琉球大学学術リポジトリ

沖縄本島南部地区の水質

メタデータ	言語:
	出版者: 琉球大学理工学部
	公開日: 2012-04-20
	キーワード (Ja):
	キーワード (En):
	作成者: 兼島, 清, 大森, 保, 山田, 保, Kaneshima, Kiyoshi,
	Oomori, Tamotsu, Yamada, Tamotsu
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/24154

沖縄本島南部地区の水質

兼島 清* 大森 保* 山田 保*

Study of Ground Waters on both GIJI and KIAN Watersprings in Southern OKINAWA

Kiyoshi KANESHIMA, Tamotsu OOMORI, Tamotsu YAMADA,

Abstract

The ground waters on both GIJI and KIAN have been collected, to discuss the geochemical nature of waters on southern OKINAWA during the last two years.

In this paper, the time dependence of chemical compositions in ground waters on both watersprings collected from June 1976 to December 1977 was studied and discussed with the consideration of regional variation at clay and limestone areas.

It was found out from this work that the ground waters at clay area were largely affected by rain-fall. The water level and K⁺ ion concentration rised rapidly with the rain-fall but the concentration of $Ca^{++} HCO_{3}^{-}$, Mg^{++} , SiO_{2} , Cl^{-} and Na^{+} ions decreased along with. The chemical compositions in waters at limestone area, however, remained comparatively unchanged as to compared with at clay area under the rain-fall of measured 90 mm. When it rained heavely through, the water level rised and the chemical compositions were affected considerably giving almost the same patterns with at clay area execpt for Na^{+} and Cl^{-} ions. The K^{+} ions in both areas seem to be contaminated from the human activities.

Since the water at GIJI waterspring have not been used for long time, the water was pumped out completely with the intervals of once a week during from Sept. 19th to Nov. 28th to check the circulation of the ground water. After pumping up, the concentration of all chemical compositions in water changed largely. The result showed that the concentrations of Ca⁺⁺, Mg⁺⁺, HCO₃⁻, SiO₂, Na⁺ and Cl⁻ increased apparently whereas the K⁺ and SO₄⁻ ions decreased.

The HCO_3^- , SiO_2 , Na^+ , Mg^{++} and K^+ concentrations are higher in clay area than at limestone area whereas the SO_4^- concentration gave the lower values in clay area. The higher positive correlations among

受付日:1978年4月27日

^{*}琉球大学理工学部化学科

沖縄本島南部地区の水質

Ca^{*+}, SiO₂, Mg⁺⁺, Na⁺, Cl⁻ and HCO₃⁻ with each other were observed in waters at GIJI area. The same correlations among Ca⁺⁺, SiO₂ and HCO₃⁻ were observed in waters at KIAN area. These components in KIAN and GIJI areas were considered to be resulted from the interactions between water and limestone or clay materials at underground. The other components such as Na⁺ and Cl⁻, however, are affected by sea water significantly. The values of K⁺/Cl⁻ and SO⁻₄ /Cl⁻ ratios increased in inverse proportion to concentration of Cl⁻ in water on GIJI and KIAN areas. The geochemical considerations of excess Ca⁺⁺, Mg⁺⁺, Na⁺, SO⁻₄ and K⁺ were discussed in detail in this paper.

1. 緒 言

沖縄本島南部地区の地質は大まかに分類して,琉球石灰岩地域と泥岩を主とする非石灰岩地域 に大別出来る。そしてこれら二つの地域の表面土壌も大きな差違があり,琉球石灰岩地域の土壌 は島尻マージと称し,赤褐色の重粘土質土壌からなり,一方非石灰岩地域の土壌はジャーガルと 称し,第三紀層の泥岩に由来する灰色土壌からなっている。この二つの地域では地質ならびに土 壌の相違から農作や水利用についても色々とおもむきを異にしている。すなわち島尻マージ地域 では稲作の出来る田圃は全く見られず,水の保水力が弱いため干ばつに対して弱く農作物の干ば つによる被害が大きい。これに対し、ジャーガル地域は土壌の保水力が大きく田圃で稲作も出来, 干ばつに対する被害もマージ地帯ほどでない。

この二つの地域の水質を明らかにするには両地域全般に広く分布する多数の井戸や河川の水質 を調べるのも一つの手法であるが、また両地域に代表的な観測井戸を設定して、長期間にわたり、 水位や水質の観測を行なうのも水質を知る一つの手法と考え、今回は島尻マージ地帯の代表的な 井戸として、喜屋武部落の水源に利用している井戸「栄喜の泉」を観測し、またジャーガル地域 の代表的な井戸として東風平村宜次の民家の井戸を観測井戸として設定し、降雨、水位変化、水 質の観測を行った。観測は1976年度は1976年6月25日から11月30日の6ヶ月間、1977年度は1977 年5月30日から12月19日までの7ヶ月間5日~7日間隔で観測を行った、さらに宜次では1977年 9月19日から11月28日の間1週間に1回の割で井戸水を全部ポンプで汲み上げて観測を行った。 本報告はこの両年の観測結果をまとめたものである。この研究は沖縄に3~4年に1回の割合で 干ばつがあり、干ばつによる農業災害を防ぐ目的で九州大学農学部の藤川武信教授を研究代表者 として、1976年度を初年度として文部省科学研究費の自然災害特別研究で研究を行っているもの で本研究は水利用の一端として沖縄南部の水質を明らかにしようとするものであり、研究代表者 の藤川武信教授をはじめ水利班の九州大学農学部の田中宏平教授其の他グループの方々に貴重な アドバイスをいただいた記して感謝の意を表します。また採水には喜屋武農協の大保氏や宜次の 嘉数氏の世話になった、さらに水の分折には琉球大学理工学部の学生の協力を得た皆に感謝する。

2. 試料

採水場所は図1に示すように,沖縄の南端の喜屋武部落の水源「栄喜の泉」と東風平村宜次の 嘉数幸助氏の井戸を観測井戸と設定して,水位変化,水温の測定と同時に採水を行った。採水は

Fig. 1 Locaton of water sampling stations.

1976年度は5日間隔を原則として地元の人に依頼して採水した。1977年度は地元の人にも依頼したが、さらに1週間に1回の割で著者ら自ら採水をし、気温、水温、水位、電導度、pHなどを現地で測定した。

3. 測定方法

電導度:セントラル科学製pK - 5 型携帯水質計を用いて現地で測定 pH:日立堀場H - 7 SD型pHメーターを用いて現地で測定 Ca^{**} :ドータイトN-Nを指示薬としてEDTA滴定法で測定 Mg^{**} :EBTを指示薬としてEDTAで滴定 Na^{*},K^{*}:原子吸光分折法で測定 Cl^- :クロム酸カリ液を指示薬として硝酸銀で滴定 HCO_3^- :BCPを指示薬として0.02規定硫酸溶液で滴定 SO_4^- :希塩酸で弱酸性にしてBaCl₂液を加えて沈殿せしめ重量法で測定 SiO₂:モリブデン酸アンモニウムを用いて比色分折法

4. 測定結果

測定結果を表1,表2,表3,表4,表5,および表6に示す。

		Cl -	HCO3	Na⁺	K+	Ca++	Mg ⁺⁺	SO7	SiO ₂	NH ₃	PO ₄ -P	W.L	Dete
NO.	рН	(ppm)	(meq)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm) $(x10^{-3})$) (ppm)	$(_{om})^{\P}$	Date
GB-17	7.5	32.5		36.5	4.0		12.1	35.0	6.4		*		'76/7/29
G B – 28	8.0	33.6		35.9	3.7		13.0	33.3	13.2			- 1	8/6
G B - 29	7.8	34.1		35.4	4.5		12.0	33.3	13.4			0	8/10
G B - 30	7.9	35.1		35.4	4.1		12.2	29.6	13.6			-12.5	8/15
G B - 31	8.1	25.4		28.0	5.2		11.9	35.8	15.3			+16	8/20
G B – 32	8.2	28.9		28.9	4.7		9.5	36.2	16.9			+10	8/25
G B - 33	8.1	28.9		30.9	4.4		10.4	37.6	11.6			- 4.5	8/30
G B - 34	8.0	32.1	6.48	32.8	4.2		11.4	34.2	18.9			- 7	9/5
G B – 35	8.0	69.3	2.05	47.7	10.2		6.4	62.5	6.2			+ 2	9 / 10
G B - 36	7.9	55.7	4.41	42.1	7.0		10.0	63.0	13.3			+18	9 / 15
G B - 37	7.9	48.3	5.82	39.1	5.7	91.2	10.8	50.6	16.5			+ 8	9 / 20
G B - 47	7.9	45.3	6.28	40.5	5.8	96.5	11.2	47.7	17.4			+ 4	9 / 25
G B - 42	8.1	43.2	6.57	41.0	5.3		11.5	45.3	17.8			- 4	9 / 30
G B - 43	7.9	42.0	6.80	41.0	5.1		11.7	41.2	18.3			-10	10/5
G B - 48	7.8	44.3	6.37	40.5	4.6	102	12.9	38.8	15.1	6.5	0.036	-23	10/10
G B - 49	7.8	42.7	5.94	37.9	4.6	101	11.9	38.0	14.5	8.0	0.041	+ 8	10/15
G B - 50	7.9	38.5	4.41	34.8	5.8	80.4	9.3	40.9	8.3	4.4	0.045	+42	10/20
G B - 51	8.1	32.9	2.98	33.2	7.9	74.2	10.0	83.3	9.3	5.9	0.028	+22	10/25
GB-52	8.1	40.2	5.16	38.3	5.6	99.1	12.6	56.5	11.2	4.9	0.045	+16	10/30
G B - 53	7.8	40.4	5.72	39.5	5.1	103	13.1	48.7	11.4	4.9	0.043	+ 5.5	11/5
GB-54	7.9	42.5	5.73	38.3	4.5	103	12.6	44.2	13.5	5.4	0.048	+19	11/10
G B - 55	7.9	43.2	6.16	39.8	4.4	105	13.2	43.8	13.8	13.4	0.061	+17.5	11/15
G B - 56	7.9	42.5	6.06	39.3	4.7	107	12.9	42.1	12.4	11.6	0.056	0	11/20
G B - 57	7.9	43.6	6.25	39.9	4.1	107	13.5	38.4	16.9	12.6	0.051	- 4	11/25
G B - 58	7.9	42.7	6.50	40.2	4.2	107	13.7	41.7	13.5	8.0	0.048	-15	11/30

