琉球大学学術リポジトリ

Some Differentials in the mod 3 Adams Sepectral Sequence

メタデータ	言語:				
	出版者: 琉球大学理工学部				
公開日: 2012-03-06					
キーワード (Ja):					
	キーワード (En):				
	作成者: Nakamura, Osamu, 中村, 治				
	メールアドレス:				
	所属:				
URL	http://hdl.handle.net/20.500.12000/23687				

i). Let $v_i \in E_{\tau}^{s_i, t_i} = E_{\tau}^{s_i, t_i}$ (S⁰, S⁰) (i=1,2,3) be such that $v_1v_2 = 0$ and $v_2v_3 = 0$. Then

ii). Suppose also that $v_1 d_r v_2 = 0$ and $v_2 d_r v_3 = 0$, then

$$d_r < v_1, v_2, v_3 > \subset - < d_r v_1, v_2, v_3 > - (-1)^i < v_1, d_r v_2, v_3 > - (-1)^{i+i'} < v_1, v_2, d_r v_3 > .$$

Theorem 2. 8. (R. M.F.Moss) Let $v_i \in E_r^{s_i \cdot t_i}$ (i=1,2,3) be permanent cycles such that $v_1v_2 = 0$ and $v_2v_3 = 0$. Let v_i be realized in E_{∞} by homotopy classes $\omega_i \in \{S^0, S^0\}_{i=s_i}$ such that, $\omega_1\omega_2 = 0$ and $\omega_2\omega_3 = 0$. Assume that the following condition (**) is satisfied.

(**)
$$E_{r+u+1}^{s_i+s_{i+1}-r-u,t_i+t_{i+1}-r-u+1}$$
 ($E_{r+u+1,\infty}$ for any $u \ge 0$ and $i=1,2$. Then the Massey product $< v_1, v_2, v_3 >$ contains a permanent cycle that is realized

in $E^{s_1+s_2+s_3-r+1}$, $t_1+t_2+t_3-r+2$ by an element of the Toda bracket $<\omega_1,\omega_2,\omega_3>$.

THEOREM 2. 9. (A.F.Lawrence). Let $\langle v^1, v^2, v^3 \rangle$ be a Massey product, where $v^i \in E_r^{s_i, t_i} = E_r^{s_i, t_i}(S^0, S^0)$ (i=1,2,3) and $d_t v^i = 0$, $r-1 \le t < n$. Assume that

$$(***) \ E_{m}^{s_{i}+s_{i}+1-r+m+1, \ t_{i}+t_{i}+1-r+m+1} = E_{r+n-m-1}^{s_{i}+s_{i}+1-r+m+1, \ t_{i}+t_{i}+1-r+m+1} = 0$$

for r-1 < m < n and $1 \le i \le 2$.

Then for $v \in \langle v^1, v^2, v^3 \rangle$ we have $d_m v = 0$, m < n, and

$$(d_nv\cdot\overline{v})\;\epsilon\;<(d_nv^1\;\overline{v}^1)\;,\;\begin{pmatrix}v^2&0\\d_nv^2\;\overline{v}^2\end{pmatrix}\;,\;\begin{pmatrix}v^3&0\\d_nv^3\;\overline{v}^3\end{pmatrix}\;>\;.$$

The relation between the algebraic Steenrod powers acting $Ext_{A_p}(Z_p, Z_p)$ and the differentials in the Adams spectral sequence was studied by R.J.Milgram [7].

THEOREM 2. 10. (R.J.Milgram) Let $a \in Ext_{A_p}(Z_p, Z_p)$ then there are operations p^i , βp^i , in $Ext_{A_p}^{**}(Z_p, Z_p)$ and $d_2(p^i(a)) = a_0 \cdot \beta p^i$ (a) for p odd prime.

§ 3. Differentals in the range $78 \le t - s \le 104$

In this section we will consider the differentils in the range $78 \le t-s \le 104$. From now on we will write (\tilde{E}_r, δ_r) and (E_r, d_r) for the May spectral sequence

and the Adams', respectively.

Proposition 3, 1, $d_3(x) = h_0 k a_2$.

PROOF. Since $kb_{01}h_0 = 0$ and $\delta_3(h_0b_{01}a_2) = \delta_3(h_0a_1b_{02}) = h_0b_{01}a_1h_2$ in \tilde{E}_3 . Massey product $\langle k, b_{01} h_2, h_0 a_1 \rangle$ is defined and equal to $h_0 b_{01} a_2 k$ in \tilde{E}_4 . Since $k \cdot b_{01} h_2 = 0$ and $b_{01} h_3 \cdot h_0 a_1 = 0$ in $H^{**}(A_3)$, we have the relation $h_0 b_{01} \cdot a_2 k = 0$ $\langle k, b_{01}h_2, h_0a_1 \rangle$ in $H^{**}(A_3)$, by Theorem 2.6, k, $b_{01}h_2$ and h_0a_1 are permanent cycles in the Adams spectral sequence and converge to β_2 , φ and α_4 , respectively. Since $\langle \beta_2, \epsilon_1, \alpha_1 \rangle \in \Pi_{68}^3(S^0:3) = \{\lambda\}$ and $\lambda \alpha_1 = 0$ (S. Oka [10]) and $\varphi \in \{\epsilon_1, \alpha_1, \alpha_1\}$ (H.Toda [14]), we have $\beta_2 \varphi \in \beta_2 \{\epsilon_1, \alpha_1, \alpha_1\}$ = $<\beta_2$, ϵ_1 , $\alpha_1>\alpha_1=0$. Since Π_{60}^s (S0:3) = 0, we have φ $\alpha_4=0$. Then Toda bracket $\langle \beta_2, \varphi, \alpha_4 \rangle$ is defined. It is easy to check that Massey product $\langle k, b_0, h_2, h_0 a_1 \rangle$ satisfies the condition (**) of Theorem 2.8. Then we have the relation $\alpha_1 \beta_1 \beta_5 = \langle \beta_2, \varphi, \alpha_4 \rangle$, since $h_0 b_{01} k a_2$ converges to $\alpha_1 \beta_1 \beta_5$. Since $<\varphi$, α_{4} , $\beta_{1}>\epsilon$ π_{71}^{s} $(S^{0}:3)/(\varphi\pi_{4}^{s}(S^{0}:3)+\beta_{1}\pi_{4}^{s}(S^{0}:3))$, $\pi_{71}^{s}(S^{0}:3)=\{\alpha_{18}^{n}\}$ and $\beta_2 \alpha_{18}'' = 0$, we have $\alpha_1 \beta_1^2 \beta_5 = \beta_1 < \beta_2, \varphi, \alpha_4 > = \beta_2 < \varphi, \alpha_4, \beta_1 > =$ 0, up to sign. Then $h_2b_{01}^2ka_2$ must be killed by some differential. For dimensional reasons, there is only one possible differential $d_3(b_{01}^2x) = h_0b_{01}^2ka_2$. Then $d_r(x) \neq 0$ for some r such that $2 \le r \le 3$. There is only one possible differential $d_3(x) = h_0 k a_2.$

Proposition 3. 2. $d_2(m) = b_{01}ub_{02}$.

