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The Third Sum Rule and the Electric Response Function

of a Two-Component Quantum Plasma*

Mitsuaki Ginoza**

Abstract

1

The charge-density response function of a uniform two-component plasma is stud

ied on the basis of the third frequency moment sum rule of its spectral function and

the method of an equation of motion. An exact expression of the third sum rule is pre

sented with emphasis on the existence of a singular term. It is found that available

local-field theories for the response function do not satisfy this sum rule and any theory

with frequency-independent local-field correction can not satisfy the third-and the per

fect screening-sum rules, simultaneously. The response functionD
r
ij(q,w) and the corre

sponding frequency-dependent local-field correction Gij (q,w) are calculated on the basis

of the equation of motion. The obtained result yields a well-known relation between the

pair correlation function and its radial derivative at r=O for large wave vectors and

satisfies the third-and the perfect screening-sum rules.

§l. Introduction

There are a number of matters in nature whose electronic phenomena are viewed

as plasma effect. An electron system imbeded in a uniform positive background is a

well-known theoretical model in understanding the behaviours of conduction electrons in
1l

a real metal and a great deal of studies on this model have been done. The central

topics in the matters investigated by this model may be attributed to the correlation

between electrons (same kinds of particles). On the other hand, plasma effects, for ex

ample, in a semimetal Bi and optically-excited semiconductors (Ge, GaAs, InSn, etc.)
2)

have been studied on the basis of a model for a multi-component system.

The characteristic of the multi-component system, of course, lies in the existence of

the interaction between components.

The charge-density response function describes microscopic mechanisms in the re

sponse of a plasma to a weak external electric field and plays a central role in studing

*A part of this work was read at the meetings of the Physical Society of Japan held in

Fukushima (October 11. 19,75), Nagoya (April 7, 197B), and Yamaguchi (April 4,1977).
The contents of the section 3 of this paper appears in J.Phys. lOA (11), L199 (1977)
(England).
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1l
the various plasma properties related to the charge density fluctuation. The most

3)

commonly used calculation of this function is the random phase approximation (RPA).

RPA is adequate in the case of weak coupling where kinetic energy is dominant. In
4)

other cases, however, RPA involves some unphysical result. This, needless to say,

means that effects of the correlation between particles on the self-consistent field can
4)

not be neglected in the latter cases.

In the uniform one-component electron system, approximate procedures to improve
~ ~

RPA have been proposed very early by Hubbard and by Nozieres and Pines. Hubbard

corrected the' RPA dielectric function by taking exchange-hole into account. This has

been extended to include both exchange-and Coulomb-holes self-consistently by Singwi
7)

et ai., where the dielectric function is expressed as a functional of the pair correlation

function. A number of other approximate procedures to calculate the dielectric function

have also been proposed.
5),6),7)

Some of the theories developed above are generalized to the case of the multi-

component system and have been used to calculate the annihilation rate and correlation
8),9)

energy of positron in metals, the thermodynamical properties of an electron-hole liquid
10),11).12)

in semiconductor, etc.

Now, calculating the third frequency moment of the charge-density response func

tion of the multi-component system, we found the existence of a singular term in this

moment which exists only in the multi-component system and becomes important in the
13)

long wavelength region. Goodman noted the existence of a similar singular term in the

third frequency moment of the spin-density response function of the uniform one-compo-
J4)

nent electron system and later Goodman and Sjolander analyzed in detail its physical

content. However, in the theory for the multi-component plasma, the existence of the

singular term and its significance have not been clarified yet, sufficiently. The existence

of such a singular term awakes a caution in the generalization of the theories developed

in the one-component system to the case of the multi-component system. For example,

any frequency-independent local field correction does not satisfy the third-and the perfect

screening-sum rules, simultaneously.

The aim of this paper is to investigate the charge-density response function in

the multi-component plasma on the basis of the third sum rule and the equation of mo

tion.