Table. 1 Variation of chemical composition of ground waters in GIJI waterspring (1976)

Ne	all	Cl	HCO ₃	Na ⁺	K+	Ca++	Mg ⁺⁺	S0;-	SiO ₂	NH,	PO ₄ -P	W.L	Data
NO.	. рн	(ppm)	(me/ℓ)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm) (x10 ⁻³)	(ppm)	(<i>om</i>)	Date
KA – 1	7.1	31.9	4.51	23.4	2.6		7.4	86.0	5.5				76/6/25 13:40
KA – 2	7.6	31.7	4.51	25.5	2.5		7.2	84.4	5.6				6/25 15:40
KA – 3	7.8	31.7	4.48	25.5	2.5		6.8	82.7	6.5				7/2
KA-4	7.7	31.7	4.48	25.5	2.6		7.0	84.8	5.4				7/3
KA – 5		31.7	4.48	25.5	2.5		6.8	81.5	6.4				7/4
KA-6		31.2	4.42	25.4	2.6		6.9	81.9	6.2				7/5
KA – 7		25.9	4.22	22.2	3.0		6.4	78.6	6.6				7 / 10
KA – 8		27.7	4.09	22.3	3.0		6.8	79.0	6.4				7 / 15
KA - 9	8.1	27.4	4.27	22.2	2.2		6.8	80.7	6.3				7 / 20
KA-10		26.8	4.30	20.9	2.4		7.2	85.6	6.2				7 / 25
KA-11	8.0	27.2	4.52	21.7	2.4		7.1	81.9	6.3				7 / 30
KA-12	8.4	27.2	4.60	21.6	2.4		7.0	80.7	6.3				8/5
KA-13	7.8	27.8	4.58	22.6	2.5		6.9	84.4	6.3				8/7
KA-14	7.8	27.9		21.7	2.6		6.8	81.9	7.4				8 / 11
KA-15	7.8	28.2	4.66	22.1	2.4	108	6.9	85.2	6.2				8/16
KA-16	8.3	28.6	4.62	22.5	2.5	109	6.8	81.5	6.3			+ 1	8 / 21
KA-17	7.9	28.7	4.68	22.6	2.4	109	6.8	78.6	6.3			0	8 / 26
KA-18	7.9	28.7	4.58	22.6	2.3	108	6.7	78.6	6.1			0	8 / 30
KA - 19	8.5	29.5	4.53	22.1	2.1		6.7	77.8	5.9			- 6	9/7
KA-20	8.5	29.7	4.57	22.6	2.1	107	6.8	80.2	6.1			-19	9 / 17
KA-21	8.4	29.8	4.59	22.6	2.1	108	6.7	79.9	5.8				9 / 20
KA-45		32.6	4.63	25.4	2.1	110	6.8	74:5	6.0				9 / 25
KA-44		31.7	4.70	25.3	2.3	111	7.0	78.6	6.1			- 2	10/1
KA-41	8.1	31.6	4.69	25.7	2.6	112	6.9	79.0	7.6			-10	10/5
KA-46		34.5	3.96	26.7	2.5	110	7.3	79.2	6.2	7.4	0.053	-11	10/10
KA-46	8.1	34.0	4.00	26.8	2.3	108	7.1	77.1	7.0	6.9	0.043	-20	10/15
KA-48	8.2	32.9	3.76	24.5	2.0	102	6.8	73.8	5.8	7.5	0.052	-11	10/20
KA-49	8.1	37.8	4.11	26.9	3.3	116	7.8	92.3	6.3	5.9	0.071	+47	10/26
KA-50	8.0	37.2	4.22	26.0	3.2	119	7.7	90.7	6.6	7.9	0.083	+27	11/1
KA - 51	8.3	35.6	4.13	26.9	3.0	116	7.5	85.7	6.7	11.5	0.071	+21	11/5
KA -52	8.0	36.8	4.10	26.5	3.1	116	7.5	89.8	7.5	4.9	0.059	+18	11/10
KA-53	8.0	38.0	4.17	27.8	3.2	116	7.7	92.3	6.3	5.4	0.080	-12	11/16
KA-54	8.0	37.3	4.12	27.1	3.2	117	7.6	91.1	6.7	7.5	0.077	+ 4	11/22
KA-55	8.0	37.2	4.12	27.1	3.0	115	7.5	82.0	7.2	11.0	0.072	- 2	11/27

Table. 2Variation of chemical composition of ground waters in
KIAN waterspring (1976)

	Date	7, 5.30 6.6 6.13 6.20 6.27	$7.4 \\ 7.11 \\ 7.18 \\ 7.25 $	8. 1 8. 8 8.16 8.22 8.30	9.5 9.12 9.19 9.26	$\begin{array}{c} 10. & 3 \\ 10.11 \\ 10.17 \\ 10.24 \\ 10.31 \end{array}$	$11.7 \\ 11.14 \\ 11.18 \\ 11.18 \\ 11.21 \\ 11.28 $	12.5 12.12
	Prceip. (mm)	7.2 7. 34.6 68.8 44.9 139.6	0.4 8.7 4.7 19.1	$\begin{array}{c} 67.2 \\ 8.5 \\ 12.1 \\ 124.7 \\ 70.6 \end{array}$	4.7 170.1 64.5 42.4	3.3 140.6 0.1 0.5 24.0	7.3 0.0 0.1 0.1 34.4	8.0 12.0
	SiO I (ppm)	30.8 28.1 22.2 20.1 18.1	19.7 20.1 20.5 21.0	19.7 21.6 21.6 18.0 17.9	20.1 17.5 20.0 26.9	28.6 20.5 30.8 31.2	32.7 32.8 21.5 28.4 30.3	30.4 29.3
(1977)	(mqq)	27.7 24.4 42.8 26.7 34.6	$\begin{array}{c} 41.6\\ 35.0\\ 35.0\\ 35.4\\ 35.4\end{array}$	33.5 36.0 33.1 39.2 38.0	$\begin{array}{c} 41.3 \\ 40.1 \\ 35.1 \\ 31.0 \end{array}$	31.8 26.9 20.3 24.8 22.0	22.4 20.7 21.6 21.6 22.0	22.0 23.2
rspring	CI- (ppm)	$\begin{array}{c} 52.7\\ 49.8\\ 44.1\\ 31.0\\ 31.2\\ 31.2 \end{array}$	34.7 36.2 36.3 33.8	35.2 34.8 35.7 29.6 26.5	31.7 25.9 25.9 41.6	44.7 20.8 44.5 45.7 48.3	49.7 55.5 26.8 43.4 50.2	52.6 50.7
JI wate	K ⁺ (ppm)	3.5 3.5 6.0 7.2 7.8	7.2 5.5 5.5	$6.5 \\ 5.7 \\ 5.7 \\ 13.1 \\ 11.5 \\ 11.$	9.4 6.9 0.0	4.3 6.2 3.9 3.8	3.6 3.6 4.5 3.8	3.8
ers inGI	Na ⁺ (ppm)	40.5 40.5 34.8 28.8 26.1	30.1 30.5 33.1 35.1	31.5 33.3 33.7 30.3 27.8	31.2 25.6 26.9 39.7	39.8 27.7 45.0 44.1 43.8	45.2 47.1 28.6 37.7 44.7	45.8 45.2
ind wate	Mg⁺⁻ (ppm)	19.8 19.5 12.4 8.3 7.9	$9.7 \\ 9.7 \\ 10.2 \\ 10.2 \\ 10.2 \end{cases}$	$9.2 \\ 111.1 \\ 111.4 \\ 8.7 \\ 7.6 \\ $	9.6 7.6 9.9 15.5	15.0 8.9 17.3 17.3	17.4 18.5 9.6 14.6 17.7	19.6 18.9
of grou	Ca⁺⁺ (ppm)	122 123 110 82.8 83.0	$90.1 \\ 96.5 \\ 103 \\ 105 $	93.4 99.1 99.3 71.2 74.5	90.8 68.3 82.2 115	123 81.2 122 123 122	124 135 83.2 114 128	129 125
nposition	HCO ₃ (me/l)	5.89 5.88 4.71 3.86 3.61	$\begin{array}{c} 4 & .06 \\ 4 & .35 \\ 4 & .97 \\ 5 & .02 \end{array}$	$\begin{array}{c} 4.45\\ 5.09\\ 5.18\\ 3.06\\ 3.19\end{array}$	$\begin{array}{c} 4.22\\ 3.15\\ 4.27\\ 6.52\end{array}$	7.114.217.167.317.40	7.66 8.09 4.40 6.49 7.64	7.61
ical Con	Ec [µs/cm]	740 740 740 540 530	650 730 740	680 700 580 590	610 490 820	780 503 715 810 820	800 530 720 803 803	801 802
Chem	Hd	7.40 7.33 7.37 7.57 7.40	7.42 7.33 7.32 7.38	7.40 7.39 7.20 7.30	7.36 7.46 7.32 7.02	$\begin{array}{c} 7.22 \\ 7.32 \\ 7.09 \\ 7.16 \\ 7.13 \end{array}$	7.15 7.00 7.00 7.00 7.01	7.00
ble. 3	W.L (<i>cm</i>)	15.0 26.6 52.0 91.0 102.0	75.0 62.5 45.3 40.0	75.7 61.7 57.8 127.5 81.4	67.4 129.4 87.0 92.1	71.4 94.5 78.6 64.0 66.4	55.248.4112.689.8105.4	84.7 81.3
Tal	W.T (°C)	222.0 222.2 23.3 24.2 25.2	25.4 25.7 26.3 26.0	26.6 26.4 26.4 27.2 26.2	25.9 25.2 25.1 25.2	24.9 24.0 23.8 23.7 23.9	23.4 22.6 22.1 22.1 22.1 22.1	20.2
	Temp (°C)	29.0 27.5 29.8 25.8 29.0	32.7 30.7 32.3 28.5	31.4 33.1 31.9 29.5 29.1	32.0 27.4 30.5 29.8	27.5 25.6 29.6 27.8 27.8	26.7 24.1 22.4 23.0 18.7	21.0
	Sample No.	GF-1 GF-2 GF-2 GF-3 GF-3 GF-5 4	GF-6 GF-7 GF-8 GF-9 GF-9	GF - 10 GF - 11 GF - 12 GF - 13 GF - 13	$\begin{array}{c} GF-15\\ GF-16\\ GF-16\\ GF-17\\ GF-18 \end{array}$	$\begin{array}{c} {\bf G}{\bf F}-19\\ {\bf G}{\bf F}-20\\ {\bf G}{\bf F}-21\\ {\bf G}{\bf F}-22\\ {\bf G}{\bf F}-22\\ {\bf G}{\bf F}-23\end{array}$	GF - 24 GF - 25 GF - 25 GF - 26 GF - 27 GF - 28	GF - 29 GF - 30