PROOF · Since $h_0a_1a_0 = 0$ and $\delta_3(w) = -a_0h_1c$ in \tilde{E}_3 . Massey product $< h_0a_1$, a_0 , $h_1c >$ is defined and equal to h_0a_1w in \tilde{E}_4 . Since $h_0a_1.a_0 = 0$ and $a_0.h_1c = 0$ in $H^{**}(A_3)$, we have $h_0a_1w = < h_0a_1, a_0, h_1c >$ by Theorem 2. 6. By Theorem 2. 7, $d_2(h_0a_1w) = d_2 < h_0a_1, a_0, h_1c > = < h_0a_1, a_0, d_2(h_1c) >$ $= < h_0a_1, a_0, a_0b_{11}^2 >$. Since $\delta_5(ub_{02}) = a_0^2b_{11}^2$ in \tilde{E}_5 . Massey product $< h_0a_1, a_0, a_0b_{11}^2 >$ is equal to $h_0a_1ub_{02}$ in \tilde{E}_5 . By Theorem 2.6. it is easy to see that $h_0a_1ub_{02} = < h_0a_1, a_0, a_0b_{11}^2 >$. Then $d_2(h_0m) = d_2(h_0a_1w) = h_0a_1ub_{02}$. For the dimensional reasons, $d_2(m) = a_1ub_{02}$.

Proposition 3. 2. $d_2(d) = a_2 h_2 b_{02}$.

PROOF. We first consider the actions of \bigcap^0 and $\beta \bigcap^0$ to $k \in H^{2,28}(A_3)$. The definition of \bigcap^0 and $\beta \bigcap^0$ is given in [4]. By the direct calculation, we have

$$\begin{array}{l} \triangle_4 \ (\left[\alpha_1 \mid \alpha_2 \right] \otimes \left[\beta_1 \mid \beta_2 \right] \otimes \left[r_1 \mid r_2 \right]) \\ = \ - \left[\alpha_1 \beta_1 r_1 \mid \alpha_2 \beta_2 r_2 \right] \end{array}$$

and

$$\Delta_3 \left(\left[\alpha_1 \mid \alpha_2 \right] \otimes \left[\beta_1 \mid \beta_2 \right] \otimes \left[\gamma_1 \mid \gamma_2 \right] \right)$$

$$= \left[\alpha_{1}\beta_{1}\gamma_{1}' \mid \alpha_{2}\beta_{2}\gamma_{1}'' \mid \gamma_{2}\right] + \left[\alpha_{1}'\beta_{1}\gamma_{1}' \mid \alpha_{1}''\beta_{2}\gamma_{1}'' \mid \alpha_{2}\gamma_{2}\right]$$

$$- \left[\alpha_{1}^{\prime} \gamma_{1} \mid \alpha_{2}^{\prime} \beta_{1}^{\prime} \gamma_{2}^{\prime} \mid \beta_{2}^{\prime} \gamma_{2}^{\prime \prime} \right] - \left[\alpha_{1}^{\prime} \gamma_{1} \mid \alpha_{1}^{\prime \prime} \beta_{1}^{\prime} \gamma_{2}^{\prime} \mid \alpha_{2}^{\prime} \beta_{2}^{\prime} \gamma_{2}^{\prime \prime} \right]$$

where $\alpha_i, \beta_i, \gamma_i \in A_3^*$ (i=1,2) and let $\varphi^*(\alpha) = \alpha' \otimes \alpha''$ instead of $\varphi^*(\alpha) = \sum_i \alpha_i' \otimes \alpha_i''$ for coproduct of α in A_3^* . It is easy to see that k in $H^{2,28}(A_3)$ is represented by the cocycle

 $[\xi_1^3 \mid \xi_2] - [\xi_1^6 \mid \xi_1]$ in the cobar construction $F^*(A_3^*)$. Then $(0^0 \mid k)$ is represented in $F^*(A_2^*)$ by

$$\begin{array}{l} -\Delta_4 \left\{ \left(\left[\, \varepsilon_{\,1}^{\,3} \, \right] \, \varepsilon_{\,2} \right] \, - \, \left[\, \varepsilon_{\,1}^{\,6} \, \right] \, \varepsilon_{\,1} \right] \right) \, \otimes \, \left(\left[\, \varepsilon_{\,1}^{\,3} \, \right] \, \varepsilon_{\,2} \right] \, - \, \left[\, \varepsilon_{\,1}^{\,6} \, \right] \, \varepsilon_{\,1} \right]) \\ \otimes \, \left(\left[\, \varepsilon_{\,1}^{\,3} \, \right] \, \varepsilon_{\,2} \right] \, - \, \left[\, \varepsilon_{\,1}^{\,6} \, \right] \, \varepsilon_{\,1} \right]) \big\} \end{array}$$

=
$$\begin{bmatrix} \varepsilon_1^9 \mid \varepsilon_2^3 \end{bmatrix}$$
 - $\begin{bmatrix} \varepsilon_1^{18} \mid \varepsilon_1^3 \end{bmatrix}$. Since $\begin{bmatrix} \varepsilon_1^9 \mid \varepsilon_2^3 \end{bmatrix}$ - $\begin{bmatrix} \varepsilon_1^{18} \mid \varepsilon_1^3 \end{bmatrix}$

is a representative of $d \in H^{2,84}(A_3)$, we have $(0^0 (k) = d)$. Next, $\beta(0^0 (k))$ is represented in $F^*(A_3^*)$ by

$$\Delta_3 \ \{ \ ([\, \xi_{\,\, 1}^{\, 3} \, | \ \xi^{\, 2}] \ - \ [\, \xi_{\,\, 1}^{\, 6} \, | \ \xi_{\,\, 1}]) \ \otimes \ ([\, \xi_{\,\, 1}^{\, 3} \, | \ \xi_{\,\, 2}] \ - \ [\, \xi_{\,\, 1}^{\, 9} \, | \ \xi\,\,])$$