In §2, the general formulation of the theory will be given and the exact expression

of the third sum rule will be presented with emphasis on the existence of a singular

term. In §~, a local mean·field approach to the problem pointed out in §2 will be given

and it will be shown that the frequency-dependence of the local field correction is essen

tial in order that the third-and the perfect-screening-sum rules are satisfied, simultane

ously. In §4, the response function and the corresponding frequency-dependent local field

correction will be calculated on the basis of the equation of motion and it will be dis

cussed that the results are satisfactory both for high-frequencies or large wave vectors
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and for low-frequencies and small wave vectors. In §5, some discussions will be given.

§ 2. Gilneral Formulation and Sum Rules

Let us consider a non-relativistic plasma contained in a large box of volume V

with periodic boundary condition. Let average number-density, mass, charge, and mag

nitude of spin of i-species of particle be n., m., e., and a·, respectively. The Hamilto-
t t t t

nian of this system (for convenience, let V = 1 and h = 27l'), in a second quantized repre-

sentation, is

H =Ho + HI,
where

H 0= ?kk Ci (k) ct (kO') Ci (kO')
I <T

H1=!fv(q)(p(q)p(-q) - fn;e7J

ci(k)=P/2m i,

p(q)=4.p;{Q),
I

p;(q)=ei t;C;'(kO') C;(k 'qO')

and v(q) = 47l' I q 2, q=F 0

(2.1)

=0 ,11,=0
+

The operators Ci (ka) and C .(ka) are the creation-and the annihilation-operators for the
t

i·species of particle with momentum k and spin a, respectively.

Let us assume that the system described by the Hamiltonian (2.1) is in thermal

equilibrium in the infinite past and then a ficticious weak external electric field is ap-
IS) •

plied adiabatically. Let V 1 (q,(jJ) be the amplitude of the potential of the ficticious field
e

with wave vector q and frequency w which would couple only with the i·species of par
16)

ticles. According to the linear-response theory, the Fourier transform of the response of

the charge-density of i-species of particles is given by

p;",I( q, w) = 4,/J;j( q, w) V;.( q, w), (3.2)
J

where the property of the translational invariance of the system is used and Dr..(q,w)
1)

is the retarded density-response function defined as follows*:

JJ;j(q,t-t')=-if)(t-t')([p;(q.t),p/ (q,t'»))=f~~lJ;j(q,w) e-;w(l-t') (2'.~)

In eq. (2.~), ( ... ) = Tr( e -(iff ..• )/Tre -PH, f3 =11k B T,

piC q, t) = eiH1pi (q) e 'iHI.
3)

The generalized dielectric function e(q,(}) defined by Nozieres and Pines is expressed as

1/ E. (q, w) = 1 + v (q) ~D,j (q', w) . (2.4)
IJ

* We hope that the imaginary unit i and the suffix i specifying the species of the par
ticle do not raise any confusion.
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Let us define a function !" . .(q,w) as
fJ

.:'0..'

([ -(q t) + ( I)J) - -f dw ( ) -iw(L -i,u(' ()p, "Pjq,t - 27C't"<jq,we
-00

This function, as is well·known, embodies all the properties of the system related to the
4)

charge·density fluctuation. It can be shown directly from the definitions (2'.~) and

(2.5) that

D~-( )~-ff-~dwl 't"ij (q"w l
)

'J q" W - ,27C W - Wi -I- if: ' (f:--+-f-O)

't"ij(q,w)=i [D!j(q,w)-Dji(-q,-w)J. (2.7)

There exist a number of exact sum rules which!" . .(q,w) has to satisfy. These are
fJ

very useful in checking the validity of a particular approximation in the calculation of

Dr.. . For the sake of the completeness, we shall derive some of them.
fJ

(i) Perfect screening sum rule:

q,':::.Ol/E (q,,0)=0

(ii) Zeroth moment sum rule: the static form factor

S . .(q) is defined by
fJ

S<j(q)=(Pi(q)P/ (q)/niei ej.

From the definitions (2.5) and (2.9), we get

+f= dw 't"ij (q" w)
27C l~e{Jw =lli ei e i S ij(q).

(2.8)

(2·9)

(2.10)

(iii) Frequencey-moment sum rules: from the high frequency asymptotic expansion

of eq.(2. 6), we get

v (q,) DD(q , w) = R~/M R. ij (q,) / wRt /

where
-I-w d

MR.ij(q,)=v(q,) f 2~ wR't",j (q"w).