58

沖縄本島南部地区の水質

te	7.5 7.10 7.15 7.20 7.25 7.25	8.5 8.10 8.15 3.20 3.25 3.30	9.10 9.15 9.25 9.25 9.30 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.1	1.5 1.10 1.15 1.20 1.25
Da	.77			
Precip.				
SiO ₂ (ppm)	39.2 20.6 17.8 21.3 21.3 20.6	21.2 21.7 21.8 21.9 17.3 18.1	15.1 17.4 17.4 26.6 28.7 28.7 28.7 28.7 23.7 23.1 31.6 33.1 31.5	32.7 32.7 34.1 27.8 31.4
(mqq)	39.2 46.7 34.7 37.6 42.1 30.6	32.7 31.8 35.1 37.6 40.5 41.7	$\begin{array}{c} 42.1\\ 40.9\\ 29.8\\ 29.8\\ 29.8\\ 22.8\\ 33.5\\ 33.5\\ 22.8\\$	19.5 19.5 21.1 23.6 20.7
CI- (ppm)	33.7 35.2 36.9 35.8 36.8 33.1	33.5 34.9 35.6 35.4 24.3 26.5	23.0 18.4 41.3 41.6 43.6 43.6 19.6 45.8 46.1 48.9 49.1	$\begin{array}{c} 49.2 \\ 49.2 \\ 52.9 \\ 40.8 \\ 51.0 \end{array}$
(ppm)	7.2 5.6 5.6 6.3	6.3 5.8 6.0 5.8 11.5 11.1	9.3 8.1 9.6 9.7 9.6 9.7 7.7 7.7 9.3 9.6 9.7 9.3 9.3 9.3 9.3 9.3 9.4 9.3 9.4 9.3 9.4 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	3.6 3.6 3.6 3.7 3.7
Na ⁺ (ppm)	34.3 33.3 34.0 35.7 37.6 32.9	31.2 33.9 34.0 35.7 25.0 25.6	$\begin{array}{c} 26.5\\ 23.7\\ 36.4\\ 39.8\\ 40.0\\ 31.1\\ 22.8\\ 44.7\\ 45.2\\ 45.2\\ 44.9\\ 45.2\\ 44.9\end{array}$	46.6 46.6 46.9 37.4 45.2
(mgt ⁺⁺	8.1 9.3 9.1 10.2 9.1	8.7 10.7 10.9 10.8 6.6 7.6	4.8 6.7 15.5 15.5 15.0 15.0 8.3 8.3 8.3 8.3 17.3 17.3	17.5 19.0 18.0 14.3 16.6
Ca ⁺⁺ (ppm)	92.0 88.9 100 103 105 94.7	89.6 96.9 96.3 94.0 67.9 74.5	57.1 63.0 63.0 112 114 119 75.9 75.9 124 126 126 126	124 131 129 110 132
HCO ₃ (me/l)	4.00 3.97 4.71 4.80 4.86 4.86	$\begin{array}{c} 4.42 \\ 4.90 \\ 4.91 \\ 4.88 \\ 2.88 \\ 3.19 \end{array}$	$\begin{array}{c} 2.50\\ 3.08\\ 6.54\\ 6.52\\ 6.89\\ 6.89\\ 7.20\\ 7.71\\ 7.71\\ 7.30\end{array}$	7.62 8.02 7.88 6.38 7.79
Ec (po/cm)	700 630 780 790 720	705 740 760 710 530 580	455 458 800 803 870 870 870 830 830 830 895	890 830 810 710 785
Hd	7.60 7.56 7.45 7.52 7.49 7.45	7.62 7.65 7.83 7.59 5.54 7.71	7.48 7.10 7.10 7.02 7.23 7.23 7.23 7.02 7.10 7.10 7.13 7.05 7.05	6.91 6.96 6.89 6.98 6.98
W.L (<i>cm</i>)	72 62 40 74	70 75 70 104 82	110 95 96 94	
W.T (°C)	26.5 27.0 27.0 26.5 26.5	27.0 27.0 27.0 27.0 27.0 26.5	26.5 27.0 26.5 26.0 26.0 28.0 24.0 24.0 24.0 24.0 24.0	24.0 24.0 24.0 23.5 23.0
Temp (°C)	30.0 29.0 30.0 30.0 29.0 27.0	30.0 30.5 30.5 30.0 30.0 30.0	27.0 28.5 29.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28	25.0 21.5 25.5 17.0 20.0
Sample No.	GA - 1 GA - 2 GA - 3 GA - 4 GA - 5 GA - 6	GA - 7 GA - 8 GA - 9 GA - 10 GA - 11 GA - 12	$\begin{array}{c} GA-13\\ GA-14\\ GA-14\\ GA-15\\ GA-17\\ GA-17\\ GA-18\\ GA-20\\ GA-20\\ GA-22\\ GA-22\\ GA-23\\ GA$	GA - 24 GA - 25 GA - 25 GA - 26 GA - 27 GA - 28

(1977)
waterspring
KIAN
Ц.
waters
ground
of
Compositon
Chemical
S
Table.