$$\otimes ([\xi_1^3 | \xi_2] - [\xi_1^6 | \xi_1])$$

$$= \left[\begin{smallmatrix} \xi & 9 \\ 1 \end{smallmatrix} \right] \cdot \overline{b_{02}} - \left[\begin{smallmatrix} \xi & 18 \\ 1 \end{smallmatrix} \right] \cdot \overline{b_{01}} - \left[\begin{smallmatrix} \xi & 3 \\ 2 \end{smallmatrix} \right] \cdot \overline{b_{11}} + \left[\begin{smallmatrix} \xi & 9 \\ 1 \end{smallmatrix} \right] \cdot \xi \stackrel{6}{}_{1} \mid \xi \stackrel{6}{}_{1} \mid \xi \stackrel{6}{}_{1} \mid$$

$$+ \delta \left(- \left[\xi_1^6 \xi_2^3 \right] \xi_1^3 \right] - \left[\xi_1^3 \xi_2^3 \right] \xi_1^6 \right] - \left[\xi_1^3 \right] \xi_1^6 \xi_2^3 - \left[\xi_1^6 \right] \xi_1^3 \xi_2^3 \right]$$

$$- \left[\xi_{1}^{12} \mid \xi_{1} \xi_{2}^{2} \right] + \left[\xi_{1}^{15} \mid \xi_{1}^{2} \xi_{2} \right] - \left[\xi_{1}^{15} \mid \xi_{1}^{6} \right] - \left[\xi_{1}^{3} \mid \xi_{1}^{18} \right] \right).$$

Since $[\xi_1^9] \cdot \overline{b_{02}} - [\xi_1^{18}] \cdot \overline{b_{01}} - [\xi_2^{3}] \cdot \overline{b_{11}} + [\xi_1^9] \xi_1^6 | \xi_1^6]$ is a representative of $h_2 b_{02} \in H^{3,84}(A_3)$, we have $\beta(0)(k) = h_2 b_{02}$. By Theorem 2.10, we have $d_2(d) = d_2(0)(k) = a_2 \cdot \beta(0)(k) = a_0 h_2 b_{02}$.

Proposition 3. 4. $d_2(v_0) = g_1 h_2 b_{02}$

PROOF. Since $h_0v_0=-b_{01}d$, we have $h_0d_2(v_0)=d_2(b_{01}d)=h_0.g_1h_2b_{02}$. For the dimensional reasons, we have $d_2(v_0)=g_1h_2b_{02}$.

Proposition 3. 5. $d_2(a_1^2w) = a_1^2ub_{02}$.

PROOF. Since $h_0d_2(a_1^2w)=d_2(h_0a_1,m)=h_0a_1^2ub_{02}$, we have $d_2(a_1^2w)=a_1^2ub_{02}$ for the dimensional reasons.

Proposition 3. 6. a). $d_4(h_1x) = b_{01}^2 b_{11}^2$.

b).
$$d_4(g_2x) = h_0b_{01}^2kb_{02}$$
.

PROOF. Since h_0kb_{02} in $H^{5,80}(A_3)$ is a permanent cycle and $d_6(e_1)=b_{01}^6$, $h_0b_{01}^6kb_{02}$ must be killed by some differential. It is easy to see that $d_2(b_{01}^2(Z))=d_2(f^2)=h_0b_{01}^5b_{11}a_2$, $d_2(g_1ua_2(P))=g_1a_1(Z)$ and $b_{01}^2b_{11}^2a_2=-b_{01}k^3a_2$ is a

permanent cycle. Then, for the dimensional reasons, there is only one possible differential $d_4(b_{01}^4g_2x)=h_0b_{01}^6kb_{02}$ and therefore, we have $d_r(g_2x) \neq 0$ for r=3 or 4. Let \bar{x} be a cocycle in $F^*(A_3^*)$ which represents $x \in H^{3,78}(A_3)$. Then $[\xi_1^3] \cdot \bar{b_{01}} \cdot \bar{x}$ and $([\xi_2 \mid \xi_1] - [\xi_1^3 \mid \xi_1^2]) \cdot \bar{b_{01}} \cdot \bar{x}$ are representatives of $h_1b_{01}x \in H^{6,105}(A_3)$ and $g_2b_{01}x \in H^{7,113}(A_3)$, respectively. Since $\delta[\xi_1^2] = [\xi_1 \mid \xi_1]$,

 $\delta([\xi_2] - [\xi_1^4]) \cdot \overline{b_0} \cdot \overline{x} = [\xi_1 | \xi_1^3] \cdot \overline{b_0} \cdot \overline{x}$ and

 $([\varepsilon_1^2 \mid \varepsilon_1^3] + [\varepsilon_1 \mid \varepsilon_2] - [\varepsilon_1 \mid \varepsilon_1^4]) \cdot \overline{b_0} \cdot \overline{x}$

 $= -([\xi_2 \mid \xi_1] - [\xi_1^3 \mid \xi_1^2]) \cdot \overline{b_0} \cdot \bar{x} - \delta[\xi_1 \xi_2] + [\xi_1^5]) \cdot \overline{b_0} \cdot \bar{x},$

Massey product $\langle h_0, h_1 h_0 h_1 \rangle$ is defined and equal to $-g_2 b_{01} x$ in E_2 . Since $d_3(h_0) = 0$ and $d_3(h_1 x) = 0$ for the dimensional reasons, we have $d_3(g_2 b_{01} x) = 0$ by Theorem 2.9. For dimensional reasons, we have $d_3(g_2 x) = 0$. Then we have $d_4(g_2 x) = h_0 b_{01}^2 k b_{02}$ and therefore we have $d_4(h_1 x) = b_{01}^2 b_{11}^2$ for dimensional reasons.

Proposition 3. 7. $d_2(g_1G) = g_1a_1h_2b_{02}$.

PROOF. Since $\delta_3(a_1)=-a_0^3h_1$ and $a_0v_0=0$ in $\tilde{\mathbb{E}}_3$, Massey product $< v_0, a_0, a_0^2h_1>$ is defined and equal to $g_1G=a_1v_0$ in $\tilde{\mathbb{E}}_4$. Since the May's weight of a_0v_0 and h_1x are 2 and 4, respectively, we have a relation $a_0v_0=0$ in $H^{**}(A_3)$. Then it is easy to see that $g_1G=< v_0, a_0, a_0^2h_1>$ in $H^{**}(A_3)$ by Theorem 2.6. By Theorem 2.7, we have $d_2(g_1G)=d_2$ $(< v_0, a_0, a_0^2h_1>)=< g_1h_2b_{02}, a_0, a_0^2h_1>$. It is easy to see that $g_1a_1h_2b_{02}=< g_1h_2b_{02}, a_0, a_0^2h_1>$. Then we have $d_2(g_1G)=g_1a_1h_2b_{02}$.