With the use of eq.(2. 5) as usual, Mt . .(q) can be calculated from the Hamiltonian
,fJ

(2. l). In particular,

M/.ij(q,) = oijwL (2'.ID
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4)

and Ki = kE i(k)(Ct (k<1) C i (k<1). The f-sum rule (2.11) is, as is well-known, the
ktJ

direct consequence of the particle conservation in each component of the system. The

third sum rule (2.12) explicitly involves the interaction between particles. Therefore, a

characteristic in the multi-component system, which is essentially related to the inter

action between components, should appear in this sum rule. Here, we should note the

third-term on the right hand side of eq.(2.12). This term exists only in the multi-com

ponent system and does not vanish even in the long wavelength limit. In the following,

we will refer to this term as the singular term.

Well, the first- and the second-terms of eq.(2.12). where the third frequency mo

ment of Dr.. in RPA consists of these two terms, are connected with the ordinary
ZJ

plasma oscillations and the single particle excitations, respectively. The response function

Dr .. in RPA, as is well known, describes the response of the free particles to self-con

sis:~nt Hartree-field in the system under an external disturbance. The effect of correlation

between particles, however, results the cumulation or depletion of particles around each

particle (the correlation particle-hole). The third- and the last-terms of eq.(2.12) are con

nected with the response related to this correlation particle-hole. In particular, the ap

pearance of the singular term means that the correlation particle-hole has a much more

important effect on the response in the multi-component system than in the one-com

ponent system, particulary in the long wavelength limit. In view of this, an application of

the theories developed in the one-component system to the case of the multi-component

system should have to be done with a caution.

In the case of the two-component plasma, the singular term of eq.(2 .1~) can be

expressed as

(2.1~)

where we used the rotational invariance of the system and nlel +n2e2=O, and lJ •• (r) is

the pair correlation function of i-species of- and j-species of-particles defined as ZJ

(2.14)

'1ij(q) = [Sij(q)-Oij]/n). GU5)

The third sum rule in the case of the one-component system has been very fa-
17) 18)

miliar. Historically, it was first derived and used by Yvon for a classical liquid and by Puff

for an interacting Bose liquid. Later, it was extensively applied together with other sum
19) 20)

rules to the classical liquid. the interacting Bose liquid, and the interacting electron liquid.
21).22).23)

On the other hand, the third sum rule for a spin-density response function was
m w

first derived by Goodman for the electron liquid and by Safir and Widom for a Fermi

liquid with the short-range interaction. They noted there that this sum rule contains a
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singular q-dependent term as compared with the number-density response function. Later,

the physical content of the third sum rule, particularly, of this singular term has been
14)

analyzed in detail by Goodman and Sjolander. They found that available local field theo-

ries for the electric-and the magnetic-response functions in the electron liquid can not be

valid both for low and high frequencies. Though they were concerned about the electron

liquid, their discussion may be valuable for another system which consists of some sub

systems responding, respectively, in the different ways to an external disturbance.

§3. Local Mean-Field Theory
7),25),26)

In various local field theories for the dielectric function, one makes the assump-

tion that the particles respond as free particles to an effective field depending only on
8),12)

the induced local mean charge-density. In the caSe of the two-component system, such

an assumption gives the expression for the response p }nd (q, w), instead of eq. (2. 2),as

(~.la)

V~ff(q,W) = Vi(q,w) I j±Y;ij(q,W) pj"'l(q,W), (~.lb)

where D/O) is the non-interacting response function of i-component given by

D(O)( w) = e 2 }; ni(k(J)-ni(k+q(J) (~.2)
,q, 'kCTW-Cj(k+q)+Ci(k)+ie

n .(ka) being the occupation number of i-species of particles, while
t

!jJ ij (q, w) = v (q,) [1- Gij (q, W ) J,

G . .(q,UI) being the local field correction. The two quantities n .(ka) and G ..(q,w) have to
~ t ~

be given, consistently. From eqs. (2.2), (~l.la) and (~.lb), we can obtain the general
. r 1~

expreSSlOn for the response function D .. in terms of G ..:
tJ ZJ

Dr - (0 Den) D(O)(~.. (0)ij - ij i-' ~7/J ii' V ij -!jJ ij ) D2 ) / .1,
1=1

where

2
.1 = II (1 - ,I, .. D (0) J- D (0) ,f, ,f. D (0)

i=1 't'll 1 1 '1'12'1"21 2

The asymptotic expansion for this Dr,. is
tJ

(~,~b)

v(q,) D i} (q, w)- cS ijwl / w 2 + (wl wJ - W7wJ Gij (q, =) + 0 ij M~~l(q,») /w4 +... (~.4)