-

Date	77, 5.30 6.6 6.13 6.27 6.27	7.4 7.11 7.18 7.25	8.1 8.8 8.16 8.22 8.22 8.30	$\begin{array}{c} 9.5\\ 9.12\\ 9.19\\ 9.26\end{array}$	$10.3 \\ 10.17 \\ 10.17 \\ 10.24 \\ 10.31$	11.7 11.14 11.18 11.18 11.21	12.5
Precip. (mm)	14.1 21.5 50.3 119.5 119.5	1.4 14.2 0.0 11.5	57.9 3.5 13.1 156.0 53.2	2.0 151.0 5.3 13.7	13.9 35.8 0.0 0.0 32.3	$\begin{array}{c} 1.8\\ 0.0\\ 90.0\\ 0.0\\ 39.7\end{array}$	8.0 12.0
SiO ₂ (ppm)	5.2 5.7 7.9 7.9	8.3 8.0 7.7 7.9	7.8 8.1 8.2 8.2 8.1	8.4 6.9 7.9 8.1	9.0 8.8 8.8	8.8 8.5 8.4 8.4 8.4	8.5 8.5
SO ₄ - (ppm)	64.3 59.4 59.4 57.3 55.7	66.8 63.5 67.6 62.7	63.9 65.6 66.4 43.4 39.7	69.7 48.7 50.8 53.4	74.6 83.7 82.0 82.0 75.5	77.1 74.6 81.2 75.5 79.2	75.0 76.7
C1- (ppm)	32.1 32.1 33.3 34.7 35.4	34.0 36.5 34.3 33.8	35.2 34.6 34.8 25.9 23.1	36.1 63.5 59.9 57.6	43.5 37.1 36.0 35.3 34.8	33.8 32.6 34.1 34.1 34.0	33.1 33.4
(ppm)	2.6 2.6 2.6 2.7	2.7 2.6 2.7	2.7 2.7 3.4 4.6	3.3 5.3 8.8	4.2 3.4 3.1 3.1	2.9 2.9 2.9 2.9	2.9
Na ⁺	$\begin{array}{c} 23.9\\ 20.7\\ 22.6\\ 24.8\\ 21.8\\ 21.8\end{array}$	21.9 23.5 22.6 23.9	26.6 27.2 28.7 23.4 25.0	24.4 36.0 37.1 37.7	27.4 23.1 26.6 25.5 25.5	24.7 24.5 24.5 24.5 26.0 26.0	25.3 24.7
Mg ⁺⁺	7.9 7.4 6.8 6.3	7.8 6.8 6.6 7.1	7.9 7.2 5.7 5.8	7.3 6.7 6.8 6.8	7.7 8.7 7.6 8.2 7.1	7.7 4.7 4.7 4.7 4.7	7.2 7.2
Ca ⁺⁺ (ppm)	100 100 102 101 99.5	105 106 105	105 106 105 75.9 70.6	110 74.0 74.7 79.6	112 120 119 118 114	113 111 113 113 113	114 114
HCO ₃ (me/l)	2.74 2.83 3.54 3.52 3.47	3.54 3.48 3.57 3.58	3.53 3.59 3.60 2.96 2.85	3.54 2.37 2.56 2.62	3.53 3.75 3.72 3.72 3.71 3.71	3.72 3.71 3.72 3.75 3.75 3.75	3.75 3.75
Ec (μσ/cm	620 620 640 680	630 620 620 620	680 700 500 445	680 560 603 603	710 720 710 710 702	701 640 680 650 640	670 670
Hd	7.30 7.20 7.37 7.38 7.38	7.35 7.32 7.38 7.29	7.31 7.27 7.34 7.38 7.38	7.30 7.56 7.34 7.52	7.41 7.17 7.16 7.16 7.20 7.18	7.16 7.14 7.13 7.20 7.25	7.20
W.L (<i>cm</i>)	21.0 30.0 30.0 36.0 66.0	78.5 61.5 51.1 50.3	62.7 34.6 44.7 66.0 93.6	99.0 120.0 151.0 156.0	$133.0 \\ 127.0 \\ 113.0 \\ 104.0 \\ 95.0 \\ 95.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	77.0 44.0 48.0 40.0 40.0	5.0 30.0
W.T (°C)	23.0 23.1 23.0 22.2 24.2	24.5 24.0 24.3 24.0	23.5 23.8 23.5 25.0 25.0	24.1 24.8 24.9 25.0	24.0 23.0 22.8 22.9 23.4	23.1 22.2 22.4 22.4 21.9	21.4 21.1
Temp (°C)	29.0 27.5 30.8 25.8 29.2	32.7 30.8 32.6 29.0	32.3 33.1 31.7 29.6 32.0	31.6 29.1 29.8 31.2	31.0 26.1 28.5 28.5 28.1	28.0 24.2 22.2 24.0 18.5	23.0 20.1
Sample No.	KA-1 KA-2 KA-3 KA-4 KA-5	KA-6 KA-7 KA-8 KA-9	$egin{array}{c} KA-10 \\ KA-11 \\ KA-12 \\ KA-13 \\ KA-14 \end{array}$	KA-15 KA-16 KA-17 KA-17	KA-19 KA-20 KA-21 KA-22 KA-23	KA-24 KA-25 KA-25 KA-26 KA-27 KA-28	KA-29 KA-30

沖縄本島南部地区の水質

Sample No.	Temp (°C)	W.T (℃)	pН	Ec	HCO ₃ (me/l)	Ca** (ppm)	Mg** (ppm)	Na• (ppm)	K* (ppm)	Cl- (ppm)	SO . (ppm)	SiO ₂ (ppm)	Dats
K - 1	33.2	24.8	7.78	670	3.55			27.4	2.9	33.4	73.8	8.2	77, 7.5
K – 2	31.2	24.6	7.53	710	3.55			25.0	3.0	35.6	71.7	8.4	7.11
K – 3	33.2	23.8	7.43	700	3.71			27.5	3.2	36.3	73.4	8.4	7.15
K - 4	34.5	24.5	7.52	702	3.73	100	7.2	26.6	3.2	35.7	75.1	8.8	7.22
K – 5	31.5	24.5	7.78	710	3.70	102	7.3	26.8	3.2	35.8	77.9	8.5	7.28
K - 6	30.5	26.5	7.60	601	2.73	84.3	6.2	33.2	5.5	55.4	55.7	9.0	9.29
K – 7	28.7	24.0	7.26	720	3.70	120	7.4	28.1	3.5	35.8	82.4	8.5	10.19
K – 8	27.0	23.8	7.26	703	3.73	116	7.6	26.0	3.2	36.2	81.6	8.8	10.26
K - 9	26.8	24.4	7.25	750	3.78	114	8.0	24.8	3.4	35.9	76.3	8.5	11.11
K-10	28.0	24.0	7.28	630	3.69	112	7.5	26.0	3.1	34.7	75.0	8.7	11.8
K-11	27.8	24.2	7.32	680	3.72	113	7.5	26.0	3.1	33.6	75.5	8.5	11.16
K-12	20.0	15.8	7.21	700	3.75	113	7.7	26.2	3.2	34.4	74.2	8.8	12. 1

Table. 6Chemical composition of ground waters in KIAN
waterspring (1977)

注. Table 4とTable 6 は、地元の人が採水したサンプル pH. Ec, HCO₂. Ca²⁺, Mg²⁺の測定は、採水日より1~7日遅れている。

5. 結果に対する考察

表1~表6までをプロットして図にしたのが図2,図3,図4,図5,図6および図7である。

Fig. 2 Variation of water level, rainfall and chemical composition in waters on KIAN

5-1 喜屋武の井戸の全般的な特徴

図2と図6は喜屋武の井戸の日変化による水位,降雨量,水質の変化を示したもので、図2は 1976年度の観測結果、図6は1977年度のものである。降雨量と水位の変化は大雨の場合を除き、 全般的にゆるやかで、降雨後水位の上昇に一週間ほどの時間がかかっている。これは1977年6月 20日~27日の間に喜屋武でも宜次でも130mmほどの降雨があったが、これが喜屋武では7月4日 に水位のピークが出ているのに、宜次では6月24日にでていることでもわかる。喜屋武の水質の 変化は大きな変動はみられず、1976年度ではCl⁻で26~38ppm、Na⁺で22~28ppm、Mg⁺⁺で6.4~ 7.8ppm、K⁺で2~3 ppm、SiO₂で5.4~7.6ppmの程度である。しかしSO⁴、やCa⁺⁺およびHCO⁵ などは水位の増大にともなっていくぶんか増大する傾向もみられるが、いつでも水位と一致する ことはなくSO⁴で73.8~92.3ppm、Ca⁺⁺で107~119ppm、HCO⁵。で3.76~4.7meq/lの範囲である。 1977年度には台風の影響で多量の降雨があり、そのため8月22日から9月29日の間に海水のしぶ きや風送塩によるものと見られる大きな変化が見られたが、その他の期間には変化はあまりなく、 一定している。しかし100mm以上の大雨が続くと水位の上昇と共にCa⁺⁺、HCO⁵、Mg⁺⁺、SiO₂、

Fig. 7 Variation of water level, rainfall and chemical composition in waters on GIJI

 $\langle \cdot \rangle$

SO元は濃度が減少し、K*は増加している。台風接近による降雨で9月5日から12日にかけて、 Cl⁻, Na⁺, K⁺, の濃度が増大し, Cl⁻の場合35.3ppm(9月5日)から63.5ppm(9月12日) と約2倍に増大した。これは9月9日台風9号の接近による強い風と150mmの雨をもたらしたた めと見られる。

5-2 宜次の井戸の全般的な特徴

図3,図4,図5,および図7は宜次の井戸の降雨量と水位や水質の日による変化を図示した もので、図3,図4,および図5は1976年度の観測結果を、図7は1977年度の観測結果を示した ものである。

宜次の井戸では降雨による水位の変化は鋭敏に影響を受ける。1976年および1977年の両年とも 降雨のあったその日から水位は上昇し、水質も大きく変化する。その変動幅も喜屋武に比較して 大きく、1976年度にCl⁻で25.4~69.3ppm、Na⁺で28.0~47.7ppm、SO₄⁻で29.6~63ppm、K⁺ で 3.7~10.2ppm、Mg⁺⁺で6.4~13.7ppm、Ca⁺⁺で74.2~107ppm、SiO₂で6.2~18.9ppmと何れも 大きな変動が見られた。しかし水位の変化とこれら化学成分の濃度の増減とは一部に一致するの も見られるが全般的には必ずしも一致はしない。1977年の観測でも水質の変動は大きく、HCO₃ Ca⁺⁺、Mg⁺⁺、Na⁺、Cl⁻、SiO₂は降雨による水位の上昇により希釈されて濃度が減少し、K⁺は降 雨によって逆に濃度が増大し、雨水によって井戸に流入して来るのが見られ、SO₄⁻は雨水の影響 をK⁺ほどに受けてない。

5-3 各種化学成分の濃度分布

Cl⁻, Ca⁺⁺, Mg⁺⁺, K⁺, Na⁺, SO[±], HCO^{*}₃などの各種の化学成分についてその濃度の頻度分 布を図 8, 図 9, 図10, 図11, 図12, 図13および図14にヒストグラムで示す。

5-3-1 CFの分布

Cl⁻は図8に示すように宜次で1976年には25.4~69.3ppm, 1977年に20.8~55.5ppmの範囲に あり,全体で平均39.1±2.0ppmを示す。喜屋武で1976年に25.9~38.0ppmで1977年に23.1~63.5 ppmの範囲にあり全体で平均34.3±1.5ppmと宜次より低い。宜次では特に1977年に頻度分布に 明瞭な二つのピークがあるのが特徴でこれは別の成分にも見られるもので汲み上げの影響を示す ものである。