PROPOSITION 3. 8. $d_2(a_0h_1b_{02}a_2) = a_0^2a_1b_{02}^2$.

PROOF. Since $a_0h_1b_{02}a_2=\langle a_0,h_0,g_1G\rangle$ in $H^{**}(A_3)$ by Theorem 2.6, we have $d_2(a_0h_1b_{02}a_2)=d_2\langle a_0,h_0,g_1G\rangle=\langle a_0,h_0,g_1h_2b_{01}a_2\rangle$ by Theorem 2.7. Since $\langle a_0,h_0,g_1h_2b_{01}a_2\rangle=a_0^2a_1b_{02}^2$ by Theorem 2.6, we have $d_2(a_0h_1b_{02}a_2)=a_0^2a_1b_{02}^2$.

 $P_{\text{ROPOSITION}}$ 3. 9. $d_2(h_0G) = h_0b_{01}h_2a_2$.

PROOF. Sicce $a_0h_1b_{02}a_2=< a_0, g_1, h_0G>$ in $H^{**}(A_3)$ by Theorem 2.6, we have $a_0^2a_1b_{02}^2=d_2\ (a_0h_1b_{02}a_2)=d_2< a_0, g_1, h_0G>=< a_0, g_1, d_2(h_0G)>$ by Theorem 2.7. Then there is only one possible differential $d_2(h_0G)=h_0b_{01}h_2a_2$.

 $P_{\text{ROPOSITION}}$ 3. 10. $d_2(h_2w) = b_{01}G$.

 P_{ROOF} . Since $d_2(h_0h_2w) = a_0b_{11}.h_0w + h_2.h_0ub_{02} = h_0b_{01}G$ by Proposition 1.1. f), we have $d_2(h_2w) = b_{01}G$ for the dimensional reasons.

All other non-zero differentials in the range t-s ≤ 104 are easily determined

14

by the differentials listed in §2 , above propositions and the fact that $E_{\pmb{\tau}}$ is a differential algebra.

Next we consider some Toda brackets.

Lemma 3. 11. h_0x converges to $<\alpha_1, \alpha_1, \beta_5>$.

PROOF. Since $d_3(x) = h_0 k a_2$ and $h_0 h_0 = 0$, Massey product $\langle h_0, h_0, k a_2 \rangle$ is defined and equal to $h_0 x$ in E_4 . It is easy to check the conditions of Theorem 2.8 for this product. Then the result follows.

Lemma 3. 12. Let h_2b_{02} converge to an element h_2b_{02} of Π_{81}^s (S°: 3). Then we have $3.h_2b_{02}=0$.

PROOF. If not, we have $3\cdot \overbrace{h_2\,b_{02}}=\pm<\alpha_1,\alpha_1,\beta_5>$. Then we have $0\neq\beta_1\beta_5=\pm<\alpha_1,\alpha_1,\alpha_1>\beta_5=\pm\alpha_1<\alpha_1,\alpha_1,\beta_5>=\pm\alpha_1$. 3. $\overbrace{h_2\,b_{02}}=0$. This is a contraction.

Lemma 3. 13. $h_0b_{11}a_2$ converges to $<\alpha_{11}3\iota$, $\beta_{5}>$.

PROOF. Since d_2 $(h_1) = a_0b_{01}$ and $h_2b_{11}a_2 = -h_1ka_2$, Massey product < b₀₁, a_0 , ka_2 > is defined and equal to $h_0b_{11}a_2$ in E_3 . Then we have the result by Theorem 2.8.

Lemma 3.14. Let a_0^2d converge to an element a_0^2d of $\pi_{82}^s(S^0:3)$. Then $h_0h_2a_2$ converges to $<\alpha_1, 3$ ϵ , a_0^2d >.

 P_{ROOF} . Since $\delta_5(h_2a_2)=a_0^3d$ in the May spectral sequence, Massey product $< h_0, a_0, a_0^2d >$ is defined and equal to $h_0h_2a_2$ in \widetilde{E}_6 . By Theorem 2.6, we have a relation $h_0h_2a_2=< h_0, a_0, a_0^2d >$ in $H^{**}(A_3)$. It is easy to check the condition of Theorem 2.8 for this product. Then the result follows.

LEMMA 3. 15. $g_1h_2a_2$ converges to $<\alpha_1$, 3ι , $\rho_1>$, where

$$\rho_1 = <\alpha_1$$
 , 3ι , $\widetilde{a_0^2d}>$.

 P_{ROOF} . Let $\overline{a_2}$ be a cochain in the cobar construction $F^*(A_3^*)$:

Let $\overline{a_1}$ and α be

$$\begin{split} \overline{a_1} &= \left[\left. \tau_{\,1} \, \right| \, \tau_{\,1} \right| \, \tau_{\,1} \right] \, + \left[\left. \tau_{\,1} \, \right| \, \xi_{\,1} \tau_{\,1} \right| \, \tau_{\,0} \right] \, - \left[\left. \tau_{\,1} \, \right| \, \xi_{\,1} \right| \, \tau_{\,1} \tau_{\,0} \right] \\ &- \left[\left. \xi_{\,1} \tau_{\,1} \, \right| \, \tau_{\,0} \right| \, \tau_{\,1} \right] \, + \left[\left. \xi_{\,1} \, \right| \, \tau_{\,1} \tau_{\,0} \right| \, \tau_{\,1} \right] \, - \left[\left. \xi_{\,1}^{\,2} \, \right| \, \tau_{\,1} \tau_{\,0} \right| \, \tau_{\,0} \right] \\ &- \left[\left. \xi_{\,1} \tau_{\,1} \, \right| \, \xi_{\,1} \tau_{\,0} \right| \, \tau_{\,0} \right] \, + \left[\left. \xi_{\,1}^{\,2} \tau_{\,1} \, \right| \, \tau_{\,0} \tau_{\,0} \right] \, + \left[\left. \xi_{\,1} \, \right| \, \tau_{\,1} \tau_{\,0} \xi_{\,1} \right| \, \tau_{\,0} \right] \\ &- \left[\left. \xi_{\,1}^{\,2} \, \right| \, \tau_{\,1} \tau_{\,0} \right] \, + \left[\left. \xi_{\,1} \, \right| \, \left. \xi_{\,1} \tau_{\,0} \right| \, \tau_{\,1} \tau_{\,0} \right] \end{split}$$

