h) = T a ayb,, , where % is a non-zero

(constant) coefficient. Since 0 = dy(hhy) = a . apph, — hy.dy(h,), 5 ,(aby,)
= ahb, — @pgh, and 0 % apyh, ¢ H4O(A), we have dy(h) = o . ap, -
Since [§}] §3] — [&18] £3] is a representative of d € H2.84 (Aaj, it is easy to
see that Massey product <h,,—h, k> is defined and equal to & in H**(Ag).
By Theorem 2.7. we have
dy <hy, —hy, by> € — <(&.ap, k), (:hz 0) (fﬁl )>.

’ @ @by =k e - by

This matric Massey product is represented by



Then Massey product <by,, g, #,by,> is defined and equal to — '@. g,.hp
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T (L8 by-Lrol — (68 .50 [7,] + [€8] .5y [£37,]

— tn-[7o) 631 — - (83741 631 — [615] &3l 7yl &1

(621 6§l vyl 630 —[851 81| oyl 631 — [631 61 7ol €3
—w([E9) iy [Tl — [£38] .- [7g] — [£2] .5y [ 7]
[£91 €8] 881 ty1)

[661 611 £37,) + [E31 65 3,0 + [£8] 63831 7]

+
+ T8 - [637e) + [E1] 631 37,0 + [E12] 681 £3c]
..|_
+

(631 85631 =1 + (48631 €31 =1 + [§363] 68| 74d
FLEB| &8 e ] + [£91 2] o] + [E2] &9] 741D,
Then we have d,(d) = — @.ahp,, . Since — hy.d, () = d,(hwy) = d,(—byd)

0°2702°

by hby, = —F . k. ghby, and — hy.dg) = dy(hg) = d(— hyby)
= —T .o = T .hgp,, we have dy(v) = &.ghb,anddy(g,) = —&.gby

7202

2702

—'E.bm. B, = 1 byv, (by proposition 1.1. e)) in E,. By Theorem 2.8, it is easy

to see that by, converges to <8, &,, 4, by> (up to sign).

We summarize the above propositions in the following theorem for E_, term
in the range 77 <¢-s< 103,
TueoreM 3. 18. E_ for 77 <t-s< 103 is given in Table B.

Table B.
ts T S(Su3) s ﬁrvivof_(a)rresponding generator)’ B
77 0
s Z BB (A 2)
79 z, ga(a )
80 0
8l Z;+Z, hoboy > By% (< ay,ay, Bo>)
82 Z, ald
83 Z, 2Zafu , Bfu (al)
84 ZS+Z3 huhzboz' bka, (8,8 5)
8 Z+z hobudy (< By 36,853 hbykby (B 1)
86 Z hyh o, (<“1’3‘-;13d>= Py
87 Z hoa] Catpp)
88 0
89 0
90 Z ghym, ( <@y, 3¢, 0,>)
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Table B (continued)
ts T$(8%3) survivor (corresponding vgeﬁérater) i )
9 Z+Z+Z, boihobos» obg® (Bi< @y,a B >), ga] (ay)
2 Z+Z, bucxhgy, bobnd, (< By,a5,85>)
93 Z, borhogy s Gbyhyz, (< @y, P1>)
94  Z+Z, kb3 (B,2), bika, (B2B)
9% Z;+Z, hobyby s, (@) < By, @y, B>, aiRu, ajdfu (« ;)
96 0
97 0
28 0
9 Z+Z, bowy (< Byiay, by > ) Bydf ()
100 Z, &h,3, (B89
101 Z+Z, bfioboy s Bbix (B} < oy ey, B5>)
- —~—
102 Z3+Z3 hob‘uvn (“1< ‘Bl’aZ ’h2b02>>’b%lb11a2(ﬁl< ,31,012,,85>)
103 z &4} (ay)
Remark . Recently, T$ (S%:3) in this range was announced by M. C. Tangora.
Appendix
Display chart of EExty, (Z,,Z,) for t-s < 136
Vertical and slanting lines indicate multiplication by @, and 4, respectively.
4
3 ///‘
) . b./{/‘
V:i[/ho hl
s =0 1
t-s = 9 1 2 3 4 5 6 7 8 9 v 1 12 13 14
Fig. 1
7 h0a§ glba
2
: //T glb
) —/911/1 /baJ/‘
4 he?, g, b //' by,
’ / Y /
2 gz k
s=1
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REmark - In this appendix we make use following notations;

hy = 8,08 = 8100 =8y, 8 = 8,k = kyogiby = by, by = by,

n = aG + dca,, p = bla, + af wb,, q = bg,ak — guba,,r = hyxa, + ahb.e,
and s = bxa, — gh,bya, .

26 ‘ %1

® h:’e/\ﬂ/y

%
h bla2 hob blb

2

5
4
3
2

[

t-s = 90 91 92 93 04 95 9 97 ot 99 100 101 102 103

Fig. 7
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= 104

0701
0 _—]
. ba2uaPEPTILVA2
41
alubz b 2a2

o wh

1238
./%% 2? Mza?u
M%az

o/_/al“/‘.//T b7a,u
9
1 b’u

./bgazf/gbgguar/-. g,b%t
'/a[lf /{2%%%
L hpedm 5 b2agua,

bf 2 b®a, ha
—"hgauby o4 /bfa‘fﬁb/v
b4"b b231 hgbdkb,
’/'w/a/“‘\”ﬁ’ge/‘
b bla

27 12

_— i b fp T
bzv ‘/bkx’/

106 107 108 109 110 111 112 113 114 115

Fig. 8
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u
e -
1 W
26 balu 1 b4a5u//bm;r/1/: b6a3u

i 3""_—l——__h6EfEiE::::Z:::::::::::}——j::;1i—T:ZZZZfZZ:::———'L""° B

a 5.2 5[4 7.2
% ngb%u M) "_:111:1__.___51————‘ o
24 - I b6ady b .«//El u
23 b7afu/\10/bsalu/l//‘,/.//b10u/
0
22 nph bt o5 ’//Jse)/f:
5

bg'2]. /ﬂ////;‘/‘ 1 "
4 2
11 b*x olL) b g,b b, b%g,x

1357 ® Myby

10 q  hybby ()
9 fiszzx/'m;3 v/ b2kx bbia2
8 h, bkx ka%@
7 p bblx
b R 021553 95y bzbex 921"
5 h oalh 3 glbh3
4 bb,TE) 1 9509y
3 bhs 521 ' 92"
2 By
=1
t-s =116 117 18 119 120 121 122 123 124 125 126



[N
L B
[N

- — P — b [ et bt - = [ [ [ N [\ N o] n ~ w

| I OO N S T - N S« - Y- B

»
i
—

NAKAMURA : Some Differentials in the mod 3 Adams Spectral Sequence
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