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The Pressure of' a Non-interacting Electron System

of a Finite Number of Particles

at Zero-Temperature

Tsuneo KAMIZATcf

Abstract

The pressure of a non-interacting electron system of a finite

number of particles is calculated with the basis on quantum theory and

usemi-classical" theory at zero-temperature. The result is compared with

the pressure of a free electron gas of an infinite number of particles

given by statistical mechanics. It is found that the result approaches

the one of statistical mechanics when the particle number is enormously

increased, keeping the particle number per unit volume constant.

§ 1. Introduction

Generally, equation of state of a gas can be calculated by

PV= kB TfnZe, ( 1 . 1 )

where Ze is the grand partition function. In statistical mechanics the pressure of a

free electron gas at zero-temperature is easily obtained from equation (1. 1) :

P=:£( 3 7(2)~~(N)~ (1. 2 )
5 2 m V

The above equation is applicable to the case when both the number of particles N

and the volume V are enormous 1)

When N and V are finite, however, we can not use equation (1.2) since

statistical mechanics is invalid in such a finite system. In order to obtain the pressure

of a finite system, we must abandon statistical mechanics and stand on the microscopic

point of view.
In this paper, we introduce a new definition of the pressure of a finite system

and calculate the pressure by making use of a microscopic theory, namely, quantum

theory and usemi-classical" theory. We will find the pressure obtained approaches the

equation (1.2) asymptotically in the limit N and V ~ 00, keeping the number density

NjV constant, i.e. , in the thermodynamic limit.

We will give the definition and calculate by quantum theory in section 2 and

by usemi-classical" theory in section 3. In the both sections the system of one electron

is treated, and the results are found to coincide with each other. In section 4, a
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given.
U(q)

non-interacting electron system of a finite number of particles at zero-temperature

will be discussed and, by making use of the idea of section 3, numerical calculations

will be made. We will also compare out

result with the one by statistical mechanics.

In the last section some conclusions are

l

------~

o

Uo

-L

§ 2. Quantum theoretical calculations of

the pressure

Let us consider one electron to be

confined in a cube of side 2L or in a

spherical shell of radius L. Inside the

container, the electron is free so that the

potential vanishes. On the other hand, outside

q the container, the potential becomes infinite

Fig. 1. Square well potential with finite since the electron is not permitted to exist.

potential step. Then there exists an infinite step of the

potential at the wall of the container. For

simplicity, however, we assume first the potential to take a finite value Vo as shown

in Fig. 1. After the final calculation we will take Uo~ 00.

We define the pressure to be a force on a unit area of the wall of the

container exerted by the electron. The force on the wall perpendicular to the ql-axis is

( 2 . 1 )

where PI is the qI-component of the momentum and H is the Hamiltonian of the

electron, H = (pl+ pi+ pi) /2 m + U( qt , q2 , qa ). Equation (2.1) is the canonical equation

of Hamilton. Quantum mechanical expectation value of this equation is 2)

( 2 . 2 )

Hence, dividing equation (2.2) by the area of the wall, the pressure is given by

( 2 . 3 )

Similarly, the pressures Pqq2 and PQQ3 on the wall parpendicular to the q2-axis and the

qa-axis are obtained, respectively.

a) the case of a cube of side 2L

First we treat with the case when the container is a cube of side 2L. The

pressure P; on the wall parpendicular to the x-axis is. given by

( 2 . 4 )
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where ¢lex) is a normalized eigenfunction belonging to an eigenvalue e of the

Hamiltonian H. As seen from equation (2.4), we need the absolute value of ¢lex) at
x= L which is given by ~

1¢(L)12=[ 2 aL±sin 2 aL +l..J-l (2 .5)
a (1 ± cos 2 aL) (3 ,

after simple calculations. Here the upper (lower) sign corresponds to the case when

c/J(x) is an even (odd) function. Because of the boundary condition at x= L satisfied

by ¢(x), we have

1 [(32 - a
2 13 2+ a

2JtanaL=- --±--
2 ap ap

In the limit Uo-+ 00, by using equations (2.5) and (2.6), we obtain

( 2 . 6 )

( 2 . 7 )

where en,='h 21(2 n f/( 8 mL2), (nl= 1, 2, 3,···). en, is the energy eigenvalue when

an electron is closed in a cube of side 2L. From equations (2.4) and (2. 7),

Similarly, we get

The pressure averaged over three directions (x,y and z) is

( 2 . 8 )

where en"n2,nS= (tz 2/2 m) (1(/2 L) 2( nf + ni + nl) .