and

$$\begin{array}{lll} \alpha & = & \left[\, \xi \, {}_{1}^{\, 9} \, | \, \, \xi \, {}_{1}^{\, 9} \, | \, \, \xi \, {}_{1}^{\, 2} \, \xi \, {}_{3}^{\, 2} \right] \, - \, \left[\, \xi \, {}_{1}^{\, 18} \, | \, \, \xi \, {}_{2}^{\, 2} \right] \, - \, \left[\, \xi \, {}_{1}^{\, 10} \, | \, \, \xi \, {}_{2}^{\, 3} \right] \, + \, \left[\, \xi \, {}_{1}^{\, 18} \, | \, \, \xi \, {}_{1}^{\, 4} \right] \\ & + \, \left[\, \xi \, {}_{1}^{\, 19} \, | \, \, \xi \, {}_{3}^{\, 3} \right] \, . \end{array}$$

By the tedious but routine calculations, we see that $h_0h_2a_2$ is represented by

$$\left[\begin{smallmatrix} \xi_1 \end{smallmatrix}\right] \cdot \left[\begin{smallmatrix} \xi_1 \end{smallmatrix}\right] \cdot \overline{a_2} \ - \ \left[\begin{smallmatrix} \xi_1 \end{smallmatrix}\right] \cdot \left[\begin{smallmatrix} \xi_1 \end{smallmatrix}\right] \cdot \overline{a_1} \ + \ \alpha \cdot \left[\begin{smallmatrix} \tau_0 & | \ \tau_0 & | \ \tau_0 \end{smallmatrix}\right].$$

Let β be

Since Massey product $\langle h_0, a_0, h_0 h_2 a_2 \rangle$ is represented by

$$\begin{split} & (\, [\, \xi_{\, 1} \, | \, \, \xi_{\, 1} \, \tau_{\, 0}] \, - \, [\, \xi_{\, 1} \, | \, \, \tau_{\, 1}] \, \,) \, \cdot \, (\, [\, \xi_{\, 1}^{\, 9} \,] \cdot \overline{a_{2}} \, - \, [\, \xi_{\, 1}^{\, 18} \,] \cdot \overline{a_{1}} \,) \\ & + \, [\, \xi_{\, 1} \,] \, \cdot \, \beta \, \cdot \, [\, \tau_{\, 0} \, | \, \tau_{\, 0} \,] \, - \, [\, \tau_{\, 1} \,] \, \cdot \, \alpha \, \cdot \, [\, \tau_{\, 0} \, | \, \tau_{\, 0} \,] \, \tau_{\, 0}] \\ & - \, [\, \tau_{\, 1} \, | \, \, \xi_{\, 1} \,] \, \cdot \, (\, [\, \xi_{\, 1}^{\, 9} \,] \cdot \overline{a_{2}} \, - \, [\, \xi_{\, 1}^{\, 18} \,] \cdot \overline{a_{1}} \,) \\ & = \, (\, [\, \xi_{\, 1} \, | \, \, \tau_{\, 1} \,] \, - \, [\, \xi_{\, 1}^{\, 2} \, | \, \, \tau_{\, 0} \,] \,) \, \cdot \, (\, [\, \xi_{\, 1}^{\, 9} \,] \cdot \overline{a_{2}} \, - \, [\, \xi_{\, 1}^{\, 18} \,] \cdot \overline{a_{1}} \,) \end{split}$$

$$\begin{split} &+ \left[\begin{smallmatrix} \xi_1 \end{smallmatrix} \right] \cdot \beta \cdot \left[\begin{smallmatrix} \tau_0 \end{smallmatrix} \right] \left[\begin{smallmatrix} \tau_0 \end{smallmatrix} \right] - \left[\begin{smallmatrix} \tau_1 \end{smallmatrix} \right] \cdot \alpha \cdot \left[\begin{smallmatrix} \tau_0 \end{smallmatrix} \right] \left[\begin{smallmatrix} \tau_0 \end{smallmatrix} \right] \left[\begin{smallmatrix} \tau_0 \end{smallmatrix} \right] \\ &+ \left[\begin{smallmatrix} \xi_1 \end{smallmatrix} \right] \cdot \left(\begin{smallmatrix} \xi_1^9 \end{smallmatrix} \right] \left[\begin{smallmatrix} \xi_2^3 \end{smallmatrix} \right] - \left[\begin{smallmatrix} \xi_1^{18} \end{smallmatrix} \right] \left[\begin{smallmatrix} \xi_1^3 \end{smallmatrix} \right] \right) \cdot \left[\begin{smallmatrix} \tau_0 \end{smallmatrix} \right] \left[\begin{smallmatrix} \tau_0 \end{smallmatrix} \right] \left[\begin{smallmatrix} \tau_0 \end{smallmatrix} \right] \\ &- \delta \left[\begin{smallmatrix} \xi_1 \end{smallmatrix} \right] \cdot \left[\begin{smallmatrix} \xi_1^9 \end{smallmatrix} \right] \cdot \left[\begin{smallmatrix} \xi_2^9 \end{smallmatrix} \right] - \left[\begin{smallmatrix} \xi_1^{18} \end{smallmatrix} \right] \cdot \left[\begin{smallmatrix} \xi_1 \end{smallmatrix} \right] \right] , \end{split}$$

we have $< h_0, a_0, h_0 h_2 a_2 > = g_1 h_2 a_2$ in $H^{**}(A_3)$. Then, by Theorem 2.8. we have the result.

Lemma 3. 16. $b_{01}h_2a_2$ converges to $<\alpha_1, \alpha_1, \rho_1>$.