5-3-2 Ca⁺⁺の分布

Ca⁺⁺の分布は図9で見られるように宜次で1976年に74.2~107ppmの範囲で1977年に57.1~ 135.1ppmの範囲で両年の平均は103.0±4.5ppmで,喜屋武で1976年に102~119ppmで1977年に 70.6~120.8ppmの範囲で総平均が107.0±3.0ppmを示す。宜次と喜屋武の相違は喜屋武にいく らかCa⁺⁺濃度が高いが宜次は濃度の変動が大きく,特に1977年にはその範囲が大きい,これにも Cl⁻の場合と同様に二つのピークが見られる。

5-3-3 Mg⁺⁺の分布

Mg**の分布は図10に示すように1976年に6.4~13.7ppm, 1977年に4.8~19.8ppmの範囲で平均12.4±0.8ppmであり, 喜屋武で1976年に6.4~7.8ppmで1977年に5.7~8.7ppmで平均7.1±0.1ppmを示し, Mg**の場合も宜次が高く変動幅も大きく, 1977年には二つの明瞭なピークがあ

Fig. 8 Distribution of Cl⁻ in ground water on GIJI and KIAN

Fig. 9 Distribution of Ca⁺⁺ in ground water on GIJI and KIAN

るのが特徴である。

5-3-4 K⁺の分布

K*の分布を図11に示す。K*は宜次で1976年に3.7~10.2ppmで、1977年に3.4~13.1ppmで平 均5.6±0.4ppmを示し、喜屋武では1976年に2.0~3.3ppmで1977年に2.6~5.8ppmで全体の平均 値が2.9±0.2ppmでこの場合もやはり宜次が高く変動の幅も大きい。

5-3-5 Na⁺の分布

Na*の分布は図12に見るように、 宜次の1976年では28.0~47.7ppm, 1977年に22.8~47.4ppm で全体の平均値36.6±1.4ppmであり、 喜屋武で1976年に20.9~27.8ppmで1977年に20.7~37.7 ppmで平均25.3±0.7ppmである。この場合も宜次が高い値を示し、変動幅も大きい。1977年に は二つのピークが見られる。

67

ą

Fig. 10 Distribution of Mg⁺⁺ in ground water on GIJI and KIAN

5-3-6 SO₄[■]の分布

SO素の分布は図13に示すように、 宜次で1976年に29.6~83.3ppmで1977年に19.5~46.7ppmの 範囲にあり平均値は34.6±2.3ppmを示し、 喜屋武で1976年に73.8~92.3ppm, 1977年に39.7~ 83.7ppmの範囲で平均が74.8±2.5ppmでSO₄は喜屋武が宜次よりはるかに高い値を示している。

5-3-7 HCO₃⁻の分布

 HCO_{a} は図14に示すように宜次では1976年に2.05~6.8meq/ ℓ で1977年に2.50~8.09meq/ ℓ の範囲で全体の平均値は5.55±0.36meq/ ℓ を示す。喜屋武で1976年に3.76~4.7meq/ ℓ ,1977年に2.37~3.78meq/ ℓ で平均3.86±0.13meq/ ℓ でこの場合も宜次が高く、変動幅もはるかに大きい、そして1977年には二つのピークが見られる。このようにCl⁻、Ca⁺⁺、Mg⁺⁺、Na⁺,HCO₃と1977年の宜次の水質の濃度分布に二つのピークが見られるがこれは宜次の井戸でこの年の9月19日から11月28日までの間に一週間おきに11回にわたって井戸水を全部底の見えるまでポンプで汲み上げ、この汲み出しによって水質がどのように変化するかの観測を行った。その結果汲み上げを実施する前とその後に明らかな相違が見られ、特に上記の成分は変化がはげしかった。これ

Fig. 12 Distribution of Na⁺ in ground water on GIJI and KIAN

Fig. 14 Distribution of HCO₃ in ground water on GIJI and KIAN

が濃度分布にも明らかに示されている。これについて次の項でさらに詳細に述べてみよう。

5-4 井戸水の汲み上げによる水質の変化

宜次の井戸はジャーガル地帯の粘土質のところにあり、深さ2.5 m でセメントの円形枠で底ま でかためてある。水の汲み上げによって徐々に底またはセメント枠のつぎ目から水が湧き出し、 約20時間ほどで水位は回復する。この井戸で井戸水を全部汲み出し、新しい水が湧出することで、 どのように水質が変化するかを観測した。その結果、汲み上げによる水質の変化は顕著である。 次の表7は1977年9月19日午前11時に採水後ただちに汲み上げ、その翌日9月20日午前8時に水 位が回復したので再び採水して分折した結果である。

 Table.
 7
 Variation of chemical compositions in ground waters on GIJI after pumping up

Flomonto	Ca++	HCO ₃	Mg ⁺⁺	Na⁺	Cl-	SiO ₂	SO ₄ -	K⁺
Liements	(ppm)	(meq/l)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Sept. 19	82.2	4.27	9.9	26.9	25.9	20.0	35.1	6.9
Sept. 20	112.	6.54	15.5	36.4	41.3	26.9	29.8	6.4

表7に見るようにCa⁺⁺, HCO₃, Mg⁺⁺, Na⁺, Cl⁻等は濃度が増大し, それに反してK⁺とSO₄ は濃度が減少したのが見られる。このことは其の後9月19日より11月28日までの間毎週1回計11 回の汲み上げを実施した結果, 9月19日以前とそれ以後とでK⁺とSO₄ は共に減少したのに反し Ca⁺⁺, HCO₃, Mg⁺⁺, Na⁺, Cl⁻などは何れも増加し, 表7の結果とよく一致し, より明瞭にこ の傾向を示した。これを表8に示す。

		GI	JI		KIAN					
	A	В	B∕A	С	А	В	B∕A	С		
PH	7.36	7.10	0.90	7.25	7.38	7.23	0.98	7.30		
Ec (μσ/cm)	636	748	1.18	691	625	677	1.08	648		
$HCO_{\overline{3}}(me/\ell)$	4.20	6.88	1.64	5.54	3.28	3.63	1.12	3.43		
Ca ⁺⁺ (ppm)	89.1	117.	1.32	104.	95.9	112.	1.17	103.		
Mg ⁺⁺ (ppm)	9.4	16.0	1.70	13.2	7.5	7.5	1.00	7.5		
Na ⁺ (ppm)	30.4	41.1	1.35	36.1	26.3	26.3	1.00	25.8		
K ⁺ (ppm)	7.7	4.6	0.60	5.9	3.4	3.4	1.00	3.2		
Cl⁻ (ppm)	32.1	44.2	1.38	39.3	37.4	36.9	0.99	36.5		
SO₄ (ppm)	36.8	23.9	0.65	30.2	58.8	76.2	1.30	66.8		
SiO₂ (ppm)	19.7	28.8	1.46	24.5	7.9	8.6	1.09	8.0		
Rainfall(mm)	711	385	0.54	1254	589	248	0.42	926		
* A… 6 / 27-	~ 9~19	Nu	imber of	f Sampl	e 13					
B · · · 9 ∕ 26⁄	~12/12	Nu	imber of	f Sampl	e 13					
C … 5 ∕ 30,	/12/19	Nu	mber o	f Sampl	e 31					

 Table. 8
 Mean Values of Chomical Composition in waters on GIJI and KIAN

表8の中でAは6月27日~9月19日の汲み上げ前の13週の平均値を示し, Bは9月26日~12月 12日までの13週の平均値を示したもので, その比率B/Aの値も示した。Cは5月30日から12月

71

19日までの平均値である。

表8に見るようにMg⁺⁺とHCO₃の増加の割合は大きく、それに反しK⁺とSO[‡]の減少が目立つ、 そして表7の1日の変化より表8の長期の汲み上げによる減少の度合が大きいのが目立つ。宜次 の井戸の水質変化が季節によるものかを見る一つの指標として喜屋武の井戸も同じ時期の水質の 変化を表8に入れた、喜屋武の井戸ではほとんど変化は見られず、宜次の井戸の水質変化は季節 的なものでなく汲み上げによる水質の変化であることが明瞭である。この水質変化は宜次の井戸 の場合水をほとんど透過しない粘土層の中で少しづつのクラツクがあり、そのクラツクを通って 水が徐々に移動して湧水として井戸に出て来るため粘土質の中に長時間接触していた水が粘土中 の可溶性成分を溶し出して、無理にポンプによる汲み上げで移動したためと推則され、その成分 がMg⁺⁺、HCO⁵、Cl⁻、Ca⁺⁺,SiO²、Na⁺などであり、反面K⁺やSO^{4−}は雨水のような表面水によっ て土壌中の溶解しやすい状態のK⁺やSO⁴をを溶かして入って来たものであろうと考える。

Table. 9Correlation Coefficient among Water Level, Rainfall and
Chemical Composition in waters on GIJI (1977)