That the coefficient of w-2. in the above expansion agrees with eq. (2 .1D shows that

any theory in the local field approach satisfies the f-sum rule, automatically. On the

other hand, in order that the theory satisfies the third sum rule, the coefficient of w- 4

in eq.(~.4) has to be equal to eq.(2.12). Therefore, we get the exact local field correc

tion in the high-frequency limit as
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Gij(q,co) = [1-912(0)J/3

k {(qq')2 [q(q+q')J2} ,
+ q'(o~O. -q) q,2q,'2 - q,2 (.q+q')2 9ij(q ), (~.5)

where we used eq.s (2.9). (2 .1~) and (2.15). Note that the first- and second-terms of

eq. (~. 5) correspond to the third- and the last-terms of eq. (2 .12), respectively; the first

term of eq. (~. 5) exists only in the multi-component system and becomes dominant in

the long wavelength local field.

Now, let us assume a theory in which local field correction does not depend on

the frequency. Let us denote this correction by G . .(q). If this theory satisfies the third
tJ

sum rule, then G . .(q) is equal to G .. (q,oo ) given by (~. 5). By the way, such a choice
U tJ DI

of G . .(q) is the generalization of the Pathak-Vashishta approach in the electron liquid to
tJ

the multi-component system. This, however, can not satisfy the perfect screening sum

rule given by eq.(2.8); noticing Gu(O) =G12 (Q) =G21 (Q) =G22 (Q), we can show from

eqs. (2.4), (~. 2) and (~.mthat 11c (q,O) does not vanish in q----)O. Therefore, we conclude

that such a theory is qualitatively incorrect and the frequency dependence of the local

field correction is essential for the proper description of the high-frequency response of

the multi-component plasma.
101.1 21

In available local field theories for the two-component plasma which have been
51.71

obtained by the generalization of the theories developed in the electron liquid, the local

field correction G .. is frequency-independent and G .. (q) = 0 (q2) in q~O. Therefore,
U U

these theories disagree with the third sum rule and are inadequate for the discription of

the high-frequency phenomena. This has already been pointed out in the electron liquid~7)

At present, there is no such a proper local field theory for the two-component plasma

that satisfies the third sum rule and further is valid for low frequencies as well.

§ 4 . The Calculation of the Response Function

The response function Dr. .(q,t) defined by eq. (2.3) can be written as
tJ

DD(q,t) = 1aeiRi:j(k<1;q,t), (4.1)

where

R'j(k<1; q. t) == {C,' (k-q/2<1) C i (k+ q/2(1): p/(q»:

(A : B)' = - i8( t) <[A (t), B (0»

(4.2)

and A(t) is the Heisenberg representation of an operator A. The equation of motion for

Ri:/ka;q,t) is obtained with the use of the Hamiltonian (2.1) as



8 The Third Sum Rule and the Electric Response Function of a
Two-Component Quantum Plasma

(ia /a t-qk/mi) R i j (ko-; q, t)