Proof. We make use the same notation of the proof of Lemma 3, 15, Let μ and ν be

$$\begin{split} & \left[\left. \xi_{\,1} \right| \left. \left. \xi_{\,1}^{\,9} \right| \right. \left. \tau_{\,3} \right] - \left[\left. \xi_{\,1} \right| \left. \left. \xi_{\,1}^{\,18} \right| \right. \left. \tau_{\,2} \right] - \left. \alpha \right. \left[\left. \tau_{\,1} \right] \right. \\ & + \left. \left[\left. \xi_{\,1}^{\,10} \right| \left. \xi_{\,2}^{\,3} \right| \right. \left. \tau_{\,1} \right] + \left[\left. \xi_{\,1}^{\,9} \right| \left. \xi_{\,2}^{\,3} \right| \right. \left. \tau_{\,1} \right] - \left[\left. \xi_{\,1}^{\,18} \right| \left. \xi_{\,2}^{\,4} \right| \right. \left. \tau_{\,1} \right] \\ & - \left[\left. \xi_{\,1}^{\,18} \right| \left. \left. \xi_{\,1}^{\,4} \right| \right. \left. \tau_{\,1} \right] - \left[\left. \xi_{\,2}^{\,9} \right| \left. \left. \xi_{\,2} \right| \right. \left. \tau_{\,1} \right] + \left[\left. \xi_{\,1}^{\,18} \right| \left. \left. \xi_{\,2} \right| \right. \left. \tau_{\,1} \right] \right] \end{split}$$

and

$$\begin{array}{l} \left[\,\varepsilon_{\,\,1}^{\,\,10}\,\,|\,\,\varepsilon_{\,1}\,\varepsilon_{\,\,2}^{\,\,3}\,\,] \,-\, \left[\,\varepsilon_{\,\,1}^{\,\,11}\,\,|\,\,\varepsilon_{\,\,2}^{\,\,3}\,\,] \,-\, \left[\,\varepsilon_{\,\,1}^{\,\,19}\,\,|\,\,\varepsilon_{\,\,1}^{\,\,4}\,\,] \,+\, \left[\,\varepsilon_{\,\,1}^{\,\,20}\,\,|\,\,\varepsilon_{\,\,1}^{\,\,3}\,\,] \,-\, \left[\,\varepsilon_{\,\,1}^{\,\,9}\,\,|\,\,\varepsilon_{\,\,2}^{\,\,2}\,\,] \,\\ +\, \left[\,\varepsilon_{\,\,1}^{\,\,18}\,\,|\,\,\varepsilon_{\,\,1}^{\,\,5}\,\,] \,+\, \left[\,\varepsilon_{\,\,1}^{\,\,10}\,\,|\,\,\varepsilon_{\,\,3}\,\,] \,+\, \left[\,\varepsilon_{\,\,1}^{\,\,9}\,\,|\,\,\varepsilon_{\,\,1}\,\varepsilon_{\,\,3}\,\,] \,-\, \left[\,\varepsilon_{\,\,1}^{\,\,19}\,\,|\,\,\varepsilon_{\,\,2}\,\,] \,-\, \left[\,\varepsilon_{\,\,1}^{\,\,18}\,\,|\,\,\varepsilon_{\,\,1}\,\varepsilon_{\,\,2}\,\,] \,. \end{array} \right]$$

Since Massey product $\langle h_0, h_0, h_0 h_2 a_2 \rangle$ is represented by

$$\begin{array}{l} (\,[\,\xi_{\,1}\,|\,\,\xi_{\,1}^{\,2}]\,+\,[\,\xi_{\,1}^{\,2}\,|\,\,\xi_{\,1}]\,)\,\,(\,[\,\xi_{\,1}^{\,9}]\,.\overline{a_{2}}\,\,-\,[\,\xi_{\,1}^{\,18}]\,.\overline{a_{1}}\,\,) \\ +\,[\,\xi_{\,1}]\,.\,\mu\,.\,[\,\tau_{\,0}\,|\,\,\tau_{\,0}]\,+\,[\,\xi_{\,1}]\,.\,\upsilon\,.\,[\,\tau_{\,0}\,|\,\,\tau_{\,0}\,|\,\,\tau_{\,0}] \\ +\,.\,[\,\xi_{\,1}^{\,2}]\,.\,\alpha\,.\,[\,\tau_{\,0}\,|\,\,\tau_{\,0}\,|\,\,\tau_{\,0}]\,, \end{array}$$

we have $< h_0, h_0, h_0 h_2 a_2 > = b_{01} h_2 a_2$ in $H^{**}(A_3)$. Then, by Theorem 2.8. we have the result.

Lemma 3. 17. $b_{01}b_{11}a_2$ converges to $<\beta_1$, α_2 , $\beta_5>$.

 P_{ROOF} . Since $d_2(g_2) = b_{01}g_1$ and $b_{01}b_{11}a_2 = g_2ka_2$, Massey product $< b_{01}, g_1, ka_2 >$ is defined and equal to $b_{01}b_{11}a_2$ in E_3 . Then, by Theorem 2.8, we have the result.

Lemma 3. 18. $b_{01}v_0$ converges to $<\beta_1$, α_2 , $\widetilde{h_2b_{02}}>$.

PROOF. By Theorem 2. 1. $d_2(h_1) = \widetilde{\alpha}$. a_0b_{01} , where $\widetilde{\alpha}$ is a non-zero (constant) coefficient. Since $0 = d_2(h_1h_2) = \widetilde{\alpha}$. $a_0b_{01}h_2 - h_1.d_2(h_2)$, $\delta_3(a_0b_{02}) = a_0h_1b_{11} - a_0b_{01}h_2$ and $0 \neq a_0b_{01}h_2 \in H^{4,49}(A_3)$, we have $d_2(h_2) = \widetilde{\alpha}$. a_0b_{11} . Since $[\xi_1^9 \mid \xi_2^3] - [\xi_1^{18} \mid \xi_3^3]$ is a representative of $d \in H^{2,84}(A_3)$, it is easy to see that Massey product $(a_1, b_2, b_3, b_4) = (a_1, b_2, b_4)$. By Theorem 2.7, we have

$$d_2 < h_2, \ -h_2, \ h_1 > \ \epsilon \ \ - \ < (\widetilde{\alpha}' \cdot a_0 b_{11} \ h_2) \ , \ \left(\begin{array}{cc} -h_2 & 0 \\ \widetilde{\alpha} \cdot a_0 b_{11} & -h_2 \end{array} \right), \left(\begin{array}{cc} h_1 \\ \widetilde{\alpha} \cdot a_0 b_{11} \end{array} \right) > .$$