	Temp	W. T	W.L	рH	Ec	HCO ⁻ 3	Ca⁺⁺	Mg ⁺⁺	Na⁺	K⁺	Cl-	S0∓	SiO 2	Rainfall
Temp	1.00	0.72	0.27	0.64	-0.27	-0.58	-0.47	-0.55	-0.51	0.46	-0.48	0.66	-0.58	0.05
W. T		1.00	0.20	0.62	-0.29	-0.64	-0.61	-0.72	-0.59	0.59	-0.64	0.72	-0.66	-0.05
W.L			1.00	0.34	-0.50	-0.51	-0.56	-0.47	-0.51	0.56	-0.48	0.41	-0.55	0.46
pН				1.00	-0.56	-0.77	-0.67	-0.73	-0.68	0.55	-0.61	0.75	-0.77	0.07
Ec					1.00	0.85	0.89	0.78	0.87	-0.75	0.85	-0.59	0.80	-0.52
HCO3						1.00	0.96	0.95	0.96	-0.87	0.91	-0.84	0.97	-0.39
Ca⁺⁺							1.00	0.94	0.95	-0.88	0.96	-0.75	0.93	-0.41
Mg⁺⁺								1.00	0.93	-0.82	0.94	-0.80	0.96	-0.32
Na⁺									1.00	-0.82	0.95	-0.75	0.94	-0.42
K⁺										1.00	-0.80	0.75	-0.83	0.39
Cl-											1.00	-0.70	0.90	-0.38
SOT												1.00	-0.85	0.15
SiO₂													1.00	-0.36
Rainfall														1.00

Table. 10	Correlatio	n Coefficient	among	Water	Level,	Rainfall	and
	Chemical	Composition	in wate	ers on	KIAN	(1977)	

	Temp	W. T	W.L	pH	Ec	HCO3	Ca++	Mg ⁺⁺	Na⁺	K⁺	Cl-	S0∓	SiO 2	Rainfall
Temp	1.00	0.82	0.39	0.53	-0.10	-0.37	-0.40	-0.17	0.13	0.20	0.15	-0.52	-0.19	0.02
W. T		1.00	0.63	0.68	-0.40	-0.63	-0.69	-0.39	0.34	0.54	0.36	-0.69	-0.14	0.34
W.L			1.00	0.34	-0.03	-0.38	-0.32	0.06	0.58	0.78	0.63	-0.15	0.30	0.11
pН				1.00	-0.62	-0.65	-0.80	-0.60	0.35	0.54	0.28	-0.82	-0.21	0.39
Ec					1.00	0.67	0.81	0.64	-0.15	-0.40	-0.00	0.77	0.30	-0.42
HCO3						1.00	0.89	0.36	-0.55	-0.68	-0.53	0.79	0.61	-0.36
Ca++							1.00	0.60	-0.51	-0.66	-0.39	0.93	0.37	-0.50
Mg⁺⁺								1.00	0.02	-0.18	0.11	0.68	0.10	-0.52
Na⁺	l								1.00	0.84	0.87	-0.28	0.04	0.07
K⁺										1.00	0.75	-0.42	0.09	0.21
Cl-											1.00	-0.21	-0.06	0.11
SOT												1.00	0.46	-0.48
SiO 2													1.00	-0.11
Rainfall														1.00

5-5 各種成分相互の関係

表9と表10に1977年に観測した宜次と喜屋武の成分相互の相関関係表を示す。 両表中気温,水温,水位,降水量,pHは正の相関が見られる。

5-5-1 Na⁺とCI⁻の関係

図15に1976年に観測した結果を、図16に1977年に観測したNa*とCl-の関係を示す。面図で明ら かなように喜屋武, 宜次共に相関係数0.87~0.95と高い正の相関があり、何れも海水のNa*/Cl-比よりもNa*が高い値を示し、特に宜次に於てNa*が高い値を示す。これは宜次は粘土質の地質

で粘土鉱物中のモンモリ ロナイト中のNa⁺などが 変質によって溶脱して来 たことなどが考えられる。 1976年ではNa⁺もCI⁻も宜 次に於てその濃度の変動 幅が大きい。

海水との関連を見るた めに Na⁺/Cl⁻の比とCl⁻と の関係をプロットしたの が図17である。図に見る ようにCl⁻濃度が低いと ころは宜次でも喜屋武で

Fig. 16 Ralationship between Cl⁻ and Na⁺ in ground waters on GIJI and KIAN (1977)

Fig. 17 Plots of Na⁺/Cl⁻ against Cl⁻ content of ground waters in GIJI and KIAN areas (1977)

もNa⁺/Cl⁻の比の値は大きく海水以外からのNa⁺の供給が見られるがCl⁻ 濃度が増大すると低下 する。

特に喜屋武の場合海水の比に一致するようになる。これは喜屋武の場合Cl⁻が大きいときは台 風の影響で多量の海水のしぶきや風送塩が雨水に混りCl⁻が増大したものと考える。

5-5-2 Ca⁺⁺とCI⁻との関係

図18にCa⁺⁺とCl⁻との関係を示す。これは1977年の結果をプロットしたもので, 喜屋武と宜次 ではCa⁺⁺とCl⁻の関係が全く逆になる。宜次では正の相関で係数0.96と高い相関を示すが喜屋武 では-0.39と負の相関があり逆になっている。しかしこれもよく詳しく見てみると台風の影響の あった9月12日から9月28日までの試料が特にCl⁻が高いため負の相関を示したものでこの試料 を除外すれば宜次と同様な正の相関を示す。

Fig. 18 Relationship between Ci and Ca⁺⁺ in ground waters on GIJI and KIAN (1977)

73

5-5-3 Ca⁺⁺とHCO₃との関係

図19に1976年と1977年の喜屋武と宜次のCa⁺⁺とHCO₃との関係を示す。喜屋武と宜次何れに於ても正の相関があり、Ca(HCO₃)₂の線に近い。そして喜屋武ではHCO₃に比較してCa⁺⁺が多く、Ca(HCO₃)₂線よりも上に分布し、宜次ではその線より低目かその線に近い。Ca⁺⁺がCa(HCO₃)₂の線より低いところにプロットされる試料はすべて井戸水を汲み上げた後の試料で粘土層中に過剰のHCO₃の存在を示している。Ca⁺⁺やHCO₃両成分とも宜次の方が濃度変化も大きい。

このように喜屋武の場合Ca(HCO₃)₂の線よりも大きくずれてCa⁺⁺濃度が大きいことは兼島ら (1973)^{1),(}1977年)²⁾が与那国島や南北西大東島の石岩地帯の水について報告していることと 幾分が相違することであり、HCO₃以外にCa⁺⁺とイオン対をつくる陰イオンのあることを示すも のであり、沖縄南部の特徴ともならう。

5-5-4 Ca⁺⁺とSO₄との関係

図20に1976年の観測結果を図21に1977年の観測結果をプロットした図を示す。 Ca**とSOTの関係は喜屋武と宜次では全く逆の関係が何れの年の観測でも認められる。相関係

数は喜屋武では1976年に0.78, 1977年に0.93と正の高い相関が あるのに反し、宜次では1976年 に-0.65,1977年に-0.75と負 の相関が見られる。これは喜屋 武の場合次に示す、石灰岩に由 来すると見られるSO-に大きな 原因があらうかと見られる。ま た宜次の場合はCa⁺⁺の少い雨水 による土壌などからのSO-の供 給によるものと考えられ、これ は宜次の井戸の汲み上によるK⁺ とSO-との正の相関関係からも 推定される。

Fig. 21 Relationship between SO₄⁼ and Ca⁺⁺ in ground waters on GIJI and KIAN areas (1977)

Fig. 22 The relationship between excess Ca⁺⁺ and SO₄ in ground waters of KIAN

次に 5 – 5 – 3 の Ca^{++} とHCO₃の関係の項で述べたように喜屋武の水には $Ca(HCO_3)_2$ よりも過剰の Ca^{++} があることを述べたが、その過剰の Ca^{++} とSO₅とを単純にプロットした図が図22である。

図で見るように、喜屋武の水はCa(HCO₃)₂の式から計算されるCa⁺⁺より過剰のCa⁺⁺とSO₄そは 当量比CaSO₄の線に近いところに分布し、喜屋武のような石灰岩地帯では石灰岩からのCaSO₄の溶出の 可能性も考えられる。これは琉球石灰岩には最高0.18%、平均0.02%含有され、またサンゴ礁中には最高 0.88%、平均0.57%も含まれていることは兼島(1965)³⁾の報告にもあり、石灰岩地帯の水のSO₄は 石灰岩からの溶出によるものである可能性は充分考えられることである。

5-5-5 HCO₃ とSO⁴ との関係

HCO³とSO⁴との関係をプロットしたのが図23である。

図23に見るようにHCO₃とSO₄との関係もCa⁺⁺とSO₄の関係に似ており, 宜次では負の相関が 喜屋武で正またはばくぜんとした負の相関がある。これは宜次の場合汲み上げによって, 粘土 層間隙中のCa⁺⁺やHCO₃の濃い水が移動して来たのに反し, SO₄は主として, Ca⁺⁺やHCO₃の少 い雨水によって運ばれて来たためと考えられる。

喜屋武の場合1976年には-0.18とばくぜんとした負の相関が、1977年には0.79と明瞭な正の相

Fig. 23 Relationship between SO_4^{--} and HCO_8^{--} in waters on GIJI and KIAN (1976)(1977)

関が出ており、これは石灰岩地帯では雨水からのSO靠の供給が少なく、SO靠もHCO₃やCa⁺⁺と共にうすめられるためとも考えられる。

5-5-6 Mg⁺⁺とSO₂との関係

Mg⁺⁺とSO[‡]との関係を図24に示す。Mg⁺⁺とSO[‡]との関係もCa⁺⁺とSO[‡]やHCO³とSO[‡]との関係 に似て, 喜屋武で正の相関, 宜次で負の相関がみられる。宜次ではMg⁺⁺はCa⁺⁺やHCO³と挙動を

共にし、SO^{*}とは異った経路で井戸に運ばれていることを示している。しかし喜屋 武の 場合は Mg⁺⁺ もSO^{*}もCa⁺⁺やHCO^{*}と共に動き, 宜次の場合と異っていることが1976年や1977年の観測で 認められた。