= cl' (t) cl'ij ei [ni (k -q/20-) - ni (k+q /20-»)

+ ~~~e, ei'v(q.'){C: (k-q' /2- (q-q') /211 )Ct(k'-q' /20-') C,,(k'+ q' /20-') C;(k-q' /2+ (q-q' )/211)
j' q'J.:'~'

- Ct(Hq' /2- (q-q ')/20-) ct (k'-q' /211') Ci(k'+q' /211') Ci (k+q' /2+ (q-q' )/20-): pf(q»'.

Let us define another function as follows:

R,,·,j (kl1 ,k'II' ;q,q', t) ~ (ct (k- q/2(1) Ct (k'- q' /20-') c,. (k'+q' /20-') C, (k+ q/2 11); p} (q+ q'»

(4.4)

With the use of this definition, we get from eqs.(4.1) and (4.m

D[j(q,w) = o'jD~())(q,w) + v(q) 4(D\O)(q,w) Dri{q,w) +D~;" (q,w) D;O)(.q,w») /2.
(4.,5)

where D.(Q) (q,w) is defined by eq.(3.2),
t

R;;'j (q, w) = kkkef e;" v (q' )( w-qklmi-qq'12m; + iE ) ._]
q' kl1k'l1'

and the star on the function means the replacement of +ie to -ie. If we neglect the

last term in eq.(4. 5), we obtain the RPA response function. Therefore, we must cal

culate this term in order to proceed beyond RPA. In general, Dr.. (q,w) =Dr*.. (_q, -w).
tJ Jt

Equation (4.5) is written in order that an approximation may satisfy this symmetry

property automatically.

The equation of motion for Roo, . is obtained from eqs.(2.D and (4.4) with the
H :J

use of eq.(4. :). The calculation is lengthy but straightforward. After rearranging a num
28)

ber of terms according to the aspects of the interaction, we obtain

(ia la t - kqlm,- k'qlmj') R h'j (k(j, k'(j';q,q', t)

(4.7)
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where

-fidk+ (q+ql)/20",k I 0";_q')),

Fim (kO",k 'O"';q ,q; t)

(4.7a)

(4.7b)

F (m)(k k' I ')ii:j 0", 0" ;q,q, t

+ eiej' v (Il') ( ni' (k '- q'/20"' ) R i:j (k+q'/20" ;q'+q, t) - ni' (k l+ql/20"/) R iAk-q '/20" :q'+q, t»)

+ ejei' ~v (ll") (Rii':j (k+q"/20", kl_q"/20"';q+q~q'_q~t) - Rii'j (k-q "/20" ,k'+q "/20"';q+q~q'-q~t»),

(4.7c)

=e{fjdk - (q+q' )/20", k'O" '; _q') - fii' (k+ (q+q' )/20' ,k' 0"; -q ,)) v (q+q') "2::Dh(q+q; t),

-I j~,:J(' j'V (Il') {i'i" (k'0": k'(j';q') (R i:j (k+q' /20'; q+q 't) - R i: j (k-q'/20' ;q+q; t»)

-I ~ eiei"v(q) (ni(k-q/20') -ni(k+q /20')i R, ,(k'O' k"O"~q'q t)
j"k"cr" . 0 i I.J , ",

+ '~T'I1"eje,,,v (ll") (R i,';" j (k-q "/20', k'O':k"O";q - q';q; q'; 1)- Rjj'i":j (k I q"/20' ,k'O":k'(j';q-q';q; q~t)) ,

In eqs·(4.7), Iii' (ka,k'a';q) is the two-particle correlation function between ika-particle

(i-species of particle with momentum k and spin a) and i'k'a'-particle defined as fol

lows:

f;,' (kO',k'O"';q) = (C~ (k-q/20') C,o; (k' +q/20") Cdk'-q/20"') C i (k+q/20'»

-Oq,oni(kO") nj·(k'O"').

Also, R ..,." .(ka,k'a',k"a";q,q',q",t)in eq.(4.7C) can be defined in analogy with eqs.(4.2)
H t :J

and (4.4) and this function describes the response of the three-particle correlation a-

mong ika-, i'k'a'-, and i"k"a"-particles to the external field introduced in §2. However,

since we will not be concerned about its expression in the following discussion and

since it is very lengthy, we do not write down its explicit definition.

Well, R .. , .(ka,k'a';q,q',t) is the response function of the correlation between ika
H :J

and i'k'a'-particles to the external field and eq. (4.7) describes its time-variation. The

source of the time-variation of the correlation between ika- and i'k'a'-particles in the
28)

system under the influence of the external field has three kinds of aspects : (i) the

instantaneous action of the external field on ika- or i'k'a'-particle in the presence of

the other particle denoted by F(Q), .(ka,k'a':q,q',t) or F(Q) .. (k'a',ka;q',q,t), respectively,
H :J t t:J
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(ii) the action of the interaction between two particles in consideration denoted by