Equation (2.8) is the pressure that the electron with the quantum number (nl, n2 , n3)

exerts on the wall of a cube of side 2L.

b) the case of a spherical shell of radius L

Next we consider the case in which the container is a spherical shell of radius

L. The pressure that an electron acts on the wall can be obtained in the same

manner as described above. We adopt a polar coordinate system. From the equation

(2.3),

( 2 . 9 )

( 2 .10)

where Rn,l (r) is the normalized radial wave function, and n( f) is the radial(angular

momentum) quantum number. We obtain, at r= L,

2 [ il-l (aL )il+l (aL) h~~l (i(3L) h~~1 (i(3L) J-l
R~,l(L) = L3 2 ileaL) hP> (i(3L)
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where il is the spherical Bessel function and hP> is the spherical Hankel function.

The boundary condition at a surface (r= L), on which there is a finite potential step,

leads to

aLj; (aL )/jl (aL) = i{3L hP>' (i{3L )/hP> (i{3L).

The recurrence formula valid for both il and h1° is written as

, t t+ 1It (z) =zit (z) - It+l (z) =It-I (z) --z-It (z)

where It is il or h~ 1). From (2.10), (2. 11) and (2.12),

R 2 (L)=~[ 2 +( Uo-e_ 1 )hi~l(i{3L)hi~l(i{3L) J-l
n.t L 2 e h~ 1) ( i{3L) 2

In the limit Uo-+ 00, we can see

lim UoRJ,l(L) = 2 en,l/L 3
,

Vo-oo

(2 .11)

( 2 .12)

( 2 .13)

( 2 .14)

where en.l is the eigenvalue of energy of an electron which is captured in a spherical

shell of radius L. From (2.9) and (2.14), we get

( 2 .15)

The above equation is the pressure that the electron with the quantum number (n, t)

exerts on the wall of the container.

§ 3. uSerni-classical" calcufa'tions of the pressure

In the previous section, we have calculated the pressure by use of quantum

mechanics, when there is one electron in a container. By the way Quantum mechanics

offers the information of the energy levels of the electrons in the container and of

the probability functions of the electrons in it, but it never gives us the informations

how an electron moves in the container. Furthermore, it does not have any answer

on the Question what the passage is when an electron transfers from the point A to

B in the container 3). It will be natural to consider that Quantum mechanics is

essentially constructed by the probability theory 4) •

For a while, we neglect that Quantum mechanics has a probability theoretic

property. We assume the electron in the container has an orbital motion with the

energy given by Quantum mechanics. We call this assumption Hsemi-classical". '[he

pressure based on such an assumption may be defined as follows;

Pc == lim (the force on the wall) /(the area of the wall),
t-oo

( 3 . 1 )

where t is a time interval of motion. From this definition, we try to calcuate the

pressure in the same manner as section 2, when the electron is confined a) in a cube

of side 2L and b) in a spherical shell of radius L.

a) the case of a cube of side 2L.

When the energy level of an electron is given, one can determine the momentum
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corresponding to it. Once the electron that has the x-component of the momentum

Px collides with the wall parpendicular to the x -axis, the x -component of the

momentum changes to - Px. The force exerted on the wall by the electron is obtained

by multipling the momentum change 21Pxl by the collision number of times per unit

time. The collision number of times per unit time is not constant for the finite time
interval because there is a fluctuation. In the limit t --+ 00, however, it becomes
constant, namely, IPxI/4mL. Thus from equation ·(3.1),

Pcz= pil 8mL3 = 2 cn.IV.

The eigenvalue En. is the energy, when an electron is closed in a cube of side 2L.
Similarly, we have

Pl= 2 C1tJ./V and Pt= 2 cna/V.

Therefore,

where

Pc =(Pf+Pl+Pf)/3 = 2 cn.,1Z2,na/3 ~

cn.,1tJ.,na = (11, 212m) ( 1CI 2 L) 2 ( nl' + ni + nl ).

( 3 . 2 )

b) the case of a spherical shell of radius L
We can proceed in the same manner as a). If the momentum of an electron is

p, we obtain the force on the wall by multipling the number of times by which an

electron collides with the wall in a unit time, pI( 2 mLcosO), by the momentum change

per unit time. Here 8 is the angle between the direction to the wall of the electron

and the direction connecting the center of a container to the collision point. Then

equation (3.1) is calculated as

( 3 . 3 )

Equation (3.3) is the pressure exerted on the wall of the spherical shell by an

electron inside it.

The results of a) and b) coincide with those in section 2.

§ 4. Numerical calculations (comparison with statistical mechanics)

Let us calculate the pressure of a non-interacting electron system of a finite

number of particles at zero-temperature by employing the results obtained in sections

2 and 3. As seen in those sections, an electron exerts the pressure, expressed as

on the wall of the container. Here the suffix i represents quantum numbers (nl , n2 , n3 )

or (n, f), and Ci is the one-particle energy of the electron in the state i. For N

electrons move independently with each other in the container, the total pressure P
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( 4 . 1 )

of the system is the summation of Pis and is given by

2
p= 3 V~Cini'

where ni is the occupation number of the state i. Since we treat with the finite
system at zero-temperature and electrons obey the Pauli exclusion principle, ni = 0 or,
1 and then the summation over i in the above equation should be taken in such a

way that ~ ni = N and the total energy E=~ Ci ni becomes minimum.