This matric Massey product is represented by

$$\begin{split} &-\widetilde{\alpha}\;(\;[\,\xi_{\,\,1}^{\,9}]\,.\overline{b_{02}}\,.\,[\,\tau_{\,\,0}]\,-\,[\,\xi_{\,\,1}^{\,18}]\,.\,\overline{b_{01}}\,.\,[\,\tau_{\,\,0}]\,+\,[\,\xi_{\,\,1}^{\,9}]\,.\,\overline{b_{11}}\,.\,[\,\xi_{\,\,1}^{\,3}\,\tau_{\,\,0}]\\ &-\overline{b_{11}}\,.\,[\,\tau_{\,\,0}\,|\,\,\xi_{\,\,2}^{\,3}]\,-\,\overline{b_{11}}\,.\,[\,\xi_{\,\,1}^{\,9}\,\tau_{\,\,0}\,|\,\,\xi_{\,\,1}^{\,3}]\,-\,[\,\xi_{\,\,1}^{\,15}\,|\,\,\xi_{\,\,1}^{\,3}\,|\,\,\tau_{\,\,0}\,|\,\,\xi_{\,\,1}^{\,3}]\\ &-[\,\xi_{\,\,1}^{\,12}\,|\,\,\xi_{\,\,1}^{\,6}\,|\,\,\tau_{\,\,0}\,|\,\,\xi_{\,\,1}^{\,3}]\,-\,[\,\xi_{\,\,1}^{\,6}\,|\,\,\xi_{\,\,1}^{\,12}\,|\,\,\tau_{\,\,0}\,|\,\,\xi_{\,\,1}^{\,3}]\,-\,[\,\xi_{\,\,1}^{\,3}\,|\,\,\xi_{\,\,1}^{\,15}\,|\,\,\tau_{\,\,0}\,|\,\,\xi_{\,\,1}^{\,3}]\\ &=-\widetilde{\alpha}\,(\,\,[\,\xi_{\,\,1}^{\,9}]\,.\,\overline{b_{02}}\,.\,[\,\tau_{\,\,0}]\,-\,[\,\xi_{\,\,1}^{\,18}]\,.\,\overline{b_{01}}\,.\,[\,\tau_{\,\,0}]\,-\,[\,\xi_{\,\,2}^{\,2}\,]\,.\,\overline{b_{11}}\,.\,[\,\tau_{\,\,0}]\\ &+[\,\xi_{\,\,1}^{\,9}\,|\,\,\xi_{\,\,1}^{\,6}\,|\,\,\xi_{\,\,1}^{\,6}\,|\,\,\tau_{\,\,0}]\,)\\ &+\widetilde{\alpha}\,.\,\delta\,(\,\overline{b_{11}}\,.\,[\,\xi_{\,\,2}^{\,3}\,\tau_{\,\,0}]\,+\,[\,\xi_{\,\,1}^{\,15}\,|\,\,\xi_{\,\,1}^{\,3}\,|\,\,\xi_{\,\,1}^{\,3}\,\tau_{\,\,0}]\,+\,[\,\xi_{\,\,1}^{\,12}\,|\,\,\xi_{\,\,1}^{\,6}\,|\,\,\xi_{\,\,1}^{\,3}\,\tau_{\,\,0}]\\ &+[\,\xi_{\,\,1}^{\,9}\,|\,\,\xi_{\,\,1}^{\,3}\,|\,\,\xi_{\,\,1}^{\,3}\,\tau_{\,\,0}]\,+\,[\,\xi_{\,\,1}^{\,6}\,|\,\,\xi_{\,\,1}^{\,3}\,|\,\,\xi_{\,\,1}^{\,3}\,\tau_{\,\,0}]\\ &+[\,\xi_{\,\,1}^{\,3}\,|\,\,\xi_{\,\,1}^{\,6}\,\xi_{\,\,2}^{\,3}\,|\,\,\tau_{\,\,0}]\,+\,[\,\xi_{\,\,1}^{\,6}\,\xi_{\,\,2}^{\,3}\,|\,\,\xi_{\,\,1}^{\,3}\,|\,\,\tau_{\,\,0}]\,+\,[\,\xi_{\,\,1}^{\,6}\,|\,\,\xi_{\,\,2}^{\,3}\,|\,\,\xi_{\,\,1}^{\,6}\,|\,\,\tau_{\,\,0}]\\ &+[\,\xi_{\,\,1}^{\,15}\,|\,\,\xi_{\,\,1}^{\,6}\,|\,\,\tau_{\,\,0}]\,+\,[\,\xi_{\,\,1}^{\,6}\,\xi_{\,\,2}^{\,3}\,|\,\,\xi_{\,\,1}^{\,3}\,|\,\,\tau_{\,\,0}]\,+\,[\,\xi_{\,\,1}^{\,6}\,|\,\,\xi_{\,\,2}^{\,3}\,|\,\,\xi_{\,\,1}^{\,6}\,|\,\,\tau_{\,\,0}]\,)\,. \end{split}$$

Then we have $d_2(d)=-\widetilde{\alpha}.a_0h_2b_{02}$. Since $-h_0.d_2$ $(v_0)=d_2(h_0v_0)=d_2(-b_{01}d)=\widetilde{\alpha}.b_{01}.a_0h_2b_{02}=-\widetilde{\alpha}.h_0.g_1h_2b_{02}$ and $-h_0.d_2(g_2)=d_2(h_0g_2)=d(-h_1b_{01})=-\widetilde{\alpha}.a_0b_{01}^2=\widetilde{\alpha}.h_0g_1b_{01}$, we have $d_2(v_0)=\widetilde{\alpha}.g_1h_2b_{02}$ and $d_2(g_2)=-\widetilde{\alpha}.g_1b_{01}$. Then Massey product $< b_{01},g_1,h_2b_{02}>$ is defined and equal to $-\widetilde{\alpha}.g_2.h_2b_{02}-\widetilde{\alpha}.b_{01}.v_0=\widetilde{\alpha}.b_{01}v_0$ (by proposition 1.1. e)) in E_3 . By Theorem 2.8, it is easy to see that $b_{01}v_0$ converges to $<\beta_1,~\alpha_2,~\widetilde{h_2},\widetilde{b_{02}}>$ (up to sign).

We summarize the above propositions in the following theorem for E_{∞} term in the range 77 $\leq t-s \leq 103$.

THEOREM 3. 19. E_{∞} for 77 $\leq t$ -s ≤ 103 is given in Table B.