F~1) ,:/ka,k'a';q,q',t), and (iii) the action of the surrounding particles to ika- or i'k'a'

particle in the presence of the other particle denoted by F(it ':j (ka,k'a';q,q',t) or

F(np i:j (k'a',ka;q',q,t), respectively. The action (iii) leads to a screening of (i) and

(ii); the first term of eq.(.1.7c) screens the action of eq.(4.7a), the second-and third

terms screen the action of eq.(4. 7b), and the last term of (4. 7C), which is concerned with

the three particle correlation among ika-, i'k'a'-, and i"k"a" (sorrounding particle)-particles,

modifies the screenings described above.

Now, the particles in the system should respond as free-particles to the high

frequency or large wave vector external-field. In such a case, in the right hand side of

eq.(4.7), the first- and second-terms are dominant in comparison with the remaining

terms containing the interaction between particles. On the other hand, for the external

field with low frequencies and small wave vectors, the retarded action of the system,

particularly, the screening effect on the above two terms should become important.

Then, in order to get the response function valid both for high-frequencies or large

wave vectors and for low-frequencies and small wave vectors, we shall take this screen

ing effect into account and neglect the effective action (ii) screened by (iii) and the

effect of the three particle correlation:

F (2) (k k" ')- 0 -ii':j 0', O';q,q,t = ,

Fii~}(kO',k'O";q,q;t) = ei (rii' (k- (q+q')/2O',k'O";-q')

-h,(k+ (q+q')/2O',k'O";-q'~ v(q+q') ;Dh(q+q:t),
I

F!',,!:)j (k'O", leO';q',q,t) = ei' (rn (k'- (q'+q)j2O':kO' ; -q)

-fn(k'+ (q'+q)/2O",kO';-q~ v(q+q') ~D~"j(q+q~t).
I

It is easy to solve eq.(4.7) with the approximation of eqs. (4.8a"'-'c).

of the obtained solution into eq.(4,. B) yields

Rii':j (q, w) = (Oij+ v (q) ~Df'j (q, w~ Dfdq, w)

+- (Oi'j+v(q) ~Dh(q,w~ mdq,w),,

where

mi (q, w) = 'i.'i.'i.eje i' v (q') [", (kO'.k' 0"; -q')
q' krrJ.:'(1'

(4.8a)

(4.8b)

(4.8c)

The substitution

(4.9)

(4.10a)

1

w+q2/2mi- (k+-q' /2)q/mi+- (k/mi-k' /m;)q'f iE

X (-w-_-q'--2/'--2-m-i---:-(-=-k--q--'--'/c-2c-)q-/c-~-i-+-(-:-:k-/-m-i_---=-kc-, /c-m-ic-,)-q-'+-iE [w- q 2/2mi- (k
1
+Q' /2)q /m;+ iE

1
- w-q2/2mi- (k-q' /2)q/m,+ iEj
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1

X ~-q'/2mi'- (k' f q' /2)q/m,,+ (k/mi-k' /mi·)q'+ ic

1
- wi q'/2mi'- (k' -q' /2)q/m,'-Hk/mi-k' /mi'lq'f icJ

The iku· and i'k'u'·particles are treated symmetrically in eq. (4.7). However, when we

consider the roles of these particles in eq.(4.B), we see that i'k'u'-particle is one of the

correlation particle (or hole) around iku-particle in consideration. Therefore, the first

term of eq. (~. 7) raises up the motion of iku·particle relative to its correlation particle

(or hole), while the second term is concerned with the dynamics of the correlation par

ticle (or hole) around iku-particle:
8
)The functions DP .., and DC .., in eq.(4 9) correspond

tt tt .

to the response of the particle motion in its correlation particle (or hole) and the dyna-

mics of the correlation particle (or hole) around the particular particle, respectively.

Now, we shall assume in the following

Then we can show D'f?,(q,w) = D'f?:, ( -q,-w) and D~,(q,w) = D'?:,(-q,-w). These func-
H tt tt tt

tions, however, are not invariant under the interchange of i and i'. Let us define

Df/ (q,w) = (Dfdq,w) ± Df·,(q,w») /2

From eqs.(2.4), (4.5) and (4.9), we get the dielectric function and the response func

tion as

where