In order to investigate how the pressure P varies as the particle number N

changes, we performed the numerical calculation. Fig. 2 shows the relationship

10
10-27

X dYnlcm2

ld

1l·1
V

102 leT
PARTICLE NUMBER

Fig. 2. Relationship between the pressure and the particle number for the value of

N/ V=l; full line corresponds to the case of a cube of side 2L and broken

line to the one of the spherical shell of radius L. The point of the right-hand

side represents the result by statistical mechanics.

between the pressure and the particle number, for the value of N/V=l, in two cases

when the container is a cube of side 2L and a spherical shell of radius L. We can

see from Fig. 2 that P decreases monotonously as N increases and that it approaches

asymptotically the pressure obtained by statistical mechanics in the thermodynamic

limit (N and V --+ 00, keeping N/V constant). The reason why the pressure increases

with the decrease of small N can be interpreted by the uncertainty principle. For
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example, when N=I, the position uncertainty of order 2L implies a momentum

uncertainty at least of order 1i/2L. This is also compelled that the momentum of an

electron is not smaller than fi/2L when an ,electron is closed in the range 2L 5) • It

is also found that the difference of the pressures between in two cases of the shape

of the container becomes smaller as N (and V) becomes larger. This implies that the
container does not depend on the shape for relatively large volume.

In Fig. 2, we examined only for the value of N/V=I. Naturally it occurs a

question how P behaves when N/V takes the other values. The pressure of a free

electron gas in statistical mechanics is proportional to (N/V)5/3, as seen from equation

(1.2). Therefore, our result (4.1) is expected to behave as (N/V)5/3 when N(and V)

is infinity large. In Fig. 3, the behaviour of P against N/V is plotted. According to

Fig. 3, when the volume V increases to infinity, the dependence of P on N/V is the

same as equation (1.2) as expectedly.

30

10

5

v...oo

/
/ v=125

1 2 5 10 N/V
Fig. 3. A plot of PIP} vs. NIV for a free electron gas of a finite number

of particles. PI is the pressure when NIV= 1; broken line is the

result given by statistical mechanics.
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Fig. 4. Schematic view of the fluctuations in the pressures for each number of the

particles in the containers; full line is the case of the cube of side 2Land

broken line is the case of the spherical shell of radius L.
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Next we try to examine a fluctuation of the pressure which occurs when a

time interval of motion is finite as explained in ~ection 3. In doing so, we need to

calculate the momentum of the electron and also the collision number of times in a

unit time. The latter quantity depends on the former and on the position of the

electron. In the usemi-classical" theoretical assumption discussed in section 3, the
momentum is determined when the energy level is given. The position of the electron,
however, can not be determined. Then we determine it by using the random number.

In Fig. 4, we show schematicaly the result of the numerical calculation on the

fluctuation of the presure per unit time for N/V=l. As a matter of fact, the

fluctuation· of the pressure is found to become smaller as the particle number N is

increased. Of course, if the time interval of motion t is taken large enough, the

fluctuation disappears. This situation is understood more clearly from Fig. 5 which

shows, in case of N=l, how the fluctuation becomes smaller and smaller as the time
interval increases, and that the pressure coincides with equation (3.2) and (3.3) in the

limit t -+ 00.

13
N=l

Fig. 5. Behaviour of the pressure against the time interval of motion. Full line is the

case of the cube of side 2L and broken line is the case of the spherical shell

of radius L. In the lim.it t ~ 00, each pressure coincides with equations (3.2)

and (3.3).

§ 5. Conclusions

In the previous sections we have discussed the pressure for the non-interacting

electron system of a finite number of particles with the basis on quantum theory and

Hsemi-classical" theory, and also have performed numerical calculations to compare
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with statistical mechanics which is valid for the system of the infinite number of
particles.

We have obtained important results as follows:
(1) The pressure for the finite particle number N given by equation (4.1) decreases
monotonously with the increase of N.

(2) In the thermodynamic limit (N and V ---. 00, keeping the number density N/ V

constant), equation (4.1) reduces to the pressure for the free electron gas of the

infinite number of particles given by statistical mechanics.

(3) And therefore it seems that new definitions of the pressure in sections 2 and 3

are valid.
It is more interesting to study the pressure for the interacting electron system

of a finite number of particles at zero-temperature and also the dependence of the

pressure on the temperature in the neighborhood of zero-temperature. We shall discuss

on these problems elsewhere in a near -future.
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