Table B.

t-s	π ^s _• (S ⁰ :3)	survivor (corresponding generator)	7
77	0		
78	Z_3	$b_{01}b_{11}^2(\beta_1\lambda)$	
79	Z_3	$g_1 a_1^6 (\alpha_{20})$	
80	0		
81	$Z_{3} + Z_{3}$	$h_{2}b_{02}$, $h_{0}x$ (< α_{1} , α_{1} , β_{5} >)	
82	Z_3	$a_0^2 d$	
83	Z_9	$a_0^2 a_1^5 u$, $a_0^3 a_1^5 u$ (α'_{21})	
84	$Z_3 + Z_3$	$h_0 h_2 b_{02}$, bka_2 ($\beta_1 \beta_5$)	
85	$Z_3 + Z_3$	$h_{0}b_{11}a_{2}~(, 3 \iota , eta_{5}>), h_{0}b_{01}kb_{02}~(eta_{1}\mu)$	
86	Z_3	$h_0 h_2 a_2 \ (< \alpha_1, \ 3 \ \iota, \ a_0^2 d> = \rho_1)$	
87	$Z^{}_3$	$h_0 a_1^7 \left(\alpha_{22}\right)$	
88	0		<u>1</u>
89	0		
90	Z_3	$g_1h_2a_2 \ (<\alpha_1, 3 \epsilon, \rho_1>)$	

Table	B	(continued)

t-s	π ^s (S ⁰ :3)	survivor (corresponding generater)
91	$Z_3 + Z_3 + Z_3$	$b_{01}h_{2}b_{02}$, $h_{0}b_{01}x$ ($\beta_{1}<\alpha_{1}$, α_{1} , $\beta_{5}>$), $g_{1}a_{1}^{7}$ (α_{23})
92	$Z_{3} + Z_{3}$	$b_{11}c\pm h_0v_0$, $b_{01}b_{11}a_2$ ($<$ eta $_1$, $lpha$ $_2$, eta $_5$ $>)$
93	Z_9	$b_{01}h_{2}a_{2},\;a_{0}b_{01}h_{2}a_{2}\;(<\alpha_{1}^{},\alpha_{1}^{},\rho_{1}^{}>)$
94	$Z_{3} + Z_{3}$	$kb_{11}^{2}(\beta_{2}\lambda),b_{01}^{2}ka_{2}^{2}(\beta_{1}^{2}\beta_{5}^{})$
95	$Z_3 + Z_9$	$h_0 b_{01} b_{11} a_2 \; (\alpha_1 < \beta_1, \alpha_2, \beta_5 >), \; a_0^2 a_1^6 u \; , \; a_0^3 a_1^6 u \; (\alpha_{24}')$
96	0	*
97	0	
98	0	
99	$Z_{3} + Z_{3}$	$b_{01}v_{0}$ ($<$ eta $_{1}$, $lpha$ $_{2}$, $\widetilde{h_{2}b_{02}}>$), $h_{0}a_{1}^{8}$ ($lpha$ $_{25}$)
100	Z_3	$g_2b_{11}a_2 \left(\beta_2\beta_5\right)$
101	$Z_{3} + Z_{3}$	$b_{01}^{2}h_{2}^{}b_{02}^{}$, $h_{0}^{}b_{01}^{2}x$ (eta $_{1}^{2}$ < $lpha$ $_{1}$, $lpha$ $_{1}$, eta $_{5}$ >)
102	$Z_{3} + Z_{3}$	$h_0b_{01}v_0$ ($lpha$ _1 < eta _1 , $lpha$ _2 , $\widetilde{h_2b_{02}}>$) , $b_{01}^2b_{11}a_2$ (eta _1 < eta _1 , $lpha$ _2 , eta $_5>$)
103	Z_{3}	$g_1 a_1^8 \left(\alpha_{26} \right)$

 $R_{\rm EMARK}$. Recently, $\pi \, {}^{\rm s}_{\star} \, (S^0 \colon \! 3)$ in this range was announced by M. C. Tangora.

Appendix

Display chart of $E^0Ext_{{\rm A}_3}$ (Z_3 , Z_3) for t-s ≤ 136 Vertical and slanting lines indicate multiplication by a_0 and h_0 , respectively.

Fig. 3

Fig. 4

Fig.

84 65 66 87 68

s = 1

t-s = 75

76 77

Remark . In this appendix we make use following notations; $h_0 = g_{1,0}, g_1 = g_{1,1}, \, b = b_{01}, \, g_2 = g_{2,0}, \, k = k_{1,0}, b_1 = b_{11}, \, b_2 = b_{02}, \\ n = a_1G + a_0^2ca_2, \, p = b_1^2a_2 + a_0^2wb_2, \, q = bg_2a_2^2 - g_1ub_2a_2, \, r = h_0xa_2 + a_0h_2b_2a_2 \\ \text{and } s = bxa_2 - g_1h_2b_2a_2.$

Fig. 7

Fig. 8

Fig. 9

References

- [1]. J.F.ADAMS, On the Structure and Applications of the Steenrod algebra, Comment. Math. Soc. 64. (1958), 180-214.
- [2]. H.H.GERSHENSON, Relationships between the Adams spectral sequence and Toda's calculations of the stable homotopy groups of spheres, Math. Zeit., 81 (1963), 223-269.
- [3]. A.LAWRENCE, Matric Massey Products and Matric Toda brackets in the Adams spectral sequence, Thesis, Chicago, (1969).
- [4]. A.LIULEVICIUS, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. 42 (1962), 113 pp.
- [5]. J.P.MAY, The cohomology of restricted Lie algebras and of Hopf algebras; application to the Steenrod algebra, Thesis, Princeton, (1964).
- [6]. _____, Matric Massey Products, J. of Algebra, 12 (1969). 533-568.
- [7]. R.J.MILGRAM, Group Representations and the Adams Spectral Sequence, Pacific J. of Math. 41. (1972). 157-182.
- [8]. M.F.Moss, Secodary Compositions and the Adams Spectral Sequence, Math. Zeit. 115 (1970), 283-310.
- [9]. O.NAKAMURA, On the Cohomology of the mod p Steenrod algebra, (to appear in Bull. Sciences & Engineering Div., Univ. of the Ryukyus. No.18)
- [10]. S.OKA, The stable homotopy groups of spheres I, II, Hiroshima Math. J., 1 (1971), 305-337, 2 (1972), 99-161.
- [11] . N.SHIMADA and T.YAMANOSHITA, On triviality of the mod p Hopf invariant, Jap. Jour. of Math., 31 (1961), 1-24.
- [12] . H.Toda, p-primary components of homotopy groups I, II, III, IV, Mem. Coll. Sci., Univ. Kyoto, Ser. A, 31 (1958), 129-142, 143-160, 191-210, 32 (1959) 288-332.
- (13). _____, On iterated suspensions I, II, III, J. of Math. Kyoto Univ., 5 (1965), 87-142, 5(1966), 209-250, 8(1968), 101-730.
- [14]. _____, An important relation in homotopy groups of spheres, Proc. Jap. Acad. Sci., 43 (1967), 839-842.
- [15]. _____, Extended power of complexes and applications to homotopy theory, Proc. Jap. Acad. Sci., 44 (1968), 198-203.