c(q,w) = I-v(q)'Fi(q,w),

JJiJ(q,w) = o,JJ,rO) +oi;2,-DJ;'+JX/,

L i (q,w) = 2,-Dfi; (q,w)/(l + c).,

(4.1D

(4.12)

In order to reexpress our result (4.12) in terms of the local field correction ap·

pearing in eq.(~.D, we express G .. in terms of D~. by solving eq.(~.~) inversely as
ZJ ZJ

Gi;(q,W) = l-oj[v(q)D!U)(q,w~ +JJij(q,W)/v(q,). (4.1~)

where
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(4.1Ba)

With somewhat lengthy but strainhtforward calculations, we get from eqs.(4.12), (4 .1~),

and (4.14)
, +' "" 2oij l i-DC12+ v(I;L i+ljL;+2L)(1- E. )) Oij ( 15)

Gij= v(I)I
2
-DIt(I)+I2)+(1-E.)2Lf) - vD\O) 4.

where 1~=12, 12=1), L')=L2, and L'2=L1

Now, let us investigate the limiting behaviors of the results (4.11), (4.12) and

(4.15). First, we shall study the case of large wave vectors q or high frequencies w.

When we expand eqs.(~.2), (i.10a) and (4.10b) in inverse powers of(w±q2/2mi)we get

(0) _ w~/v(q,)
Di (q"w) - w2- (q,2/2mi) 2

(4.1Bb)

and

where we used

2. 2. f;.' (k(J,kl(J';_q) = nini''l ii' (q),
k(1"(1'

From these asymptotic expressions, we see that D~./D(Q) and Df?/D(Q)are of order of
~ z ~ z

(w±q2/2m.)-2. Then, we get the asymptotic expansions of eqs.(4.12) and (4.15) forz
large q or high w as

Drj (q,w) = DijDlO) (q,w) + Oij~mi' (q,w) +mj(q,w) + v(q,)Df) (q,w)DjO)(q,w), (4.17)
I

llj'ej' (qq') 2 I

Gij(q,w) = Dij(Xi (q,w) 2.-- 2.-
2
-,-" (Iij'(q )

j' /liei ,,' q q -

(q(q+q'»2 I

-2. 2( 1/)29ij(q),
q' q q-q

where

(4.18)

(Xi(q,w)=-21 { (w+q,2/2rn;)2 + (W-q,2 /2mi )2}
(w- q,212m;) 2 (w+ q,212m;) 2

and D(P) D~., and Df?, in eq.(4.17) are given by eqs.(4.1Ba), (4.1Bb), and (4.1Bc), re-
Z, H H .

spectively. The counterpart in the one-component electron liquid of the result (4.18)
28)

has been first derived by Niklasson. This result is the generalization of the Niklasson's

one to the case of the two component system. When q is finite but w tends to infinity,

the result agrees with the exact result (~.5). This guarantees that our results (4.11),

(4.12), and (4.15) satisfy the third sum rule (2.12).

The expression (4.17), when we replace w to w+ie, can be used to study the
28) 28)

static form factor for large q. Niklasson discussed the validity of this in detail in Ap-

pendix of his paper. From eq.(2,. 7), (~UO) and (4.17), we get
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where a..= (11m. +II m.)12e.e .. On the other hand, the pair correlation function has
%) % ) % )

the general property as

q~u.) [Sij(q) ~();jJ

Therefore, we obtain

~87l:n a I
~~---)-(j(r)1

q I a r . ij i'o,u

[a9ij(r)/ar J, (~9ii(r=O)/(lij

It is well-known that such a relation like this is derived from the solution of the two
29)

particle Schrodinger equation. This exact relation has been derived by Kimball and
~ m

Niklasson in the electron liquid. The method employed here is that of Niklasson.

As for the static behavior of the results, we can show from eqs.(~.2), (4.10a),

and (4.10b) that D(Q)(q,O) and D"R.(q,O) are of order of qO and DC.:(q,O) and DC.--:(q,O)
% ~ ~ ~

are of order of q'2, when q tends to zero. Therefore, the dielectric function (4.1D satis-
fies the perfect screening sum rule (2,.8).

§ 5. Discussion

The dielectric function (4.1D, the response function (4.12), and the correspond

ing local field correction (4.15) have been calculated by solving the equation of mo

tion (4.7) with the approximation (8. 8a,b,c). As is seen from the fact that the effect

of two particle excitation to the response is explicitely involved in eqs.(4.10a) and (4.

lOb), the damping width of plasmon is taken into account in our result.