5-5-7 K*とSO₄との関係

K*とSO^{*}の関係を図25に示す。図から喜屋武と宜次において、また観測年の違いによって幾 分が様相を異にしている。すなわち1976年には喜屋武、宜次とも正の相関を示し、宜次の場合は K*とSO^{*}の比が海水に近いのに喜屋武では海水の比よりSO^{*}がK*より大きい。1977年には宜次 では正の相関を示し、SO^{*}とK*の比は海水の比よりK*が大きい、そしてK*の濃度の大きいも のほどそれが大きくなっているのが特徴である。そしてこれは降雨量が多く水位の高い時期に多 いことから、K*は雨水によって供給されていることが推則される。喜屋武においては1977年に は前年とは逆に負の相関を示している。しかし図を詳細に分折するとK*の多いのは降雨量の多 いときでこの二三の試料を除外して見ると1976年と同様な正の相関を示している。図25からK* とSO^{*}は海水の比と一致せず喜屋武に於てはSO^{*}が高く、宜次に於てはK*が高いことから海水か らのものばかりでなく、K*は表面土壌中にとけ易い状態で分布し、雨水によって運ばれ易く、こ れに比べSO^{*}はK*ほどには溶け易さはなく、割合に難溶性の状態のものと推則される。K* の多 水は人為的汚染を受けている水が多いことは兼島ら(1973)⁴⁾や渡久山(1972)5)が与那国島や南 大東島および宮古島にあることを報告していることから宜次の井戸も周囲に入家、田畠のあるこ とから生活排水によることも予想され、さらに今後の観測により確めるべき問題である。

Fig. 25 Relationship between K⁺ and SO₄⁻ in waters on GIJI and KIAN (1976)(1977)

5-5-8 K⁺とCI⁻との関係

K⁺とCl⁻との関係を図26に示す。

図に見るようにK*とCI-とは喜屋武で正の相関が宜次では負の相関がある。そして何れの場合 も海水の比よりもK*がはるかに高い値を示している宜次の場合,降雨により井戸水の塩分が薄 められる際にK*が多量に混入して来ることを示し前に述べたことがここでも見られる。このこと は図27のK*/CI-とCI-の関係を示した図を見ればより明瞭になりCI-が少いときのK*/CI-の値は 宜次に於て特に大きな値を示しており海水の影響よりむしろ他からのK*の混入を明らかに示し ている。

K⁺ in ground waters on GIJI and KIAN (1977)

5-5-9 SO[#]とCI⁻との関係

SO⁴とCl⁻との関係を図28に示す。

図28にはSO⁴=/Cl⁻の比とCl⁻の関係をプロットしたもので喜屋武に於ても宜次に於てもCl⁻が低いときはSO⁴/Cl⁻の比が高く、塩分の少い水にSO⁴が多いことを示している。そしてその値は海水の値よりも皆高い。これはK⁺とCl⁻の関係にもよく似ておりSO⁴がK⁺と同様に海水以外からの供給源から雨水などによって運ばれて来ていることを示している。そして宜次よりも石灰岩地帯である喜屋武の場合に大きいことも5-5-4のCa⁺⁺とSO⁴の関係で述べたように石灰岩からのSO⁴の溶出によることを物語っている。

Fig. 28 Plots of SO⁼₄/Cl⁻ content of ground waters in the GIJI and KIAN areas (1977)

5-5-10 主成分相互の相関関係

宜次と喜屋武の相関係数表9と表10から主 成分のみについての相関関係を整理したのが 表11と表12である。

表11と表12から宜次と喜屋武の類似点と相 違点を整理すると、 宜次に於ては、Ca*、 HCO₃, Mg⁺⁺, Cl⁻, Na⁺, SiO₂ などは相互に 高い正の相関を示し、同一行動を示している 反面K*とSO4は相互に正の相関があるが他の 成分とは全く逆の負の相関を示し、K+とSO₄ の挙動が Ca⁺⁺, HCO₅, Mg⁺⁺, SiO₂, Cl⁻や Na⁺⁺などとは全く別の動きをしていることを 示している。ところが喜屋武ではCa⁺⁺, Mg⁺⁺, HCO₃, SiO₂ などは相互に正の相関を示すが、 **宜次ほどに高い相関はなく、宜次では負の相** 関を示したSO靠が喜屋武では正の相関を示し ている。それに反し, Na⁺, K⁺, Cl⁻ は相互 に正の相関を示すが他の成分 Ca**, Mg**, HCO₃, SO₄, SiO₂ などとは負の相関を示し、 K*を除き宜次との逆の関係にある。このよう

に 宜次と 喜屋武 すなわち ジャーガル 土壌地域と 石灰岩地域の間には 共通 するところと 相異 すると ころが 明瞭に 分かれている。

Table. 11	Correlation Coef:	ficient
	among Chemical	Compo-
	sition in waters	on GIJI
	(1977)	

Table. 12	Correlation Coefficient amo) -
	ng Chemical Composition	in
	waters on KIAN (1977)	

	Ca**	Mg**	HCO-3	SiO 2	C1-	Na†	K⁺	S0∵		Ca**	Mg**	HCO3	S0₄	S_10_2	Nat	K۰	Cl
Ca**	1.00	0.94	0.96	0.93	0.96	0.95	-0.88	-0.75	Ca**	1.00	0.60	0.89	0.93	0.37	-0.51	-0.66	-0.39
Mg**		1.00	0.95	0.96	0.94	0.93	-0.82	-0.80	Mg**		1.00	0.36	0.68	0.10	-0.02	-0.18	0.11
HCO-3			1.00	0.97	0.91	0.96	-0.87	-0.84	HCO;			1.00	0.79	0.61	-0.55	-0.68	-0.53
SiO 2				1.00	.90	0.94	-0.83	-0.85	SO :				1.00	0.46	-0.28	-0.42	-0.21
C1-					1.00	0.95	-0.80	-0.70	SiO₂					1.00	0.04	0.09	-0.06
Na⁺						1.00	-0.82	-0.75	Na⁺						1.00	0.84	0.87
K٠							1.00	0.75	K⁺							1.00	0.75
SO								1.00	C1-								1.00

5-6 岩石土壤構成鉱物と水質組成

河川水や地下水の化学組成は流域に分布する岩石や土壌の種類によって影響されるので, 喜屋 武および宜次の地下水の化学組成と岩石土壌構成鉱物との関係を連続観測結果から検討する。

5-6-1 HCO₃とSiO₂

HCO₃とSiO₂ 濃度の関係を図-29に示す。試料中にはCl⁻濃度が18.4~55.4ppmで、これに見合う海水起源のHCO₃は0.4%以下であった。また海水中のSiO₂濃度は極く微量であるのでこれらの成分はほとんど全て岩石から溶出したものと考えてよい。二つの地点を比較すると宜次の方がHCO₃、SiO₂ともに濃度が高く強い正の相関を示す(相関係数+0.97)。泥灰岩や土壌中の有機物質が分解して炭酸物質が供給されることによりsilicate rockの風化分解が進行しているものと考えられる。降雨がはげしく、水位が上昇した時にはHCO₃ 濃度が著しく減少し相対的にHCO₃/SiO₂比が小さくなっており、SiO₂の一部は比較的とけやすい状態で土壌中に保持されている可能性がある。喜屋武では全体的にHCO₃/SiO₂比が高く、HCO₃がcarbonate rockから供給されていることを示す。

Fig. 29 Relationship between SiO₂ and HCO₃

5-6-2 岩石土壤構成鉱物との関係

地下水の化学成分がどのような鉱物と反応することによって供給されるのかを議論するために、 測定値から海水成分の寄与をCl⁻濃度で補正した "過剰量"のイオン濃度について考える。岩石を 風化させる主要な因子は炭酸物質と考えられ、過剰量のイオン濃度がHCO₅ と正の相関を示すも のは、喜屋武でCa⁺⁺、Mg⁺⁺、SiO₂であった。SO₄⁻は降雨のはげしい時を除けば正の相関があり一 部は岩石から供給されている。宜次においては、Ca⁺⁺、Mg⁺⁺、Na⁺、SiO₂が正の相関を示す。島 尻泥灰岩中の構成鉱物はシルト部分で石英、長石、カルサイト、粘土質部分でモンモリロナイト、 カオリナイト、Aℓ – バーミキュライト、クロライト等であるが詳しい組成についてはデータが 無い(渡嘉敷, 1975)⁶⁾。ここでは表13に示す反応を用いて鉱物との関係を議論する(W.Stumm and J.J. Morgan 1970)⁷⁾。

沖縄本島南部地区の水質

Table. 13 Equilibrium constants used to establish stability field of minerals⁷⁾

(1)	Na-Feldspar + H^+ + 4 $\frac{1}{2}H_2O = \frac{1}{2}Kaolinite + 2H_4SiO_4 + Na^2$	$K = 10^{-1.9} (2$	5℃,	latm)
(2)	$3 \text{ Na} - \text{Montmorillonite} + 11\frac{1}{2}H_2O = 3\frac{1}{2}\text{Kaolinite} +$	$K = 10^{-9.1}$	"	")
	4 H₄SiO₄ +Na⁺			
(3)	$Ca - Feldspar + 2H^{+} + H_2O = Kaolinite + Ca^{++}$	$K = 10^{14.4}$ ("	")
(4)	$3 \text{ Ca} - \text{Montmorillonite} + 2 \text{ H}^{+} + 23 \text{H}_2 \text{O} = 7 \text{ Kaolinite} + $	$K = 10^{-15.4}$	"	")
	8H4SiO4+Ca++)
(5)	Kaolinite + $5 H_2 O = 2 Gibbsite + 2 H_4 SiO_4$	$K = 10^{-9.4}$	"	")
(6)	SiO_2 (amorphous) + 2 H ₂ O=H ₄ SiO ₄	$K = 10^{-2.4}$	//	")
(7)	$CaCO_3$ (calcite) = $Ca^{++} + CO_3$	$K = 10^{-8.3}$	"	")
(8)	$HCO_{a}^{-} = H^{+} + CO_{a}$	$K = 10^{-10.3}$	//	")