In fact, since

(l~O [mj(q,w) fDi/(q,wD C~ (',/mi~e/m;)O(q'),

the dielectric function (4.1D gives finite damping width of plasmon even in q->O. This
30)

may be one of the characteristics of multi-component system.

The obtained results are functionals of the occupation number n .(ka) and the two
%

partice correlation function j ..,(ka,k'a';q). Speaking from the completeness of the theory,
tt

these functions should also be calculated with the approximation which is consistent

with (4.8a,b,c). We may, however, assume

n,(kO")-:;;'n~O)(kO"),

fii' (kO",k'O"';q) -:;;. n;O) (kO") n):'! (k'0" )9,,' (q),

where n(Q) (ka') is the occupation number in the non-interacting system and 9 ..,(q) is
% tt

the Fourier transform of the pair correlation function 9 ..,(r). Such a assumption con
tt

serves all the limiting behaviors investigated in the text and has been usually done in the

available local field theories. In such theories, g ..,(q) is given self-consistently from the
tt
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zeroth-moment sum rule (2.10). Though we have not specified explicitely the statistics

obeyed by i-species of particle, this statistics is introduced when we give n i (0) (krr).

The results (4.15) for the some limiting cases are perhaps worth remarking. When

w is fixed but q tends to infinity, we get from eq.(4.18)

(5.D

(5.2)

where we used eqs.(2.14). On the other hand, when q tends to zero, we get from

(4.15) and (~.5)

lim . )J j'Yq-+OG;j(([,m)= [l-'IJAO ,J,

eqs.

(5.~)

and

(5.4)

where we used that (a) DCQ) (q,O) and DI?(q,O) are of order of qO and DC.-+: (q,O) and
Z ZJ (0) ZJ +

D C.-' (q,O) are of order of q2, when q tends to zero and (b) D . (q,w), DI?(q,w), DC.. (q,
ZJ _ Z ZJ ZJ

w) and DC•• (q,w) are of order of q2, when q tends to zero but w is finite. Equations
ZJ f' . b(5.D and (5.2) are independent 0 our approxImatiOn, ecause the result (4.15) are

exact in such limiting cases.
Now, since the local field correction of the uniform one-component plasma van

ishes independently of w in q-40, the nonvanishing of G . .(q,w) in q-40 may be a char-
ZJ

acteristic of the multi-component plasma. As pointed out in §2 and §~, eq.(5. 2) is related

to the internal structure of quasiparticle. Since such a response corresponds to multi

particle excitations, eq.(5. 2) is due to the non-vanishing of multi-particle excitations due

to the external field with large w but infinitely small q. As for the case of finite w,
4)

pine and Nozieres show that multi-particle excitation does compete with plasmon in all

the frequency moment sum rules for a dynamical form factor in q-40, when the total

current operator does not commute with the Hamiltonian. In the multi-component plas

ma in consideration, even if the total momentum commutes with the Hamiltonian, the

total current operator does not do so. Therefore, in the multi-component plasma, multi

particle excitations due to the external field does not vanish even in q-40, independently

of frequency of the field. This is the reason of eq.(5.~). In other word, since the local

field described by G . .(q,w) does relax even in q-40 through the decay into the multi-
ZJ

particle excitations and its relaxation in q-40, according to the local field theory in §~,

is closely related to 1m G . .(q,w), then limO 1m G ..(q,w)=I=O. The response described above
ZJ q-4 ZJ '

however, is essentially dynamical. The static local field may have the property of eq.

C5.4), as usual.
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