*Ca – Feldspar (Anorthosite) = $CaAl_2Si_2O_8$ Na – Feldspar (Albite) = NaAlSi_3O_8 Ca – Montmorillonite = Ca0.33 A4.67 Si 7.33 O₂₀(OH)₄ Na – Montmorillonile = Na 0.33 Al 2.33 Si 3.67 O₁₀ (OH)₂ Kaolinite = Al $_2Si_2O_5$ (OH)₄ Gibbsite = Al $_2O_3$, $_3H_2O$

Caを含む鉱物の安定領域を図-30に示す。Ca-モンモリロナイトはpH,Ca; SiO₂の高い溶液 系で安定である。宜次ではCa-モンモリロナイトとカオリナイトが共存するところに集中してお おり、このことは、水の汲み上げによって濃度が変化しても変わらない。宜次の地下水中のCa⁺⁺ SiO₂, pH等は,これらの鉱物の関与する反応系によって供給されていることをうかがわせる。 喜屋武では,カオリナイトの領域に入っているけれども,カルシウムのかなりの量が carbonate rockから供給されているので詳しい議論はできない。

Naを含む鉱物の安定領域を図-31に示す。宜次において過剰量のNa濃度はHCO3 と正の相関 があり、silicate rockから溶出する部分があると思われる。宜次の試料はNa-モンモリロナイ トとカオリナイトの共存する領域にプロットされる。喜屋武ではカオリナイトの領域に入るけれ どもHCO3 とExcess Na量が相関しないので詳しい議論はできない。

宜次において全ての過剰のイオンがsilicate rockから溶出すると考えるとSiO₂量が少ないの で、一部はcarbonate rockから供給されるか,又はsilicate rockの分解によって溶出したシリカ が、再び沈殿することも考えられる(R.W.Luce et al, 1972)⁸⁾。このシリカが溶けやすい形で存在 するのかもしれない。とにかく、宜次の地下水組成は、カオリナイトとモリロナイトの反応によ る寄与が大きいと思われる。大屋ら(1976)⁹⁾は土壌中のCa⁺⁺, Mg⁺⁺, Na⁺, K⁺の置換塩基量を測定 しており、イオン交換反応による地下水水質への寄与も考慮する必要があろう。またこれらの成 分がどのような形で土壌中に保持されているのか問題である。

5-6-3 カルサイトとの平衡関係

カルサイトの溶解反応は

CaCO₃+H+≓Ca⁺⁺+HCO₃ で表わされ、この時の平衡定数は

 $K = \frac{a_{ca}^{++} \cdot a_{HCO_{5}}}{a_{H}^{+}} = 10^{2} (25^{\circ}C, 1 \text{ atm})$

である。ここで a_{ca}^{++} , $a_{Hco_{\overline{s}}}$, a_{H}^{+} はそれぞ れの化学種の活量である。逆対数で示すと $pH-p(Ca^{++})=2+p(HCO_{\overline{s}})$

$+p\gamma HCO, +p\gamma Ca^{+}$

となる。ここで〔 Ca^{++} 〕,〔 HCO_{5} 〕はイオ ンの濃度, p γ HCO₅ $\geq \gamma$ Ca⁺⁺は活量係数でイ オン強度を用いて Debye – Hückell の理 論より計算できる。喜屋武と宜次における 結果を pH-p〔 Ca^{++} 〕~ p〔HCO₅〕図に示 す (図-32)。両地点の地下水はカルサイト に対して平衡もしくは、やや過飽和である。

Fig. 32 PH -pCa ~pHCO₈ diagrams calculated from efuililrium constants given in Table 13. (0; GIJI, X KIYAN)

5-7 喜屋武と宜次の井戸水の水質組成

喜屋武と宜次の井戸水の水質組成をみるため、その主成分をとってキーダイヤグラムで表示したのが図33である。喜屋武と宜次何れも水質組成はCa(HCO₃)₂型に入る。しかし喜屋武の場合 台風の影響で海塩の混入等により宜次よりも幾分かNaCl型に移行するところが見られる。

Fig. 33 Key diagram concerning chemical compositions in ground waters on GIJI and KIAN

6 まとめ

石灰岩地域と非石灰岩地域の地下水を継続観測を行って次のことがらを明らかにした。 1) 非石灰岩地域の地下水は雨の影響を敏感に受け、雨が降ると水位はすぐに上昇し、Ca**, Mg**, HCO₃, SiO₂, Cl⁻, Na*などのイオン濃度は減少し、K*イオン濃度は増大する。

2) 石灰岩地域では地下水は雨の影響を敏感に受けず,雨が降っても水位が上昇するまでに或程度の日数を要し,化学成分の濃度は比較的変化が少なく一定している。しかし台風のような大風と大雨によっては大きな影響を受け化学成分も変化する。9月10日の台風通過後Na⁺やCl⁻イオン 濃度は平常値の2倍近くにも増加した。

3) 化学成分相互の関係は宜次でNa⁺, Cl⁻, Ca⁺⁺, HCO₅, Mg⁺⁺, SiO₂等は相互に高い正の相 関関係があり挙動を共にするが, K⁺とSO₄=はこれらのイオン種と全く逆の負の相関を示し行動 を別にしている。

4) 喜屋武での化学成分相互の関係は台風の影響もあってかNa*とCl-は相互に正の相関が高いが Ca**やHCO₃とは負の相関を示し、宜次とは異っている。

5) K*は喜屋武, 宜次とも雨が降ると濃度が増加し, 化学成分の中では独特の変化をする。特に 宜次においては濃度が高く変化も激しい。 Bull. Sci. & Eng. Div., Univ. Ryukyus, (Math. & Nat. Sci.) No. 26, 1978.

83

6) Ca⁺⁺ とCl⁻の含量は喜屋武, 宜次共に同程度であるが, HCO₃, SiO₂, Mg⁺⁺, Na⁺, K⁺ は 宜 次の方が高濃度であり, SO₄だけは喜屋武の方が高い。

7) 宜次は井戸水を全部汲み上げた後、SiO₂、HCO₃、Ca**、Mg**、Cl⁻、Na*の各イオン濃度が 大きく増大し、K*、SO₄のイオン濃度は逆に減少した。

8)SO靠は宜次では喜屋武に比べ濃度が低く井戸水汲み上げ後その濃度が減少し,K*と正の相関 関係がある。一方喜屋武ではCa**と強い正の相関があり,石灰岩よりCaSO₄として溶出して来る ものと見られる。

9)海塩などの影響を除外して陸水組成を考えるため過剰 Ca^{++} , Mg^{++} , Na^+ , SO_{4}^{-} , K^+ などについて検討し、過剰 Ca^{++} は宜次で HCO_{3} より不足し、不足分は Mg^{++} や Na^+ によって補われており、SiO₂と HCO_{3} は正の相関があり、またEx. Na⁺は HCO_{3} と正の相関がある、これは粘土鉱物のモンモリロナイトからカオリナイトえの変質過程の溶出と見られる。

またEx.Mg**も粘土鉱物のCa**とのイオン交換と考えられる。さらにEx.K^{*}とEx.SO_₹とも 宜 次に於て高い相関を示し,K*は特に溶解し易く,SO_₹はそれほどには溶解しない傾向が見られ る。

10)各主成分の濃度分布をヒストグラムで示し、宜次では井戸水の汲み上げによって二つのピー クのあることを示した。

参考文献

(1),(4):兼島清,吉田一晴,平良初男,渡久山章(1973);与那国島の水質,琉球大学理工学部
 紀要(理学編)No.16,162-180

(2):兼島清,平良初男,渡久山章,大森保,西浜完治,(1977);南大東島および北大東島の池 沼ならびに地下水の水質,琉球大学理工学部紀要(理学編)No.23,13-14

(3):兼島清,(1965);琉球諸島に産する各種石灰岩の比較,琉球大学理工学部紀要(理学編) No.8,23-54

(5):渡久山章,(1972);堆積環境における元素の移動,石灰岩地方の水(1),琉球大学理工学部 紀要(理学編)No.15,81-98

(6):渡嘉敷義浩・大屋一弘・鎮西忠茂,(1975);ジャーガルとその母材に関する研究沖縄本島 具志頭村白土原の土壌粘土鉱物について,琉球大学農学部学術報告 Vol. 22, 177-190

(7) Werner Stumm and James J. Morgan, (1970); Aquatic Chemistry

(8) R.W. Luce, R.W. Bartfett and G.A. Parks (1972); Dissolution Kinetics of magnesium Silicates. Vol. 36, 35-50

(9) 大屋一弘・渡嘉敷義浩・高江洲均・多喜和彦・西垣晋(1976);ジャーガルとその母材に 関する研究(第2報)沖縄本島糸満市阿波根および西原村棚原土壌断面における粘土鉱物と水溶 性成分について,琉球大学農学部学術報告 Vol. 23, 165-176